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Abstract

We develop a simple model in which financial imperfections can

serve to stabilize aggregate fluctuations and not merely aggravate

them as in much of the previous literature; we term this a financial

decelerator.

In our model agents borrow to purchase housing and secure their

loans with this long-lived asset. There are two financial imperfections

in this model. First, agents are unable to commit to repay their loans

— that is, they can strategically default. This limits the amount

that lenders are willing to offer. In addition, however, lenders are

also imperfectly informed as to a borrower’s propensity to default;

that is, there is adverse selection. The latter imperfection implies

that default may actually occur in equilibrium, unlike in much of the

previous literature.

For relatively high house prices the commitment problem ensures

that the equilibrium is typically characterized by a standard financial

accelerator; that is, the borrowing constraints which prevent default

become tighter as falling prices reduce the wealth with which agents

can collateralize future loans, thereby exacerbating aggregate fluctua-

tions. However, we show that when prices are low, agents will default,

which serves as a stabilizing force.

Keywords: Financial accelerator, default, collateral, credit history

JEL Classification Numbers: D52, E44, G12, G21, G33.
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1 Introduction

Much recent economic research develops the idea that financial factors can

aggravate real fluctuations. The common theme of this work is that informa-

tional asymmetries may introduce inefficiencies into financial markets that

are particularly acute in times of economic downturn. A prominent example

is Kiyotaki and Moore (1997).1 In this work, it is typically the case that a

shock to the economy lowers the value of some asset that is used to secure

firms’ borrowing, thereby aggravating asymmetric information problems and

making external financing more difficult to obtain; this, in turn, lowers aggre-

gate output and, hence, asset prices, even further. Similarly, in the context of

housing markets, Stein (1995) constructs a model in which drops in housing

prices mean that after paying their loan, households have less money avail-

able to use as a down payment for a new house and so are less likely to be

able to move, further depressing housing prices.2

It is the aim of this paper, by contrast, to develop a simple model that

has the feature that some financial imperfections may actually serve as a

stabilizing force. The key mechanism whereby we obtain stabilization in our

model is that default may actually occur in equilibrium; by contrast, in most

of the existing literature, the borrowing constraints ensure that agents make

their promised payments in every eventuality.

In our model agents borrow to purchase housing and secure their loans

with this long-lived asset. There are two financial imperfections in this model.

First, in common with the previous literature, agents are unable to commit

to repay their loans — that is, they can strategically default. This limits the

1See also Bernanke and Gertler (1989), Kashyap, Scharfstein, and Weil (1990),
Gertler (1992), and Carlstrom and Fuerst (1997).

2See also Ortalo-Magné and Rady (2005), who construct a life-cycle model of housing
markets in which agents face credit constraints; among other conclusions, they show that
the magnitude of housing price fluctuations can exceed those of GDP.
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amount that lenders are willing to offer. In addition, however, lenders are

also imperfectly informed as to a borrower’s propensity to default; that is,

there is adverse selection. The latter imperfection implies that default may

actually occur in equilibrium.

For relatively high house prices the commitment problem ensures that

the equilibrium is typically characterized by a standard financial accelerator;

that is, the borrowing constraints that prevent default become tighter as

falling prices reduce the wealth with which agents can collateralize future

loans, thereby exacerbating aggregate fluctuations. However, we show that

when prices are low, agents will default, which serves as a stabilizing force;

we term this a financial decelerator.

The key reason for this is the fact that under adverse selection what

appear as borrowing constraints are actually endogenous and in fact result

from the best agents’ optimizing behavior. When collateral values are low,

however, agents may find it too costly to respect these constraints. This

then leads to two possible outcomes. Either the bad types will default on

their current loans, despite the cost this entails to their reputation or credit

history; this will leave them with more income precisely in those states in

which house prices are low. Alternatively, the good types may increase their

borrowing, which will make the bad types willing to repay now, but at the

cost of allowing them to default in the future (because they have borrowed

more). In either case current spending on housing will be higher, which will

mitigate the decline in its price.

From this discussion one can see that the important feature of this story

is the interaction between adverse selection and strategic default. Default

is strategic in our model in the following sense. First of all, repayment is

always an option in that agents do indeed have sufficient funds to cover their

debts even when house prices fall. In addition, agents act strategically in

weighing the costs and benefits of defaulting against those of repaying. Some
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of these costs are direct, in the form of the value of the collateral (house)

that is surrendered upon default, as well as a personal cost of bankruptcy

that each agent incurs; but they are also indirect, in the impact of default

on a borrower’s reputation.

We note that the type of strategic default we have in mind — waves of

default that are correlated with declines in asset prices — is seen by many to

have featured in the Texas housing crash of the mid-1980’s. This is illustrated

in the following statement by Judith Dedmon, head of Fannie Mae’s Dallas

office in 1987: “[i]n some neighborhoods, the homeowners would walk the

house and go down the street and buy the same house at half the price.”

(The Dallas Morning News, March 18, 1996). The message of this paper is

that strategic default can actually have the effect of stabilizing the housing

market and that the impact on the economy might have been even more

severe had borrowers been forced to repay all that they owed.

The plan of the paper is as follows. The following section provides further

discussion of the model. The model itself is presented in section 3; we first

introduce the various types of agents, define our notion of equilibrium and

then derive agents’ optimal responses under various scenarios. Section 4 is

devoted to the equilibrium. We first discuss the equilibrium of the borrowing

game. We then show under which circumstances a financial accelerator or

decelerator would arise in our model. In section 5 we compute some examples

that illustrate the general results of the paper. Section 6 concludes.

