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1 Introduction

Testing for and assessing the rationality of early release economic data has long been a topic

of considerable interest from both a theoretical and an empirical perspective. In many papers,

two key questions have been addressed. The �rst question concerns the presence of a bias term

in early releases of data. The second question concerns the predictability of later releases using

information available at the time of the �rst release. Indeed, if subsequent data revisions are

not predictable using information available at the time of the �rst release, then early releases are

rational forecasts of �nal data and the revision error series only takes into account news, hence the

�news hypothesis�versus the �noise hypothesis�. There is currently no consensus concerning these

questions, as the empirical evidence di¤ers across di¤erent macroeconomic series and time spans,

as well as across di¤erent methodologies. For example, Mankiw, Runkle and Shapiro (1984), and

Mankiw and Shapiro (1986) �nd that revisions in GNP are substantially news, but revisions in the

money stock are better characterized as noise. Mork (1987) instead �nds predictability in both

GNP and the money stock. In a recent paper, Faust, Rogers and Wright (2005) �nd that for the

U.S., later releases are only very marginally predictable, and so there is no strong evidence against

the news hypothesis. On the other hand, for the U.K., Japan and Italy there is rather striking

evidence in support of the noise hypothesis. Aruoba (2006) �nds that for most U.S. macroeconomic

series, revision errors have a positive bias, and are highly predictable using information available

at the time of their �rst release. The issue of news versus noise is also important for forecast

evaluation. For example, Clark and McCracken (2008) consider tests for comparing non-nested as

well as nested forecasting models, when forecasts are produced using real-time data. They show

that, under the news hypothesis, data revisions do not a¤ect the limiting distributions of tests for

predictive evaluation. On the other hand, the use of real-time data plays a crucial role whenever

revisions are noisy, and e¤ects di¤er depending whether one is comparing non-nested or nested

models. Other recent related papers on the subject include Brodsky and Newbold (1994), Diebold

and Rudebusch (1991), Kavajecz and Collins (1995), Keane and Runkle (1989,1990), Hamilton

and Perez-Quiros (1996), Swanson, Ghysels, and Callan (1999), Croushore and Stark (2001, 2003),

Swanson and van Dijk (2006), and the papers cited therein.

Most, if not all, of these papers have examined the issue of rationality using tests based on

simple linear regressions, and such regressions are �in-sample�, in the sense that ex-ante prediction

is not explicitly considered when examining data rationality. In this paper, we add to the literature

by outlining two out-of-sample rationality tests which have power against generic non-linear alter-
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natives. The tests we suggest are related to the conditional moment tests of Bierens (1982, 1990),

de Jong (1996), and Corradi and Swanson (2002). Valid asymptotic critical values are obtained

via a bootstrap procedure based on resampling functions of the entire history of the available in-

formation, along the lines of Goncalves and White (2004), and allowing for recursive estimation

schemes, as in Corradi and Swanson (2007). In principle, one could augment linear regressions

with non-linear terms, and still rely on simple regression-based tests. However, such tests would

have power only against a �xed number of non-linear alternatives. Our tests, on the other hand,

are consistent against generic alternatives, in the sense that they are able to detect any form of

non-linearity.

In summary, we propose two tests. The �rst test can be used to determine whether preliminary

data are rational, in the sense that subsequent data releases simply take �news�into account that

were not available at the time of initial release. In cases were the null hypothesis fails to reject when

applying the �rst test, we have evidence that �rst release data are those that should be used in out-

of-sample prediction. On the other hand, if the null is rejected, we perform the second test, which

is designed to determine whether non-rationality arises: (i) because of a bias in the preliminary

estimate, in which case the preliminary data should be adjusted by including an estimate of the

bias prior to use in out-of-sample prediction: or (ii) because available information has been used

ine¢ ciently when constructing �rst release data. Of course, as pointed out by Elliott, Komunjer

and Timmermann (2005), if data agencies have asymmetric loss functions, then they may produce

biased releases, even if available information is used e¢ ciently.

In addition to discussing the asymptotic properties of the tests in the remaining sections of

this paper, we also discuss the results of a small Monte Carlo experiment. In the experiment, we

examine a variety of tests, including those discussed here, and we �nd that the proposed tests

are reasonably sized and have adequate power. We also examine a real-time dataset for money,

output, and prices, and �nd strong evidence against data rationality, in accord with recent �ndings

by Aruoba (2006). In particular, for output and prices, rationality of �rst release data is rejected,

regardless of whether linear or non-linear tests are implemented. However, for the money stock,

the null of rationality is not rejected by usual linear tests, but is rejected by our tests, suggesting

that the �rst revision error depends in a non-linear fashion on the information available at the time

of the release.

The rest of the paper is organized as follows. Section 2 outlines some notation; and brie�y

explains the ideas behind testing for data rationality. Section 3 introduces our non-linear rationality
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tests; and establishes their asymptotic properties. Section 4 reports the results of a small Monte

Carlo experiment. Section 5 discusses our empirical �ndings. Concluding remarks are given in

Section 6, and all proofs are gathered in an appendix.

2 Setup

Let t+kXt denote a variable (reported as an annualized growth rate) for which real-time data are

available, where the subscript t denotes the time period to which the datum pertains, and the

subscript t+ k denotes the time period during which the datum becomes available. In this setup,

if we assume a one-month reporting lag, then �rst release or �preliminary� data are denoted by

t+1Xt. In addition, we denote fully revised or ��nal�data by fXt, where fXt can be seen as the

limit as k !1 of t+kXt: Finally, data are grouped into so-called vintages, where the �rst vintage

is preliminary data, the second vintage is 2nd release data, and so on.

According to Muth�s (1961) de�nition of rational expectations, t+1Xt; is a rational forecast of

fXt if and only if:

t+1Xt = E[fXtjF t+1t ]; (1)

where F t+1t contains all information available at the time of release of t+1Xt.

Standard rationality tests are based on the following regression model:

fXt = �+ t+1Xt � + t+1W
0
t
 + "t+1; (2)

where t+1Wt is an m� 1 vector of variables representing the conditioning information set available

at time period t+ 1 and "t+1 is an error term assumed to be uncorrelated with t+1Xt and t+1Wt.

The null hypothesis is H0 : � = 0, � = 1, and 
 = 0, and corresponds to the idea of testing for

the rationality of t+1Xt for fXt; by �nding out whether the conditioning information in t+1Wt,

available to the data issuing agency at the time of �rst release, has been e¢ ciently used.

