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1 Introduction

Fama [1984b], Fama [1984a], Fama [1984b], and Fama and Bliss [1987] present evidence of
rich patterns of variation in expected returns across time and maturities that “stand as chal-
lenges or ‘stylized facts”’ (Fama [1984b], page 545) to be explained by dynamic term struc-
ture models (DTSMs). A large literature has subsequently elaborated on the inconsistency
of these patterns with the implications of the traditional expectations hypothesis – there
is compelling evidence from yield (Campbell and Shiller [1991]) and forward-rate (Backus,
Foresi, Mozumdar, and Wu [1997]) regressions for time-varying risk premiums. Still largely
unresolved, however, is the broader question of whether, taken together, these historical
patterns are “puzzling” within richer DTSMs, including those commonly implemented by
academics and practitioners.
This paper takes up Fama’s challenge and uses several key stylized facts about excess

returns on bonds to “draw out” the essential features of DTSMs that allow us to explain
these facts. Letting P nt denote the price of an n-period zero-coupon bond, R

n
t (≡ − lnP nt /n)

its corresponding yield, and rt ≡ R1t , the empirical evidence shows that
LPY: the estimated coefficients φnT in the linear projections

1 of Rn−1t+1 −Rnt onto 1
n−1(R

n
t −rt)

are negative and increasingly so with larger maturity n.

LPY is often viewed as a puzzle by term structure modelers because, under the assumption
of constant risk premiums, the expectations hypothesis implies that (in the population) the
projection coefficients φn are unity, for all n. We show that LPY is in fact not puzzling, but
rather is generated by at least two important classes of DTSMs: (1) a large subclass (though
not all) of affine DTSMs (Duffie and Kan [1996] and Dai and Singleton [2000] (hereafter DS)),
and (2) the family of quadratic-Gaussian term structure models (Beaglehole and Tenney
[1991] and Ahn, Dittmar, and Gallant [2000]). More precisely, we document that the risk
premiums, and associated expected excess holding period returns ent ≡ Et[ln(P n−1t+1 /P

n
t )−rt],

implied by these models give:

MPY: (i) population coefficients φn from the projections of R
n−1
t+1 − Rnt onto 1

n−1(R
n
t − rt)

that largely match the historical pattern of the sample coefficients from LPY;2

(ii) sample coefficients φRnT from projections of the “risk-premium adjusted” yield
changes Rn−1t+1 − Rnt + 1

n−1e
n
t onto

1
n−1(R

n
t − rt) that are insignificantly different

than their model-implied population values of φRn = 1, for all n > 1.

The puzzle LPY, repeated in Table 1 for our treasury data set,3 was anticipated by
Fama [1984a] and Fama and Bliss [1987] who argued that excess returns are time-varying

1The mnemonic LPY stands for “sample-based LinearProjection coefficients inYield-based regressions.”
Similarly,MPY stands for “Model-based LPY’s.” There are two versions of MPYs, one with risk-premium
adjustment, and the other one without.
2We are presuming that the historical pattern LPY is not spurious, but rather is representative of the

pattern of the population φn. As demonstrated by Bekaert, Hodrick, and Marshall [1997a] and Backus,
Foresi, Mozumdar, and Wu [1997], the patterns LPY cannot be attributed to small-sample bias in the
relevant linear projections. Indeed, they find that the small-sample bias reinforces the puzzle by making the
projection coefficients under LPY less negative than they would be in the absence of such bias.
3 We are grateful to Backus, Foresi, Mozumdar, and Wu [1997] for providing the smoothed Fama-Bliss
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and typically positively correlated with the slope of the yield curve.4 For a DTSM to imply
population values of the φn that match the downward sloping pattern in Table 1, it must
accurately capture the historical distribution of yields under the actual probability measure
P , requirement MPY(i).5

Table 1: Campbell-Shiller Long Rate Regression

Estimated slope coefficients φnT from the indicated linear projections using the
smoothed Fama-Bliss data set. The maturities n are given in months and “s.e.”
is the estimated standard error of φnT .

