Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

FEDERAL RESERVE BANK OF PHILADELPHIA

Ten Independence Mall
Philadelphia, Pennsylvania 19106-1574
(215) 574-6428, www.phil.frb.org

Research Department

WORKING PAPER NO. 97-8

RECOVERING RISKY TECHNOLOGIES
USING THE ALMOST IDEAL DEMAND SY STEM:
AN APPLICATION TO U.S. BANKING

Joseph P. Hughes
Rutgers University

William Lang
Office of the Comptroller of the Currency

Loretta J. Mester
Federal Reserve Bank of Philadelphia
and
The Wharton School, University of Pennsylvania

Choon-Geol Moon
Hanyang University

Revised July 1997



https://core.ac.uk/display/6867742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Recovering Risky Technologies
Using the Almost Ideal Demand System:
An Application to U.S. Banking*

Joseph P. Hughes
Rutgers University

William Lang
Office of the Comptroller of the Currency

Loretta J. Mester
Federal Reserve Bank of Philadelphia
and
The Wharton School, University of Pennsylvania

Choon-Geol Moon
Hanyang University

Revised July 1997

*The views expressed in this paper do not necessarily represent those of the Federal
Reserve Bank of Philadelphia, the Federal Reserve System, the Comptroller of the
Currency, or the Department of the Treasury. Authors Hughes and Moon gratefully
acknowledge the financial assistance of the Rutgers University Research Council on a
preliminary project.



Recovering Risky Technologies
Using the Almost Ideal Demand System:
An Application to U.S. Banking

Abstract

Using modern duality theory to recover technologies from data can be complicated
by the risk characteristics of production. In many industries, risk influences cost and
revenue and can create the potential for costly episodes of financial distress. When risk
is an important consideration in production, the standard cost and profit functions may
not adequately describe the firm’s technology and choice of production plan. In general,
standard models fail to account for risk and its endogeneity. We distinguish between
exogenous risk, which varies over the firm’s choice sets, and endogenous risk, which is
chosen by the firm in conjunction with its production decision. We show that, when
risk matters in production decisions, it is important to account for risk’s endogeneity.

For example, better risk diversification that results, e.g., from an increase in scale,
improves the reward to risk-taking and may under certain conditions induce the firm to
take on more risk to increase the firm’s value. A choice of higher risk at a larger scale
could add to costs and mask scale economies that may result from better diversification.

This paper introduces risk into the dual model of production by constructing a
utility-maximizing model in which managers choose their most preferred production plan.
We show that the utility function that ranks production plans is equivalent to a ranking
of subjective probability distributions of profit that are conditional on the production
plan. The most preferred production plan results from the firm’s choice of an optimal
profit distribution. The model is sufficiently general to incorporate risk aversion as well
as risk neutrality. Hence, it can account for the case where the potential for costly
financial distress makes trading profit for reduced risk a value-maximizing strategy.

We implement the model using the Almost Ideal Demand System to derive utility-
maximizing share equations for profit and inputs, given the output vector and given
sources of risk to control for choices that would affect endogenous risk. The most
preferred cost function is obtained from the profit share equation and we show that, if
risk neutrality is imposed, this system is identical to the standard translog cost system
except that it controls for sources of risk.

We apply the model to the U.S. banking industry using 1989-90 data on banks with
over $1 billion in assets. Consistent with the significant regulatory and financial costs of
bank distress, we find evidence that managers trade return for reduced risk. In addition,
we find evidence of significant scale economies that help explain the recent wave of large
bank mergers. Using these same data, we also estimate the standard cost function,
which does not explicitly account for risk, and we obtain the usual results of essentially
constant returns to scale, which contradicts the often-stated rationale for bank mergers.



1. Introduction

Using modern duality theory to recover technologies from data can be complicated by
the risk characteristics of production. The standard cost and profit functions usually
ignore risk. However, in many industries, risk can be an important consideration in
formulating the production plan. Risk influences cost and revenue and can create the
potential for costly episodes of financial distress; responding to these incentives, firms
adjust their exposure to risk. The failure of the standard cost and profit functions to
account for firms’ exogenous risk environment and for their endogenous responses to
risk can lead to misleading results.

For example, a firm’s technology may link the diversification of risk to its scale of
operations or to the spread of its operations across different geographic regions. In such
cases, the better diversification that follows from an increase in scale reduces the cost
of managing risk and can lead to scale economies and enhanced profitability. However,
the standard cost and profit functions may not be able to detect these scale economies
because they do not account for the firm’s choice of risk. Better diversification reduces
not only the total cost of managing risk but also the marginal cost and, hence, increases
the marginal return to risk-taking. If the improved return on risk-taking induces the
firm to take more risk, the firm could incur additional costs of risk management that
may “use up” the cost saved by better diversification. Hence, when the standard cost
function measures the response of cost to a scaled increase in output, it might detect
constant or decreasing returns to scale rather than increasing returns, because it has
not controlled for the endogenous response of risk to better diversification. Risk in
this context plays a role similar to that of product quality. When product quality is
endogenous, any measure of scale economies that fails to control for product quality is
likely to be misleading.

Consider a second example where risk creates the potential for costly episodes of
financial distress. In such a case, the standard cost and profit functions may provide
misleading results because the production plan that maximizes the firm’s value may
involve trading short-term profitability for reduced risk.! A firm that incurs extra costs
and diminished revenues to reduce risk will not be minimizing the objective function
that defines the standard cost function nor will its optimal production plan maximize
the objective function that generates the standard profit function. By ignoring risk, the
standard cost and profit functions implicitly assume that managers do not trade profit
for reduced risk and, hence, that there are no important costs attached to financial
distress. However, in many industries, and especially in commercial banking, control-
ling risk to reduce the potential for financial distress is an essential consideration in
production.?

!Tufano (1996) reviews the literature on why managers might exhibit risk-averse behavior.
2Even if managers choose production plans that trade expected profit for less risk, they presumably



To summarize, when risk is an important consideration in production, the standard
cost and profit functions may not adequately describe the firm’s technology and choice
of production plan. In general, they fail to account for risk and, in particular, they
ignore its endogeneity. In the sections that follow, we amend the standard cost and
profit functions to account for these aspects of risk; we use the amended functions to
recover banking technology from data on a sample of U.S. banks in 1990; and we show
that the technology recovered by these amended functions is consistent with the often-
stated rationale for the current wave of large bank mergers, i.e., scale economies. In
contrast, most studies of U.S. banking technology that use the standard cost function
find no evidence of these significant scale economies.

1.1. Incorporating Risk into a Model of Production

Our strategy to incorporate risk into the firm’s choice of production plans links the
production plan to a subjective, conditional distribution of profit (see Hughes and Moon,
1995). The technology defines all feasible production plans. Each of these plans is
linked to a subjective, conditional probability distribution of profit by managers’ beliefs
about the probability distribution of future economic states and about how these states
interact with production plans to generate profit. Given these beliefs, a firm’s choice
of production plan is equivalent to a choice of a conditional probability distribution of
profit.

We attribute to the firm’s managers a ranking of production plans that reflects the
expected costs of financial distress, their resulting attitude toward risk, and their as-
sessment of the probability distribution of profit conditional on alternative production
plans. If the firm’s choice of plans follows from a ranking that considers only the plan’s
expected profit or, equivalently, the first moment of the subjective, conditional distri-
bution of profit, then the firm is risk neutral. The standard cost and profit functions
are consistent with this case. On the other hand, when managers also consider risk in
choosing the production plan, their rankings of production plans must include higher
moments of the distribution.