For money stock data, Mankiw, Runkle, and Shapiro (1984) �nd evidence against the null in

(2), suggesting that preliminary money stock announcements are not rational. On the other hand,

Kavajecz and Collins (1995) �nd that seasonally unadjusted money announcements are rational

while adjusted ones are not. For GDP data, Mankiw and Shapiro (1986) �nd little evidence

against the null hypothesis of rationality, while Mork (1987) and Rathjens and Robins (1995) �nd

evidence of non-rationality, particularly in the form of prediction bias (i.e. � 6= 0 in (2)). Keane

and Runkle (1990) examine the rationality of survey price forecasts rather than preliminary (or

real-time) data, using the novel approach of constructing panels of real-time survey predictions.
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This allows them to avoid aggregation bias, for example, and may be one of the reasons why they

�nd evidence supporting rationality, even though previous studies focusing on price forecasts had

found evidence to the contrary. Swanson and van Dijk (2006) consider the entire revision history

for each variable, and hence discuss the �timing�of data rationality by generalizing (2) as follows:

t+kXt � t+1Xt = �+ t+1Xt � + t+1W
0
t
 + "t+k; (3)

where k = 1; 2; : : : de�nes the release (or vintage) of data. The objective is to assess whether there

is information in the revision error between periods t+ k and t+ 1 that could have been predicted

when the initial estimate, t+1Xt, was formed. They �nd that data rationality is most prevalent

after 3 to 4 months, for unadjusted industrial production and producer prices.

3 Consistent Out-of-Sample Tests for Rationality

3.1 The Framework

Consider using linear regression analysis in order to test for rationality, in which case failure to reject

the null equates with an absence of linear correlation between the revision error and information

available at the time of �rst data release. It follows that these tests do not necessarily detect

non-linear dependence. Our objective is to provide a test for rationality which is consistent against

generic non-linear alternatives. In other words, we propose a test that is able to detect any form

of dependence between the revision error and information available at the time of the �rst data

release. This is accomplished by constructing conditional moment tests which employ an in�nite

number of moment conditions (see, e.g., Bierens (1982, 1990), Bierens and Ploberger (1997), de

Jong (1996), Stinchcombe and White (1998), Corradi and Swanson (2002)). To set notation, let

t+2u
t+1
t = t+2Xt �t+1Xt; and t+1Wt =

�
t+1Xt; t+1u

t
t�1
�
; where t+1utt�1 = t+1Xt�1 �tXt�1: Thus,

t+2u
t+1
t and t+1u

t
t�1 denote the errors between the 2

nd and 1st vintages at times t + 2 and t + 1;

respectively. Also, let F t+1t = � (s+1Ws; 1 � s � t), so that F t+1t contains information available at

the time of �rst release; assuming a one month lag before the �rst datum becomes available. All of

our results generalize immediately to the case where t+1Wt contains information other than t+1Xt

and t+1u
t
t�1: Furthermore, even though our discussion focuses primarily on t+2u

t+1
t , our results

generalize immediately to t+ku
t+j
t for k � 2; j � 1; and k > j:

In the sequel, consider testing the following hypotheses against their respective negations:

H0;1 : E
�
t+2u

t+1
t jF t+1t

�
= 0 a:s: and

H0;2 : E
�
t+2u

t+1
t jF t+1t

�
= E

�
t+2u

t+1
t

�
a:s:
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Hypothesis H0;1 is the null hypothesis that the �rst release is rational and unbiased, as the revision

error in this case is a martingale di¤erence sequence, adapted to the �ltration generated by the entire

history of past revision errors and past values of the variable to be predicted. This is consistent

with the �news�version of rationality, according to which subsequent data revisions only take into

account news that was not available at the time of the �rst release. Thus, if we fail to reject H0;1, it

means that the �rst data release already incorporates all available information at the current time.

In principle, one might imagine forming a joint test for the null hypothesis that E
�
t+ku

t+1
t jF t+1t

�
=

0; for k = 2; :::; k; where t+ku
t+1
t denotes the revision error between the kth and the 1st releases.

However, under the null of rationality, for k > 2; t+ku
t+1
t is perfectly correlated with t+2u

t+1
t ; as:

E
�
t+ku

t+1
t t+2u

t+1
t

�
= E

��
t+2u

t+1
t

�2�
+

kX
j=3

E
�
t+ju

t+1
t t+2u

t+1
t

�
= E

��
t+2u

t+1
t

�2�
;

which in turn follows because the revision error is uncorrelated, under the null hypothesis. In this

sense, by considering additional revision errors, one gains no further information. Therefore, a test

statistic for the joint null E
�
t+ku

t+1
t jF t+1t

�
= 0; for k = 2; :::; k will be characterized by a degenerate

limiting distribution. Broadly speaking, a joint test for E
�
t+ku

t+1
t jF t+1t

�
= 0, k = 1; :::; k will

converge to a k�dimensional Gaussian process, with a covariance matrix of rank one. On the other

hand, one can certainly use t+ku
t+k�1
t ; k � 1 in place of t+2ut+1t in H0;1: Indeed, by sequentially

testing H0;1 using increasing values of k; one can estimate how many releases we need to achieve

rationality. The only drawback is that, because of sequential test bias, there is a positive probability

of overestimating the number of periods it takes before releases become e¢ cient.

Hypothesis H0;2 also forms the basis for a rationality test, because rationality implies that the

revision error is independent of any function which is measurable in terms of information available

at time t+1: Nevertheless, the �rst release may be a biased estimator of the second release. In this

sense, the �rst release would be unconditionally biased. Unconditional bias may arise due to the

fact that the statistical reporting agency produces releases according to an asymmetric loss function

(see, e.g., Elliott, Komunjer and Timmermann (2005)). For example, there may be a preference for

pessimistic or �conservative��rst releases, followed by more optimistic releases (see, e.g., Swanson

and Van Dijk (2006)).

In summary, our �rst objective is to provide a test for H0;1; which is consistent against all

possible deviations from the null. Now, failure to reject H0;1 would clearly suggest that one should

use �rst release data for out-of-sample prediction. On the other hand, ifH0;1 is rejected, one remains

with the problem of ascertaining the cause of the rejection. A logical next step would then be to

construct a statistic for testing H0;2 against its negation. If the null hypothesis fails to reject, then
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there is unconditional bias, but there is no issue of the ine¢ cient use of available information. In

this case, one can use the preliminary release plus the estimated mean of t+2ut+1t ; in prediction

and policy applications. Needless to say, if H0;2 is also rejected, then we have evidence that early

releases are both biased and ine¢ cient forecasts of later releases. In this case, �rst releases are not

appropriate for constructing out-of-sample forecasts of later releases.

