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ABSTRACT

This paper presents a new explanation for the negative correlation between ex post real

interest rates and inflation found in earlier empirical studies. We begin by showing that there

is a strong negative correlation between the permanent movements in cx post real interest rates

and inflation. We argue that such a correlation can arise when people incorporate anticipated

shifts in inflation policy into their expectations. Under these circumstances, a shift to lower

(higher) inflation will lead to systematically higher (lower) cx post real rates. Using new time

series techniques we are able to reject the hypothesis that nominal interest rates were unaffected

by anticipated switches in inflation policy in the post-war era. To evaluate the impact of these

switches, we then calculate the effects of inflationary expectations upon real rates using a Markov

switching model of inflation. Inflation forecasts based upon the estimates of this rational model

behave similarly to inflation forecasts from the Livingston survey. When cx ante real interest

rates are identified with the Markov models of inflation, we find that cx ante real interest rate

does not contain permanent shocks, nor is it related to permanent shocks in inflation.
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The real interest rate is an economic variable that affects all intertemporal decisions and as such

influences both aggregate consumption and investment spending decisions. For this reason, an

understanding of real rate behavior is vitally important to understanding the economy. Although a rather

large literature has examined the behavior of real interest rates together with its link to inflation, the

inflation process itself has changed over time.' Despite this changing relationship, previous studies have

not considered how expectations of these changes would affect the real rate behavior. In this paper we

directly address this issue by examining whether real rates were systematically influenced by anticipated

shifts in inflation policy over some periods during the post-war era.

We begin by estimating the long run relationship between inflation and the nominal interest rate

implicit in the Fisher equation identity. Using recently developed time series techniques, we show that

there is a strong negative correlation between the permanent movements in cx post real interest rates and

inflation. Under the conventional assumption that agents do not expect shifts in inflation policy, this

finding implies, first, that the ex ante real rate must Contain permanent shocks and, second, that these

shocks are negatively correlated with the permanent shocks to inflation.

Although these results can arise in various theoretical ways, we propose an alternative (but not

mutually exclusive) explanation for the result.2 We argue that the cx ante real rate can significantly

differ from the observed ex post real rate if people systematically mispredict the inflation process for

some periods. We show that these mispredictions can induce both very persistent shocks and can

generate negative correlation between cx post real rates and inflation. As a result, shocks to the cx ante

real rates may be completely transitory, and independent of permanent inflation shocks, even though

shocks to the ex post real rate are not.

The intuition behind our explanation is best illustrated by the simple example shown in Figure

I. Suppose that the cx ante real rate were constant at 2% and that the Livingston survey measured true

inflationary expectations exactly as shown in the top panel of the figure. According to the Fisher identity,

the nominal interest rate would be the cx ante real rate of 2% plus the Livingstnn survey measure of

expected inflation. Since the cx post measured real rate is the nominal rate minus actual realized

inflation, the cx post real rate would be the real rate of 2% pIus the Livingston survey measured

expectations minus actual inflation. The lower panel of the figure plots the actual inflation together with
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the ex post meaaured real rate. The cx post real rate clearly deviates from the true cx ante real rate since

the cx post realized inflation differs systematically from expected inflation. We refer to this difference

between the actual realized inflation and the expected inflation as the forecast residual. As the figure

makes clear, the cx post real rate and inflation are negatively correlated even though the cx ante real rate

is constant because the forecast residual and inflation are positively correlated.

Importantly, we show below that the inflation forecast residual will systematically differ from zero

during periods when expectations incorporate anticipated future switches or learning about past switches

in the inflation process. Thus, systematic deviations between cx post and cx ante real rates can in fact

be consistent with rational behavior.

Our analysis also reveals that inflation forecast residuals may appear to contain permanent shocks

during periods when expectations incorporate anticipated future switches or learning about past switches

in inflation policy. In this case, the observed high persistence of shocks in cx post real rates could arise

from persistence in the inflation forecast residual, not necessarily from the cx ante real rate. To

investigate this possibility directly, we use information about monthly interest rate forecasts, and hence

inflation forecasts, that are contained in forward interest rates. In particular, we test a condition that must

hold under conventional rational expectations. Interestingly, we reject this hypothesis for the interest rate

forecasts implicit in forward rates contracted ahead for one month, three months, six months, nine

months, one year, and two year horizons. This evidence indicates that persistence in the inflation forecast

residuals indeed contributes to the observed persistence in the cx post real rate.

We then examine the behavior of inflation in the post-war period to determine whether the

presence of systematic inflation forecast residuals could be rational. We find evidence that the inflation

process shifted within the sample. These shifts appear to be captured by a Markov process of shifts in

inflation regimes. When cx ante real rates are identified with the Markov forecasts of inflation, we find

that the cx ante real interest rate does not contain permanent shocks, nor is it related to permanent shocks

in inflation.

The structure of the paper is as follows. Section 1 presents the results from estimating the long

run relationship between inflation and the nominal interest rate implicit in the Fisher equation identity.

Section II illustrates how systematic forecast residuals of inflation csn generate these results and tests for
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the presence of these systematic residuals. In Section III, we present evidence of structural breaks in the

inflation process and estimate a Markov switching process that appears to characterize these shifts.

Section IV re-evaluates the long run relationship between inflation and the nominal interest rate when

economic agents rationally anticipate a shift in the inflation regime. Concluding remarks follow.

I. The Real Interest Rate without Expected Shifts in Inflation Policy

Research on real rates has frequently used the Fisher equation as an identity to uncover the

time-varying behavior of the unobserved ex ante real rate and its term structure.3 This equation

originated with Fisher (1930) who posited that the nominal interest rate equals the real rate of interest

plus expected inflation. Based upon this identity, empirical studies have typically found that real rates

are negatively correlated with inflation. To motivate our investigation, we begin by ignoring the possible

effects of anticipated inflation switches and, in concert with previous empirical studies, assume that

inflationary expectations are identified in the standard way. Under this assumption, we examine the

implied behavior of the ex ante real rate using new time series techniques.

A. Unit Root Disturbances and Implicationsfrom the Fisher Equation Identity

The recent recognition that short term nominal rates and inflation rates contain unit roots has

introduced a new dimension into the empirical study of real rates. To corroborate results found elsewhere

in the literature, Table I reports unit root tests for nominal interest rates and inflation.4 We use interest

rates sampled monthly from the McCullough data set from January 1947 to February 1987. The inflation

rates are calculated from the CPI-X series published by the Bureau of Labor Statistics constructed by the

Congressional Budget Office. This series adjusts for mortgage payments and has been used in other

studies of real interest rates such as Huizinga and Mishkin (1986). Since we will be interested in

measures of expectations below, we also report unit root tests based upon bi-annual observations using

the Livingston survey of inflation, denoted E(3r L).

Column 2 in the table reports the augmented Dickey Fuller (ADF) test statistics. The bottom

panel of the table shows the critical values at 1% and 5% marginal significance levels. As the ADF

statistics show, the hypothesis of a unit root is not rejected at the 1% marginal significance level for any

of the variables. Furthermore, it is rejected at the 5% level only for the nine month inflation rate.
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Column 3 presents the minimum t-statistics developed in Zivot and Andrews (1990). These

statistics allow us to ask whether a structural shift in the mean of the variables can make the process

appear to contain a unit root.5 The results are quite similar to the ADF results. For example, while

most of the variables do not reject a unit root, the hypothesis is rejected for nine month inflation only at

the 1% and not the 5% marginal significance level. On the other hand, the Livingston survey data now

appears to reject a unit root after allowing for a shift. It should be noted, however, that the Livingston

data are bi-annual and may be subject to small sample problems.

The results in Table 1 confirm the typical finding that inflation and nominal interest rates appear

to contain unit root disturbances, generating long run trends in these variables. We therefore begin our

analysis by directly testing the implicit long run relationship between the nominal rate and inflation using

recent techniques for parameter inference in time-series processes containing unit roots.

As in standard studies of the real rate, it will prove convenient to use the Fisher equation to make

inferences about the behavior of the unobserved ex ante real rate:

Rk(t) = rk(t) + E(sr'(t) t) (1)

where Rk(t) is the yield on a k-period discount bond purchased at time r, r(t) is the ex ante real rate of

return over k periods, E(. t) denotes the market's expectations conditional upon information available

at timer, and ,rk(t) is the inflation rate over the maturity of the bond defined as (ln[p(t+k)]- ln[p(t)])/k,

where p(t) is the price level at time t.

The presence of the unobservable inflationary expectation in (I) implies that the ex ante real rate

is unobservable as well. To address this problem, the standard approach in the literature is to assume

that economic forecasts are unbiased so that: 5r1'(t) = E(sr5(t) It) + €(t+k), where is a forecast residual

uncorrelated with all current information. Thus, substituting actual for expected inflation, equation (I)

may be written as:

Rk(t) = srk(t) + rk(t) - s(t+k). (I')

In (1'), only the nominal rate, Rk, and inflation, 7r5, are observable. The difference between these two



variables is identically the ex post real rate comprised of the ex ante real rate, and the inflation

forecast residual, e.