R
(n−1)
t+1 −Rnt = constant + φnT (Rnt − rt)/(n− 1) + residual

Maturity 3 6 9 12 24 36 48 60 84 120
φnT -0.428 -0.883 -1.228 -1.425 -1.705 -1.190 -2.147 -2.433 -3.096 -4.173
s.e. (.481) (.640) (.738) (.825) (1.120) (1.295) (1.418) (1.519) (1.705) (1.985)

Much less attention has been given to requirement MPY(ii). We show formally below
that, for any DTSM in which time variation in expected excess returns is due to time-varying
risk premiums, there is a function D∗nt+1 of market risk premiums with the properties that
ent = Et[D

∗n
t+1] and the “risk-premium adjusted” population projection coefficients φ

R
n are

unity. That is, once we adjust the yield changes Rn−1t+1 − Rnt by 1
n−1D

∗n
t+1, we recover the

coefficient of unity on 1
n−1(R

n
t − rt) desired by proponents of the expectations hypothesis.

However, the corresponding sample φRnT , obtained using historical yields for R
n
t and model-

fitted risk premiums in constructing D∗nt+1, will typically be close to unity only if the DTSM
accurately describes the dynamic behavior of risk premiums; that is, only if the model
captures the behavior of yields under the risk-neutral measure Q.
Matching both MPY(i) and (ii) simultaneously places substantial demands on specifi-

cations of the market prices of risk, correlations among the risk factors determining r, and
the volatilities of these factors. This is particularly true if we insist that the model match
other features of the conditional distributions of bond yields, say those summarized by the
(model-implied) likelihood function of the data. Key to our success at matching MPY is the
flexibility of our specification of the factor “market prices of risk”: we posit market prices
of risk that depend not only on the factor volatilities, but also on on (at least some of) the
risk factors directly. For affine DTSMs, this specification follows Duffee [2000]6 in extending

data used in our analysis. The data are monthly from February, 1970 through December, 1995. Letting
fnt ≡ − ln(Pn+1t /Pnt ) denote the forward rate for one-month loans commencing at date t+n, Backus, Foresi,
Mozumdar, and Wu [1997] also present empirical evidence against the related expectations null hypothesis

of dfn = 1 in the linear regression f
(n−1)
t+1 − rt = constant + dfn

(
f
(n)
t − rt

)
+ residual, particularly at the

shorter maturities.
4Fama and Bliss [1987] focused on the slope of the forward rate curve, but as we shall see subsequently

the basic intuition from their analysis carries over to the slope Rnt − rt.
5As we will see, focusing on φn makes this a much more demanding requirement than that of explaining

LPY using sample φnT obtained with fitted yields from a DTSM.
6Duffee shows that extending the risk-premium specifications in standard affine models improves their

forecasting performance and helps in matching the coefficients of variation of yields. He does not formally
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those affine models (see DS and the references therein) in which market prices of risk are pro-
portional to factor volatilities alone. The market prices of risk in quadratic-Gaussian models
are shown to inherently have this flexibility. Our successful models also exhibit non-zero
correlations among the risk factors.
We present our quantitative resolution of the expectations puzzle LPY in two steps. First,

we highlight the role of the factor risk premiums by undertaking an illustrative calibration
exercise within one-factor Gaussian and quadratic-Gaussian DTSMs. Standard formulations
of Gaussian affine models have a constant market price of risk (see, e.g., Vasicek [1977] and
DS) which implies that the expectations hypotheses φn = 1 is true! Therefore, we “extend”
the standard Gaussian model by allowing the market price of risk to be an affine function of
the state.7 This state-dependence, in turn, implies that the term premium pnt ≡ fnt −Et[rt+n]
is an affine function of the slope of the forward curve, fnt − rt, where the forward rate is
defined as fnt ≡ − ln(P n+1t /P nt ). This formulation is reminiscent of the projections in Fama
[1984a] and Fama and Bliss [1987] of excess returns onto fnt − rt. It turns out that the
basic structure of the market price of risk in our quadratic- and extended-Gaussian DTSMs
is the same (see Ahn, Dittmar, and Gallant [2000] and Section 3.1.2). However, because of
the squared state variable in quadratic-Gaussian models, the risk premium pnt is an affine
function of both the forward slope fnt − rt and the rate rt, as in two-factor Gaussian models.
We proceed to calibrate the parameters of these one-factor models so that MPY(i) is sat-