To identify the firm’s highest ranked production plan, we represent its ranking by a
managerial utility function defined over the production plan and profit. Firms maximize

maximize profits, given the amount of risk they assume. Stating the problem this way suggests that the
standard profit and cost functions can be amended to account for risk simply by conditioning them on
appropriate measures of risk. But this would not account adequately for the behavior of a firm that is
not risk-neutral. For example, the equilibrium of the non-risk-neutral firm can be influenced by the tax
rate on profit as well as by fixed costs, while that of a risk-neutral, profit-maximizing firm is not affected
by these variables. The strategy of conditioning the standard profit function on measures of risk fails
to account for these critical differences in equilibria. To capture these differences, the firm’s objective
function must be amended to include a broader objective than profit maximization. Santomero (1984)
considers the important factors in specifying an objective function for banks.



this function, subject to the technology and the profit identity, to obtain their most
preferred production plan (for inputs and outputs) and most preferred profit function.
These choice functions are sufficiently general to subsume the equilibria of the non-
risk-neutral firm as well as the risk-neutral firm, since they allow for the possibility
that the firm’s equilibrium is influenced by the tax rate on profit and by fixed charges
and revenues. Hence, the most preferred profit function generalizes the standard profit
function to account for the endogeneity of risk and for the possibility that trading
profitability for reduced risk is a value-maximizing strategy.

1.2. Recovering Risky Technology with the Almost Ideal Demand System

To implement the model, we borrow the Almost Ideal (AI) Demand System from con-
sumer theory (see Deaton and Muellbauer, 1980). We adapt the AI expenditure func-
tion to represent generalized managerial preferences and use it to derive the functional
forms for the utility-maximizing demand functions for profit and the production plan.
We show that when the parameter values implied by risk neutrality are imposed on the
demand functions, they become identically equal to the translog profit (cost) function
and share equations. Hence, a standard translog representation of the maximum profit
function is subsumed by this more general specification. Moreover, these parameter
values provide a test of risk neutrality.

To estimate our model, we turn to the commercial banking industry, whose business
includes risk-taking and risk-diversification. Commercial banks rely on demandable
debt, which is part of the payments system, to fund their portfolios of loans. In addition,
banks are better informed about the quality of these nonmarket assets than are their
depositors so that the credit risk they assume in their asset portfolios entails significant
liquidity risk, risk that can spill over to other banks and threaten the safety of the
payments system. To control this critical systemic externality, regulatory authorities
charter banks and supervise them to ensure their safety and soundness. Banks that
encounter financial distress can suffer severe regulatory penalties, liquidity crises, and
even loss of their valuable charters. Consequently, bank managers may well trade profit
for reduced risk to protect their banks from costly episodes of financial distress. In fact,
our empirical tests reject the hypothesis of risk neutrality.

We estimate a model that allows us to compute scale economies. We focus on
scale economies because most studies based on the standard cost function fail to find
evidence of the scale economies that bankers cite as a rationale for the current merger

3This framework for modeling generalized managerial preferences draws on earlier work by Hughes
(1989, 1990) on hospitals and education that allowed managers to choose production plans that trade
profit or net income for other objectives.

‘Keeley (1990) shows that declining charter values, eroded by increasing competition in banking over
the last several decades, have contributed to increased risk-taking by U.S. commercial banks.



wave (see Berger and Humphrey, 1992). These studies typically find that banking
is characterized by slightly increasing returns to scale at relatively small banks and by
slightly decreasing returns to scale at relatively large banks. This empirical result seems
at odds with statements from bank management that have justified the recent wave of
large bank mergers on the basis of cost savings. We consider whether this scale economy
puzzle might be due to the standard cost function’s failure to account for risk and its
endogeneity.

2. Modeling Risky Production: An Application to Banking

Risk-taking and risk diversification are the business of banking. Using their deposi-
tors’ funds, commercial banks produce diversified, leveraged portfolios of information-
intensive assets. They assess credit risk, they write loan contracts, and they monitor
borrowers’ behavior to control moral hazard. Banks’ efforts at managing individual loan
risk are enhanced by the diversification achieved by combining loans in a portfolio. The
credit risk of any particular loan can be represented by the probability distribution of
the present value of the stream of its future payments. Banks that charge higher interest
rates on their loans will typically attract borrowers with higher ex ante probability of
default. If there is a market trade-off for risk and return in lending, these banks are
sacrificing loan quality for higher expected profitability. Diversification can reduce the
return risk on the bank’s portfolio of loans. As banks increase in size, the diversification
of the loan portfolio improves and its return variance diminishes at any given level of
loan quality. If larger banks respond to the improved diversification by raising the in-
terest rates on loans, increasing their expected return and risk, loan quality is reduced
and costs will be higher than at a higher level of loan quality. Thus, diversification may
generate cost-savings at a given level of loan quality and may also create the incentive
to reduce the level of loan quality, generating higher costs of managing the reduced
quality. The measurement of bank costs must control for loan quality to distinguish the
cost-saving effects of diversification from the potentially cost-increasing changes in loan
quality.?

5Several studies of bank costs have modified the standard cost function to introduce risk. McAllister
and McManus (1993) conditioned the cost function on financial capital and control for the risk of
insolvency by adjusting each bank’s level of financial capital so that all banks in their sample have the
same probability of insolvency. They find essentially constant returns to scale. If improved diversification
reduces return risk, it also reduces the risk of insolvency. Hence, adjusting capital to control for the
probability of insolvency may obscure scale economies due to improved diversification. Because managers
may ”overemploy” financial capital to reduce the probability of financial distress, Hughes and Mester
(1993) estimated a banking cost function conditioned on the level of financial capital so that the level
need not minimize cost. They also controlled for loan quality. However, in measuring scale economies,
they varied financial capital proportionately with the output vector. They, too, obtained constant
returns to scale. The equiproportionate variation in financial capital would obscure any economies



We define a bank’s production plan by its output vector, y, which consists of asset
categories, such as commercial and industrial (C&I) loans, consumer loans, real estate
loans, and government securities. The production plan also includes the input vector,
x, and financial (or equity) capital, k. Inputs comprise sources of loanable funds such as
insured and uninsured deposits and other borrowed money, and the labor and physical
capital used in intermediating the loanable funds. Thus, a production plan, (y,x,k),
consists of the portfolio of loans and securities and the inputs and financial capital used
to produce the portfolio. The output vector, p, represents the interest rates charged on
the different components of the asset portfolio, y. The higher the interest rate, relative
to the risk-free interest rate, r, the higher the asset’s risk-premium. An increase in the
loan rate, given the risk-free rate, typically reduces the quality of the loan applicants,
since borrowers with better credit ratings will seek lenders offering lower rates. Hence,
the higher loan rate increases return risk and higher risk may be accompanied by higher
expected returns. Thus, the risk premium provides an ex ante proxy of asset quality.
Lower quality assets are likely to have a higher loss rate, too. Hence, the amount of
nonperforming loans, designated by n, gives some indication of ez post asset quality.

Other components of the bank’s price environment include w, the input price vector;
wy, the price of financial capital (rate of return on equity); and m, income from sources
other than those accounted for by the output vector, y. Letting ¢ be the tax rate on
profit and pr(= 1) be the nominal ”price” of a real dollar, the price of a dollar of real,
after-tax profit in terms of nominal, before-tax dollars is p; = %.6 Nominal, before-tax
accounting profit is, thus, defined as

PrT=Pp-y+m—w-X. (1)

Nominal accounting profit is composed of before-tax economic profit, p,7, and the
required payment to equity, wik, which will depend on the riskiness of the bank. Hence,
let wy, =7 - g(s), where, as noted above, r is the risk-free rate of return and g(s) > 1 is
a risk premium. The risk premium, g(s), is assumed to be homogeneous of degree zero
in (p,r). Thus, a proportional variation in the risk-free rate r and the asset returns
p results in an equiproportional variation in wg. The other arguments that affect the

that might be obtained when better diversification allows banks to reduce their capital-to-asset ratios.
When Hughes and Mester (forthcoming) embedded the conditional cost minimization problem into the
problem of maximizing managerial utility, they obtained the utility-maximizing demand for financial
capital, which need not be the level that minimizes cost and which allows financial capital to vary
optimally when scale economies are computed. Again, they controlled for asset quality. Using the
same sample of banks as in their previous paper, they found substantial economies in capitalization and
relatively large overall scale economies.