2 Discussion

In this section we discuss several aspects of the model, provide further refer-

ences to the literature, and present some empirical evidence that is supportive

of our model and its assumptions.

First of all, we are not the only ones to develop a model in which financial
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imperfections can stabilize fluctuations. Bacchetta and Caminal (2000) show

that the agency costs facing credit-constrained firms can be aggravated by

certain positive aggregate shocks (in particular a decline in the cost of funds),

which thereby allows these agency costs to serve as a dampening force. This

mechanism is rather different from that in our paper. In particular, neither

price fluctuations (aside from interest rate changes) nor their effects on col-

lateral values play a role in their paper. House (2002) shows that in models

where financial imperfections lead to an over-investment problem, aggregate

fluctuations that generate a decline in entrepreneurs’ net worth may actually

be more than offset by this over-investment.

Our model requires that for default to play a role in mitigating business

cycles, consumers must be able to retain (non-housing) wealth even after de-

faulting. We note that “deficiency judgments,” which provide for a recovery

of the difference between the unpaid loan balance and the property’s liqui-

dation value through attachment of the mortgagor’s other assets, are either

prohibited or restricted by quite a few states and, in any case are, limited by

the mortgagor’s ability to declare bankruptcy.3 In addition, the FHA has a

policy of not pursuing deficiencies on its loans.

This paper also builds on game-theoretic models of credit markets and

reputation, such as Diamond (1989). As in Diamond’s paper, default is

strategic, and lenders update their beliefs concerning borrowers’ creditwor-

thiness based on whether or not they have defaulted in the past.

We are also not the first to model default in general equilibrium. More for-

mal general equilibrium models of default and collateral can be found in Ke-

hoe and Levine (1993), Dubey, Geanakoplos and Shubik (1989, 2005),4 while

credit history is carefully modeled in general equilibrium by Bose (1996).

3C.f. Clauretie and Herzog (1990).
4For an application of default costs to housing markets with asymmetric information,

see Brueckner (2000).
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Finally, one component of the stabilizing effect of default is an endoge-

nous transfer of income from the lending sector to strategic defaulters when

housing prices fall, which is made up for by a compensating transfer when

prices are high and there is no default (in the form of a higher interest rate).

In our model, the resulting losses incurred by this sector do not impact either

its demand for housing or its ability to lend further. Although this is cer-

tainly a restrictive feature of our model, we have in mind a situation in which

the negative impact of these losses is smaller than the positive effect of the

additional funds available to the strategic defaulters. This is in fact a natural

outcome of most models in which agents have a choice between consumption

and lending — those with the lower marginal propensity to consume out of

current income will naturally emerge as the lenders.5 Likewise, although we

assume here that the supply of funds is perfectly elastic so long as lenders

break-even in expectation, our results would continue to hold, albeit more

weakly, as long as the lending sector was not perfectly inelastic. Finally,

we do not model the possibility that reserve requirements could constrain

banks in such a manner that an increase in default would leave them with

fewer funds to lend. While such an effect would again mitigate our financial

decelerator, it would likely not eliminate it completely.

3 The Model

3.1 Introduction

We work with a two-period model of the economy, in which the periods are

denoted 1 and 2. There are two goods, a perishable numeraire and housing,

the latter a long-lived asset from which agents accrue utility in each period

they consume it. Since it is long-lived, housing is available for use as collateral

5On this see Tobin (1975).
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on loans. The supply of housing will be fixed at 2 units.

The price of the perishable numeraire good will be normalized to 1 in

every state. In period 1, the housing price will have two possible values: p1u

and p1d, each of which occurs with probability 1/2. In order to make the

interpretation of the model cleaner, we will restrict attention to parameter

values that yield equilibria for which p1u > 1 > p1d. Conditional on being

in a particular node of period 1, there will be a single period-2 value for

the housing price, either p2u, if the current price is p1u, or p2d, if it is p1d.

That is, all uncertainty is resolved in period 1. To generate a source of

price fluctuations in the cleanest manner possible we assume that there is

a measure 1 − σ of non-strategic agents who serve as an outside source of

demand for housing in period 1 (only). We return to these agents below

when we discuss the determination of the equilibrium house price.

There is a competitive banking sector in this model that is always willing

to lend the numeraire on terms that provide it an expected return of 1, and

which has income-inelastic demand for housing. That is, we work in a small

open economy. This is discussed further below.

To simplify the contractual environment, we also make the following ad-

ditional assumptions regarding lending contracts. First of all, we restrict

attention to standard debt contracts, in which the gross interest rate is r for

each unit borrowed and in which the house serves as collateral for the loan.

We do not justify this assumption, although we note that nearly all mortgage

contracts have this form.

In addition, we assume that there are no deficiency judgments — that

is, should a borrower refuse to pay, the lender does not have recourse to

any assets other than the housing purchased with the proceeds of this loan.

Finally, we assume that the collateral can always be costlessly transferred

from the borrower to the lender.

We will primarily be interested in the consumers of housing, who we will
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sometimes also refer to as “strategic agents.” We assume that they have a

measure σ and that they share the following characteristics:

• Each agent enters period 1 with two units of housing.

• We also assume that they have financed the purchase of this housing

by borrowing two units of the numeraire (as in Stein, 1995), and they

have used the housing to secure this debt (although for low values of

the house price it may not suffice to cover the entire loan). Note that

the gross interest rate r0 on this debt, which is due (in period 1), must

be determined endogenously in equilibrium, since it will depend on the

fraction of agents who choose to default in period 1.