isfied (the model matches LPY) by construction, and then we verify that our specification of
risk premiums allows these models to match requirement MPY(ii). This exercise illustrates
in a simple and intuitive way the role of state-dependent risk premiums in resolving expec-
tations puzzles: factor volatilities are constant in Gaussian models, so any time-variation of
the market prices of risk is due to their direct dependence on the risk factors.8 Moreover, we
find that (for the purpose of matchingMPY(ii)) one-factor Gaussian and quadratic-Gaussian
models offer essentially equivalent flexibility – neither seems to dominate the other.
Of course, we do not presume that one-factor models capture the rich variation over time

in yield curves. Nor is finding admissible parameters that match MPY(ii), conditional on
MPY(i) being satisfied, the same as finding thatMPY is matched at the maximum likelihood
(ML) estimates of the model. Both of these concerns are addressed in an extensive explo-
ration of MPY within the families of three-factor “affine” DTSMs.9 We fit all four of the
canonical three-factor models (see DS and Duffee [2000]) by the method of full-information

address the matching of MPY.
7Fisher [1998] independently proposed a similar potential resolution of the puzzle LPY within a two-

factor Gaussian model. However, he does not compare the model-implied and historical projection coef-
ficients (φn, φ

R
n ), as is done subsequently here in Section 4, to assess whether extended Gaussian models

quantitatively match MPY. We are grateful to Greg Duffee for bringing this unpublished manuscript to our
attention.
8Backus, Foresi, Mozumdar, and Wu [1997] argue that the expectations puzzles can be resolved using

a “negative CIR” process. Our resolution shares some of the same features as their negative CIR process.
However, we believe that the models studied here more clearly highlight the essential features of DTSMs
that generate LPY. In addition, we provide a link to, and reinterpretation of, the modeling implications of
the forward-rate regressions in Fama and Bliss [1987].
9Like the special case of Gaussian models, the entire family of affineDTSMs imply that optimal forecasts of

excess returns take the form of the linear projections extensively studied in the literature on the expectations
hypothesis.
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ML and then compare the relevant population and sample versions of the risk-adjusted (φRn )
and unadjusted (φn) projection coefficients. Additionally, we assess the relative importance
of time-varying risk premiums, time-varying factor volatilities, and non-zero factor correla-
tions in matching MPY.
Following DS we classify three-factor affine models according to the number of state vari-

ables m that drive the volatilities of all three state variables. CIR-style models (models in
which the state variables follow square-root diffusions) have risk premiums that are propor-
tional to factor volatilities, so m = 3. As such, it is only through time-varying volatilities
that risk premiums can vary.10 Consequently, they do not meet our heuristic conditions for
matching MPY. In fact, we show in Section 4 that a three-factor CIR-style model, evalu-
ated at maximum likelihood estimates of the parameters, is wholly incapable of matching
MPY.11 In contrast, we find that multi-factor Gaussian models– with constant conditional
volatilities (m = 0), but state-dependent market prices of risk– match MPY strikingly well
at the historical ML estimates of the model.
Lying between the cases of CIR-style and Gaussian models are the affine models with

0 < m < 3. The m volatility factors have market prices of risk that are proportional to
their respective volatilities as in CIR-style models, while the risk premiums of the remaining
3 −m “non-volatility” factors may depend directly on these non-volatility risk factors. In
these intermediate cases we have mixed success in matching MPY. Further exploration of
the reasons reveals a tension in matching simultaneously the historical properties of the
conditional means and variances of yields within affine DTSMs.
The remainder of this paper is organized as follows. In Section 2 we derive our funda-

mental “risk-premium adjusted” yield and forward rate projections that serve as the basis
of our subsequent econometric analysis. Section 3 discusses in more depth our parameter-
izations of the market prices of risk and their link to LPY, and undertakes the calibration
exercises with one-factor models. A more formal and extensive empirical assessment of the
fit of three-factor affine DTSMs to MPY is presented in Section 4. Concluding remarks are
presented in Section 5. Technical details are collected in an appendix.