SThe ”price,” pr, facilitates stating the homogeneity conditions: a proportional variation in pr
implies the same variation in p. so homogeneity will be stated in terms of the latter.



premium are discussed below. Thus,
PrT = Pp|—=— +T7
Pr
r-
o gls } (2)

The nominal, before-tax return on equity is then % bx ;f pereg(s) 4 %ﬁ, which consists of
the required return and the economic rent.

Managers of a bank rank and choose production plans. The standard profit function
assumes that the bank ranks plans by the value of (2) and that it chooses the plan that
maximizes (2). However, when production plans entail risk, profit is more appropri-
ately characterized by a subjective probability distribution that is conditional on the
production plan and asset quality.” Thus, when production is risky, the standard profit
function implicitly assumes that managers rank and choose plans by their expected
profitability.

Not only do the standard profit and cost functions assume risk neutrality, they also
assume that there are no costs attached to financial distress. Given the potential for
costly episodes of financial distress, the production plan that maximizes the value of
the firm will not maximize profit defined by (2). The value-maximizing production plan
will involve trading profit for reduced risk—in particular, a reduced probability of large
negative realizations of profit. In contrast to the ranking based on the expected value of
profit, the ranking that accounts for financial distress costs must include higher moments
of the distribution that reflect risk. To allow for the possibility that higher moments may
also influence the rankings, we represent these generalized managerial preferences by the
utility function U(w,s), where s = (y, X, k, p,r,n). When managers do not trade return
for reduced risk, only profit has marginal significance in the utility function. In this case,
the production plan and asset quality influence utility only through their effect on profit
so that utility is essentially a function of a single argument, profit. Hence, when utility is
maximized, profit is also maximized, and the cost of producing the optimal output and
quality vector is minimized. On the other hand, when the value-maximizing strategy
involves trading profit for reduced risk, the production plan and quality arguments will
directly influence utility in addition to affecting profit, because they influence higher
moments of the subjective, conditional distribution of profit. In such cases, production
plans that involve, for example, extra labor for more intensive credit evaluation and
loan monitoring or that use more expensive, but less volatile funding sources to reduce
risk may be ranked ahead of more profitable but riskier plans.

The utility function’s ranking of production plans depends on managers’ beliefs
about how the production plans interact with future economic conditions to generate

"Under certain conditions, these subjective, conditional probability distributions of profit can be
summarized by their first two moments, the expected value and variance (or risk).



profit and on their beliefs about the probability distribution of future economic states.
These beliefs link production plans and asset quality to subjective, conditional distri-
butions of profit. Thus, the utility function’s ranking of production plans reflects these
beliefs and can be interpreted as an implicit ranking of subjective, conditional distri-
butions of profit. When managers choose their most preferred production plan, they
can be characterized equivalently as choosing their most preferred conditional probabil-
ity distribution of profit. This choice reflects their beliefs about the revenues and costs
attached to risk-taking, about opportunities for risk diversification, and about potential
costs of financial distress.

We formalize the definition of the most preferred production plan as the solution to
the problem of maximizing the managerial utility function with respect to the production
plan and profit, subject to the definition of profit and to the technology that specifies
feasible production plans, T(y,x,n,k) < 0. We condition the maximization problem
on (i) the output (asset) vector, y, so that we can readily gauge how cost varies with
a proportionate change in the output vector; on (ii) the components of output (asset)
quality, (p,r,n), so that the measure of scale economies is not biased by an endogenous
variation in asset quality; and on (iii) financial capital, k, so that we can investigate the
effect of capitalization on the organization of production. The choice of financial capital
will be derived in a second-stage optimization. Hence, the most preferred production
plan and the most preferred level of profit solves the following problem:

max U(m,x;y,p, 7,1, k) (3)
st. pry+tm—-w-x—pmr = 0 (4)
T(x;y,n,k) < 0 (5)

Letting the price vector be represented by v = (w,p,r,pr), the most preferred
production plan that produces the asset portfolio, y, characterized by asset quality,
(p,r,n), with financial capital, k, is given by x(y,n,v,m, k), and the most preferred
level of after-tax profit implied by this production plan is 7(y,n, v, m, k). As functions of
input prices and output levels, these utility-maximizing demand functions for inputs and
profit resemble the standard cost-minimizing ones. As functions of prices and income
(revenue), they resemble consumers’ demand functions. As functions of the tax rate on
profit, they resemble neither, but afford consistency with the theory of the non-risk-
neutral firm. Since this solution is also conditioned on the amount of financial capital,
the utility-maximizing level of profit is readily translated into the optimal rate of return
on equity. When managers do not trade profit for reduced risk, the utility-maximizing
level of profit is the maximum profit or, equivalently, the maximum rate of return on
equity.



3. The Most Preferred Cost Function

Scale economies are obtained from the most preferred (MP) cost function, which is
defined by:

C(Y7nav7m7k) = W'X(yunvvumuk) =p 'y+m_p7r7r(y7navvmuk)' (6)

There are several notable features of the MP cost function. From (6), it is clear that
the cost function is embedded in the utility-maximizing demand for profit. As will
be discussed later, measures of technology such as scale and scope economies can be
derived from the utility-maximizing profit equation. Second, when outputs and inputs
as well as profit affect utility marginally, revenue influences cost. Not only will output-
based revenue, p -y, affect the optimum, so will fixed revenue, m (and fixed cost).
Additionally, the tax rate the bank pays on its profit will, in general, influence the
optimum. Of course, in the special case of a risk-neutral manager, where only profit
has marginal significance in the utility function, revenue and tax rates will not influence
cost. Finally, notice that input mixes on the interior of the input requirement sets
(isoquants) can be utility-maximizing.

Unlike the standard cost function, the homogeneity properties of the MP cost func-
tion include output prices and fixed revenues. The input demand functions x(y,n, v, m, k)
are homogeneous of degree zero in (v, m), while the nominal profit function p,7(y,n,v,m, k)
is homogeneous of degree one in (v, m). Hence, the MP cost function w - x(y,n, v, m, k)
is homogeneous of degree one in (v, m).

4. Deriving the MP Cost Function from the Almost Ideal Demand Sys-
tem

The functional forms for the utility-maximizing input demands and profit equation can
be obtained from the AI Demand System. In the special case where only profit has
marginal significance in the utility function, these functional forms are identical to the
translog cost function and share equations.

Our strategy is to adapt the expenditure function of the AI Demand System to
represent generalized managerial preferences, to apply Shephard’s lemma to obtain the
expenditure-minimizing demand system for inputs and profit, and then to substitute the
indirect utility function into the demand system to convert it into the utility-maximizing
system that we estimate.

The expenditure function describes the amount of expenditure required to achieve a
given level of utility U°. The managerial expenditure function is defined by the following
problem:

WINW - X + pr (7)



st. U —U(m,y,x,p,m,n,k) = 0 (8)
T(x;y,n.k) < 0, (9)

whose solution yields the constant-utility demand functions x%(y, n, v, k,UY) and

7 (y,n,v,k,U%). Substituting these demand functions into (7) yields the expenditure
function E(y,n,v,k,U"). The expenditure-minimization problem (7) is dual to the
utility-maximization problem (3) so that E(y,n,v,k,U") = p-y +m. Also, the de-
mand functions obtained from (3) and (7) are identically equal when the indirect utility
function, V(y,n,v,m, k), derived by inverting the expenditure function, is substituted
for the utility index in the expenditure-minimizing demands:

X(y7n7v7m7 k) (10)
w(y,n,v,m,k). (11)

Xu (y7 n7 v7 k? V(y7 n7 v7 m7 k))

7Tu (y7 n7 v7 k? V(y7 n7 v7 m7 k))

Adapting the framework of the ATl Demand System to accommodate the generalized
managerial preferences yields the expenditure function,