The timing of repayment and consumption is as follows. At the start of

period 1 the exogenous shock to housing demand is realized, which leads to a

market clearing price of either p1d (the bottom node) or p1u (top node). An

agent first makes a repayment on his initial loan of 1; this repayment may be

partial (for example, if he defaults and surenders his collateral). He then has

an opportunity to borrow further; the rate lenders charge him depends on

whether or not he repaid his loan in full. Finally, he is able to consume from

his wealth, which is the sum of whatever he retains after repaying his loan

and his borrowing. In period 2, there is no further realization of uncertainty.

He first makes a repayment and then consumes; there is no further borrowing.

This timing is illustrated in Figure 1.

3.2 Consumers

Consumers consume only housing in period 1, and both housing and the

numeraire in period 2.6 Conditional on the realization of uncertainty in

6By restricting consumption to housing in period 1 we simplify the model by avoiding
having to distinguish between secured and unsecured loans. In any case, for the parameter
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Figure 1: Timing of the Model

period 1, an agent consuming (h1i, h2i) units of housing and x2i units of the

consumption good (in period 2) accrues the following utility:

v(hi, xi) = log[h1i] + (x2i + log[h2i]) ,

where i ∈ {u, d}.
Agents will have income i1 ≡ i = 1/2 in either node of period 1 (this is

high enough so that default is truly strategic for the parameters we consider),

and we will assume that their income in period 2 is sufficiently high so that

their period-2 housing consumption is income-inelastic. (i2 > 2 would suffice;

note that they have quasi-linear utility). As a result, the equilibrium price

will be p2 = 1/2 in either node of period 2.

In addition agents also have a fixed personal cost of default, denoted by

k ∈ [0, 1], which is subtracted from their utility in any period in which they

default. So for example, conditional on being in the bottom node, an agent

values we consider, even with quasi-linear utility in both periods, agents would not be able
to borrow enough to consume the numeraire in period 1.
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with cost k who defaults in period 2 (but not period 1) would obtain utility

v(hi, xi) − k.

Agents are distinguished by this cost of default. We will assume that a

fraction 1 − β of the consumers are “good” in that they have a high cost

of default k = 1, while the other β are “bad” and have a lower cost k,

with k ∈ (0, 1/2]; later we will characterize the equilibrium as we vary this

cost k. We also assume that this cost is private information — lenders do

not observe it directly, although borrowers’ behavior can be used to make

inferences about it.

In employing default costs, we follow Dubey, Geanakoplos and Shubik (2005),

although for simplicity we take these costs as fixed, rather than as increasing

in the default. These costs can be interpreted as a household’s “stigma”

from a bankruptcy filing or else as summarizing the cost associated with

bankruptcy, such as time wasted in court. Since we do not want to arbi-

trarily exclude defaulters from credit markets (unlike Allen (1981) or Kehoe

and Levine (1993) and many others), we must discourage default through

these costs. In addition, since it is natural to interpret these costs as being

private information, this gives us a way to introduce adverse selection into

our model.

3.3 Consumer Demand

3.3.1 Introduction

We now specify how consumers optimize in this model.

There are four prices and four interest rates in this model.

As far as the prices, they are p1u in the top node of period 1 and p1d in

the bottom node, and p2u and p2d in period 2. For the interest rates, we have

r0, which is the rate for the loan the agents must repay at the beginning of

period 1 (regardless of the state of nature). For simplicity we will restrict
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attention to parameter values such that there is only default in the bottom

node of period 1 (when the house price goes down). In particular, we will

have p1u > r0 in equilibrium.

Next there is ru, which is the interest rate paid in the top node of period

2 on loans taken out in the top node of period 1. However, we will focus

attention primarily on the bottom node because that is where default occurs

(since p1d < 1); in the appendix we briefly discuss what occurs in the top

node in equilibrium.

In the bottom node the interest rate charged is denoted rd (it is paid in

period 2 on account of borrowing in period 1). In addition, as we will see

below, it will also be conditional on an agent’s repayment behavior in period

1, as well as on how much is borrowed.

Given the quasi-linear structure of preferences, agents’ decisions are:

• Whether to default on their original loan in a given node of period 1.

• Given their default decision, how much to borrow

• Whether or not to repay in the final period (depending on the node

and on how much they borrowed in the previous period)

3.3.2 Borrowing Constraints

Given that agents are free to default in this model, lenders of course impose

borrowing constraints. The natural constraint in our model is that lenders

will not offer more than the best agent in a given pool would repay. That

is, while it may be the case that the “bad” agents default in a pooling equi-

librium, the good agents must repay, since otherwise lenders would not be

able to break even.7 This is an important characteristic of our model; as we

7This is actually slightly stronger than is needed in the initial period; because of the
uncertainty, it would be possible for all agents to default in the bottom node, but for
simplicity we maintain the same constraint throughout the model.
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have already noted, classic financial accelerator models typically rule out any

default whatsoever in equilibrium.

In the initial period (period 0), since the debt is fixed at 2 units, and

agents’ income in the following period is i1 = 1/2, this constraint leads rather

to a restriction on parameter values so as to ensure that the good agents are

able to repay in the low state, that is, for which 2× (r0 − p1d) ≥ i1 = 1/2 in

equilibrium, where r0 will be determined below.