Since inflation and nominal interest rates Contain unit root disturbances, we can use recent time

series techniques to infer whether the ex post real rate contains shocks with the same degree of persistence

as these variables. In particular, the relationship between the unit root components in these two variables

can be found by regressing one of the variables on the other, through a cointegrating regression.7 The

intuition may be described by using the example of the following cointegrating regression of R¼ on

Rk(t) = a + a, rk(t) + v(t+k). (2)

Parameter estimates from cointegrating regressions have different interpretations than ordinary

regressions on stationary variables.1 For a set of variables with unit roots, these regressions provide

parameter estimates of the particular linear combination of the variables that will be stationary. In other

words, the cointegrating regression of Rk on r5 will provide an estimate of a, such that Rk - a, is a

stationary variable without any unit root components.9 We will follow the literature and denote such a

stationary process as 1(0).

Comparing the identity in (1') with the cointegrating regression in (2) reveals that we must find

a, = 1 if the ex post real rate is 1(0) stationary since, by construction, Rk - a, yr" is an 1(0) process.

Therefore, the ex post real rate may be written in terms of the cointegrating regression (2) as:

r(t) - (t+k) — Rk(t) — r5(t) = -(1 — a,) r'(t) + 1(0) process. (2')

When a, equals unity, the ex post real rate is simply a stationary process. On the other hand, if a,

1, then the expost real rate contains the same unit root component as inflation. Note that under standard

rational expectations assumptions, non-overlapping forecast errors follow white-noise, a stationary

process. Hence, conventional assumptions about expectations would imply that rejecting a, = 1 must

mean that the ex ante real rate is subject to permanent unit root disturbances.

B. The Empirical Results

Table 2 reports results from estimating the cointegrating regressions in (2) for maturities of k
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equal to 1, 3, 6 and 9 months and for one and two years. We first tested for cointegration between the

nominal interest rates and inflation. The second column labeled X, presents the maximum eigen value

tests developed by Johansen (1988) for the hypothesis that the variables are not cointegrated. Comparing

these statistics with the critical values makes clear that this hypothesis is strongly rejected for interest rate

maturities up to one year. Although the hypothesis cannot be rejected for longer maturities, the power

of the tests are lower since we have fewer independent observations at these horizons.

The third column labeled cx reports the estimates and the standard errors of the cointegrating

regression in (2). To obtain parameter estimates and standard errors that correct for the problem of finite

sample bias present in cointegrating equations, we used the method developed in Stock and Watson

(1989)0 As these estimates show, the hypothesis that os = 1 is strongly rejected. The fourth column

reports the sum of the coefficients on the leads and lags of the first differences of inflation, used in the

Stock-Watson correction.

Since the estimates of cr are less than one, they indicate that the negative correlation between the

short term movements of the real rate and inflation found in the literature carries over to their long term

movements as well. From (2'), the unit root component of the cx post real rate, Rk - sr1', can be written

as: - (1 - a) irk. Thus, positive permanent shocks to inflation translate into permanent shocks in the cx

post real rate according to the magnitude, -(I - co1). Since cs1 < 1, positive unit root shocks in inflation

correspond to negative unit root shocks in the cx post real rate. Under standard rational expectations

assumptions, (2') also shows that the cx post real rate is equal to the cx ante real rate and a stationary

1(0) term. From this perspective, the results in Table 2 imply that cx ante real rates contain permanent

unit root shocks and that these shocks are negatively correlated with the unit root shocks to inflation.

II. Rational Expectations with Systematic Inflation Forecast Residuals

The results above indicate that cx post real rates contain shocks with the same degree of

persistence as nominal rates and inflation and that cx post rates are negatively related with inflation in the

long run. While standard rational expectations assumptions imply cx ante rates are responsible for this

behavior, an alternative explanation is easily apparent by recognizing that cx post real rates are equal to



7

ex ante real rates less the inflation forecast residual. The alternative may be that these residuals display

considerable persistence and are positively correlated with inflation. Interestingly, Figure 1 shows that

the forecast residuals calculated from the Livingston survey have these characteristics, providing

suggestive evidence of our alternative explanation. We now turn to examine this possibility in detail.

We begin by considering how expectations are affected by anticipated shifts in inflation. This

analysis reveals that inflation forecast residuals may appear to contain permanent shocks during periods

when expectations incorporate anticipated shifts in inflation. We then use the information about

inflationary expectations contained in forward rates to develop tests for the presence of forecast residuals

with these characteristics.

.4. Switches in the Inflation Process and Expectations

How anticipated shifts in inflation affect expectations is best explained with an example. Suppose

people believed that inflation over the next k months could follow one of two processes, the current

regime labeled "C" that is currently generating inflation, or an alternative regime labeled "A'. For

example, Americans who experienced high inflation of the 1970s may believe that episodes of high

inflation could happen again, even after the decline in inflation during the early l980s. Under these

circumstances, we can write the expected k month inflation rate beginning n periods ahead as:

E(5(t+n) It) = (1 - X'(t)) E(rk(t+n) t,C) + X(t) E(r5(t+n) I t,A) (3)

where X'(t) is the probability that the inflation process will shift between time t to t+n. E(. I t,C) and

E(. I t,A) are expectations conditional upon time t information as well as the current regime, C, or the

alternative regime, A, respectively)1

To examine the implications of these expectations, we require a link between the expected

inflation conditional upon each process. For this reason, we define both the ratio of the expected future

inflation conditional upon the alternative regime to the same expectation conditional upon the current

regime as,
— E((t+n) t,A)/E(r"(t+n) I t,C),

and a term measuring the deviation of expectations from the current regime as, ôk(t) — X'(t)(l -
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With these definitions, we can rewrite (3) as,

E(r(t+n) t) = (1 — ô(t)) E(rk(t+ n) t,C). (4)

If economic agents do not expect any switch in inflation, then o(t) = 0 for all r, k, and n.

Equation (4) allows us to examine the implications of anticipated switches on the inflation forecast

residuals. For the purposes of illustration, suppose that realizations of the inflation process during the

sample period arise from the current regime, denoted as r(t).12 In this case, the forecast residuals are:

r(t+n) - E(7r5(t+n) jt) e(t+n+k)

= [r(t+n) - E(ir(t+n) I t,C)] + â'(t) E(rk(t+n) t,C) (5)

The first component on the right hand side is the forecast residual conditioned upon the current process.

When expectations are formed rationally, this component will be a stationary 1(0) process with mean zero.

The second component will be non-zero during periods when expectations incorporate anticipated shifts

in inflation (6k(t) 0). In general, this term will contain permanent shocks since inflation Contains a

unit root.'3 Thus, unlike the standard rational expectations assumption, equation (5) demonstrates that

inflation forecast residuals may Contain permanent shocks during periods when expectations incorporate

anticipated switches in the inflation process.

Although this example makes clear why the presence of anticipated shifts in inflation may induce

persistence in forecast residuals and hence explain the results in Table 2, the cointegrating regressions

reported there do not provide sufficient information to determine the validity of this explanation. Instead

we require a direct test for the presence of serially correlated forecast residuals with unit root persistence.

For this test, we need the information in forward rates.

B. Forward Rare Forecasts

Forward rates contain information about expected future nominal rates. They therefore contain

information through the Fisher equation about both expected future real rates and expected future

inflation. To see this, define F(t) as the rate of return on a forward contract bought at time t for a k

period bond at time r+n and G(t) as the difference between the expected future spot rate and the forward
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rate:'4

E(Rk(t+n) I t) = F(t) + e(t). (6)

Then, leading the Fisher identity in (I) n periods forward, taking conditional expectations, and combining

the resulting expression with (6) yields:

F(t) 4- e(t) = E(Rk(t+n) I t) = E(rk(t+n) I t) + E(r"(t+n) t) (7)

In standard theoretical models and empirical studies of the risk premium, e(t) is assumed to be a

stationary 1(0) process.5 Therefore, the forward rate can be viewed as a noisy measure of the expected

future interest rate where the noise is a stationary term. As (7) makes clear, the forward rate also

contains expected future future inflation.

We can use this relationship to investigate whether forecasts of inflation imbedded in forward

rates are affected by anticipated shifts in inflation. For this purpose we first substitute the expected

inflation from (4) into the right hand side of (7) and rewrite the nominal rate as:

E(Rk(t+n) It) = E(rk(t+n)
I t) + (1 - 6k(t)) E(sr"(t+n) I t,C)

E(Rk(t+n) t,C) - â(t) E(ir5(t+n) I t,C) (8)

where E(Rk(t+n) I t,C) = E(rk(t+n) t,C) + E(sck(t+n) t,C).'6 Next, we equate (8) with the left

hand side of (7), and subtract the actual nominal rate conditioned on the current process, R, from both

sides. Rearranging the resulting expression gives

R(t+n) = F(t) + m(t)E((t+n) I t,C) + e(t) + e(t+n), (9)

where e(t+n) = (R.(t+n) - E(Rk(t+n) It, C)).