ImE(:)=InP+U- [ (Hy/) (ijj> PhE", (12)
i J
where
InP = ao—l—Zailnpi—G—Z(Silnyi—l—ijlnwj
i i j
+nrInpr +7Inr+9Inn+plnk

1 1
+§ ;;ai]’ Inp; Inp; + 5 ;;(Sij Iny; Iny;

1 1
—l—§ Z Zw:t Inws Inw; + ol (lnp7r)2
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1 1 1
—|—§TM (1117“)2 + §l9nn (lnn)2 + §pk/€ (In k)2

—l—ZZ«%j Inp;Iny; —l—Zquz-slnpi]nws —l—zwmlnpilnp7r
i g i s i
+ i lnpilnr +> Wy Inpinn+ > g lnpiink

+ZnyjS Iny; Inws + nyjﬂ Iny; Inpr + Z’er Iny;Inr

i s J J
+ijnlnyjlnn+27jklnyjlnk
J J



1 * 1 *
—|—§ gwmlnws Inp, + 5 gwm Inp; Inwy
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Hence, from (12) the indirect utility function is

V() = In(p-y+m)—InP
Bo (Hz yzﬂz) (Hj w;'jj) prkr

(13)

(14)

Applying Shephard’s lemma to (12) to obtain the constant-utility input demand
equations and profit equation and then substituting the indirect utility function (14)

into these equations yields the utility-maximizing choice functions:
OlnFE wir;  O0lnP

+vi[ln(p-y +m)—1nP]

0lnw; p-y+m Olnw
= wi+ Y wilnws+> ¢ulnp; +> vilny;
s J J
Fwr Inpr + wip InT + Wi Inn + wig Ink

+v; [In(p-y +m) —In P]

OlnE prm OlnP
dlnp, p-y+m Olnp,

+p[n(p-y +m) —InP]
= N+ Nar lnpw + Z¢j7r lnpj + Zf}/jﬂ' lnyj
J J

—1—2(,«157r Inws + Np In7T + N Inn + N Ink
S

+u(ln(p-y +m)—InP]

_ 1 * *\ _ 1 * * )
where wg; = 5(wW); +wjy) = wis and wsr = 5(Wi; +Wr,) = Wrs.

Symmetry requires a;; = aj; and 0;; = 6;; in addition to wer = wrs and wge = wys.
The first two symmetry conditions must be imposed in the estimation of the share equa-
tions, since the constituent coefficients cannot be separately identified. However, the
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latter two symmetry conditions involve coefficients of prices that are used by Shephard’s
lemma to obtain the share equations. Consequently, they appear in separate share equa-
tions and are, thus, identifiable and permit a test of symmetry when the condition is
not imposed on the estimation. In summary, symmetry requires that
(S1) aij = ai Vi, j, (S2) i = 6;i Vi, j,
(S3) wer = wys Vs, and  (S4) wy = wis Vs, 1.
The input and profit share equations are homogeneous of degree zero in (W, p,r, pr, m),
which implies the following conditions:
(H1) Y vj+p=0, (H2) Yo + Xwj +nr +7 =1,
(H3) 37 qij + 324 @t + Yjr + e =05, (H4) 32, dir + 3oy wst + wir +wir = 0V,
(H5) Trr + Zz ¢i7" + Zs Wsp + Nr = 07 (H6) Zz 9@]’ + Zt Vit + Yin + Yir = 0 \V/],
(HT) Ner + 22 Yir + 25 Wsr + Ner = 0, (H8) 3= thin + X5 Wen + Ton + Nan = 0,
(H9) X ¥k + s wsk + ok + 1k = 0, and  (HI0) § 37,35 aij 4 3 3 >y wat
+ Zz Zt ¢it + %Tr'r + %777r7r + Zz 1/1i7r
+ 2 Vir + s Wsr + D Wsrr + N = 0.
The input and profit shares sum to one, which implies the following adding up condi-
tions:

(Al) Ziwi+nﬁ = 17 (AQ) Ziwsi+wsw = OVS7

(A3) 35 dji +¥jm =0V),  (Ad) 35750 +Yjm = 0 V5,

(A5) Zz Wri + Nere = 07 (AG) Zz Wir + Npp = 0;

(A7) > wik +Nrie =0, (A8) > win + Ngn, =0, and
(A9) Y vj+p =0 (which is also a homogeneity condition).

5. Managerial Objectives: Profit Maximization?

If banks maximize profit (which is equivalent to maximizing return on equity here, since

financial capital is treated as exogenous), a variation in the tax rate and, equivalently,

inp; (= ﬁ) will not affect the bank’s choice of before-tax profit. This implies that

(Pl) N = Nre = 1/Jz'7r = Yjm = Wst = Nor = Nan = Nk = 0Vi,js.
Thus, (16) is simplified to

T

In addition, the revenue and risk characteristics of production represented by the
output price vector will not influence the bank’s cost-minimizing production plan so
that

(P2) a; = i = b = Gis = VYix = Vi =Vin =i =0V 1,4, s.
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Similarly, variations in m have no marginal significance for the optimal input demand
x. Hence, the numerators, w;z;, of the shares (15) are unaffected by a variation in
m. Instead, the variation in m solely affects profit so that %% = 1. Using these
results in differentiating equations (15) and (16) with respect to Inm yields the following
parameter values in the case of profit maximization:

(P3)
py+m
Olnm

9 (55%5)

e (18)
p-y+tm

0 (5x)
dlnm

- 1 _ P (19)
p-y+tm
Therefore, we can test for profit maximization (and cost minimization) by testing the
restrictions (P1), (P2), and (P3).
Substituting (18) into (15) and (19) into (16) yields,

141 . —InP In P
Py+m 0lnw;
141 . —InP
pﬂr[ Finp-y+m - ]:ln(p~y—|—m)—lnP, (21)
p-y+m
and using (21), an expression for cost can be constructed,
C=p-y+m—p;m= p-y+m (22)

1+In(p-y+m)—InP

Substituting (22) into (20) and (21) shows that in the case of profit maximization, the
share equations are cost shares (and are identical to the translog cost function and
corresponding share equations for inputs):

wir;  O0InP
C  Olnw; (23)
- % =P —1In(p-y+m). (24)
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6. Deriving the Demand for Financial Capital

Conditioning the MP cost function and input demands on the level of financial capital
allows us to investigate how a bank’s underlying financial condition affects its production
decisions. However, the more basic decision centers on the level of financial capital itself
because, as a cushion against insolvency, it signals the bank’s tolerance for risk. Thus,
the utility-maximization framework of (3) must be expanded to include a second stage
where the financial capital level is determined.

The utility-maximizing demands for inputs and profit derived from (3) are condi-
tioned on the level of financial capital, k. It is straightforward to add a second stage
to the maximization problem to determine the bank’s choice of capital. Writing the
Lagrangian function for (3) and evaluating it at the first-stage optimum, conditional on
k, the conditional indirect utility function is obtained:

Viy,n,v,m k) = U(n(-),x(-);y,p,r,n,k)
FAC)Py +m—w-x(-) = prm(-)]
YT (x();y,n,k)]. (25)

The demand for financial capital follows from maximizing (25) with respect to k. Using
the definition from (2) that p,m = pr [T g(s)k 4 ﬂ'} and differentiating (25) with respect
to k yield the first-order condition

K5 o1()
o~ o Fa 105 =0 (26)

oV (+) 8U(-)_)\ Dr [r.g(s)Jrr

whose solution is the demand for financial capital, k(y,n,v,m).
The AI system’s conditional indirect utility function (14) implies this first-order
condition is

ov(:) _ 9oV(-) 0k
ok  Olnk Ok

_ 1 Pmp+
K [50 (Hi Ys ) (Hj wgu-j) p#kﬂ dlnk

klln(p-y +m) — In P]
= p+ perInk + > i lnp; + > e lny; + > wek Inws + g Inpy
i j s
+TInr + YppInn + k[ln(p -y +m) —In P] = 0. (27)
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Not surprisingly, the demand for financial capital follows readily from the parameters
of the conditional system of input demands (15) and profit (16) and, thus, constitutes
additional parameter restrictions.