The constraints are more complicated in period 1. In general, for an agent

whose default cost is known by lenders to be κ and with period-1 income i,

the maximal borrowing bmax(i, κ) that is consistent with this agent repaying

in the following period satisfies:

[i + bmax(i, κ)]× p2

p1

− bmax(i, κ) = −κ.

The left-hand side is derived by noting that his spending on housing in period

1 will be i + bmax, and so his wealth in period 2 will be (i + bmax) × p2j

p1j
; in

addition he owes bmax from his period-1 borrowing (the gross interest rate will

be r1 = 1 because the constraint ensures that he will repay). The right-hand

side is simply the disutility of defaulting in period 2.

We now focus attention on the bottom node (the top node is discussed

in the appendix).

The simplest constraint arises for those agents who default in period

1. We will show below that only the bad types will do so in equilibrium.

Since their default will allow them to retain all of their income i1 = 1/2 (and

surrender only their collateral), their borrowing constraint will be determined

by

[1/2 + bmax(1/2, k)] × p2

p1
− bmax(1/2, k) = −k. (1)

The solution to this is bmax(1/2, k) = 4kp1d+1
4p1d−2

.

By contrast, for those agents who do not default in equilibrium, we must
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have

[1/2 − 2(p1j − r0) + bmax(1/2 − 2(p1j − r0), 1)]
p2j

p1j
−bmax(1/2−2(p1j−r0), 1)×r1j = −1.

(2)

This differs from the above constraint because (i) the agents’ period-2 wealth

also depends on what they have left over after repaying in period 1, (ii) the

interest rate r1j is not necessarily 1, and finally (iii) the best agents in the pool

(who determine the constraint) have a default cost of 1. A messy expression

for bmax(1/2−2(p1j −r0), 1) can be derived, although in the interests of space

we will not do so here.

3.3.3 Equilibrium Concept

Since this is a model of adverse selection in which pooling and separation

play a major role, we choose to work with the Wilson-Miyazaki equilibrium,

as in Miyazaki (1977) and Wilson (1977). In this equilibrium the allocation

is the one that maximizes the utility of the best types. This is an attractive

solution concept because it allows for pooling of types in equilibrium, which

can then lead to equilibrium default.

By contrast, the Nash equilibrium outcome would have the feature that

the best types restrict their borrowing so much that there is never any default

in period 2. While this would still deliver our main results in the model pre-

sented in this paper (since the initial loan is specified exogenously here), Nash

equilibrium has the unattractive feature that were one to extend the model

and endogenize the borrowing in period 0, it would be difficult to generate

default in period 1. The reason is that ”cream-skimming” would give the

good types an incentive to reduce their borrowing to the fully collateralized

level.
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3.3.4 Equilibrium Allocations

Given these borrowing constraints and this equilibrium concept, we now de-

rive the optimal allocations in the bottom node. We will show that the

equilibrium of the borrowing game is characterized by one of three possible

“regimes.” First, there is a “safe” regime where the bad type’s borrowing

constraints are respected and there is no default — neither in period 1 nor

period 2; in this case both types are pooled together. Conversely, there is

a “default” regime where the bad types default in period 1 and are thereby

separated from the good types. Finally, there is a “risky” regime in which

there is no default in period 1, yet the level of borrowing in that period is

sufficiently high that default occurs in period 2. We will demonstrate in the

sections below that the choice of regime depends both on the parameters β

and k, as well as the market-clearing housing price p1d.
8

We begin by considering the interest rate r0, which is due at the start

of period 1 (on account of borrowing in period 0). As discussed earlier, in

equilibrium none of the good agents will default. In addition, suppose that

a fraction q ∈ [0, 1] of the bad types also repay in period 1.

Then the initial interest rate r0 that those agents who do not default must

pay is determined as follows:

1/2 × r0 + 1/2 × [(1 − β) × r0 + βq × r0 + β(1 − q)× p1d] = 1

This simply states that the total payment per unit must equal the amount

borrowed. The agents all repay in the top node (which occurs with proba-

bility 1/2). In addition, in the bottom node all of the good types (measure

1−β) and a fraction q of the bad types also repay. The remaining bad types

8In this sense our model shares some similarities with Mester (1994), who develops a
model to explain why interest rates on credit cards are “sticky.” As in our paper, a change
in a macroeconomic variable can affect the degree of pooling of types in equilibrium.
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(of measure β× [1− q]) default and surrender their collateral, which is worth

p1d per unit. Observe that lenders always break even in expectation in every

period (i.e. over the two nodes). If there is default in period 1, for example,

so that the bad types do not all repay in the bottom node, this raises the

interest rate r0, which must be paid by all agents in the top node, and by

the good types in the bottom node as well (so it can potentially affect their

consumption).

As far as the borrowing in period 1, recall that under the Wilson-Miyazaki

solution concept, the equilibrium level of borrowing will be determined by the

best allocation for the good type. Before analyzing the good type’s decisions

more formally, it is useful to first study the behavior of the bad types when

they default in the bottom node of period 1. In this case they are identified

as bad (since the good types never default) and so the borrowing constraint

(1) derived above binds; since they will therefore never be able to borrow so

much that they default in period 2, they thus face an interest rate of r1d = 1.

Given their quasi-linear preferences, they would like to borrow b1d so as

to maximize

log[(i1 + b)/p1d] + (i1 + b)
p2d

p1d

− b,

subject to their borrowing constraint. Given that p2d = 1/2 and i1 = 1/2, it

is easy to see that the optimal value is b1d = 2p1 + 14p1 − 2. This never less

than the constrained level bmax(1/2, k) = 4kp1d+1
4p1d−2

(which we derived above)

whenever k ≤ 1/2, so this constraint will in fact always bind when the bad

types default and they will borrow bmax(1/2, k).