Equation (9) shows why the relationship between nominal interest rates and forward rates can be

used to examine whether inflationary expectations are affected by anticipated switches in inflation. In

the absence of anticipated inflation switches (âk(t) = 0), the excess returns, R(t+n) - Fk.(t), are equal
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to the sum of the risk premia, 0, and the error term, e, which are both stationary 1(0) processes. On the

other hand, if expectations are affected by anticipated inflationary policy switches, excess returns will also

depend on ô(t)E[srk(t+n) t,C]. These expectations are captured by the second component in the

inflation forecast residuals shown in (5). Hence, if inflation forecast residuals contain permanent

components because expectations incorporate anticipated switches in the inflation process, this same

permanent component should be detectable in excess returns.

C Testing for the Effects of Anticipated Inflation Switches

We use equation (9) to construct two tests for the presence of anticipated switches in inflation.

Since the results in Table 1 indicate that both nominal rates and forward rates contain unit root

components, these tests are constructed in terms of restrictions on the parameters of cointegrating

regressions.

ILi: For the first test we consider the cointegrating regression:

Rk(t+fl) = d0 + d1 F(t) + u(t+n). (10)

As in equation (2), this regression will estimate the parameter d such that Rk(t+n) - d1 Fk(t) is an 1(0)

stationary process by construction.

Combining (9) and (10), excess returns may be written as:

Ô(t)E(srk(t+n) I t,C) + e(t+n) + 0(t) = Rk(t+n) - F(t) = — (l—d1)F5(t) + 1(0) terms.

Under the null hypothesis of no anticipated switches (ä(t) = 0), the terms on the left hand side are

stationary 1(0) processes. On the other hand, the right hand side will only be stationary when d = I,
because the forward rate contains a unit root. Thus, the null hypothesis of no unit roots in forecast

residuals amounts to the hypothesis: d! = 1. Note that this hypothesis test is a necessary but not

sufficient condition for no anticipated shifts in inflation, and therefore a rejection provides strong

implications. Under the alternative hypothesis that the inflation forecast residual contains a unit root

component, the left hand side will also contain a unit root. In this case, we would find d I since

inflationary expectations E(?(t+n) t,C) are likely to share a unit root component in common with the
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forward rate with magnitude (1-d).

Table 3 reports the results from estimating the cointegrating regression (10) with the Stock-

Watson procedure. The table reports the results for various maturities (k) and for forecast horizons (n)

of one, three, six, nine, twelve, and 24 months. The second column reports the Johansen test for

cointegration between spot and forward interest rates. As these Statistics show, the hypothesis of no

cointegration is strongly rejected. The third column reports the estimates of d1 along with their standard

errors. The coefficient estimates for d1 are less than one in all cases. Furthermore, the hypothesis that

these estimates equal one, given in the last column, are rejected at standard significance levels except for

the nine month (k=9) bill at the three month forecasting horizon (n=3).'7

The results in Table 3 demonstrate that excess returns contain a unit root component in common

with the forward rate, a component that is empirically small since d1 is close to one. Our example of

expectation formation above suggests that this component could arise from systematic forecast residuals

in inflation. For more direct evidence on this point we consider a second cointegration test.

Il.1: To construct our second test we rewrite equation (9) as

Rk(t+n) = F(t) + â(t)r(t+n) + e(t) + e(t+n+k), (9')

where e(t+n+k) = (R(t+n) - E(R(t+n) I t,C)) + 6(t)(E(rk(t+n) I t,C) - r(t+n)) and r(t) is the

realized rate of inflation based upon the current process.

We can test whether the systematic deviation between actual and expected nominal rates is related

to permanent shocks to inflation by writing (9') in terms of the cointegrating relationship:

Rk(t+n) = a + a1 F(t) + a2 2rk(t+n) + w(t+n+k). (11)

The cointegrating regression estimates the parameter vector such that: R - a1 F - a2 r1' is a

stationary 1(0) process. Under the null hypothesis of no anticipated shifts in inflation, a1 = 1, a2 = 0,

and w(t+n+k) is the sum of stationary risk premia and forecast errors; i.e., w(t+n+k) = e(t) +

(R(t+ n) - E(Rk(t+n) I t, C)). If we reject this hypothesis, it implies that some component of w(t+ n+ k)

contains a unit root in common with the forward rate and/or inflation.
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Table 4 reports the results from the cointegrating regression in equation (10). The column under

X!,. reports the Jobansen tests for cointegration. The teat rejects the hypothesis of no cointegration at

the 5% critical values up to the nine month ahead forecast of the three month interest rate. As before,

the hypothesis of no cointegration cannot be rejected for the one year and two year ahead horizons,

although the fewer number of independent observations at these horizons make the power of the test

suspect.

The columns marked a1 and a2 report the point estimates of the coefficients on the forward rate

and inflation, respectively. As in Table 3, all of the coefficients on the forward rate have point estimates

less than one. Furthermore, all of the a2 coefficients on inflation have point estimates that are positive,

suggesting that inflation and its forecast errors are positively related, as the intuition in Figure 1 indicates.

The last four columns report the marginal significance levels for Wald tests of the null hypothesis.

The first set of hypothesis tests are based upon an estimate of the asymptotic variance-covariance matrix

of the parameters. Since our data sample may be too small to produce reliable estimates of this matrix,

our test statistics may be contaminated by small sample bias. Therefore, the second set of hypothesis

tests are based upon a bootstrap empirical distribution of the coefficient estimates from our sample.

Details of the bootstrapping procedure are provided in the Appendix C.

We examined two different hypotheses. The first hypothesis tests whether a1 = 1. The second

hypothesis is the joint hypothesis that a1 = 1 and a = 0. Both hypotheses are strongly rejected at

marginal significance levels less than 3% at all maturities using either the asymptotic or bootstrap

distributions to calculate the significance levels.

Overall, the results in this section show that the joint behavior of forward rates, nominal rates,

and inflation strongly reject the conventional wisdom about the relationship between these variables. The

results of our first test, in Table 3, show that excess returns contain an empirically small unit root

component. The results of our second test, in Table 4, indicate that this component is related to realized

inflation. As our example of expectation formation shows, we would expect to find both sets of results

if people incorporated the effects of anticipated switches in the inflation process into their expectations.
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111. Switch in the Inflation Process

The results in Table 3 and 4 are easily interpretable if people's expectations incorporated the

effects of anticipate shifts in the inflation process. However, for these expectations to be rational, the

true process of inflation must in fact experience periodic shifts. In this section, we present evidence that

the inflation process shifted over the sample and estimate a model that incorporates these shifts. The

model is then used to analyze the effects of anticipated switches upon inflation forecast residuals.

A. Are There Structural Breakt in the inflation Process?

Two methods were used to investigate whether the inflation rate over the post-war period

contained structural breaks. We examined the Brown, Durbin, and Evans (1975) CUSUM statistics and

conducted formal tests of structural instability developed by Hansen (1991).

The CUSUM statistics were calculated as the cumulated sum of recursive residuals from a rolling

regression AR(3) model for the first difference of quarterly inflation. This model allows for the unit root

in the level of inflation and appears to capture all the serial correlation in the first difference when

estimated over the whole sample. If there are no structural breaks in the inflation process, the CUSUM

statistics plotted in Figure 2 should remain fairly stable. The figure shows that this is not the case. The

statistic shifts upward sharply with realized inflation around the first oil price shock in 1974. This

signities that forecasts of inflation from the rolling regressions using data to this point tended to

systematically underestimate realized inflation. Between 1974 and 1985 the CUSUM statistics appear

relatively more volatile. The statistic is characterized by a strong upward swing in 1981 and a sharp

downward jump in 1983. This graphical evidence suggests that the inflation process shifted upward in

1974 and perhaps in 1981, became more variable from 1974 through about 1985, and shifted down

around 1983.

To test parameter constancy more formally, we used the L statistic proposed in Hansen (1991)

to test for parameter stability against the null hypothesis that the parameters follow a martingale process

(with unknown breakpoints). The test statistics were based on the estimates of the AR(3) model for the

first difference of quarterly inflation (estimated over the whole sample) shown in Table 5. The lower

portion of the table presents the L statistics for the constancy of different combinations of parameters.
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These statistics reveal that we can reject the null hypothesis of no structural instability in at least the

variance and the autoregressive parameters at the 5% significance level.I*

B. A Markov Model of Inflation Regimes

To this point our findings suggest that any successful time series characterization of inflation

should allow for both the presence of a unit root and for discrete shifts in the process. In addition, the

graphical evidence from the CUSUM statistics suggest that an upward shift in the process takes place

around 1974, followed by higher variability in the process, and a downward shift around 1983.

To capture these features, we estimated a number of Markov switching processes for quarterly

inflation. After conducting a variety of specification tests, the following specification appeared the most

accurate representation:

= sr,, 5, + sr0, (1 - 53 (12)

where sr,, = sr,,., + v,, v,, — N(O,o,),

and sr0, = m9 + m, r0,., + v v0, — N(O,o0).

Switches between the two process, sr, and sr01, are governed by the state variable, 5,, that follows a

Markov process and takes on the value of one or zero. Inflation follows a driftless random walk process

when 5, = I, and an autoregressive process (with m, C I) when S = 0.