The output vector can be made endogenous in an analogous fashion; however, a
simpler system can be derived by eliminating the portion of the two-stage problem that
results from conditioning the utility maximization on the output vector. This modified
procedure is developed in Hughes, Lang, Mester, and Moon (1993).

In the special case of profit maximization, variations in m should not affect the
optimal demand for capital so that another restriction is added to (P3) above:®

(P3) k = 0.

7. Deriving Scale Economies from the MP Cost Function

Scale economies are defined by the inverse of the elasticity of cost with respect to output.
Using the definition of the MP cost function (6) and substituting the utility-maximizing
demand for financial capital into (6), the degree of scale economies is given by

SCALE = ¢ (28)

Sivi (88 + 52 58)

o

=R

=

_ P'y+m—pgm

B A, — O _ Opxm Ok
> i Vi (Pz ~ oy Wa—%)

P ytm-—psm

. 8(P?]y7r-‘:rm) PrT . 8(—211%) dlnk
Xi|piyi — (pry +m) oy, (p-y+m)pzyz_(p'Y+m) olnk  9lny;

The final expression in (28) is stated in terms of derivatives of the profit share equation

(16).

8. The Data

We estimate the AT Demand System using data on U.S. banks that reported at least $1
billion in assets as of the last quarter of 1988. The data are taken from the Consolidated
Reports of Condition and Income for the fourth quarters of 1989 and 1990. Banks in unit
banking states and special-purpose banks chartered under Delaware’s Financial Center

81f the regulatory capital constraint were binding on banks, changes in m would not affect even a
non-risk-neutral bank’s demand for capital. But in our sample, and in general, the capital constraint is
not binding.
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Development Act and Consumer Credit Bank Act are excluded from the sample. A
total of 286 banks, ranging in size from $1.025 billion to $69.612 billion, are included in
the data set. The data are summarized in Tables 1 and 2.

We specify five outputs, each measured as the average dollar amount in the fourth
quarters of 1989 and 1990: 1, real estate loans, including commercial as well as non-
commercial; yo, commercial and industrial (C&I) loans, lease financing receivables, and
agricultural loans; y3, loans to individuals for household, family, and other personal
expenditures; y4, other loans (such as loans for purchasing and carrying securities, un-
planned overdrafts to deposit accounts, loans to nonprofit institutions, and loans to
individuals for investment purposes); and ys, securities, assets in trading accounts, fed-
eral funds sold, securities purchased under agreements to resell, and total investment
securities.

Financial capital, k, is the average amount of equity capital, loan-loss reserves,
and subordinated debt in 1990. In addition to financial capital, five other inputs are
incorporated into the model: x1, labor, whose price, wy, is measured by salaries and
benefits paid in 1990 divided by the average number of employees in 1990; z9, physical
capital, whose price, ws, is proxied by the ratio of occupancy expense in 1990 to the
average dollar value of net bank premises in 1990; x3, insured deposits, whose price,
ws, is computed as the ratio of interest paid in 1990 on deposits under $100,000, net of
service charges received by the bank, to the average amount of interest-bearing deposits
net of CDs over $100,000; x4, other borrowed money, whose price, wy, is the ratio of the
total expense of federal funds purchased, securities sold under agreement to repurchase,
obligations to the U.S. Treasury, and other borrowed money in 1990 to the average
amount of these funds in 1990; and x5, uninsured deposits, whose price, ws, is the ratio
of the interest expense in 1990 of deposits over $100,000 to the average amount of those
deposits.

Although some formulations have assumed that deposits are outputs, Hughes and
Mester (1993) derived a test for determining whether deposits are inputs or outputs.’
In their data set, which is very similar to the one here, they concluded that insured and
uninsured deposits are inputs. Thus, we treat them as inputs here as well.

In addition to financial capital, another indicator of a bank’s underlying financial
condition is its amount of nonperforming loans, n, which is measured by the sum of
the average level of loans past due 90 days or more and still accruing interest and the
average level of nonaccruing loans.

The price or yield, p;, on the i-th output is measured by the ratio of total interest
income from the i-th output to the average amount of the i-th output that is accruing
interest. This price is not just a component of revenue. Its magnitude relative to the

9Hughes and Mester (1993) show that when deposits are inputs (outputs), variable costs (i.e., the
cost of all nondeposit inputs) will be decreasing (increasing) in the level of deposits.
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risk-free rate indicates the risk premium incurred by the output and, hence, suggests
the average quality of the asset.

The variable, m, is measured by the amount of noninterest income received in 1990.
Revenue is the sum, p - y+m, and before-tax accounting profit is p - y+m—w - x. Banks
pay taxes on their income, with the tax rates reflected in p,. State tax rates are obtained
from The Book of the States, published by the Council of State Governments, and from
Significant Aspects of Fiscal Federalism, published by the U.S. Advisory Commission
on Intergovernmental Relations.

9. Estimation

The system to be estimated consists of the share equations, (15) and (16), given the
definition of In P found in (13), and the first-order condition (27), which defines the level
of capitalization. Because a cross-section is used, there is no variation in the risk-free
interest rate, r, so it is dropped from the estimating equations. However, its parameters
can be recovered by using the homogeneity conditions.

To reduce the number of parameters to be estimated, the vector of output returns
p is reduced to its weighted average

p=>_pi [nyyj] : (29)

Dropping r and using p simplifies the model to be estimated. The amended equa-
tions are given in the appendix and are indicated by primes attached to their equation
numbers (thus, equation (13) in the text becomes equation (13') in the appendix).

We use nonlinear two-stage least squares to estimate the following system of non-
linear simultaneous equations (subject to the parameter restrictions (A1)-(A2), (A3'),

(A4)-(A5), (AT)-(A9), and (S2)):

( of (15) =1) ]

s9t — (r.h.s. of (15") with i = 2)

( f (15") with ¢ = 3)

sqt — (r.h.s. of (15") with i = 4)

Srt — (r.hus. of (16"))
Lh.s. of (27')

i (ye,ne, ve,my | ©) = =W (30)

where r.h.s. designates the right hand side of the indicated equation and l.h.s., the left
hand side; ¢ is the bank index, ranging from 1 to T'; s is the i-th input’s revenue share

at the t-th bank, i.e., s; = % for ¢ = 1...5; syt is the profit share at the t-th

bank, i.e., s = —L’;n, w; are 1.i.d. over t Wlth the cross-equation covariance matrix

Pt
3 and @ is the set of all identifiable parameters excluding those in ¥. The standard
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errors and t-statistics we report are based on the asymptotic covariance matrix of the
estimate of ®, which penalizes for not using cross-equation dependence (see Gallant
(1977)). The contemporaneously correlated error terms u; reflect optimization errors
(i.e., errors in utility maximization).

10. The Empirical Findings

The parameter estimates are reported in Table 3. There are four striking primary
findings. First, risk neutrality or, equivalently, cost minimization, is conclusively re-
jected: managers appear to trade return for reduced risk. Second, the estimate of scale
economies is larger than that found by most studies that do not control for endogenous
risk. Third, the estimate of scale economies increases with bank size, which is consistent
with the wave of mergers among large banks. Last, banks with higher capital levels or
higher levels of nonperforming loans rely less on volatile funding sources.

10.1. Risk Neutrality

We used a Wald test to test the 31 restrictions (P1'), (P2'), and (P3') (given in the ap-
pendix) implied by risk neutrality or profit maximization. The value of the test statistic
was 294.01 with 29 degrees of freedom (two of the restrictions are redundant because
of the adding-up conditions that these parameters satisfy). Thus, the restrictions are
strongly rejected, indicating that banks in the sample are not behaving in a risk-neutral

manner.lo

10.2. Scale Economies Measured by Other Studies

The many bank cost studies based on estimating a flexible functional form differ in the
following ways: (1) how inputs and outputs are defined and, hence, how cost is con-
stituted, (2) whether financial capital is ignored, included as a conditioning argument,
or included as an element of cost, and (3) whether an average practice cost function or
best practice cost frontier is estimated. One might expect these differences to yield a
variety of scale estimates, but instead, the estimates are quite similar. Most studies of
large banks (whose assets exceed $1 billion) find either slight scale economies or slight
diseconomies, and they usually find that scale economies decrease with bank size.!!