The resulting utility for these agents will be

log

[
1/2 + bmax(1/2, k)

p1d

]
− 2k = log

[
1 + 2k

2p1d − 1

]
− 2k; (3)
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the term −2k results from the fact that (i) the agents are defaulting in

period 1, and then (ii) borrowing their maximum into period 2 (the maximal

borrowing leaves them indifferent to defaulting or not in period 2, hence the

extra −k).

We now turn our attention to the good types; these agents essentially

determine the equilibrium allocations. There are three possibilities.

1. Safe Regime

First of all, the good type may choose to restrict his borrowing so that

the bad type does not default in period 2 (after repaying in period

1); we term this “safe borrowing,” since there will be no default in

period 2. That is, he could restrict his borrowing to be no more than

bmax(i1 − 2(p1d − r0), k), which is defined by:

[i1 − 2(p1d − r0) + bmax(i1 − 2(p1d − r0), k)]
p2d

p1d

−bmax(i1−2(p1d−r0), k)×r1d = −k,

where now r1d = 1. It is not difficult to see that the good type will

always want to borrow up to this maximum; to see this, recall that the

borrowing constraint (1) was binding for the bad type when he defaults,

and when agents repay they are poorer, which means both that their

constraint is tighter and that they wish to borrow even more.

Furthermore, notice the best allocation of this type for both the good

and bad agents will occur when everyone repays in period 1 — i.e.,

when q = 1. This is because the initial interest rate r0 is decreasing

in q (reaching a minimum of 1 at q = 1) while r1d = 1 is constant in

q when the borrowing is restricted to ensure that there is no default.

This implies that any such equilibrium will have q = 1, in which case
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r0 = 1 and the borrowing simplifies to

bmax(1/2 − 2(p1d − 1), k) =
4(1 + k)p1d − 3

4p1d − 2
.

Observe that this is increasing in the bad type’s default cost k, since

a higher k means that they are more reluctant to default (in period 2)

and hence can be trusted to repay more.

It is important to note that this is an admissible candidate equilbrium

only when the bad types are indeed willing to repay in period 1 in order

to then borrow on these terms. So for the bad types to be willing to

repay in period 1, it must be the case that the utility they derive from

repaying and pooling with the good types is at least as high as the

utility — calculated in (3) above — that they get from defaulting and

separating themselves.

That is, the bad types will repay when

log[((i1 + 2(p1d − 1) + bmax(1/2 − 2(p1d − 1), k)) /p1d]−k ≥ log

[
1 + 2k

2p1d − 1

]
−2k

i.e.,

log

[
2 +

1 − 2k

1 − 2p1d

]
− k ≥ log

[
1 + 2k

2p1d − 1

]
− 2k.

Solving this, we can determine that when q = 1 and the borrowing is

at the maximal safe level, the bad agents are willing to repay when p1d

is above

pnodef ≡
1 + ek (3 − 2 k) + 2 k

4 ek
.

For the extreme case of k = 0 we have pnodef = 1, which means that

the bad agents would never want to repay under these terms (and so

this regime would not exist). In general, however, pnodef will be below

1, since a higher k both makes default more costly and increases the

18



maximal safe borrowing level.

2. Default Regime

Conversely, the good types may want to encourage the bad types to

all default in period 1. In this case we would still have r1d = 1 (this

time because we are in a separating equilibrium), but because q = 0 we

would have r0 = 2−βp1d

2−β
> 1. As before, this is an admissible candidate

equilibrium only when the bad types do indeed prefer to default. That

is, the utility that the bad types receive from defaulting in period 1 —

calculated in (3) above — must exceed that which they would receive

from repaying and then pooling with the good types. This implies

a restrction both on the good types’ borrowing (it must not be too

high) as well as on the house price p1d (it must be sufficiently low). In

particular, for default to dominate, the good type’s borrowing b must

be such that

log

[
1 + 2k

2p1d − 1

]
− 2k ≥ log

[
i1 + 2(p1d − r0) + b

p1d

]
− k, (4)

where the right-hand side is the utility the bad types would receive

from repaying in period 1.

When p1d is sufficiently high the solution to (4) is not be an admissible

candidate; that is, this regime would not exist. One way to see this

is to observe that another alternative that is always available to the

good types is to repay but then borrow the fully collateralized level

bmax(1/2 − 2(p1d − r0), k) instead (which they could do even if lenders

were aware of their type). When p1d is high the bad types’ income after

repaying would also be fairly high and so the fully collateralized level

would actually exceed the solution to (4). In particular, for the bad
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types to be willing to default we must have p1d below

pdef ≡
6 + β − 4 k + 2β k + (2−b) (1+2k)

ek

8
;

this is obtained simply by setting the fully collateralized level equal to

the solution to (4) and then solving for p1d.

Intuitively, this cutoff is decreasing in the bad types’ default cost k (it

is equal to p1d = 1 when k = 0). It is also decreasing in the fraction

of bad types β, because the more bad types there are the higher the

initial interest rate r0 and thus the more attractive it is to default. It

is not hard to show that pdef > pnodef.
9

Below this cutoff price, the solution to (4), which is the maximal

amount the good types can borrow and still leave the bad types at

least indifferent to defaulting, is

bdef ≡
6 + β − 8 p1d

4 − 2β
+

(1 + 2 k) p1d

ek (2 p1d − 1)
;

it is easy to see that since this is below the good types’ optimum, the

constraint will in fact bind.