2 Risk-Premium Adjusted Projections

If the empirical failure of expectations hypothesis is due to time-varying risk premiums,
then it would seem that accommodating risk premiums in these projection equations should
restore slope coefficients of one. We begin our exploration of the links between LPY and
DTSMs by showing a precise sense in which this intuition is correct. The resulting risk-
premium adjusted projection equations serve as the fundamental relations underlying our

10See DS for a discussion of canonical square-root DTSMs, and Chen and Scott [1993], Pearson and Sun
[1994], and Duffie and Singleton [1997] for empirical applications.
11These findings complement those in Roberds and Whiteman [1999] who show (see their Figures 4 and 6)
that one- and two-factor CIR-style models cannot matchMPY(i) for their sample period and treasury yields,
even when the parameters of their DTSMs are calibrated to match their counterparts of the φnT . Backus,
Foresi, Mozumdar, and Wu [1997] demonstrate analytically that, in order for a (one-factor) CIR-style model
to potentially match MPY(i), it must imply a downward sloping term structure of mean forward spreads
{E[fnt − rt]}, contrary to historical experience.
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subsequent empirical analysis.

2.1 Yield Projections

Letting Dnt+1 =
(
ln
Pn−1t+1

Pnt
− rt

)
denote the one-period excess return on an n-period bond,

then from the basic price-yield relation, the expected excess return ent ≡ Et[Dnt+1] can be
expressed as

ent = −(n− 1)Et
[
Rn−1t+1 −Rnt

]
+ (Rnt − rt), (1)

where Et denotes expectation conditioned on date t information. Rearranging (1) gives the
fundamental relation12

Et

[
Rn−1t+1 −Rnt +

1

n− 1D
n
t+1

]
=

1

n− 1(R
n
t − rt). (2)

There is no economic content to (2) as it holds by definition even without the expectation
operator. Economic content is added by linking Et[D

n
t+1] to the risk premiums implied by an

economic model. Toward this end, we introduce two related notions of “term premiums:”
the yield term premium

cnt ≡ Rnt −
1

n

n−1∑
i=0

Et[rt+i], (3)

and the forward term premium

pnt ≡ fnt − Et[rt+n]. (4)

Since Rnt ≡ 1
n

∑n−1
i=0 f

i
t , the term premiums p

n
t and c

n
t are linked by the simple relation:

cnt ≡
1

n

n−1∑
i=0

pit. (5)

Throughout our analysis we assume that these variables are stationary stochastic processes
with finite first and second moments.
The realized excess return Dnt+1 can be decomposed into a pure “premium” part, D

∗n
t+1,

12Expression (2) is formally equivalent to equation (11) of Fama and Bliss [1987], which, in our notation,
is:

Et

[
Rn−1t+1 −Rn−1t +

1

n− 1D
n
t+1

]
=

1

n− 1(f
n−1
t − rt).

We focus on (2) because it is more directly linked to the yield regressions in Campbell and Shiller [1991].
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and an “expectations” part:13

Dnt+1 = D∗nt+1 +
n−1∑
i=1

(Etrt+i −Et+1rt+i), where (6)

D∗nt+1 = −(n− 1)(cn−1t+1 − cn−1t ) + pn−1t . (7)

Since the (Etrt+i − Et+1rt+i) have zero date-t conditional means,14 ent depends only on the
premium term D∗nt+1:

15

ent = Et[D
∗n
t+1] = −(n− 1)Et[cn−1t+1 − cn−1t ] + pn−1t . (8)

Thus, we can replace Dnt+1 by D
∗n
t+1 in (2) to obtain

Et

[
Rn−1t+1 −Rnt +

1

n− 1D
∗n
t+1

]
=

1

n− 1(R
n
t − rt). (9)