10We also computed the test statistic after removing (P3’), the restriction related to m. The value of
this test statistic was 52.83 with 28 degrees of freedom. Again, profit maximization is rejected with a
p-value of 0.003.

'1To maintain consistency with our measure of scale economies in (28), the discussion below transforms
published measures of scale economies so that values greater than one imply scale economies, while values
less than one imply diseconomies.
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Treating noninterest-bearing deposits as a quasi-fixed input while characterizing the
other inputs and outputs as we do here, Noulas, Ray, and Miller (1990) examine large
banks in 1986 and find that scale economies decrease from 1.02 for the smallest banks
($1-3 billion) to 0.97 for the largest banks ($10+ billion). In a similar study that differs
primarily in controlling for the number of branches, Hunter and Timme (1991) find that
in 1986 scale economies range from 1.123 for the smallest group ($1-1.5 billion) to 0.950
for the largest group ($25+ billion). When they omit branches, the measures drop to
values very close to those of Noulas, Ray, and Miller: 1.037 for the smallest banks to
0.977 for the largest banks.

Berger and Humphrey (1991) calculate scale economies using a thick frontier and
find mild diseconomies, 0.98, for banks with $1-2 billion in assets, decreasing to 0.97
for banks with over $10 billion in assets. When they use a conventional approach, the
range drops to 0.96 for the smallest banks and 0.94 for the largest banks.

Two other studies find approximately constant returns to scale overall but much
wider ranges in scale economies. Hunter, Timme, and Yang (1990) obtain values ranging
from 1.09 for the smallest banks ($1-1.5 billion) to 0.90 for the largest ($25+ billion)
using 1986 data. Excluding interest payments from cost, Evanoff and Israilevich (1991)
find measures ranging from 1.11 at $0.72 billion to 0.76 at $30 billion.

McAllister and McManus (1993) apply nonparametric estimation to 1984-90 data
and find increasing returns to scale up to $0.5 billion and constant returns from $0.5-10
billion, the largest bank in their sample. Using 1988 data on all banks with over $1
billion in assets, Pulley and Braunstein (1992) report an average measure ranging from
1.04 to 1.06 depending on the estimation procedure. Evanoff, Israilevich, and Merris
(1990) estimate a shadow cost function to account for regulatory distortions over the
period 1972-87 and obtain values of 1.07 for multibank holding companies and 1.10 for
one-bank holding companies.

Studies that find scale economies increasing with bank size are rare. Mester (1992)
defines outputs to capture the information-producing and -processing role of banks and,
using 1988 data, finds slight scale economies that increase with bank size. Banks in the
smallest group ($1-1.5 billion) exhibit slight economies, 1.0305, and this increases to
1.0426 for banks in the largest group ($5+ billion). Clark (1996), who examines the
period 1988-91, treats core deposits as outputs and estimates a thick frontier. He finds
economies of around 1.05 for the smallest banks (up to $4 billion) and constant returns
in all larger size categories (the largest of which is +$20 billion in assets).

10.3. Scale Economies Measured Without Imposing Risk Neutrality

The studies discussed in the previous section do not explicitly incorporate risk. In
contrast, we find that when the structural model of production is amended to account
for risk and to control for its endogeneity, measured scale economies are much larger,
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as shown in Table 4 and Figure I. These larger measures are more consistent with the
recent wave of large bank mergers. The measures range from an average of 1.101 in the
smallest asset-size quartile, 1.128 in the second quartile, 1.146 in the third, and 1.208 in
the fourth. All are strongly significantly different from one. In addition to being larger
than those found in previous studies, the measures also increase with bank asset size,
contrary to most previous studies.

To compare the results of our amended model of production, which incorporates
risk, with the standard cost function, which does not, we estimate the standard model
using our data. We drop financial capital and our measures of asset quality (nonper-
forming loans and the average return on assets), and we use the standard translog cost
formulation, including share equations, which results when we impose risk neutrality
on our amended model. We find that the estimated scale measures are all significantly
different from one but are considerably smaller and remarkably familiar: ranging from
1.022 for the smallest quartile, 1.029 for the second quartile, 1.035 for the third, and
1.050 for the fourth. These values are surprising only in that they increase in magnitude
with asset size.

10.4. Other Results

Table 4 shows that for banks of all sizes, the capital level, k, and volatile funding, x4,
are inversely related. Thus, banks with higher capital are less likely to rely on volatile
sources to fund their assets. It appears that banks choosing lower insolvency risk also
choose lower liquidity risk. And all size quartiles except the smallest, banks with a
higher level of nonperforming loans, n, which is an ex post measure of asset quality, rely
less on volatile funding sources. As nonperforming loans are likely to be less liquid than
other assets, these banks may prefer more stable funding sources. To the extent that
the prices of some of the components of volatile funding include a risk-premium, this
may also be a cost-reducing strategy, since the risk-premium is likely to be higher for
banks with poor loan quality.

Table 4 also reports that, for the smallest banks, the most preferred level of capital
responds positively to the level of nonperforming loans. These banks may be acting to
protect their solvency from the ex post realization of poor loan quality by increasing
their capitalization.

Table 4 also indicates that financial capital, k£, and the average return on assets, p,
are inversely related (although not significantly so). Lower quality assets have an ez
ante higher return, but this return is a gamble. Our results suggest that the greater the
gamble, that is, the higher p is, the lower the amount of financial capital, k, that is bet.
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11. Conclusions

We have proposed amendments to the standard dual models of production to account
for risk and, in particular, the endogenous element of risk-taking. While our amend-
ments add obvious complexity to the model, their importance can be evaluated only by
comparing the empirical adequacy of explanations that incorporate risk with those that
abstract from it. When applied to banking, the most preferred profit and cost functions
we develop in this paper explain important production phenomena that elude the ap-
proach using the standard cost function. Most notably, our approach reveals large scale
economies, while previous studies that did not explicitly account for risk found only
slight scale economies or constant returns to scale. Our results help explain the recent
wave of mergers among very large banks and are consistent with the rationale frequently
cited by participants in these mergers—the quest for cost savings due to a larger scale of
operations. Our results also suggest that in industries where financial distress costs are
high, managers may well trade profitability for reduced risk. Although such trade-offs
are consistent with maximizing the value of the firm, they are not adequately captured
by the standard profit and cost functions, which ignore the potential for costly financial
distress.
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Appendix

Substituting p, defined in section 9, into the model, and dropping the risk-free rate,
r, since it does not vary across banks, simplifies some of the equations in the model to

be estimated.