Table 6 presents the maximum likelihood estimates of the model together with some of the

specification teats.'9 The table shows that all of the parameters are precisely estimated. The variance

of shocks to sr,,, is considerably higher than the variance of shocks to sr01. The unconditional mean of

sr, the stationary process, is 1.6% measured at annual rates. The estimates of the transition probabilities

that govern the dynamics of 5, indicate that both states are characterized by a great deal of persistence.

The probability of remaining in the unit root state from one quarter to the next is about 94% while the

probability of remaining in the stationary state is about 96%.

The lower panel of Table 6 reports some specification tests. The first two rows test whether there

is serial correlation in the v,, and va residuals. These chi-squared statistics are Lagrange Multiplier (LM)

tests of a zero restriction on the first-order autocorrelation of the residuals. As the table shows, this
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restriction is not rejected for either state. The second two rows report statistics for conditional

heteroskedasticity in the residuals. The reported statistics are LM tests for the hypothesis that the ARCH

coefficient is zero. Again, this restriction is not rejected at standard confidence levels.

Our estimated model allows the process of inflation to shift discretely rather than restricting only

the dynamics to change. This fact can be seen easily if we rewrite the model as:

= S ;., + (1 - S)(m0 + m, ir1) + S v1 + (1 - S,) Va

+ 4, [S,(1 — S.1) — m1 (1 — S,)S.1] (r1.1 —

where = l? In the more familiar Markov models developed by Hamilton (1990), 4, = 0. Although

a model with 4, = I appears to better capture the nature of the structural shifts, we also estimated a

restricted version of the model in which 4, = 0 to examine the sensitivity of our results. The results from

estimating the restricted version of the model were similar to those reported in Table 6 except that the

estimated probability of remaining in the unit root state was insignificantly different from one. We

therefore incorporate both forms of the Markov transition probabilities in our analysis below.

Figure 3 shows some of the implications of the model estimates in Table 6. The top panel depicts

the probability of being in the unit root state from the l950s until the late 1980s. As the figure shows,

the probability of being in state I is very low up until 1970 with the probability never exceeding about

1.5%. The inflation process appears to change sharply in 1974 with the first oil price shock and the

probability of the unit root state increases dramatically to above 80%. The probability remains high until

after the drop in inflation in 1982. Interestingly, the sharp movements in the probability of being in the

unit root state correspond roughly to the points of structural change in inflation suggested by the CUSUM

statistics in Figure 2.

The middle panel of Figure 3 plots the Markov forecasts of quarterly inflation one year ahead

and realized inflation. During the run up in inflation during the late l960s, the inflation forecasts

persistently lag behind realized inflation. This relationship is exacerbated by the oil price shocks in the

1970s. On the other hand, when inflation falls in 1982, the high probability of remaining in the unit root

state keeps inflation forecasts above realized inflation. Overall, the figure shows that the forecast
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residual, identified by the vertical difference between realized inflation and the forecast, is highly serially

correlated, even though forecasts are rational by construction with respect to the sample.

To see if the model was capturing the general pattern of survey expectations, the bottom panel

of Figure 3 compares the Markov forecasts with bi-annual forecasts of the six month inflation rate from

the Livingston survey. As the picture shows, the Markov forecasts follow the general movements in

survey expectations. However, since the Markov model forces the forecasts to be rational with respect

to the data, they tend to be above the .Livingston forecasts early in the sample, with the relationship

reversed at the end of the sample.

The Markov model estimates can also be used with nominal interest rates to construct an estimate

of the implied cx ante real interest rate. We calculated the ex ante real rate expected one year ahead by

subtracting the Markov forecasts shown in the middle panel of Figure 3 from the one year forward rate

on a three month bond. These expected ex anre real rates and the ex post real interest rates based upon

actual inflation are plotted in Figure 4. As the figure shows, the ex ante real interest rate remains fairly

close to the ex post real rate until the early 1970s. The sharp decline in the ex post real rate in 1973-74

does not appear in the cx ante real rate as the oil price shock to inflation was largely unanticipated.

There is also a wide divergence between the rates in the late 1970's when the cx post real rates again

turned sharply negative while the cx ante rate remained positive reaching 2% on occasion. During the

early 1980's the sharp rise in cx post real interest rates are matched by the cx ante real interest rates,

although the peaks in 1981 and 1984 are attenuated.

C. A Monte Carlo Investigation of Rational Forecast Residuals

We have shown above how rationally anticipated switches in the inflation process can induce

serial correlation in inflation forecast residuals, and how this correlation, in turn, makes cx post real rates

systematically deviate from cx ante real rates. To explain the results in Tables 2 and 4, however,

inflation forecast residuals must not only be serially correlated, they must also contain a unit root

component in common with realized inflation.

To evaluate this possibility, we conducted a series of Monte Carlo experiments based upon the

Markov switching model of inflation. These experiments examined the cointegrating relationship between
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actual inflation and expected inflation based upon the Markov model. The first cointegrating regression

considered was:

E(1r5(t) I t,M) = 'y + ', wk(t,M) + i(t+k) (13)

where E(2rk(t) tM) is the expected inflation rate, and x'(t,M) is the realized inflation process both based

upon the estimated Markov model in Table 6. The estimates of y, from this regression allow us to

examine whether the forecast residuals from the Markov model contained a unit root component in

common with realized inflation. In particular, since E(a"(t) I t,M) - irk(t,M) = (7-1) ir5(t,M) + 1(0)

terms, if no unit root component is present in the forecast residual, we should find y, equal to one.

In the experiments we used the estimated Markov model to generate samples for realized and

expected inflation of 25 years, as in our data set, and also for samples of 100 years and 1000 years. We

considered the sensitivity of the unit root component to the sample size in order to evaluate how many

observations would be required for this component to vanish.2' For each sample we then estimated the

cointegrating regression in (13) using the Stock-Watson method. The empirical distributions of the

estimates for , were produced by replicating this procedure 1000 times. Appendix D contains a detailed

description of these Monte Carlo experiments.

In the first set of experiments we assumed that the entire inflation process was given by the

Markov model estimated in Table 6, which we call Model A. These experiments treat the post-war data

sample as representative of the history of inflation.

The top panel of Figure 5 shows the cumulative distribution function for the y, coefficients

generated by Model A. The left hand side shows the distribution for the estimates based upon quarterly

inflation while the right hand side shows the same distribution based upon annual inflation. These figures

show that the probability of finding estimates of , less than one is quite high in a sample size of 25

years. The probability of finding estimates less than about .8 declines dramatically with sample sizes of

100 years. However, even as the sample size increases to 1000 years, the probability of finding a

coefficient less than one remains quite high. These results indicate that unit root components are quite

likely to appear in the inflation forecast residuals.

In a second set of experiments we treated the post War data sample as unrepresentative of the
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overall process. We assumed that the entire inflation process was given by the Markov model estimated

in Table 6 except that the probability of remaining in the unit root state was now set equal to one. In

this specification, which we call Model B, any switch into the unit root state lasts for ever. As before,

the cointegrating regression in (13) was repeatedly estimated to generate the empirical distribution of Yi.

The second panel of Figure 5 depicts the cumulative distributions for these coefficient estimates.

As in the Model A distribution, the probability of observing an estimate of 'y less than one is quite high

in data samples of' 25 years. However, as the sample size lengthens, this probability declines

dramatically. For samples of 1000 years, the probability of finding an estimate for cs less than one is

essentially zero.

A second way in which we can examine whether the forecast residuals from the Markov model

contained a unit root component is to run the cointegrating regression in (13) the other way around:

7rk(t, M) = + l' E(ir(t) I t,M) + s(t+k). (14)

As before, the forecast residual will be stationary only if the cointegrating coefficient, ,l, is equal to one.

On the other hand, if there are expected shifts in inflation that generate serial correlation with unit root

persistence, the estimates of ,t may differ from one.

As sbove, the empirical distributions for ,l' were calculated by repeatedly estimating (14) using

data generated by Models A and B. The third panel of Figure 5 presents the empirical distributions of

based upon Model A, which allows inflation to continually switch between processes. The cumulative

distribution of for samples of 25 years implies that the probability of observing a coefficient less than

one remains quite high, especially for the one year ahead forecasts. In the 1000 year samples, the

probability of observing an estimate of l' less than one is close to zero for the four quarter ahead

forecasts, and estimates of appear to converge to a value greater than one for the quarter ahead

forecasts.

The bottom panel of Figure 5 presents the empirical distributions for generated by Model B,

in which any switch into the unit root state lasts for ever. In this case the cumulative distributions show

that the coefficient estimates become heavily concentrated around one as the sample size increases to 1000
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years. This concentration accords with the distributions of y based on Model B.

These Monte Carlo experiments show that the inflation forecast residuals will appear to contain

unit root components in data samples as short as 25 years with high probability. Even if inflation

forecasts are rational, the estimates of and &L indicate that the forecast residuals would contain unit

roots if agents were rationally anticipating shifts in inflation.