As is evident from this discussion, this regime will arise when the price

p1d is sufficiently low, in which case there will be default in equilibrium.

3. Risky Regime

The final set of possible allocations occur when there are (at least) some

bad types who repay in the initial period, and the borrowing in period

1 by those agents who did repay is greater than the fully collateralized

9This reflects the non-convexity that arises in this model; when all of the bad types
default, the interest rate is higher, which makes repaying less attractive.
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safe level (so that there is default in period 2). In this case we will have

q > 0 and r1d > 1.

The interest rate r1d(b) that is paid in period 2 (on account of period-1

borrowing) is now determined as follows:

b =
1 − β

(1 − β) + βq
× r1d × b +

βq

(1 − β) + βq
× (i1 + 2(p1d − r0) + b)

p2d

p1d
.

The left-hand side is the amount borrowed. On the right we have the

amount repaid: the good types repay the entire loan of b (since it will

necessarily be less than their borrowing constraint as derived above),

while the bad types default and repay only their collateral, which is

worth (i1 + 2(p1d − r0) + b)p2d

p1d
in period 2. It is not hard to derive a

(messy) closed-form expression for r1d(b), which is increasing in b, β,

and q.

There are two possibilities. Either 0 < q < 1 (i.e. not all the bad

types repay), in which case the bad types must be indifferent between

repaying and defaulting in period 1 for this to be an equilibrium, or

else q = 1 (all repay), in which case the bad types must weakly prefer

to repay.

When 0 < q < 1, then to make the bad types indifferent, the borrowing

bindiff(q) for those who repay in period 1 must satisfy

log

[
1 + 2k

2p1d − 1

]
− 2k = log

[
i1 + 2(p1d − r0) + bindiff(q)

p1d

]
− k,

where now r0 = 2−β (1−q)p1d

2−β (1−q)
.

It is possible to show that in this case the good types’ utility is max-

imized as q → 0, for all admissible values of p1d, β or k. That is, the

good types would like to ensure that in fact all of the bad types default
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in period 1. The reason is that the increase in the initial interest rate r0

this would entail is more than compensated for by the fact that, when

the bad agents all default, the good types can borrow risklessly from

period 1 to 2 (recall that those agents who default are identified as bad

and are not in this pool). This is in fact the default regime we have

analyzed above.

So without loss of generality we assume q = 1. In this case the bad

types must weakly prefer to repay over defaulting in period 1, that is,

we must have b ≥ bindiff(1) where

log

[
1 + 2k

2p1d − 1

]
− 2k = log

[
i1 + 2(p1d − 1) + bindiff(1)

p1d

]
− k;

that is, bindiff(1) is defined as the minimal borrowing needed to make

the bad types willing to repay in period 1 when q = 1. In this equation

the left-hand side is the utility that the bad types would receive were

they to default in period 1 and the right-0hand side gives the utility

from repaying and then borrowing bindiff(1).10

A candidate Wilson-Miyazaki equilibrium will be the value of b that

maximizes the utility of the good types subject to this constraint as

well as subject to the borrowing constraint, which in this case is that

the good types must be willing to repay r1d(b)× b; this was derived in

(2) above.

When q = 1 the good types’ utility is

log

[
i1 + 2(p1d − 1) + b

p1d

]
+ [i1 + 2(p1d − 1) + b]

p2d

p1d
− r1d(b) × b (5)

It is not hard to show that, for the parameter values we consider,

10The −k reflects the fact that the bad types will then default in period 2.
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the borrowing constraint (2) never binds, because as b increases the

interest rate r1d(b) increases rapidly enough to make further borrowing

unattractive to the good types.

As above, the value of b that maximizes (5) will be an admissible can-

didate allocation only for house prices p1d that are sufficiently low. The

reason is that for this “risky” regime to exist, by definition this solution

must exceed the safe level of borrowing bmax(1/2−2(p1d −1), k). When

β + k ≤ 1/2 this holds for all values of p1d < 1 (because when β and

k are low, the safe borrowing level is low relative to the risky level, as

discussed below). More generally, we must have

p1d ≤ 5

4
− β + k

2
.

In this case the value of b that maximizes the good types’ utility (5) is

brisky =
3 − 14 p1d + 4β p1d + 8 p2

1d

2 − 4 p1d
.

In addition, recall that we had a further constraint: the bad types must

all be willing to repay in period 1 and borrow brisky. That is, we must

have brisky ≥ bindiff(1) as derived above. This occurs if and only if

the fraction of bad types β satisfies

β ≤ 1 − 1 + 2 k

2 ek
.

That is, we must have β and k sufficiently small for the bad types

to be willing to repay. The reason is that with high k the bad types

can borrow a lot when they default; similarly, when β is high then the

adverse selection problem is relatively severe when they repay, which

means that they cannot borrow enough to make repayment worthwhile.
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4 Equilibrium

4.1 Equilibria of the Borrowing Game

To summarize the discussion of the previous sections, the Wilson-Miyazaki

equilibrium is determined by choosing the best allocation for the good types

among the following candidates, which we term “Safe” (S), “Default” (D),

and “Risky” (R).

The candidate regimes are as follows:

1. Safe: All agents repay in period 1 and then borrow bmax(1/2− 2(p1d −
1), k), which is the maximal safe level (so no agent defaults in period

2). This can occur only when p1d ≥ pnodef.

2. Risky: Everyone repays in period 1, and then borrows brisky. The

bad types default in period 2. This can occur only when p1d ≤ 5
4
− β+ k

2

and β ≤ 1 − 1+2k
2 ek .