The amended In P is

InP =

ag —l—aplnﬁ—l—z&- Iny; —G-ij Inw;
( J
+n:Inpr +dInn+plnk

1 . 1
+§app(1np)2 +3 > ) bijlnyIny;
t g

1 1
+§ ZZwst Inw, Inw; + 5T (111107r)2
s t

1 1
+§19nn (1nn)2 + o Pkk (In k:)2
+ Z epj lnﬁlny] + Z ¢ps lnﬁlnws + 1/1p7r lnﬁlnpﬂ

J
+YppInplnn + Yy Inplnk

—|—ZZ%5 Iny;Inw, —|—Z’yj7rlnyj Inp,

J s J

—G-nyjnlnyj lnn—l-nyjklnyj Ink
J J

—l—% ;wsﬂ Inws Inp; + % gwm Inp; Inwy
—G-Zwsnlnws lnn—l—ZwSklan Ink

e InprInn + N InprInk + Yy Innin k. (13"

The amended share equations are

OlnE

Olnw;

wir;  O0lnP
p-y+m Olnw

+vi[ln(p-y +m) —InP]

= w;+ Zwsi Inw,s + d)pz' Inp+ Z’sz' lnyj
s J

Fwri Inpr + Wi Inn 4+ wip In k

+v; [In(p -y + m) — In P] (15")
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OlnFE prm OlnP
dlnp, p-y+m Olnp,

+p[n(p-y +m) —InP]
= Nr+ NerINpr + Ypr NP+ D Yr Iny;
—1—2(,«157r Inws + nrpInn + nrplnk

+p[ln(p-y +m) —InP]. (16')

The first-order condition defining the bank’s optimal capital level is estimated as

p+pkklnk+wpklnﬁ+27jklnyj +Zw3klnws + Nk Inpy
7 s

+0p,Inn + k[In(p -y +m) —In P] = 0. (27)

The symmetry conditions are given in section 4 above. Condition (S1) becomes moot
once p, the weighted average of the p;s, is used. We impose (S2) in the estimation, but
do not impose (S3) and (S4), so that these conditions can be tested. The homogene-
ity conditions (amended, since we are using p) are used to recover the coefficients on
variables involving the risk-free rate in expenditure function, equation (12) in section 4.
These homogeneity conditions are (H1), as given in section 4, plus the following:

(H2') oy + Zwj + e +7 =1, (H3') app + 32 dpt +Wpr +3pr = 0,
(HA") ¢pt + X wst + wir +wag = 0V, (H5') Tor + Upr + X5 Wor + e = 0,
(H6") 0p; + > vjt + Vjn + vir = 0 V7, HT) Nrre + pr + Xy wsm + e = 0,
(H8') tpn + s Wsn + Trn + 1en = 0, (HO) pr + 325 wak + Tk + 71 = 0, and
(H10') Sapp + 5 36 Xpwst + 34 Gpt + 37rr + 30an

+pr + Ypr + 2 s wWsr + D Wsr + N = 0.
The adding up conditions are (A1), (A2), (A4), (A5), (A7), (A8), and (A9) as given

in section 4, plus the amended condition:
(A3) > ®pi + Ypr = 0.
(Note that (A6) is dropped.)
The amended conditions for risk neutrality are then:
(Pl,) Ne = Npw = w;mr = Yjrm = Wst = Nn = Nnk = 0 Vj,S,
(P2') ap = app = Opj = Pps = Ypr = Ypn = Ypr = 0V, s,
and, omitting the restrictions on v; and p, since testing whether they hold is not feasible,
(P3) k=0.
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Table 1: Summary Statistics of the Data

variable sample mean sample std. dev. minimum maximum
y1T 1490521.75 2739095.05 1038.50  26541000.00
yoT 1606152.95 3114969.78 15956.00  23962500.00
y3T 672172.08 1070269.29 8762.50 11781500.00
Yat 470269.42 1486811.00 713.00 11868570.50
yst 1326574.19 2232463.87 13549.50 20454834.50
p1i 0.109 0.017 0.026 0.205
pal 0.107 0.020 0.022 0.187
p3l 0.123 0.027 0.028 0.279
P4t 0.085 0.065 0.001 0.533
P51 0.088 0.014 0.055 0.174
pi 0.104 0.011 0.064 0.161
w1 33.092 9.857 18.140 92.178
wal 0.396 0.178 0.116 1.378
w3l 0.060 0.009 0.028 0.108
wyl 0.087 0.033 0.039 0.350
ws] 0.081 0.017 0.027 0.233
DPrl 1.664 0.112 1.515 1.871
S1 0.146 0.041 0.043 0.309

59 0.050 0.018 0.011 0.141

53 0.277 0.095 0.010 0.542

S4 0.101 0.076 0.004 0.469

S5 0.314 0.128 0.109 1.208

Sn 0.337 0.071 0.122 0.749
PrTt 223763.03 360436.38 17125.04  3116164.55
p-y+mf 667979.16 1020863.51 90000.556  8419110.74
ny 157495.47 387914.46 1254.00  3629843.00

kTt 561765.95 1069979.99 69516.50  8787000.00
mi 124239.66 277310.33 488.00  2060000.00
total assetsf| 5865120.40 8037258.81 1025143.00 69611500.00

Tin thousands of dollars

y1 = real estate loans; yo = C & I loans; y3 = loans to individuals; y4 = other loans (to purchase
securities, overdrafts, nonprofits, etc); ys = securities, fed funds sold, repos, assets in trading
accounts; p; =price of output ¢; p =weighted average of output prices; wy = price of labor; we =
price of physical capital; wsg = price of insured deposits; wy = price of other borrowed money
(repos, fed funds purchased, etc); ws = price of uninsured deposits; p, = price of real, after tax
profit; s; = share of input é; s, = profit share; p,7m = nominal, before-tax accounting profit;
Py + m = expected revenue; n = nonperforming loans; k = financial capital; m = noninterest

income.

tin dollars per dollar
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Table 2: Means of the Variables by Asset-Size Quartiles

variable 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile
y1t 357760.68 657490.28 1281000.08  3680519.81
yof 249271.21 467700.81 952710.22  4780167.50
yst 188318.96 326874.65 639945.94 1538866.02
Yat 32843.49 80126.14 157397.63 1620612.07
yst 325200.96 552054.45 964296.82  3480755.74
p1i 0.108 0.111 0.112 0.105
poi 0.115 0.106 0.109 0.098
p3i 0.124 0.119 0.125 0.125
D4l 0.083 0.095 0.082 0.082
D51 0.086 0.085 0.086 0.093
Pt 0.105 0.103 0.105 0.101
w1 g 29.372 30.886 33.052 39.090
wal 0.382 0.387 0.393 0.421
wsl 0.060 0.060 0.059 0.060
wyl 0.080 0.080 0.086 0.102
wsl 0.080 0.081 0.084 0.081
Drl 1.651 1.662 1.669 1.675
S1 0.141 0.144 0.144 0.157

S 0.047 0.050 0.048 0.053

S3 0.316 0.309 0.271 0.211

S4 0.072 0.072 0.107 0.155

S5 0.289 0.293 0.297 0.376
Sn 0.333 0.337 0.342 0.337
Pr7t 47708.37 84558.38 169048.99 596467.64
p-y+mf 140029.89 249238.77 489462.14 1801597.91
ny 18162.45 49266.10 84958.04 480141.30

kT 106021.51 187606.21 359011.36 1602550.27
mt 18240.58 33365.32 68254.24 379166.96
total assetst| 1335138.53 2393107.19  4607230.76  15191623.49

Tin thousands of dollars fin dollars per dollar 9in thousands of dollars per employee

y1 = real estate loans; yo = C & I loans; y3 = loans to individuals; y4 = other loans (to purchase
securities, overdrafts, nonprofits, etc); ys = securities, fed funds sold, repos, assets in trading
accounts; p; =price of output ¢; p =weighted average of output prices; wy = price of labor; we =
price of physical capital; wsg = price of insured deposits; wy = price of other borrowed money
(repos, fed funds purchased, etc); ws = price of uninsured deposits; p, = price of real, after tax
profit; s; = share of input é; s, = profit share; p,7m = nominal, before-tax accounting profit;
Py + m = expected revenue; n = nonperforming loans; k = financial capital; m = noninterest
income.
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Table 3: Coefficient Estimates

parameter | estimate parameter | estimate parameter | estimate
g 101.846 Qy 24.576* 01 0.199
(69.98) (14.92) (2.00)