IV. A Re-Evaluation

We now draw on the results of the previous section to re-evaluate the long run relationship

between inflation and the nominal interest rate when economic agents rationally anticipate a shift in the

inflation regime. The results in Table 2 imply that ex post real rates share a common unit root

component with realized inflation. We have argued that this result could arise from persistence in the

inflation forecast residuals created by rationally anticipated switches in inflation. Below we present

further evidence in favor of this explanation.

The implications of our Monte Carlo experiments for estimates of the long-run relationship

between nominal interest rates and realized inflation are easily seen. Assuming that the Markov model

accurately represents the entire inflation process, we can substitute (13) into the Fisher identity (1) to

obtain,

Rk(t) - rk(t) rk(t) + y. - (1-'3ir5(t) + (t+k). (15)

The Monte Carlo experiments shown in Figure 5 indicate that in standard sample sizes, Yi is biased

downward and would be less than one with high probability. Thus, even if the ex ante real rate follows

a stationary 1(0) process, (15) shows that it is quite likely that the ex post real rate will appear to share

a Unit root component in common with realized inflation.

We can examine the validity of this explanation by comparing the estimates of obtained from

the cointegrating regression,

Rk(t) = a, + a1 srk(t) + v(t+k), (2)
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against an empirical distribution for cs generated by Monte Carlo experiments that assume inflation

follows the estimated Markov process in Table 6. These experiments are similar to those described above

except that they generate nominal interest rates from the Markov forecasts of inflation using the Fisher

identity. For this purpose we assume that the ex ante real rate follows a stationary 1(0) process. The

process was parameterized so that once the ex ante real rates were combined with the Markov forecasts,

they matched the behavior of the nominal interest rate in the data. Appendix D provides a complete

description of these experiments.

The second column of Table 7 reports coefficient estimates for a1 in equation (2). The fourth

column reports the p-values based upon standard asymptotic inference for the hypothesis that these

coefficients are different than one. These estimates are comparable to the results found in Table 2?

The hypothesis that the coefficients equal one are strongly rejected with p-values less than 5%.

Columns S through 7 report diagnostics from Monte Carlo experiments based upon Model A in

which the entire process generating inflation is the model estimated in Table 6. Columns 5 and 6 report

the median and the standard deviation of the empirical distribution of a1. All of these median values are

less than one, indicating the downward bias in these estimates. Column 7 reports the probability of

observing the estimated coefficient in column 2 under the hypothesis that the ex ante real rate is truly

stationary and unrelated to inflation but agents anticipate shifts in the inflation process. As these p-values

show, the hypothesis cannot be rejected at standard marginal significance levels.

Columns 8 through 10 report diagnostics from Monte Carlo experiments based upon Model B

where any switch in inflation to the unit root state lasts forever. Again the median values of a in column

8 are all less than one and the standard errors in column 9 are relatively high. Column 10 reports the

probability of observing the a1 estimates in column one when the ex ante real rate is truly stationary.

Although the distributions in Figure 5 did not contain the real interest rate, they showed that coefficients

less than one are not as likely in this case. For similar reasons, the probabilities of observing the

estimates of a1 in column 2 are lower than those reported in column 7. Nevertheless, we would not

reject the hypothesis that the ex ante real rate is stationary at marginal significance levels of 5%, except

for the four quarter ahead inflation forecasts.
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The long run relationship between inflation and the nominal rate can also be examined with the

cointegrating regression of inflation run on the nominal interest rate:

(t) = Rk(t) + w(t+k) (16)

This equation puts the Fama (1975) regression into a cointegrating framework. As with ce1 in equation

(2), the coefficient must be equal to one if the ex post real rate does not contain a permanent

disturbances.

The lower panel of Table 7 examines the long run relationship between inflation and nominal

interest rates in the context of (16). The second column shows that the estimates of calculated with

the Stock-Watson procedure are all less than one. The fourth column reports the p-values for the

hypothesis that these coefficients are equal to one based upon the asymptotic distribution of the estimates.

These p-values show that the hypothesis is strongly rejected at standard significance levels. Under

standard assumptions about expectations, these results imply that the ex ante real rate was subject to

permanent shocks.

Alternatively, we can interpret these results allowing for the effects of anticipated switches in

inflation. In particular, if the Fisher identity is used to substitute for expected inflation in (14), we

obtain:
srk(t) = L' - l'1r1'(t) + &1Rk(t) + l)(t+k). (17)

The results of the Monte Carlo experiments shown in Figure 5 indicate that l' is biased downward and

would be less than one with high probability in the available sample sizes. Clearly, the cointegrating

relationship between inflation and nominal interest rates are the same in (16) and (17) when the ex ante

real rate follows a stationary 1(0) process. Therefore, these Monte Carlo results suggest that is quite

likely that we would estimate to be less than one if people rationally anticipated the inflation switches

identified by the Markov model.

Columns 7 and 10 of Table 7 report the probability of observing the estimates of when

inflation shifts between processes estimated by the Markov model. As before, these calculations assume

that the ex ante real rate follows a stationary 1(0) process. The p-values based upon Model A are never
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less than 10%. Thus, one would not reject the hypothesis that the ex ante real rate is stationary at

standard confidence levels. The p-values based on Model B, in which a switch into the unit root state

lasts for ever, are somewhat smaller. The hypothesis that the ex ante real rate is stationary would not

be rejected at 95% confidence levels for one and two quarter ahead forecasts, but would be rejected at

the three and four quarter ahead horizons.

The last row in each panel of Table 7 provide estimates of the cointegrating relationship between

nominal interest rates and the Livingston survey. When the nominal rate is regressed upon the inflation

forecast, we cannot reject the hypothesis that the estimated coefficient on the Livingston forecasts is equal

to one at high confidence levels. On the other hand, when the inflation forecast is regressed on the

nominal rate, we can reject the hypothesis that the coefficient on the nominal rate is equal to one at the

10% level. However, these results need to be interpreted with some caution because the unit root tests

in Table 1 suggest that the Livingston data may in fact be stationary. If this is true, no long run

relationship exists between the Livingston forecasts and nominal interest rates, and these results may

simply reflect spurious regression problems.

Overall, the evidence in Table 7 shows that in typical sample sizes based upon post-war data, we

find cointegrsting coefficients in the Fisher identity that differ from one. Under standard assumptions,

these results would necessarily imply that the ex ante real rate contains unit roots. However, the table also

shows we are very likely to find these estimates when the ex ante real rate does not contain unit roots but

investors rationally anticipate shifts in inflation policy. In fact, if the number of shifts in the post-war

data sample is representative of the future inflation process, our estimates indicate that we cannot reject

the hypothesis that the ex ante real rate is stationary.

V. Concluding Remarks

In this paper, we re-examined the long run relationship between inflation and nominal interest

rates using recent time series techniques. We showed that there is a negative correlation between the

permanent movements in ex post real interest rates and inflation. We then argued that this correlation

could arise when people incorporate anticipated shifts in inflation policy into their expectations because
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inflation forecasts tend to be highly persistent under these circumstances. We rejected a necessary

condition for the absence of systematic forecast residuals at horizons from 3 month to 2 years. In light

of these test results, we then examined the stability of the inflation process, and estimated a Markov

switching model of inflation. This model appeared to capture structural shifts in the inflation process and

to characterize the behavior of inflation well. Based upon forecasts from the Markov model, we re-

examined the long run relationship between nominal interest rates and inflation. When incorporating

anticipated shifts in inflation in this way, we were unable to reject the hypothesis that long term

movements in nominal interest rates reflect one-for-one long run movements in expected inflation.
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Endnot
1.For example, Barsky (1987) argues that changes in the inflation process over the last century have
affected estimates of the Fisher equation relationship and Bonser-Neal (1990) shows that real rate
processes in different countries contain structural breaks around monetary regime changes.

Early studies of the real rate include Fama (1975), Mishkin (1981), and Huizinga and Mishkin
(1984). More recently, Mishkin (1988, 1990a, 1990b) and Fama (1990) have examined how the term
structure of rates depend upon ex post inflation.

2.For example, several explanations have been provided for the negative correlation between inflation
and the real interest rate. Mundell (1976) and Tobin (1969) argue that higher inflation leads to a
portfolio shift into real assets, thereby pushing down the return on these assets. Fama (1981) and Fama
and Gibbons (1982) present another explanation: if increases in output push up money demand without
accommodating money supply, these output shocks will push down inflation but will be correlated with
higher real rates. A third channel arises in general equilibrium monetary economies through the liquidity

3.For instance, Mishkin (1981) and Huizinga and Mishkin (1986) use nominal rates minus ex post
realized inflation together with the assumption that inflation forecast residuals are white noise to study
the implicit ex ante real rate. Other studies include Fama (1975), Carlson (1977), Garbade and Wachtel
(1978), and Nelson and Schwert (1977). Most of this research ignores the effects of taxes on nominal
interest payments pointed out by Darby (1975) and Feldstein (1976). Unfortunately, it is extremely
difficult to know what the appropriate tax rate for the whole economy is because the effective tax rate

4.Mishkin (1991) studies nominal interest rates and inflation rates over different maturities and finds that
they contain unit roots. Other studies that find a unit root in inflation include Evans (1991), Ball and
Cecchetti (1989), and Shapiro and Watson (1987). -

5.This issue was raised by Perron (1989). He found that for several macroeconomic series, the null
hypothesis of a unit root process with drift and an exogenous break point could be rejected in favor of
the alternative of a stationary process about a deterministic trend with an exogenous change in trend
function. The Zivot and Andrews statistic tests the null hypothesis of a unit root against the alternative
that the process is trend stationary with a break in the trend occurring at an unknown point in time.