From (9) it follows that the projection of the “premium-adjusted” change in yields,

Rn−1t+1 − Rnt − (cn−1t+1 − cn−1t ) +
1

n− 1p
n−1
t , (10)

onto the (scaled) slope of the yield curve, (Rnt − rt)/(n − 1), has a coefficient of one.16
Yield-based regressions under the expectations hypothesis are obtained by setting the risk
premiums in (10) to constants.
13Some of the intermediate steps in this derivation are:

Dnt+1 ≡ nRnt − (n− 1)Rn−1t+1 − rt = ncnt − (n− 1)cn−1t+1 +

n−1∑
i=1

(Etrt+i − Et+1rt+i)

= −(n− 1)(cn−1t+1 − cn−1t ) +

n−1∑
j=0

pjt −
n−2∑
j=0

pjt +

n−1∑
i=1

(Etrt+i − Et+1rt+i).

14The projection of
∑
i(Etrt+i−Et+1rt+i) onto date t information will in general be zero only if the model

correctly captures the dynamic properties of rt, in our case the one-month treasury bill rate. We expand on
this point in Section 4.5 in explaining why three-factor models fail to match MPY for small n.
15 Equation (8) implies that E[ent ] = E[p

n−1
t ] = E[fn−1t − rt], where the second equality follows from the

definition of pn−1t and the stationarity of rt. This equality seems to have been largely overlooked in the
extant literature on the expectations hypothesis. For instance, Fama [1984b], drawing on results from Fama
[1976], uses the relation (his equation (5) expressed in our notation)

pn−1t = Et[D
n
t+1] + Et[D

n−1
t+2 −Dn−1t+1 ] + . . .+ Et[D

2
t+n−1 −D2t+n−2]

to conclude that the forward rate fn−1t “contains” market expectations about the holding period return
Dnt+1. He then computed the sample means of p

n−1
t and (fn−1t − rt) and expressed surprise at the finding

that they were nearly the same (Fama [1984b], page 544). In fact, in the population, they are by definition
the same.
16 There is an analogous set of yield projections for the forward rates. Specifically, from the definition
of pnt it follows that f

n−1
t+1 − fnt = Et+1 (rt+n − Et[rt+n]) + (pn−1t+1 − pnt ). Subtracting rt from both sides,

rearranging, and taking conditional expectations gives Et[f
n−1
t+1 − rt] = (fnt − rt) + (Et[pn−1t+1 ] − pnt ). Thus,

projection of the “premium-adjusted” forward rate, (fn−1t+1 − rt − (pn−1t+1 − pnt )), onto (fnt − rt) also gives a
slope coefficient of one. In our empirical analysis we will focus on (9). Results for forward rate projections
are available from the authors upon request.
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3 Risk Premiums, DTSMs, and LPY

The challenges set forth by Fama and the studies of LPY in the literature on the expectations
hypothesis are statements about correlations among yields and, as such, are naturally studied
using linear projections. Therefore, in attempting to match MPY within DTSMs we focus on
models in which conditional expectations are linear in known functions of the state vector,
a feature shared by both affine and quadratic-Gaussian DTSMs.
Consider first the case of affine DTSMs with the instantaneous short rate given by r0(t) =

a0 + b
′
0Y (t) and the N -dimensional state vector Y following, under measure P , the affine

diffusion

dY (t) = κ (θ − Y (t)) dt+ Σ
√
S(t)dW (t), (11)

where W (t) is an N -dimensional vector of independent standard Brownian motions and S(t)
is a diagonal matrix with the ith diagonal element given by

[S(t)]ii = αi + β
′
iY (t). (12)

The risk-neutral representation of Y (t) used in pricing is obtained by subtracting Σ
√
S(t)Λ(t)

from the drift of (11), where Λ(t) is the vector of “market prices of risk.” Standard formu-
lations of affine DTSMs “close” this model by assuming that Λ(t) is proportional to

√
S(t):