3. Default: The bad types default in period 1 and then borrow bmax(1/2, k).

The good types repay and borrow bdef , which leaves the bad types in-

different to defaulting. This can occur only when p1d ≤ pdef.

In general the choice of which regime is best for the good types must be

determined via numerical simulation, which we carry out for several examples

below. However, we can make several qualitative statements.

Remark: If we trace out the equilibria as a function of the period-1 housing

price p1d, then there are five possible combinations of these regimes, depend-

ing on the parameters β and k. They are S-D-R (i.e., all regimes), S-D (no

risky), S-R (no default), R-D (no safe), and R (only risky). Figure 2 below

characterizes the parameter space in terms of these regions, and we provide

further discussion and examples below.
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• First of all, the arrangement of regimes is hierarchical, in the sense

that as we lower the price p1d, we go from safe, to risky, to default,

although not all of these will necessarily occur for any given parameter

pair (β, k).

• Since pdef > pnodef, there is always an equilibrium.

• If β and k are sufficiently close to 0, then there is only a risky regime.

• If 1 − 1+2k
2 ek < β, there is no risky regime, only safe and default.

• The safe regime is always strictly preferred by the good types over the

default regime. So when p1d > pnodef, the safe regime is chosen.

Figure 2: The Regimes
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4.2 Accelerators and Decelerators

The various classes of equilibria that we described above lead to very different

outcomes in terms of the effect of aggregate fluctuations on house prices.

When we are in the safe regime, total period-1 housing consumption by

the strategic consumers is 2− 1−2 k
2 p1d−1

. Observe that as p1d decreases, consump-

tion also goes down. This is because in the safe regime the equilibrium is

determined by the no-default constraint of the risky types which gets tighter

as the house price falls (because their remaining income after repaying the

initial loan is lower). This regime will generate a classic financial accelerator

as in much of the literature.

By contrast, in the risky regime, the consumers’ housing demand is 2(1−β)
2p1d−1

.

No longer is it the case that demand decreases as the price falls. The reason

is that in the risky regime the good types allow the bad ones to free-ride and

do not try to limit their borrowing to the safe level. While this free-riding

reduces the good types’ demand (observe the term 1 − β in the numerator),

this does not get worse as the price falls.

Finally, in the default regime, total consumption of housing is given by
1+2 k

ek (2p1d−1)
; this is the weighted average of consumption by the good and bad

types. As in the risky regime, while adverse selection reduces consumption

relative to the first-best (since k < 1), this is not exacerbated by declining

prices.

In addition to the effect of falling prices within each regime, we also need

to compare consumption across regimes. As discussed above, as prices fall

we go from the safe, to the risky, and finally the default regime (although

not all of these will necessarily occur for all parameter values). It is easy to

see that consumption in the risky and default regimes will exceed that of the

safe regime when those regimes are chosen by the good types. However, by

comparing consumption in the two regimes, it is also not hard to see that

consumption in the default regime exceeds that of the risky regime only when
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β > 1 − 1+2k
2 ek , which is precisely when the risky regime does not exist. So

going from the risky to the default regime entails a drop in aggregate housing

demand.

Thus in our model we can have (i) a “standard” accelerator in the safe

regime and (ii) a discrete deceleration and/or acceleration as the equilibrium

jumps from one regime to another.

In particular, the combinations of the regimes yield the following as the

house price falls from p1d = 1:

• R: neither accelerator nor decelerator

• S-D: accelerator for p1d close to 1 and decelerator for lower p1d

• S-R: accelerator for p1d close to 1 and decelerator for lower p1d

• R-D: accelerator for low p1d only

• S-R-D: accelerator for p1d close to 1, then decelerator, then accelerator

again for low p1d

The key goal of this paper, developing a model in which equilibrium is

characterized by a financial accelerator when house prices are high but by

stabilization when prices are low, is characteristic of regimes S-D and S-R,

which together make up the majority of the parameter space. Also observe

that even when we shift from the risky to the default regime and strategic

demand falls, it is still the case that consumption is higher than it would be

if the no-default constraint of the safe regime were in effect.

We will give some examples of these regimes in the following sections.

4.3 General Equilibrium

As discussed above, this is a small open economy, in which the cost of funds

in this economy is fixed at 1. Thus only the housing prices p1d, p1u, p2d, p2u
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are determined in equilibrium, with the strategic agents’ demand for housing

derived from the equilibrium of the borrowing game.

We noted earlier that since utility is quasi-linear in the second period,

supply of housing is 2 units, and consumers are assumed to have sufficient

funds in period 2, the second-period prices will always be p2u = 2 = p2d.

As far as period 1, suppose that the measure of strategic consumers is σ

(and 2−σ for the non-strategic) and that the outside (non-strategic) spending

on housing is δd and δu in the bottom and top nodes. We will focus attention

of the bottom node; the top node is discussed in the appendix.

In the safe regime, we have determined that the demand by the strategic

agents is 2 − 1−2k
2p1d−1

. So the price in the bottom node is determined by:

σ ×
(

2 − 1 − 2k

2p1d − 1

)
+ (1 − σ) × δd

p1d
= 2

We would like the law of demand to hold in this economy — that is, as the

outside housing demand falls, we would like the price to fall as well. In order

for this to be the case, however, it is important that there not be too many

strategic consumers in the economy, since in the safe regime their borrowing

constraints lead to a financial accelerator in which falling prices decrease their

demand. By examining the above market-clearing condition, it can be seen

that for the parameter values we consider below, it is sufficient for strategic

agents to make up less than two thirds of the population, i.e., σ < 2/3.