6.In principle, this equation may incorporate an inflation risk premium for holding nominal bonds relative
to real bonds. See, for example, Benninga and Protopapadakis (1985). Also, equation (1) measures the
expected depreciation on holdings of nominal money, and therefore differs from the inflation rate due to
Jensen's inequality. Evans and Wachtel (1992) find that these components are quantitatively unimportant.
However, none of our results below would be affected by the presence of a covariance stationary inflation
risk premium.

7.This relationship holds only if the variables with unit roots are cointegrated. Below we present
evidence that the variables are indeed cointegrated and so our discussion here proceeds under this
assumption.

8.For more discussion of cointegrating regressions, see Stock (1987). Campbell and Perron (1991)
provide a survey and a more detailed discussion of the necessary conditions for equations like (2) to be
a well-defined cointegrating regression.
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9.Since both inflation and nominal interest rates are endogenous variables, it may appear that instrumental
variables should be used to address the simultaneous equation problem. However, as discussed in Stock
(1987) and Stock and Watson (1989), the level of the right-hand side variable is, in effect, an instrument
for its own non-stationary component. Therefore, the estimate of Ce1 is asymptotically consistent. The
simultaneous equation problem does introduce a bias in finite samples, however. The estimates reported
below adjust for this bias using the methods proposed by Stock and

lOAn explanation of the Stock-Watson method and how it was implemented in the current situation is
given in Appendix A.

11.Appendix B describes how the expectations in (3) can arise when people are learning about a past
switch and/or anticipating a future switch in the inflation process.

12.We make this assumption only for the purposes of illustration. In the empirical analysis below, actual
switches are easily incorporated.

13.To see this relationship, note that:

(t) E(rk(t+n) t,C) X(t)tE(trk(t+n) I t,C) - E(?(t+n) t,A)}.

This term will be stationary only if the difference between the expectations of the current and alternative
regimes are stationary. More general alternatives that induce permanent disturbances in this term are:
(a) one process is stationary and the other contains a unit root; (b) both processes contain unit roots
with different disturbances; (c) both processes contain the same unit root disturbance but with different

l4.lt is straIghtforward to show that F(t) = [(k+n)R'1(t) - nR'(t)]/k for the case of pure discount
bonds using the linearized term structure relationship as in Campbell and Shiller (1991).

15.Standard models of time-varying risk premia imply that these are stationary since they depend upon
the time-series properties of the change in consumption. See, for example, Campbell (1987) and
Grossman and Shiller (1981).

16.Here we implicitly assume that people know the process for the ex ante real rate and it is not expected
to switch. This assumption only serves to simplify the notation. We have also examined the case where
both the real rate and inflation processes may shift. The basic arguments that follow remain true although
the algebra is much more tedious.

17.These results indicate that excess returns contain a non-stationary component. Since excess returns
are typically treated as stationary, this result may seem to contradict conventional wisdom and empirical
practice. However, Evans and Lewis (1990) present Monte Carlo evidence showing that standard unit
root tests and time series analysis would not detect a small non-stationary component in excess returns.
In the present case, the magnitude of this component would likely be small in the sample since the
variance of the non-stationary component depends upon (1 - a)2.

18.Even though there is no direct evidence of shifts in the constant, Hansen (1991) finds in Monte Carlo
experiments that it is difficult to test the stability of one Set of parameters if another subset of parameters
is shifting over time. Therefore, shifts in autoregressive parameters or constants may show up as
apparent shifts in the variances.
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19.The estimates were obtained using a modified version of the filtering algorithm developed by Hamilton
(1990).

20.Using the parameter estimates in Table 6 (estimated with 4. = 1) we calculated the standard error of
4' to be 0.68. From this we computed the p-value of a one-sided test that 4. = 0 to be 0.095, suggesting
the discrete shifts were an important characteristic of the data.

21 .This issue mirrors the discussion of the low power of serial correlation tests in Fama and French
(1988), and Poterba and Summers (1988) who argue that serial correlation tests often fail to reject the
null when it is false.

22.Specifically, the a ante real rates were generated by subtracting the actual nominal rates from the
Markov forecasts of inflation: Rk(t) - E(rk I t,M) = r3'(t I M). An autoregressive model was fit to these
estimated real rates. The ex ante real rates used in the experiments were then generated from this model.

23.Note that these are based upon quarterly inflation and therefore do not match exactly the same
estimates based upon monthly inflation in Table 2,



Appendix A: Cointegrating Regression Methods

1. Stock-Watson Procedure

In this appendix, we describe the methods used to estimate the cointegrating regressions (2), (10),

(11), (13), (14), and (16). For more detailed and thorough discussions, see Stock and Watson (1989).

For notational simplicity, note that equation (10), for example, may be written as,

y = -yx, + u5 (Al)

= u, (A2)

where u, and u2, are stationary, y, R(t+n), x, F(t), and the constant term is omitted for

simplicity. We are interested in testing y = 1. Since x, is endogenous, it is likely that the sample

covariance between x, and u1, is not equal to zero. In this case, 'y will be biased in any finite sample.

Therefore, test Statistics 011 y must take account of this bias. This bias arises even though the estimate

of y is consistent. Below, we give the steps for estimating (Al) and (A2) using the Stock-Watson method.

Rewrite equation (Al) according to,

y,=y5+yx+ L)x,+u1, (A3)

where (L) is a polynomial in the lag operator, L, i.e., $(L) = (L + L' + + L + I + L1 +
+ L1 + L). The idea to rewriting (Al) in this form is to include as many leads and lags of x on

the right-hand side of the equation to make u1, independent of x. This implies that the asymptotic

distribution of the OLS estimator of ' is normal. Intuitively, including the leads and lags of .x on the

right-hand side gets rid of the simultaneous equation bias problem since the 's soak up the correlation

between u, and Un. Note that since u1, will be serially correlated in general, the Wald test of y= 1 from

(A3) should also use the Newey-West estimator for the covariance matrix.
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2. Implementing the Stock- Watson Procedure

Implementing this procedure requires a truncation level (n) for the leads and lags of first-

differenced right-hand side variables. Furthermore, since the residual in equation (A3) may be serially

correlated and conditionally heteroscedaatic, we also allowed for autocorrelation by estimating the

variance-covariance matrix with the Newey-West (1987) estimator. Estimating this covariance matrix

requires a lag for the maximum number of autocovariances.

Therefore, estimation of equation (A3) requires knowledge of both (a) the number of leads and

lags for the Stock-Watson correction and (b) the number of lags in the Newey-West estimator. To make

sure that our results were not sensitive to these numbers, we estimated cointegrating regressions using

a range of Stock-Watson leads/lags of 2 to 12, and of Newey-West lags of 3 to 12. Tables 2 through 4

report the results when Stock-Watson leads/lags were 6 and Newey-West lags were 6. These results are

completely representative of the findings for the range of leads and lags.'

Appendix B. Learning and Anticipated Future Shifts in Processes

Equation (3) in the text states that the expected future inflation rate is a probability-weighted

average of the expectations conditional upon the current process, C, and an alternative process, A. These

expectations may be motivated in two alternative but not mutually exclusive ways: (1) learning about

a past change in the inflation process, and (2) anticipation of a future shift in inflation.2

Case (a): Learning. After a change in the process of inflation, economic agents may

require time to learn about the new process of inflation. For example, Americans living with the

relatively low inflation of the early 1960's may have required time to learn about the higher inflation

levels of the 1970's. To illustrate how learning would affect forecasts, suppose that the process of

'Generally, the efficiency of estimation increases as the number of both sets of lags decrease. For
this reason, we report relatively conservative representative estimates. The results for the range of these
lags are available upon request from the authors.

-Ihe impact of future discrete changes on expectational errors was first pointed out by Rogoff (1980),
and was recently empirically investigated in nominal interest rates by Lewis (1991). The effects of
learning on forecast errors after changes in policy are described in Lewis (1989).
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inflation changed from the old process to a new process. Suppose further that agents are not sure if the

process has changed. Therefore, they would observe the inflation process following the suspected change

to try to learn whether the process has indeed changed. If they learn in a Bayesian way, they begin with

a prior probability of a change and then update this probability based upon subsequent observations of

inflation. As economic agents le.arn, they weight forecasts conditional upon each regime by their assessed

probability that the old or new process is currently generating inflation. Thus, the expected inflation

takes the form of:

E(rk(t+n) t) = (1 - X(t)) E(sk(t+n) t,Old) + X'(t) E(xk(t+n) t,New) (Bl)

where X(t) denotes the probability of the old process and the expectations conditional upon the old regime

and new regime are denoted "Old and New", respectively. With sufficient observations from the

New' process, the market will learn the true process is indeed 'New', and X(t) will converge to one.