Λ(t) =
√
S(t)`0, (13)

where `0 is an N × 1 vector of constants. To assure the admissibility of an affine model–
that it generate well-defined bond prices– we follows DS and work within their admissible
subfamilies of models Am(N), where an admissible affine model is in Am(N) if it has m state
variables driving all N conditional variances [S(t)]ii (more precisely, the rank of (β1, . . . , βN)
is m).
Since at the heart of matching MPY is the specification of the factor risk premiums,

additional flexibility is obtained by following Duffee [2000] and extending the specification
of Λ(t) in Am(N) models, for m < N , to satisfy

Λ(t) =
√
S(t)λ0 +

√
S−(t)λY Y (t), (14)

where λ0 is an N ×1 vector and λY is a N ×N matrix of constants; and the diagonal matrix
S−(t) has zeros in its first m diagonal entries and 1/(αi+β ′iY (t)) in entries i = m+1, . . . , N,
under the presumption that inf(αi + β

′
iY (t)) > 0. The case of λ

Y = 0 corresponds to the
standard risk premium specification (13). That the added flexibility of λY 6= 0 translates
directly into flexibility in explaining LPY follows from the observation that the instantaneous
expected excess return on a τ -period zero-coupon bond is

µe(t, τ) = −B(τ)′Σ
√
S(t)Λ(t), (15)

where B(τ) is the “factor loading” on the state vector from the affine pricing relation P τt =
e−A(τ)−B(τ)

′Yt . Clearly the specification of Λ(t) can have a significant effect on the model-
implied properties of µe and, hence, the matching of MPY.
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At the same time, we see that the dynamic properties of excess returns are also influenced
by the degree of factor correlations Σ, the nature of the factor volatilities S(t), and the factor
dynamics as reflected in the factor loadings B(τ). Moreover, there is an important interaction
effect between S(t) and Λ(t): the richer the (admissible) specification of factor volatilities
(equivalently, the larger is m), the less flexibility there is in specifying Λ(t). In the case
of m = N (CIR-style models), admissibility requires that λY in (14) is zero so the risk
premiums are constrained to be of the form (13). For the cases m < N , then the first m
rows and columns of λY are set to zero to assure admissibility. Thus, maximal flexibility
for having state-dependent market prices of risk is obtained in the case of m = 0 where λY

is unconstrained. One of the issues we explore empirically is the relative contributions of
non-diagonal Σ and non-zero elements of λY to matching MPY in multi-factor models.
Another family of DTSMs with the potential to match MPY is the family of N -factor

quadratic-Gaussian models with the instantaneous short rate r0 given by r0(t) = a0+Y
′b0+

Y ′c0Y, where c0 is an N × N symmetric matrix of constants and Y follows the Gaussian
special case of (11) with S(t) = IN . Ahn, Dittmar, and Gallant [2000] show that the market
price of risk in their canonical N -factor quadratic-Gaussian model takes exactly the same
form as (14) for the Gaussian case of m = 0.
Our strategy for assessing whether a specific DTSM can match MPY is to estimate

the model parameters; compute the model-implied pnt and c
n
t , evaluated at the estimated

parameters; and, finally, to examine the relevant term structures of projection coefficients.
For MPY(i), we compare the model-implied population coefficients,

φn ≡ cov(R
n−1
t+1 −Rnt , (Rnt − rt)/(n− 1))
var((Rnt − rt)/(n− 1))

, (16)

to their sample counterparts displayed in Table 1. The population φn are computed by
treating the estimates of the model parameters as “truth” and then using analytic formulas
to compute the second moments in (16). The data enters these calculations only indirectly
through the estimates of the model parameters.
For MPY(ii), we examine whether the sample counterparts, φRnT , of the coefficients

φRn ≡
cov(Rn−1t+1 − Rnt +D∗nt+1/(n− 1), (Rnt − rt)/(n− 1))

var((Rnt − rt)/(n− 1))
(17)

are statistically different from a horizontal line at 1, the model-implied values of φRn . Here we
use historical yields Rnt and model-implied D

∗n
t+1, where the latter are computed by evaluating

the expected excess returns at the fitted state variables. The resulting sample φRnT will be
close to one if the sample correlations between the fitted premium terms (cn−1t+1 − cn−1t ) +
pn−1t /(n− 1) and the slopes (Rnt − rt)/(n− 1) offset the negative pattern of LPY.