3.2 Test Statistics and Assumptions

Bierens (Theorem 1, (1990)) shows that if E
�
t+2u

t+1
t jt+1Wt

�
6= 0; then E

�
t+2u

t+1
t expt+1W

0
t

�
6= 0;

for all 
 2 �; except a subset of zero Lebesgue measure. Stinchcombe and White (1998) show that if

w (t+1W
0
t ; 
) is a generically comprehensive function, then whenever Pr

�
E
�
t+2u

t+1
t jt+1Wt

�
= 0
�
<

1; E
�
t+2u

t+1
t w (t+1W

0
t ; 
)

�
6= 0; for all 
 2 �; except a subset of zero Lebesgue measure. In addi-

tion to the Bierens exponential function, the class of generically comprehensive functions includes

the logistic function, cumulative distribution functions, and other sigmoidal functions. Suppose

that t+1Wt is a q�dimensional vector, then examples of w (t+1W 0
t ; 
) include: w (t+1W

0
t ; 
) =

exp(
Pq

i=1 
i�(Wi;t)) and w (t+1W 0
t ; 
) = 1=(1 + exp(c �

Pq
i=1 
i�(Wi;t))); with c 6= 0 and with �

being a measurable one-to-one mapping from <q to a bounded subset of <q. In our context, we want

to test whether the revision error is independent of the entire history. Thus, we need to ensure that

if Pr
�
E
�
t+2u

t+1
t jt+1Wt; tWt�1; :::;2W1

�
= 0
�
< 1; then E

�
t+2u

t+1
t w

�Pt
i=1 t+1�iW 0

t�i
i
��
6= 0, for

all 
i 2 �: In order to testH0;1 : E
�
t+2u

t+1
t jF t+1t

�
= 0; a:s: versusHA;1 : Pr

�
E
�
t+2u

t+1
t jF t+1t

�
= 0
�
<

1; we shall rely on the following statistic suggested by de Jong (1996):

M1;T = sup

2�

jm1;T (
)j ; (4)

where in our context: m1;T (
) =
1p
T

PT�2
t=1 t+2u

t+1
t w

�Pt�1
j=0 


0
j� (t+1�jWt�j)

�
; and

� =
�

j : aj � 
j � bj ; j = 1; 2; jaj j; jbj j � Bj��; � � 2

	
: (5)

As shown in Lemma 1 of de Jong, (�; k
 � 
0k) is a compact metric space, with k
 � 
0k =�P1
j=1 j

� j
j � 
0j2
�1=2

; where j�j denotes the Euclidean norm: In practice, one can allow for � = 2

and choose aj = a(j + 1)�2 and bj = b(j + 1)�2; where a and b belong to some compact set in Rq:

It is immediate to see that the weight attached to past observations decreases over time. Indeed,

as stated in the assumptions below, the revision error is a short memory process, and therefore it

is �independent�of its distant past, under both hypotheses.

If H0;1 is not rejected; then one can conclude that the revision error is unpredictable, and thus

the �rst release data already incorporate available information in an e¢ cient way. On the other
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hand, if H0;1 is rejected, then it is important to distinguish between the case of ine¢ ciency and (un-

conditional) bias. Thus, whenever H0;1 is rejected, it remains to consider H0;2 : E
�
t+2u

t+1
t jF t+1t

�
=

E
�
t+2u

t+1
t

�
; a:s: versus HA;2 : Pr

�
E
�
t+2u

t+1
t jF t+1t

�
= E

�
t+2u

t+1
t

��
< 1:

Now, note that m1;T (
) does not contain estimated parameters, so that there is no di¤erence

between in-sample and out-of-sample tests, when testing H0;1 versus HA;1. This is no longer true

when testing H0;2 versus HA;2; as implementation of the test requires the computation of the

deviation from zero of the revision error. In this case, we thus propose splitting the sample T , such

that T = R + P; where only the last P observations are used for testing rationality. The mean is

estimated recursively as:.

b�t = 1

t

t�2X
j=1

j+2u
j+1
j ; for t = R+ 1; :::; R+ P:

It follows that the statistic of interest is: M2;P = sup
2� jm2;P (
)j ; where

m2;P (
) =
1p
P

T�2X
t=R

�
t+2u

t+1
t � b�t�w

0@ t�1X
j=0


0j� (t+1�jWt�j)

1A :

In the sequel, we require the following assumptions. We state the assumptions for the case in which

t+1Wt 2 Rq; so that if we set t+1Wt =
�
t+1Xt;t+1 u

t+1
t

�
; q = 2:

Assumption A1: (i) The weights 
j are de�ned as in (5). (ii) t+1�jWt�j is strictly station-

ary and strong mixing sequence with size �2r=(r � 2); r > 2; (iii) E
��

t+2u
t+1
t

�2r�
< 1; and

E

�
w
�Pt�1

j=0 

0
j� (t+1�jWt�j)

�2r�
<1; uniformly in 
; for r > 2; and

E

��
t+2u

t+1
t w

�Pt�1
j=0 


0
j� (t+1�jWt�j)

��2�
> 0; (iv) 
0j� (t+1�jWt�j) 2 U =(u; u); with �1 <

u < u < 1; (v) w (�; 
) is a generically comprehensive function, such that sup
2� kw (�; 
)ks;2;U <

1; for s > (q + 1)=2; where for each 
 2 �; kw (�; 
)ks;2;U =
�P

j�j�s
R
U jD

�w (x; 
)j2 dx
�1=2

; with

D�w (x; 
) = @j�jw(x;
)
@x1�:::�@xq and j�j =

Pq
l=1 �l:

Remarks: (ii) We can immediately see that A1(iv) is satis�ed if we choose � to be the atan

function, as is customary in the consistent test literature (see, e.g., Bierens (1982, 1990)).

(iii) The norm kw(�)ks;2;U de�ned in A1(v) is known as the Sobolev norm, and it ensures that

the function has derivatives up to order s which are square integrable. This condition is satis�ed

for all s; by most of the test functions commonly used in the consistent test literature, such as the

exponential, the logistic, and cumulative distribution functions.

Our test statistics, M1;T and M2;P ; are based on a continuum of moment conditions, thus

ensuring power in all directions. As we shall see in the next sections, the �price to pay� is that
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the limiting distributions are the suprema over Gaussian processes, and thus there are no �ready

to use�critical values. Hence, the need for bootstrap critical values. One alternative to our tests

is given by the neural network test of Lee, White and Granger (1993). They suggest selecting

p; p �nite, random draws for 
 from a uniform distribution, for example, and then constructing

w
�
W 0
t�1
1

�
; :::; w

�
W 0
t�p
p

�
and considering the �rst p� < p principal components thereof. Then,

one can proceed by regressing t+2u
t+1
t on the p� principal components and constructing TR2;

using the R2 from the latter regression. Under the null, and under the additional assumption of

conditional homoskedasticity, TR2 d! �2p� :

3.3 Asymptotics

We now state the limiting behavior of the two statistics suggested above.