As far as the risky equilibrium, the market-clearing condition is that

σ ×
(

2(1 − β)

2 p1d − 1

)
+ (1 − σ)× δd

p1d

= 2

Finally, in the default equilibrium we have

σ ×
(

1 + 2 k

ek (2 p1d − 1)

)
+ (1 − σ) × δd

p1d
= 2
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In addition, since there are non-convexities in this economy (due both to

the discrete default decision as well as the discrete default costs) we need to

randomize in the standard way when switching between regimes.

Although it is possible to derive (messy) closed-form solutions for the

house price in each of these regimes, it is more useful to examine specific

numerical examples, which we do in the following section.

5 Examples

In this section we present several examples that illustrate the possible types

of equilibria that can occur in our model. We will take half the population

to be strategic consumers (σ = 0.5) and assume the default cost for the bad

types is k = 0.; this gives us the widest possible range of equilibria.

The first case we consider is β = 0.4. Referring to Figure 2 above, we can

see that these parameters correspond to the S−D equilibria, that is, the safe

regime for high values of p1d and the default equilibrium for low values. This

combination occurs because (i) with a relatively high value of k (k = 0.4) it

is not too costly for the good types to restrict their borrowing to the level at

which the bad still repay and (ii) with many bad types (β = 0.4) the risky

equilibrium — in which the bad types default — would be very costly for

them. Recall that this is the leading case for the paper — we have a financial

accelerator for high values of the house price, but stabilization obtains for

low prices.

We choose the per capita spending by the outside sector δd so as to

calibrate the model at p1d = 1. We then lower δd; the results are plotted

below. As we do so, the price clearly falls. Observe that the slope is relatively

steep; this reflects the financial accelerator.

When we hit p1d = pnodef = 0.85, the bad types no longer wish to repay

and we switch to the default regime. Observe that when we switch regimes
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the slope of the price as a function of δ is shallower — this reflects the fact

that when the bad types default in period 1, their wealth in this period no

longer decreases as the house price falls (since lenders seize their collateral).

Although lenders recoup some of their losses in the form of a higher interest

rate (paid by the good types, who do not default), the rest is paid in the top

node (where the price is much higher). Thus the net effect on consumption

is positive — that is, default endogenously serves as a stabilizing force.

Figure 3: Regimes S-D: β = 0.4

Now suppose that β = 0.1. These parameters correspond to the case in

which there is no default regime. For high prices we are in the safe regime,

with its financial accelerator, and for low prices, we are in the risky regime.

Once again default serves as a stabilizing force, although this time it is default

in period 2; that is, for low prices the good types find it too costly to restrict

their borrowing to the safe level. We perform the same exercise as in the
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previous example; observe that there is now a flat region between the safe

and risky regimes in which we must randomize.

Figure 4: Regimes S-R: β = 0.1

Finally, let β = 0.15 and σ = 0.1.11 We now have the mixed case S-R-D,

in which all of the regimes appear. Notice that there is a discrete jump down

when we switch from the risky to the default regime, although both the level

of the price is higher than it would have been had we restricted all agents

to the safe level regime, and its slope shallower. As discussed above, for

parameters in this region we do not have a clean transition from accelerator

to decelerator as the price falls.

11We needed to lower the fraction of strategic agents in this example so that the non-
convexity that occurs when we switch from the risky to the default regime does not force
us into the region where the good agents would default as well.
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Figure 5: Regimes S-R-D: β = 0.15

6 Conclusion

In this paper we have developed a model of secured borrowing in which a

drop in the value of the underlying collateral can generate strategic default,

which in turn can serve to stabilize aggregate fluctuations because it leaves

agents with more wealth precisely when the house price is lowest. Strategic

default arises in equilibrium because the presence of adverse selection means

that default is not always ruled out by binding borrowing constraints.

There are several directions in which this model could be extended. One

interesting avenue would be to endogenize the partially collateralized debt

contract agents use to borrow. This paper also simplifies the effect of de-

fault on the banking sector — obviously a rash of bank failures induced by

a sharp increase in borrower default could have serious consequences. Fi-
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nally, it would be interesting to interact our stabilizer with a simple model

of investment in which home equity served to secure business loans, as does

indeed seem to be increasingly common. Such a model would also generate

interesting tradeoffs and might allow our mechanism to engender positive

real effects for the economy as a whole.

7 Appendix - the Top Node

In this section we briefly discuss the top node. Because of the agents’ quasi-

linear utility functions, the equilibrium housing price in period 2 will be

p2u = 1/2 (as in the bottom node).

As far as period 1, it is easy to see that the maximal interest rate will be

r0 = 9
8
. In order to keep the analysis focused on the bottom node, we will

restrict attention to parameters in which there is no default in the top node,

neither in period 1 nor period 2. For this it is sufficient to assume that the

outside demand δu is chosen so as to ensure that p1u > 11
8
. It is then the case

that the optimal borrowing from period 1 to period 2 can always be fully

collateralized and the equilibrium in the bottom node would have no effect

on the housing price in the top node.

Alternatively, one could allow parameter values that yield a lower equi-

librium price p1u. In this case the borrowing would be constrained (as in the

analysis of the bottom node above) and then default in the bottom node —

which raises r0 — would reduce wealth in the top node and thereby tighten

borrowing constraints in this node and lead to a lower housing price p1u.
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