Note that letting "C refer to the New regime and refer to the Old" regime in equation (Bl)

yields equation (3).

Case (b: Anticipate Future Shifts If agents believe that the inflation process may change in the

future, their expectations of future inflation will incorporate expectations conditional upon the alternative

inflation process. For instance, Americans who experienced the high inflation of the 1970's may believe

that episodes of high inflation could happen again even after the decline in inflation in the 1980's. They

then assess positive probability to a switch back to the previous policy regime. In this case, expected

future inflation also takes the form of:

E(,rk(t+n) Jt) = (1 — X(t)) E(7r(t+n) t, Current)

+ X(t) E(irk(t+n) It, Alternative) (B2)

where X(t) is now the probability of a switch to another regime. Thus, the expected future inflation rate

is the probability-weighted average of the expected inflation conditional upon the current regime and the

regime anticipated if a switch occurs. In this case, agents understand fully the current regime of the

inflation process (and hence do not need to learn), but believe that this process may change in the future.
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Note that letting 'C" refer to the 'Current' regime and "A" refer to the 'Alternative" regime in equation

(B2) yields equation (3).

In summary, both when (a) the market is learning and when (b) the market anticipates a shift in

future policy, expected inflation will weight forecasts based upon an inflation process other than the

current process. Either case will imply expected inflation in the form of equation (3).

Appendix C: Bootstrapping Procedure ror Table 4 Tests

The cointegrating regressions in Table 4 are based upon an estimate of the asymptotic variance-

covariance matrix of the parameters. Since our small data sample may produce relatively poor estimates

of this matrix, our test statistics may in turn be contaminated by small sample bias. We therefore used

bootstrapping techniques to generate the empirical distribution of the coefficient estimates, 1 and a5 and

used this distribution to test the null hypothesis.

Specifically, we constructed time-series for the future interest rate based upon equation (11) as

follows. First, the residuals to the Stock-Watson regressions were saved. Then, a series of interest rates

equal to the sample length were generated by sampling from these residuals using equation (11) where

we constrained a1 = I and a2 = 0. Next, these generated series were regressed upon the forward rates

and inflation as in equation (11), saving the coefficient estimates. These steps were repeated one

thousand times. This procedure provides an empirical distribution of the coefficient estimates when in

fact a1 = 1 and a = 0 by construction. Using this empirical distribution, the probability that the point

estimates from the cointegrating regression (11) come from this distribution are reported in the last

column of Table 4.

To evaluate the robustness of our results, we also generated the series allowing for a2 0. For

this purpose, we created interest rate series as described above except that a2 was set equal to its point

estimate. In the next to last column, Table 4 reports the probabilities that the estimates from the

cointegrating coefficients are drawn from this distribution.

As a final check, we also constructed the series allowing for conditional heteroscedasticity, by

estimating a separate ARCH model for each equation and saving these residuals. Then, drawing from



these residuals, we generated heteroscedastic residuals from the estimated ARCH process and then used

these scaled residuals to construct the nominal rates. We considered both cases in order to examine the

finite sample sensitivity of our Monte Carlo experiments to assumptions about heteroscedasticity.

However, these experiments provided virtually identical p-values as the homoscedastic case. We report

these results in Table A.

Appendix D: Monte Carlo Experiments of Markov Switching Model

This appendix details the Monte Carlo experinlent.s described in Section III (C) and Section IV.

Section III (C): The Monte Carlo experiments in this section were used to evaluate the cointegrating

regressions, equations (13) and (14), in the text. These regressions involve series of expected inflation

and actual inflation based upon the estimated inflationary Markov model. As described in the text, two

types of Monte Carlo experiments were conducted based both upon this model and an assumption about

the entire history of inflation.

The first, Model A, treats the post-war period as a representative drawing from this distribution.

For this reason, actual inflation was generated from the estimated model in Table 6, where the

probabilities of remaining in the same state are .936 and .961 for state I and for state 0, respectively.

Then, we calculated the Markov forecasts at horizons of one, two, three, and four quarters, assuming the

current state is known and the transition probabilities are known. After generating the actual and

expected series, the cointegrating regressions in equations (13) and (14) were estimated with the Stock-

Watson procedure. The coefficient estimates were saved. This procedure was repeated 1000 times,

generating an empirical distribution of coefficients. These experiments were conducted for sample lengths

of 25, 100, and 1000 years. Figure 5 shows the results for the one quarter and four quarter ahead

forecasts, although the two quarter and three quarter ahead forecasts gave similar results.

The second model, Model B, treats the post-war period as unrepresentative of the entire inflation

process. The actual inflation was generated from the estimated model in Table 6, where the probability

of staying in state 2 is .961, as before, but the probability of staying in state 1 is equal to one. In other

words, State 1 is absorbing. We then generated the actual and expected inflation from this process and

estimated the cointegrating regressions, (13) and (14), as for Model A. This procedure was repeated
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1000 times to generate empirical distributions for the coefficients. Again, the two quarter and three

quarter ahead forecasts implied similar distributions to those depicted in Figure 5 for the one quarter and

four quarter ahead forecasts.

We also conducted experiments where the transition probabilities were not known by agents, but

were estimated over time based upon the number of times a transition was made from one state to

another. These experiments gave essentially the same results as those reported in the text and we

therefore do not report them.

Section IV: The Monte Carlo experiments in this section were used to evaluate the Fisher equation

estimates in equations (2) and (16). These regressions require series on the actual and expected inflation

processes from the Markov process, as generated in Section III (C), but also require the ex ante real rate

to produce a nominal interest rate series. The ex ante real rates were generated by subtacting the actual

nominal rates from the Markov forecasts of inflation: Rk(t) - E(srkI t,M) rk(t,M). Then an

autoregressive model of the ex ante real rate process was estimated. The ex ante real rates were then

generated from this model. Given these generated ex ante real rates, the nominal rates were constructed

as: rk(t,M) + E(sr5(t) t, M) = Rk(t, M). By construction, these nominal interest rates match the

behavior of the nominal interest rates in the data.

The Monte Carlo experiments followed the two forms described above for Model A and Model

B. For each set of generated nominal interest rates and inflation, equations (2) and (16) were estimated

using the Stock-Watson method. The empirical distributions of the coefficients were calculated. Since

the ex ante real rate is stationary and the Fisher equation holds by construction, these empirical

distributions are used to calculate the p-values in Table 7.



Table 1: Unit Root Tests

variable a i t(X)
(1) (2) (3)

(monthly data)

-2.982 -3.250

-2.233 -2.836

-1.889 -3.117

-3.918 -5.199

-2.858 -4.293

R -1.209 -1.868

R' -1.346 -1.911

-1.191 -1.801

V -1.189 -1.896

R2 -1.489 -2.256

F'' -1.428 -1.984

F'5 -1.363 -2.008

F'' -1.361 -2.114

F" -1.774 -2.649

-1.806 -2.827

(bi-annual data)

L] -2.102 -6.009

a' -1.517 -4.174

critical 1% -3.99 -5.34
values

5% -3.43 -4.80

Notes: ak and Rk are the k month inflation and nominal interest rates. Ft. is the rate of return
on a forward contract bought alt for a k month bond at t+n. E[r I L] is the Livingston survey
forecast of inflation.

r Augmented Dickey Filler test statistics for H0:cr = 1, allowing for a constant and time
trend. Monthly tests include 6 lags of the first difference in the regression, bi-annual
tests include 1 lag:

x(t) + trend + ax(t-1) + E,ax(t-i) + u(t).

t(X): Zivot and Andrews' minimum 1-statistics for H5:cr= 1, allowing for shifts in the mean.
Regressions include constant and time trend, 6 lags of first difference x, in monthly
data, and I lag in bi-annual data:

x(t) js + /3 trend + csx(t-1) + la,x(t-i) + eDu(x) + u(t)

where DU(X) lift > [TX] for sample size T, and 0 otherwise, where 1 > X > 0.



Table 2: Long-Run Fisher Equation Estimates

Rk(t) = ct + a1(t) + t-i) ÷ v(t+k)

Months
k
(1)

Cointegration Tests
X
(2)

Paramete
cs

(3)

r Estimates
Ea
(4)

t-statistics
H:cr1=1

(5)

1 48.862 0.611
(0.082)

-3.558
(0.799)

4.723

3 44.568 0.595
(0.107)

-5.441
(1.007)

3.770

6 30.448 0.703
(0.089)

-1.835
(1.510)

3.320

9 26.308 0.752
(0.083)

-1.484
(1.732)

2.998

12 21.109 0.810
(0.072)

-2.307
(1.575)

2.640

24 11.120 0.758
(0.075)

-6.256
(2.039)

3.241

36 10.880 0.783
(0.065)

-12.058
(3.152)

3.324

Notes; is josansens maximum eigen value test br the number of stochastic trends in V(t), R(t)]. The 5%
and 10% critical values are 14.595 and 12.783. Statistics greater than the critical value indicate that the null of no
cointegration (or equivalently 2 stochastic trends) can be rejected. All standard errors are corrected for the presence
of conditional heteroskedasticity and moving average errors.