Theorem 1: Let Assumption A1 hold. Then: (i) Under H0;1; M1;T
d! sup
 jm1(
)j ; where m1(
)

is a zero mean Gaussian process with covariance kernel given by:

C (
1; 
2)

= E

0@�t+2ut+1t

�2
w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1Aw

0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1A :

(ii) Under HA;1; there exist an " > 0; such that Pr
�

1p
T
M1;T > "

�
! 1:

From the statement in part (i) of Theorem 1, it is immediate to see that the covariance kernel

does not contain cross terms that capture the correlation between t+2ut+1t w
�Pt�1

j=0 

0
j� (t+1�jWt�j)

�
and s+2u

s+1
s w

�Ps�1
j=0 


0
j� (s+1�jWs�j)

�
; for all s 6= t: This is because the revision error is a mar-

tingale di¤erence sequence under the null hypothesis. Whenever w (�) is an exponential function,

the statement in Theorem 1 corresponds to that in Theorem 4 of de Jong (1996). Given A1, the

proof of the theorem above follows from the empirical process central limit theorem of Andrews

(1991), for heterogeneous near epoch dependent (NED) arrays. Hansen (1996b) provides an em-

pirical process central limit theorem for the case in which A1(iv) fails to hold and 
0j� (t+1�jWt�j)

is unbounded, while de Jong (1996) requires
Pt�1

j=0 

0
j� (t+1�jWt�j) to be v�stable on t+1�jWt�j

instead of near epoch dependent, where v�stability is a slightly weaker concept than NED; indeed

his proof is much more involved, though he con�nes his attention to the exponential function. For

a discussion of the relationship between NED and v�stability see Pötscher and Prucha (1997, Ch.

6.2).

As mentioned above, if we reject H0;1, then we want to be able to distinguish between the

case of unconditional biasedness and the case of ine¢ cient use of information. The theorem below
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establishes the asymptotic properties of M2;P :

Theorem 2: Let Assumptions A1 hold. Then, as R;P !1; P=R! �; 0 � � <1;

(i) Under H0;2; M2;P
d! sup
 jm2(
)j ; where m2(
) is a zero mean Gaussian process with

covariance kernel given by:

C (
1; 
2)

= E

0@��t+2ut+1t

�
� �u

�2
w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1Aw

0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1A
+ 2��2uE

0@w
0@ t�1X
j=0


01;j� (t+1�jWt�j)

1A1AE

0@w
0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1A
��E

0@��t+2ut+1t

�
� �u

�2
w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1A1AE

0@w
0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1A
��E

0@��t+2ut+1t

�
� �u

�2
w

0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1AE

0@w
0@ t�1X
j=0


01;j� (t+1�jWt�j)

1A1A ; (6)

where �u = E
�
t+2u

t+1
t

�
; and �2u = V ar

�
t+2u

t+1
t

�
; and � = 1� ��1 ln(1 + �):

(ii) Under HA;2; there exist an " > 0; such that Pr
�

1p
P
M2;P > "

�
! 1:

The di¤erence between the limiting distributions in Theorems 1 and 2 is apparent in the last three

lines of (6), which re�ect the contribution of the recursively estimated sample mean. Note that if

� = 0; then � = 0 and thus the last three terms on the right-hand side of (6) are zero.

The limiting distributions in both theorems depend on the nuisance parameter 
 2 �; and

thus standard critical values are not available. In this case, asymptotically valid critical values for

M1;T can be obtained via the conditional p-value approach of Hansen (1996a) and de Jong (1996),

and asymptotically valid critical values for M2;P can be obtained using the generalization of the

conditional p-value approach due to Corradi and Swanson (2002), which takes into proper account

the contribution of parameter estimation error. A drawback of this approach is that it requires

direct estimation of the contribution of parameter estimation error to the covariance kernel. On

the other hand, the construction of bootstrap critical values does not require direct estimation of

parameter estimation components. Hence, in the next section we suggest an easy-way-to-implement

bootstrap procedure, and we establish �rst order validity thereof.

3.4 Bootstrap Critical Values

First order validity of the block bootstrap in the context of recursive estimation is established in

Corradi and Swanson (2007), for the case in which the test function, w; depends only on a �nite

9



number of lags. Intuitively, in the current context, if we resample the data, say t+2u
t+1
t and t+1Wt;

then the statistic computed using the resampled observations cannot mimic the behavior of the

original statistic, simply because the correct temporal ordering is no longer preserved. A scenario

analogous to this one arises in the context of the conditional variance of a GARCH model, which

is a near epoch dependent map on all of the history of the process. Goncalves and White (2004),

in order to obtain QMLE estimation of GARCH parameters, suggest resampling (blocks of) the

likelihood. More recently, Corradi and Iglesias (2008) show higher order re�nement for QMLE

GARCH estimation based on a similar resampling methodology. In the sequel, we use the same

idea and jointly resample
�
t+2u

t+1
t ; wt (
)

�
; where wt(
) = w

�Pt�1
j=0 


0
j� (t+1�jWt�j)

�
: Under the

null, t+2ut+1t wt (
) is a martingale di¤erence sequence. Therefore, �rst order asymptotic validity

of the bootstrap statistic can be achieved by simply resampling blocks of length one, as in the iid

case. On the other hand, in order to achieve higher order re�nement, one has to use the block

bootstrap with a block size increasing with the sample, even in the case of martingale di¤erence

sequences. This is because for re�nements it no longer su¢ ces to merely mimic the �rst two sample

moments when showing asymptotic validity, and the martingale di¤erence assumption does not help

for higher moments (see, e.g., Andrews (2002)). However, our statistics are not pivotal, because of

the presence of the nuisance parameters, 
; that are unidenti�ed under the null, and thus we cannot

obtain higher order bootstrap re�nements. For this reason, when considering M1;T it su¢ ces to

make T � 2 independent draws from
�
3u
2
1; w1 (
) ; :::;T u

T�1
T�2; wT�2 (
)

�
: Let Ii; i = 1; :::; T � 2 be

T � 2 independent discrete uniform variates on 1; :::; T � 2; it follows that the resampled series�
3u
�2
1 ; w

�
1 (
) ; :::;T u

�T�1
T�2 ; w

�
T�2 (
)

�
can be written as

�
I1+2u

I1+1
I1

; wI1 (
) ; :::;IT u
IT�1
IT�2

; wIT�2 (
)
�
:

Thus, for all i; wIi (
) =
�PIi�1

j=0 

0
j� (Ii+1�jWIi�j)

�
which is equal to w

�Pt�1
j=0 


0
j� (t+1�jWt�j)