02 —0.683 03 —2.199 O 3.045%*
(1.99) (1.74) (1.68)
65 —0.705 w1 —2.857* w2 —1.235
(2.00) (1.56) (0.76)
w3 —7.345 wy 8.667 ws —1.187
(5.23) (5.32) (1.23)
N 4.958* 9 —0.342 p —0.979
(3.00) (1.33) (0.62)
011 0.080 012 —0.147* 013 —0.065
(0.08) (0.08) (0.04)
014 0.006 015 —0.024 022 0.088
(0.04) (0.07) (0.07)
623 0.163** 024 0.001 625 —0.117
(0.08) (0.04) (0.08)
033 0.025 034 —0.022 035 0.015
(0.06) (0.03) (0.05)
044 0.045%* 045 0.008 055 0.00007
(0.02) (0.04) (0.11)

app 2.128 w11 0131*** w12 0040**

(2.93) (0.04) (0.02)
w13 0.088 w14 —0.155 w15 0.025
(0.10) (0.10) (0.03)
w1 0.022 w9 0019** w93 0.061
(0.02) (0.01) (0.05)
w4 —0.066 was 0.019 w31 0.104
(0.05) (0.01) (0.09)
w392 0.050 w33 0.786** w34 —0.523
(0.05) (0.33) (0.33)

w35 —-0.021 w1 —0.179* w42 —0077*
(0.07) (0.09) (0.05)
w43 —0.595* waq 0.667** was —-0.117
(0.31) (0.32) (0.08)
ws1 0.018 w52 0.004 ws3 0.082
(0.02) (0.01) (0.08)

wWs4 —0.091 wWss 0.074%** I 0.112*
(0.08) (0.03) (0.07)
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continued from the previous page

Pkk
0p3
Vpr
Pp3
Ypn
Yor
Y5
713

Y21

Y24
Y32

Y35

Y43

Y51

Y54
Yon
Y5n
Y3k
Win

Wian

0.012%*
(0.01)
~0.192
(0.36)
0.625
(0.51)
~0.993
(0.93)
—0.036
(0.44)
—0.060
(0.07)
—0.048
(0.08)
0.042
(0.14)
0.024
(0.04)
—0.119
(0.14)
0.009
(0.01)
~0.020
(0.02)
~0.104
(0.08)
0.018
(0.04)
~0.030
(0.15)
0.003
(0.06)
0.004
(0.06)
0.006
(0.01)
~0.030
(0.03)
0.090
(0.10)

Op1
Opa
Pp1
Ppa
Vpk
Y3
Y11
Y14
Y22
Y25
V33
Ya1
Ya4
Y52
V55
Y3n
Vik
Yak
Wan

Wsn

~0.524
(0.50)

0.816*
(0.46)
—0.268
(0.26)
0.740
(0.95)
—0.065
(0.10)
—0.015
(0.06)
0.009
(0.04)
—0.030
(0.15)
0.009
(0.02)
0.032
(0.03)
0.073
(0.11)
~0.023
(0.02)
0.103
(0.08)
0.007
(0.02)
0.006
(0.02)
—0.031
(0.04)
—0.00004
(0.02)
—0.009
(0.01)
—0.009
(0.01)
—0.012
(0.02)

T

Yar

712

715

23

V31

V34

Y42

Y45

V53

Tn

Van

Y2k

Y5k

W3n

Wir

0.019
(0.61)
—0.901
(0.56)
—0.127
(0.12)
—0.037
(0.17)
—0.036
(0.08)
0.051
(0.04)
0.005
(0.02)
0.009
(0.02)
0.114
(0.13)
0.022
(0.03)
—0.068
(0.11)
—0.011
(0.01)
—0.016
(0.02)
0.047
(0.15)
0.077
(0.06)
—0.066*
(0.04)
0.011
(0.01)
0.007
(0.02)
—0.083
(0.10)
—0.130%*
(0.06)
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War

Wsr

Wr3

Nrn

Wik

Wak

141

Vg

—0.055*
(0.03)
—0.087*
(0.05)
—0.474%
(0.19)
0.045
(0.06)
0.023
(0.01)
—0.075%*
(0.04)
—0.034%*
(0.01)
0.126%%*
(0.04)
—0.013%%*
(0.005)

W3r

Wil

Wr4

Nrk

Wak

Wsk

V2

Vs

—0.395%*
(0.19)
—0.064
(0.07)
0.368%*
(0.18)
—0.009
(0.02)
0.009
(0.01)
0.019
(0.01)
—0.015%*
(0.01)
—0.019
(0.01)

War

Wr2

Wrs

Nrrw

W3k

0.302*
(0.18)
—0.036
(0.03)
—0.099
(0.08)
0.306%*
(0.14)
0.033
(0.04)
—0.010
(0.01)
—0.123%%
(0.04)
0.065%**
(0.02)

Note: Estimates reported are for the model without the symmetry restrictions (S3) and
(S4) imposed. A Wald test of the 15 symmetry conditions yielded a test statistic of
39.7, implying a p-value of 0.0005. Although these symmetry conditions were rejected,
the results reported in section 10 are qualitatively similar whether symmetry is imposed

or not.

The parameters are defined in the main text. The standard errors are provided in
the parentheses. The symbols *, ** and *** indicate significance at the 0.10, 0.05, and
0.01 levels, respectively, for an asymptotic two-tailed ¢-test.
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Table 4: Scale Economies and Other Elasticities

measure | whole sample 1st quartile 2nd quartile 3rd quartile 4th quartile
SCALE 1.146%%* 1.101%%* 1.128%%* 1.146%%* 1.208%%*
(0.02) (0.03) (0.02) (0.02) (0.03)
% 0.317%%* 0.328 %+ 0343 0.335%+* 0.261%%*
(0.01) (0.01) (0.01) (0.01) (0.01)
5113 yc; 0.197%¥* 0.192%#* 0.177%%* 0.192%%* 0,207
(0.01) (0.01) (0.01) (0.01) (0.01)
311353 0.120%%* 0.122%%* 0.122%%* 0.131 %%+ 0.107%%*
(0.01) (0.01) (0.01) (0.01) (0.01)
5113 y(i 0.031%%* 0.025%+* 0.020%** 0,028+ 004255
(0.01) (0.01) (0.005) (0.01) (0.01)
31135; 0.225%%* 0.252%%* 0.231 %%+ 0.205%%* 0.213%%*
(0.01) (0.01) (0.01) (0.01) (0.01)
31{5% —0.032%F  —0.033%%  —0.033%F  —(.032%* —0.032%*
(0.01) (0.01) (0.01) (0.01) (0.01)
31151 y"ﬂl 0.182 0.066 0.123 0.261 0.279
(0.14) (0.17) (0.15) (0.16) (0.21)
31151 y’z 0.549%* 0.575%* 0.554%* 0.520%* 0.538%*
(0.21) (0.23) (0.21) (0.21) (0.27)
31151 y"; 0.046 0287+ 0.168 0.052 —0.327
(0.14) (0.13) (0.12) (0.14) (0.26)
3111%1 —0.117 —0.247* —0.115 —0.121 0.014
(0.11) (0.14) (0.10) (0.11) (0.13)
311nn y’i —0.253 —0.444 —0.374 —0.214 0.023
(0.24) (0.31) (0.28) (0.22) (0.20)
% 0.054 0.262* 0.089 ~0.010 —0.124
(0.11) (0.14) (0.11) (0.11) (0.16)
3%3’5 —1.624 —2.681 ~1.605 ~1.072 —1.148
(1.44) (1.95) (1.55) (1.30) (1.31)
9 lﬁl 2 ~1.612 —6.125% —0.823 0.102 0.363
(1.56) (3.22) (1.87) (1.00) (0.64)
%lﬂl "”24 —(.328% % —0.513%FF  _(.382FFF  _().246%FF  _().173%0*
(0.09) (0.15) (0.11) (0.07) (0.05)
%% —0.111 0.212 C0.250%F  —0.100%FF  _().204%%*
(0.10) (0.24) (0.13) (0.07) (0.07)

Note: SCALE’s significance is measured against 1; the other statistics’ significance levels
are measured against 0. Each entry is an average of individual elasticities of the whole
sample or of the quartile subsamples. (See van Wissen and Golob (1992) for the rationale
of using the average of the elasticities rather than the elasticity evaluated at the means
of the data.) The Note in Table 3 also applies here.
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Figure I: Scale Economies Against Total Assets
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