Table 3: Cointegrating Regressions between Spot and Forward Interest Rates

Rk(t+n) = d, + d1F(t) + E_.b1 AF(t-1) + u(t+n)

Months Cointegration Tests Parameter Estimates t-statistics
n, k X, d1 1b1 H0: d=1
(1) (2) (3) (4) (5)

1, 2 74.401 0.971 1.030 4.846
(0.006) (0.096)

1, 3 53.236 0.978 1.093 3.963
(0.006) (0.071)

1, 5 54.714 0.983 1.066 4.358
(0.004) (0.048)

3, 3 33.783 0.952 2.937 3.228
(0.015) (0.191)

3, 6 26.356 0.976 3.049 2.471
(0.010) (0.130)

3, 9 22.777 0.986 3.387 1.606
(0.008) (0.113)

6, 3 45.250 0.911 1.937 2.084
(0.042) (0.520)

6, 6 38.113 0.935 2.375 1.657
(0.039) (0.524)

9, 3 34.957 0.875 2.662 1.811
(0.069) (0.634)

12, 12 24.833 0.879 4.071 1.866
(0.065) (0.723)

24, 12 30.892 0.795 1.473 1.917
(0.107) (1.446)

Notes: X,,, is Johansen's maximum eigen value test for the number of stochastic trends in [F"(t), R(t)]. The 5%
and 10% critical values are 14.595 and 12.783. Statistics greater than the critical value indicate that the null of no
cotntegration (or equivalently 2 stochastic trends) can be rejected. All standard errors are corrected for the presence
of conditional heteroskedasticity and moving average errors.
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Table 5: Tests for Structural Instability in Quarterly Inflation

Model Estimates
(quarterly data)

= 0.095 - 0.673 ir
(0.161) (0.083)

- 0.458 r2 - 0.255 ir + e,
(0.088) (0.041)

Residual Correlations: p
0.017

p2
0.070

p3
0.064 -0.195

Hansen L Statistics
Constant alone (1 d.f.)

Constant and variance (2 d.f.)

0.074

1.043

Variance alone (1 d.f.)
Constant, variance, and
AR parameters (5 d.f.)

0.959

1.649*

Notes: - and
—

indicates a rejection of the hypothesis of parameter stability at the 5% and 1% significance levels,
respectively. 2r(t) is the quarterly rate of inflation. Time periods are measured in quarters.

Table 6: Estimates of Markov Model For Quarterly Inflation
Model Estimates:
(quarterly data) r, = 2rS, + r5(1-S)

= + v1, = 6.717
(1.53 8)

= 0.442 + 0.726 r0.1 + v0 a.2 = 2.191
(0.194) (0.089) (0.414)

pr(S=1 I S11) = 0.936 pr(S0 S,.10) = 0.961

(0.053) (0.027)

Specification Tests: x2 Sig.

LM test for l'st. order serial correlation in state S = 1: 2.171 0.141

LM test for l'st. order serial correlation in state S = 0: 0.478 0.489

LM test for 1st. order ARCH in state S=1: 0.250 0.617

LM test for l'st. order ARCH in state S=0: 0.075 0.745

Notes: s(t) is the quarterly rate of inflation and time penods are measured in quarters. Asymptotic standard errors
are reported in parenthesis below the maximum likelihood parameter estimates.



Table 7: Cointegrating Regressions with Actual Inflation
and Livingston Survey Forecasts

Rc(t) = + ce1r.(t) + Ea1 ic(ti) + v(t+n)
My. Monte Carlo Experiment A Monte Carlo Experiment B

quarters P-value (%) median Std. P-value(%) median Std. P-value (%)k a la }1:i = 1 a a 0 a
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(quarterly data)

1 0.692 -2.926 3.71 0.919 0.259 12.90 0.990 0.206 5.60
(0.148) (0.561)

2 0.762 -3.584 2.48 0.882 0.238 20.80 0.991 0.192 7.20
(0.106) (0.526)

3 0.732 -3.067 1.45 0.853 0.228 20.40 0.982 0.183 5.50
(0.110) (0.603)

4 0.619 -4.930 0.60 0.819 0.215 12.20 0.994 0.175 2.70
(0.140) (0.639)

(hi-annual data: Livingston)

2 0.927 -1.141 44.66
(0.696) (0.413)

(t) + a1Rk(t) + b Rk(ti) + w(t+ n)

quarters
k a Ib

(1) (2) (3)

My. Monte
P-value (%) median
H31 = I a
(4) (5)

Carlo Experiment A Monte Cs
Std. P-value(%) median
a a
(6) (7) (8)

rIo Experiment
Std.

a
(9)

B
P-value (%)

(10)

(quarterly data)

1 0.693 2.650
(0.101) (0.581)

0.24 0.901 0.287 26.70 0.917 0.191 12.40

2 0.636 2.970
(0.104) (0.550)

0.05 0.957 0.288 18.50 0.933 0.179 6.20

3 0.570 2.742
(0.108) (0.529)

0.01 1.018 0.291 13.60 0.945 0.170 3.80

4 0.548 3.840
(0.113) (0.579)

0.01 1.057 0.303 12.20 0.946 0.168 3.40

(hi-annual data Livingston)

2 0.803 0.401
(0.103) (0.269)

5.60

Notes: The reported coefficients are corrected for finite sample bias with the Stock-Watson procedure. 3 leads and
lags of the first difference regressor are included in the quarterly regression and I lead and lag n the bi-annual
regressions. Asymptotic standard errors are reported in parenthesis below estimates. The asymptotic p-values are
calculated from the Wald Statistics of the null hypothesis a = 1. The statistics allow for MA(3) serially correlated
errors in the quarterly data and MA(2) serially correlated errors in the bi-annual data. The Monte Carlo p-values
report the probability that the cx ante real rate ts stationary. Experiments based on Model A assume that actual
inflation switches in and out of the unit root state throughout the sample. Experiments based on Model B assume
that any switch into the unit root state lasts for ever. The Monte Carlo experiments are described in Appendix D.



Table A: Alternative Bootstrap P-Values
Rk(t+n) = a + aF(t) + asrk(t) + b .Fk.(tj) + 6 .k() + u(t+n)

Months Arch Parameter Estimates Hypothesis Tests
Bootstrap p-values (%)

ii Ic ,, H.,: a=1 H.,: a= 1, a,0
1 2 0.073 0.028 0.144 0.202 0.211 0.60 0.50

(0.019) (0.046) (0.080) (0.096) (0.080)

1 3 0.097 0.103 0.109 0.097 0.239 <0.00 <0.00
(0.025) (0.075) (0.089) (0.072) (0.087)

1 5 0.122 0.166 0.052 0.134 0.149 <0.00 <0.00
(0.026) (0.108) (0.063) (0.064) (0.059)

3 3 0.537 0.404 3.00 2.50
(0.073) (0.137)

3 6 0.430 0.268 0.153 0.199 0.60 0.60
(0.128) (0.116) (0.029) (0.068)

3 9 0.932 0.351 0.60 0.30
(0.117) (0.135)

6 3 1.266 0.343 0.020 <0.00 <0.00
(0.154) (0.116) (0.020)

6 6 1.098 0.569 0.051 -0.039 0.275 <0.00 <0.00
(0.341) (0.115) (0.024) (0.022) (0.067)

9 3 0.632 0.242 0.027 0.089 0.216 <0.00 <0.00
(0.182) (0.111) (0.036) (0.094) (0.077)

12 12 8.135 0.120 0.055 0.025 0.149 <0.00 <0.00
(1.329) (0.069) (0.053) (0.045) (0.072)

24 12 38.091 0.093 0.226 0.04.4 0.102 <0.00 <0.00
(7.317) (0.064) (0.097) (0.055) (0.041)

Notes: Conditional heteroskedasticity is introduced into the Monte Carlo expenments by estimating ARCH
processes for the estimated residuals u(t):

o(t) = + E_11u(t-i)2

The estimated parameters of the ARCH process are reported above their standard errors. The order of the ARCH
models were chosen as follows: First, we used Engle's two-step regression procedure to estimate a 4'th. order
process. Since this procedure does not constrain the s to be non-negative, itis possible that some of the estimated
conditional variances from the model are negative. We therefore checked this before accepting the model. If any
of the estimated variances were negative, a 3 rd. order ARCH model was estimated. This process was repeated until
suitable ARCH models were found for each case.
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Figure 3: Markov Model Estimates
Filtered probability of being in Unit root state: Pr(S1 = 1)

Quarterly Inflation One Year Ahead
key: quarterly markov forecast 1, - - - actual quarterly inflation

Livingston and Markov Forecasts of 6-Month Inflation
key: Livingston, - - - Markov

54 58 62 SC 78 82 Se
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Figure 5: Monte Carlo Distributions of Cointegrating Parameters

Equation: E((t) I t,M) = + 1ik(t) + (t+k)

(Model A)

k = 4 (Model B)
Key: samples 25 yrs. 100 yrs 1000 yrs - - - (quarterly data)

k1 k4 (ModelA)

k=1 k=4

Equation: irk(t) = + E((t) I t,M) + (t+k)

(Model B)

k= I k=4

k= 1