�
;

for t = 1; :::; T � 2; with equal probability 1=(T � 2): Note that for each bootstrap replication, we

use the same set of resampled values across all 
 2 �: Hereafter, E� and V ar� denote the mean and

the variance with respect to the law governing the bootstrap samples, P �; furthermore Op�(1) and

op�(1) denote terms that are asymptotically bounded and approach zero in probability, respectively,

according to P �:

The bootstrap analog of M1;T ; say M�
1;T ; is then de�ned to be:

M�
1;T = sup


2�

��m�
1;T (
)

�� ;
where

m�
1;T (
) =

1p
T

T�2X
t=1

�
t+2u

�t+1
t w�t (
)�t+2 ut+1t wt(
)

�
:
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We next turn to constructing the bootstrap analog of M2;P ; say M�
2;P . First, construct the

bootstrap analog of b�t; say b��t ; which is de�ned as:
b��t = argmin�

0@1
t

tX
j=0

�
j+2u

�j+1
j � �

�2
+ 2�

1

T

T�2X
i=1

�
i+2u

i+1
i � b�t�

1A : (7)

That is,

b��t = 1

t

tX
j=0

 
j+2u

�j+1
j � 1

T

T�2X
i=1

i+2u
i+1
i

!
+ b�t for t = R; :::; R+ P � 2: (8)

From (8), we can immediately see that b��t is not the exact bootstrap counterpart of b�t: This is due
to the recentering term in (7), which is necessary to ensure that E� (b��t ) = b�t:

Next, construct:

M�
2;P = sup


2�

��m�
2;P (
)

�� ;
where

m�
2;P (
) =

1p
P

T�2X
t=R

 �
t+2u

�t+1
t � b��t �w�t (
)� 1

T

T�2X
i=1

�
i+2u

i+1
i � b�t�wi (
)! ; (9)

and where t+2u
�t+1
t and w�t (
) are the same resampled series used in the construction of M

�
1;T

(except that we are no longer using w�1; :::; w
�
R�1): Note that we need to recenter the above bootstrap

statistic around the full sample mean, as observations have been resampled from the full sample.

Theorem 3: Let Assumption A1 hold. Then:

(i)

P

"
! : sup

x2<

�����P �
 
sup

2�

��m�
1;T (
)

�� � x

!
� P

 
sup

2�

���m�
1;T (
)

��� � x

!����� > "

#
! 0;

where m�
1;T (
) =

p
T (m1;T (
)� E (m1;T (
))) :

(ii) As R;P !1; P=R! �; 0 � � <1; then:

P

"
! : sup

x2<

�����P �
 
sup

2�

��m�
2;P (
)

�� � x

!
� P

 
sup

2�

���m�
2;P (
)

��� � x

!����� > "

#
! 0;

where m�
2;P (
) =

p
P (m2;P (
)� E (m2;P (
))) :

Note that if � = 0; then the contribution of parameter estimation error is asymptotically

negligible and one can simply replace b��t with b�t: The above results suggest proceeding in the
following manner. For any bootstrap replication, compute the bootstrap statistic, M�

1;T (M
�
2;P ):

Perform B bootstrap replications (B large) and compute the quantiles of the empirical distribution

of the B bootstrap statistics. Reject H0;1 (H0;2) if M1;T (M2;P ) is greater than the (1 � �)th-

percentile of the corresponding bootstrap distribution. Otherwise, do not reject: Now, for all

11



samples except a set with probability measure approaching zero,M1;T (M2;P ) has the same limiting

distribution as the corresponding bootstrapped statistic, ensuring asymptotic size equal to �: Under

the alternative, M1;T (M2;P ) diverges to (plus) in�nity, while the corresponding bootstrap statistic

has a well-de�ned limiting distribution, ensuring unit asymptotic power.

4 Monte Carlo Findings

We consider the following data generating process for �rst and second releases:

t+1Xt = �+ � tXt�1 + "
D
t+1 ; "

D
t+1 � N(0; �2D);

t+2Xt = �1 t+1Xt + �2 g (Zt) + "
R
t+2 ; "

R
t+2 � N(0; �2R);

where Zt is assumed to follow an AR(1) process. Namely, Zt =  Zt�1+"Zt ; "
Z
t � N(0; �2Z): Given

this structure, we consider �ve di¤erent cases.

Case I: Rationality of �rst release data f�1 = 1;�2 = 0g :

Case II: First revision error linearly correlated with available information
�
�1 = 1;�2 6= 0; g(x) = xK ;K = 1

	
.

Case III: Linear lack of rationality f�2 = 0;�1 > 1g.

Case IV: First revision error dependent on a quadratic function of available

information
�
�1 = 1; �2 6= 0; g(x) = xK ;K = 2

	
.

Case V: First revision error dependent on a more complex non-linear function of available informa-

tion
�
�1 = 1;�2 6= 0; ; g(x) = exp(tan�1(x))

	
.

The values for the parameters governing the process of �rst releases, f�; �; �Dg are calibrated to

be f0:003; 0:6; 0:007g ; so as to match the sample mean and variance of output, prices and money,

respectively, over the period considered in the empirical illustration. In addition, we set �R = 0:0001

and �Z = 0:001. Also, we consider di¤erent parameterizations for �1; �2; � and �; as indicated in

Table 1. We consider multiple sample sizes, including T = 200; T = 300, T = 500, and T = 1000;

carry out 1000 Monte Carlo replications, and for each of them perform 500 bootstrap replications.

In this version of the paper, however, we report results only for the case where T = 500: For our

cases where T < 500, power results, particularly for Case II, were appreciably worse for the CFS

test, although the CFS test continues to yield appreciably higher power for Case IV than all of the

other tests, as might be expected. Complete results are available upon request from the authors.

The properties of three di¤erent rationality tests are examined. The �rst one based on testing

H0 : 
1 = 
2 = 
3 = 0; in the linear regression below (see Swanson and van Dijk (2006)):

t+2u
t�1
t = 
1 + 
2 t+1Xt + 
3 Zt + "t; (10)
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where t+2ut�1t = t+2Xt � t+1Xt: The second one is based on testing H0 : E(t+2ut+1t � Zt) = 0 versus

H0 : E(t+2u
t+1
t � Zt) 6= 0; and is implemented via the statistic suggested by Chao, Corradi and

Swanson (CCS: 2001). Namely:

mT =
1p
T

T�2X
t=1

t+2u
t+1
t � Ztrdvar � 1p

T

PT�2
t=1 t+2 u

t+1
t � Zt

� ; (11)

whenever we use normal critical values or

muT =
1p
T

T�2X
t=1

t+2u
t+1
t � Zt; (12)

when we use bootstrap critical values. Finally, the third test is M1;T as de�ned in Section 3.2, and

hereafter labelled the CFS test. The �ndings for the three tests are reported in Table 1, for the

T=500.

From Table 1, we can immediately see that all three tests have similar rejection rates under the

null, with an empirical size ranging from 8% to 17% against a nominal size of 10%. Interestingly, in

Cases II and III (i.e., linear correlation between the revision error and available information), the

linear and CCS tests do not outperform the CFS test, even though the �rst two tests have power

against a �xed linear alternative, while the third one has power against all possible deviations from

the null. In case IV, characterized by a quadratic relationship between the revision error and the

available information, the CFS substantially outperforms the linear and CCS tests. This is a case

where there is a relatively small deviation from linearity. Finally, in Case IV, which is characterized

by a very large deviation from linearity, both the linear and CFS tests have rejection rates equal

to one, and strongly outperform the CCS test.

5 Empirical Results

5.1 Data

In an illustrative empirical analysis, we use the following series: real GDP (seasonally adjusted),

GDP chain-weighted price index (seasonally adjusted), and the money stock (measured as M1,

seasonally adjusted). All series have a quarterly frequency and were obtained from the Federal

Reserve Bank of Philadelphia�s real-time data set for macroeconomists (RTDSM), which can be

accessed online at http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-

data/. The series were obtained from the �By-Variable� �les of the �Core Variables/Quarterly

Observations/Quarterly Vintages�dataset. The data we use are discussed in detail in Croushore
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and Stark (2001). The �rst vintage in our sample is 1965:Q4, for which the �rst calendar observa-

tion is 1959:Q3. This means that the �rst observation in our dataset is the observation that was

available to researchers in the fourth quarter of 1965, corresponding to the calendar date for the

third quarter of 1959. The datasets continue through 2006:Q4, with calendar date corresponding

to 2006:Q3, allowing us to keep track of the exact data that were available at each vintage for

every possible calendar dated observation up to one quarter before the vintage date. This makes

it possible to trace the entire series of revisions for each observation across vintages. We use log-

di¤erences throughout our analysis. Figure 1 contains plots of the rate of growth of real GDP,

and its �rst and second revision errors. We can immediately see upon inspection of the plots that

while the �rst revision error is roughly normally distributed, the second revision error is instead

rather concentrated around zero. This is one of the reasons why much of our analysis focuses only

on the impact of �rst and second revision errors - later revision errors appear to o¤er little useful

information, other than signalling the presence of de�nitional and related methodological changes.

5.2 Rationality Tests

In order to test H0;1 : E
�
t+2u

t+1
t jF t+1t

�
= 0; a.s. versus HA;1 : Pr

�
E
�
t+2u

t+1
t jt+1F t+1t

�
= 0
�
< 1;

we construct the statisticM1;T ; as de�ned in (4), setting t+1F t+1t =t+1�j Wt�j ; j = 0; 1; :::; t�1 with

(i) t+1�jWt�j = t+1�jXt�j ; and (ii) t+1�jWt�j =
h
t+1�jXt�j ; t+1�ju

t�j
t�1�j

i0
: Following Corradi and

Swanson (2002) we set w to be the exponential function, and � the inverse tangent function. We

also set 
j � 
 � (j + 1)�2; where 
 is de�ned over a �ne grid, 
 2 [0; 3] for case (i); and


 =

�

1

2

�
2 [0; 3]x[0; 3];

for case (ii). To sum up, the test statistic, under case (i), is computed as the supremum of

m1;T (
) =
1p
T

T�2X
t=1

t+2u
t+1
t exp

0@ t�1X
j=0

�

1(j + 1)

�2 tan�1 (Xt�j)
�1A ;

and under case (ii), as the supremum of

m1;T (
) =
1p
T

T�2X
t=1

t+2u
t+1
t exp

0@ t�1X
j=0

�

1(j + 1)

�2 tan�1 (t+1�jXt�j) + 
2(j + 1)
�2 tan�1

�
t+1�ju

t�j
t�1�j

��1A :

We also construct linear rationality tests based on the regression in (10), as well as the CCS test

as de�ned in (12). As our �ndings are qualitatively the same for cases (i) and (ii) above, we only

report results for case (i); and these are gathered in Table 2. It is immediately apparent, upon

inspection of the results, that for output, the null of rationality is rejected by all tests at a 5%
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level, with the only exception being that the null is rejected only at a 10% level, when using the

linear test. These �ndings correspond to those of Aruoba (2006). For prices, the null is rejected

(at both the 5% and 10% levels) based on the CCS and CFS test, but not based on the linear test.

Finally, for money, the null fails to reject based on all tests. We leave to future research the issue

of whether bias adjustment may be su¢ cient to address the irrationality in these datasets.

6 Concluding Remarks

We outline two new tests for data rationality, both of which are designed to assess rationality from

an ex-ante forecasting perspective. The distinctive feature of our tests is that, contrary to existing

tests, they have power against generic non-linear alternatives. The price paid for such generality

is that the limiting distribution is not nuisance parameters free. Hence, �ready to use� critical

values are not available. Valid asymptotic critical values are instead obtained via a bootstrap

procedure based on resampling functions of the entire history of available information, along the

lines of Goncalves and White (2004), and allowing for recursive estimation schemes, as in Corradi

and Swanson (2007). An illustrative empirical implementation of the tests yields strong evidence

against data rationality, in the sense that early releases of U.S. output, price, and money do not

take into account all of the available information at the time of data release. Moreover, for money,

our non-linear test suggests rejection of the rationality null, whereas a standard linear regression

based test and the so-called linear CCS test do not.

Many issues in the burgeoning real-time literature remain unresolved. For example, from an

empirical perspective it remains to extend the analysis that we carry out to later vintages (only

the �rst two vintages are examined in our empirical analysis). From a theoretical perspective, it

remains to extend the predictive density accuracy tests of Corradi and Swanson (2006a,b) to the

case of real-time data, thus furthering the pointwise predictive accuracy test results reported in

Clark and McCracken (2008).
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Appendix

Proof of Theorem 1:

(i) Given A1(i), letting Fs = � (i+1Wi; i � s� 1) ; s < t, and letting kztk1=22 =
�
E
�
z2t
��1=2 for

any, possibly vector-valued, random variable zt; we have that:

sup
s�t�T








t�1X
j=1

j�2� (t+1�jWt�j)� E

0@ t�1X
j=0

j�2� (t+1�jWt�j) jFs

1A






1=2

2

�
T�1X
j=s

j�2 sup
t
k� (t+1Wt)k1=22 ' O

�
s�1�"

�
; " > 0;

and thus, from the de�nition of NED mapping (see e.g. Gallant and White (1988, Ch. 4)), it

follows that
Pt�1

j=0 j
�2� (t+1�jWt�j) is L2�NED of size �1 on � (t+1�jWt�j) :

Given A1(iv)-(v), for each 
 2 �; w
�Pt�1

j=0 

0
j� (t+1�jWt�j)

�
is Lipschitz of order 1 on U . Thus,

given A1(ii), from Theorem 4.2 in Gallant andWhite (1988), it follows that w
�Pt�1

j=0 

0
j� (t+1�jWt�j)

�
is NED of size �1 on the strong mixing base � (t+1�jWt�j) of size �2r=(r � 2): Now, under the

null hypothesis, t+2ut+1t is a martingale di¤erence sequence. Given A1(ii)-(iii), it follows from

Lemma 2 in Andrews (1991) that for any 
1; 
2 2 �; Cov (mT (
1);mT (
2)) exists. Straightforward

calculation shows that:

Cov (mT (
1);mT (
2))

= E

0@�t+2ut+1t

�2
w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1Aw

0@ t�1X
j=0


02;j� (t+1�jWt�j)

1A1A ;

as for t > s;

E

0@t+2u
t+1
t s+2u

s+1
s w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1Aw

0@s�1X
j=0


02;j� (s+1�jWs�j)

1A1A
= E

0@s+2u
s+1
s w

0@ t�1X
j=0


01;j� (t+1�jWt�j)

1Aw

0@s�1X
j=0


02;j� (s+1�jWs�j)

1AE
�
t+2u

t+1
t jF t+1t

�1A
= 0:

Thus, Assumption C in Andrews (1991) is satis�ed, and the statement follows from his Theorem

4, recalling his remark 4 and the fact that given A1(i), � is a bounded set in R2:

(ii)

m1;T (
)
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=
1p
T

T�2X
t=1

0@t+2u
t+1
t w

0@ t�1X
j=0


0j� (t+1�jWt�j)

1A� E
0@t+2u

t+1
t w

0@ t�1X
j=0


0j� (t+1�jWt�j)

1A1A1A
+

1p
T

T�2X
t=1

E

0@t+2u
t+1
t w

0@ t�1X
j=0


0j� (t+1�jWt�j)

1A1A :

The �rst term on the RHS above is OP (1) as it converges in distribution by part (i). As w (�; 
)

is generically comprehensive, E
�
t+2u

t+1
t w

�Pt�1
j=0 


0
j� (t+1�jWt�j)

��
6= 0; for all 
 2 �: The state-

ment then follows.

Proof of Theorem 2: (i) For any given 
; let �u = E
�
t+2u

t+1
t

�
,  =

Pt�1
j=0 


0
j� (t+1�jWt�j) ;

� (
) = E (w ( )) ; and

m2;P (
) =
1p
P

T�2X
t=R

�
t+2u

t+1
t � �u

�
w ( )� 1p

P

T�2X
t=R

 
1

t

tX
i=0

�
i+2u

i+1
i � �u

�!
w ( )

=
1p
P

T�2X
t=R

�
t+2u

t+1
t � �u

�
w ( )� 1p

P

T�2X
t=R

 
1

t

tX
i=0

�
i+2u

i+1
i � �u

�!
� (
) + op(1); (13)

where the op(1) term holds uniformly in 
, because of the uniform law of large numbers for NED

processes on a strong mixing base (see, e.g., Gallant and White, (1988, Ch. 3)). Note also that

the �rst term on the RHS of (13), (m2;P (
1) ;m2;P (
2)) ; converges in distribution for each for

any 
1; 
2 2 � and is stochastic equicontinuous on �; by Theorem 4 in Andrews (1991). Finally,

consider the second term on the RHS of (13). It can be treated by a similar argument to that used

in the proof of Theorem 1 in Corradi and Swanson (2002).

(ii) As in Part (ii) of Theorem 1.

Proof of Theorem 3: (i) First, note that, as Ii are identically and independently distributed,

w�t (
) is iid; conditional on the sample. Now,

E�

 
1p
T

T�2X
t=1

t+2u
�t+1
t w�t (
)

!
=
p
TE�

�
t+2u

�t+1
t w�t (
)

�
=

1p
T

T�2X
t=1

t+2u
t+1
t wt(
); (13)

and thus for all 
; E�
�
m�
1;T (
)

�
= m1;T (
) : Also,

V ar�
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T�2X
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)
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= E

0@�t+2ut+1t
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0@ t�1X
j=0


0j� (t+1�jWt�j)

1A21A+ op(1):
(14)
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We need to show to show that, pointwise in 
;
p
T
�
V ar�

�
m�
1;T (
)

���1=2 �
m�
1;T (
)� E�

�
m�
1;T (
)

��
is asymptotically standard normal, conditional on the sample, and for all samples except for a sub-

set with probability measure approaching zero. This follows from Theorem 3.5 in Künsch (1989),

once we have shown that the Linderberg condition in his proof (p. 1238) holds, pointwise in 
:

Hence, we need to show that:

E�
�
T�1

�
t+2u

�t+1
t w�t (
)� E�

�
t+2u

�t+1
t w�t (
)

��2
1fT�1=2jt+2u�t+1t w�t (
)�E�(t+2u

�t+1
t w�t (
))j>"g

�
= op

�
T�1

�
:

(15)

Now,

P �
�
T�1=2

��
t�2u

�t+1
t w�t (
)� E�

�
t+2u

�t+1
t w�t (
)

��� > "
�

� 1

"2T 2
E�
��

t+2u
�t+1
t w�t (
)� E�

�
t+2u

�t+1
t w�t (
)

��4�
p! 0;

given (13) and (14), and thus (15) follows. Note that, for every 
 2 �; even if wt (
) is NED of

size �1; t+2ut+1t wt (
) is a martingale di¤erence sequence under the null. Thus, we can rely on the

iid bootstrap and the veri�cation of the Linderberg condition in (15) is straightforward. On the

other hand, Goncalves and White (2002 and 2004) and Goncalves and de Jong (2003) consider the

case of the block bootstrap for extremum estimators when the score is near epoch dependent on

a heterogeneous mixing sequence; and has a long-run variance which is O(1) but does not possess

a well-de�ned probability limit. In this case, they require the score to be NED of size �(2 + �);

� > 0; and show that a Lyapunov (stronger) condition is indeed satis�ed.

Joint convergence of
�p

T
�
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1)� E�

�
m�
1;T (
1)

��
;
p
T
�
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1;T (
2)� E�

�
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1;T (
2)

���
fol-

lows immediately as a consequence of the Wold device. Given A1(iv)-(v), m�
1;T (
)�E�

�
m�
1;T (
)

�
has a series expansion with smooth (�rst order Lipschitz) coe¢ cients, as described in equations

(3.3) and (3.4) in Andrews (1991). Thus, stochastic equicontinuity on � follows from Theorem 1

in Andrews (1991). The statement in part (i), then follows by noting that for each 
1; 
2 2 �;

Cov�
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We need to show that, conditional on the sample, and for all samples except a subset with probabil-

ity measure approaching zero, IP (
) has the same limiting distribution as in the statement in (i),

IIP (
) has the same limiting distribution as 1p
P

PT�2
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1
t
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Thus, IP (
) can be treated along the same lines as in Part (i).
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where for i = 0; 1; :::; P; aR;i = (R + i)�1 + ::: + (R + P � 1)�1: From Lemma A5 and Lemma A6
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in West (1996), it follows that:
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Thus, IIP (
) properly captures the contribution of parameter estimation error. Finally, recalling
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depend on 
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Figure 1: Output Growth Rates, First, and Second Revision Errors � 1965:4 - 2006:4
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Note: First revision errors are de�ned as follows: t+2u
t+1
t = t+2Xt �t+1 Xt;where t+1Xt is

the annualized growth rate of output pertaining to calendar date t, and available at time t + 1:

Similarly, second revision errors are de�ned as t+3ut+2t = t+3Xt �t+2 Xt: See Sections 2 and 3 for

further details.
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Table 1: Monte Carlo Results - Empirical Size and Power of Various Tests - T=500(�)

Linear Regression Test CCS Test CFS Test
Normality Bootstrap

Case I � = 0:6 0.114 0.110 0.084 0.172
� = 0:9 0.114 0.110 0.086 0.168

Case II �2 = 0:3 ;  = 0:6 1.000 1.000 1.000 1.000
�2 = 0:3 ;  = 0:9 1.000 1.000 1.000 1.000
�2 = 0:6 ;  = 0:6 1.000 1.000 1.000 1.000
�2 = 0:6 ;  = 0:9 1.000 1.000 1.000 1.000
�2 = 0:9 ;  = 0:6 1.000 1.000 1.000 1.000
�2 = 0:9 ;  = 0:9 1.000 1.000 1.000 1.000
�2 = 2:0 ;  = 0:6 1.000 1.000 1.000 1.000
�2 = 2:0 ;  = 0:9 1.000 1.000 1.000 1.000

Case III �1 = 1:01 1.000 1.000 1.000 1.000
�1 = 1:02 1.000 1.000 1.000 1.000
�1 = 1:05 1.000 1.000 1.000 1.000
�1 = 1:10 1.000 1.000 1.000 1.000

Case IV �2 = 0:3 ;  = 0:6 0.106 0.086 0.090 0.208
�2 = 0:3 ;  = 0:9 0.102 0.092 0.092 0.258
�2 = 0:6 ;  = 0:6 0.108 0.092 0.070 0.224
�2 = 0:6 ;  = 0:9 0.118 0.114 0.122 0.354
�2 = 0:9 ;  = 0:6 0.108 0.098 0.086 0.244
�2 = 0:9 ;  = 0:9 0.122 0.148 0.140 0.490
�2 = 2:0 ;  = 0:6 0.120 0.116 0.090 0.348
�2 = 2:0 ;  = 0:9 0.262 0.326 0.212 0.844

Case V �2 = 0:3 ;  = 0:6 1.000 0.434 0.266 1.000
�2 = 0:3 ;  = 0:9 1.000 0.718 0.382 1.000
�2 = 0:6 ;  = 0:6 1.000 0.434 0.260 1.000
�2 = 0:6 ;  = 0:9 1.000 0.718 0.396 1.000
�2 = 0:9 ;  = 0:6 1.000 0.434 0.254 1.000
�2 = 0:9 ;  = 0:9 1.000 0.718 0.376 1.000
�2 = 2:0 ;  = 0:6 1.000 0.434 0.252 1.000
�2 = 2:0 ;  = 0:9 1.000 0.718 0.386 1.000

(�) In this table, test rejection frequencies are reported for samples generated using T = 500 observations. �Linear
Regression Test" is a test of the null of rationality in �rst releases based on the following regression model: t+2ut�1t =

1 + 
2 t+1Xt + 
3 Zt + "t; where t+2ut+1t = t+2Xt � t+1Xt. The �rst column reports the percentage of rejections of
the null hypothesis, H0 : 
1 = 
2 = 
3 = 0, at a 10% signi�cance level. Following Chao, Corradi and Swanson (2001),
CCS is the test based on the statistic m1;T =

1p
T

PT�2
t=1 t+2u

t+1
t � Zt: The second column of numerical entries in the

table reports the percentage of rejections of the null hypothesis, H0 : E
�
t+2u

t+1
t � Zt

�
= 0, at a 10% signi�cance

level, using critical values gotten from the normal distribution, while the third column reports rejection frequencies
based upon the use of bootstrapped critical values. Finally, the fourth column of numerical entries is the percentage
of rejections of the null hypothesis of rationality based upon implementation of the M1;T test (called here the CFS
test) described in the Section 3.

25



Table 2: Rationality Test Results(�)

Output Linear Regression Test
F-Test Statistic 5% CV 10% CV

2.893 3.053 2.336
CCS Test & Chi Square Critical Values
Statistic 5% CV 10% CV
0.000078 0.000044 0.000030

CFS Test Statistic & Bootstrap Critical Values
Statistic 5% 10%
0.023944 0.011842 0.009845

Prices Linear Regression Test
F-Test Statistic 5% CV 10% CV

1.851 3.053 2.336
CCS Test & Chi Square Critical Values
Statistic 5% CV 10% CV
0.000046 0.000030 0.000026

CFS Test Statistic & Bootstrap Critical Values
Statistic 5% CV 10% CV
0.056355 0.043220 0.034450

Money Linear Regression Test
F-Test Statistic 5% CV 10% CV

-0.52381 3.053 2.336
CCS Test & Chi Square Critical Values
Statistic 5% CV 10% CV
0.000021 0.000042 0.000032

CFS Test Statistic & Bootstrap Critical Values
Statistic 5% CV 10% CV
0.002549 0.015691 0.011907

(�) For the linear regression test, we �t the regression t+2u
t+1
t = 
1 + 
2 t+1Xt + 
3 t+1u

t
t�1 + "t and we report the

F-statistic associated with the null hypothesis that 
1 = 
2 = 
3 = 0. The CCS test reported on in this table is the
Chao, Corradi and Swanson (2001) bivariate test with associated �22 critical values (see Corollary 2 of Chao et al. for
details). The CFS test reported on in this table is M1;T , where the null hypothesis of data rationality is de�ned as
H0;1 (see Section 2 for details).
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