3.1 LPY and One-Factor Models

To highlight the role of the market prices of risk in generating time-varying risk premiums
that are consistent with the sample distribution of the data, we proceed initially with a simple
calibration exercise with one-factor affine and quadratic-Gaussian models. Our calibration
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strategy chooses model parameters so that MPY(i) is satisfied, and then we check to see
whether we can match MPY(ii).
We focus on forward term premiums pnt , which is is equivalent (see footnote 15) to

parameterizing the dependence of ent = Et[D
n
t+1] on agents information set, as in Fama

[1984a] and Fama and Bliss [1987]. From (2) and (8), we can write

Et
[
Rn−1t+1 − Rnt

]
=

1

n− 1(R
n
t − rt) + Et

[
cn−1t+1 − cn−1t

]− 1

n− 1p
n−1
t . (18)

Thus, given parameterizations of the pnt , we have fully determined the yield projections as
well. As shown formally in appendices, all of our illustrative one-factor models imply that

pnt = δn + αn(f
n
t − rt), (19)

where the (δn, αn) are model-dependent functions of the underlying primitive parameter
vector ς describing the state vector and the dependence of r0(t) and Λ(t) on Y (t).
For the one-factor extended and quadratic Gaussian models, calibration is based on the

moment equation (see footnote 16)

Et[f
n−1
t+1 − rt]− (fnt − rt) + (Et[pn−1t+1 ]− pnt ) ≡ Et[ut+1] = 0. (20)

For these models, the risk premium parameter αn turns out to depend only on the scalar
parameters κ and λY . However, δn depends, as well, on other parameters of our illustrative
models. Therefore, we proceed by “concentrating” out δn from the empirical analysis using
the observation that (19) and the assumption of stationarity imply δn = (1−αn)E[fnt − rt].
Thus, if the model is correctly specified, δn can be inferred from αn and the sample means
of the forward-spot spread and one-period short rate. This procedure forces our one-factor
models to match LPY, while ignoring the restrictions implicit in the dependence of δn on ς.
In so doing, we highlight the roles of the model parameters λY and κ in matching MPY(ii).
The parameters (κ, λY ) were chosen to minimize a standard GMM objective function

(Hansen [1982]) based on the moment conditions

E[unt+1zt] = 0, with zt = (f
n
t − rt, rt)′, n = 6, 12, 24, 60, 84, 120. (21)

Only a subset of the maturities between 1 and 120 months are used because the smoothed
Fama-Bliss dataset is interpolated.

3.1.1 One-Factor Gaussian Models

In the one-factor Gaussian DTSM the instantaneous short rate is given by r0t = a0 + b0Yt;
Yt follows a one-dimensional Gaussian process (11) with N = 1, S(t) = 1, and Σ = 1;

17 and
pnt can be represented as in (19) with

18

αn =
e−κn∆ − e−κ̃n∆
1− e−κ̃n∆ , (22)

δn = (1− αn)(A∆n − a1) + (1− αn)(B∆n − b1)θ, (23)
17The latter is a normalization, imposed without loss of generality (DS).
18The linearity of the one-factor Gaussian model implies that the yield and forward risk premiums are
both affine in Y , so we are free to parameterize pnt as an affine function of the a yield spread.
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where κ̃ = κ + λY is the mean reversion coefficient under the risk neutral measure, ∆ is
the length of each period, A∆n and B

∆
n are the intercept and the factor loading on the one-

period forward rate delivered n periods hence, and a1 and b1 are the intercept and the factor
loading on the one-period zero coupon yield (the short rate). The precise definitions of
these loadings in terms of basic model parameters are given in Appendix A. This one-factor
model maps directly, using (7), to Fama [1976]’s regression model of excess returns, which
implicitly assumes that, in our notation, E[Dnt+1|fn−1t − rt] = E[D∗nt+1|fn−1t − rt] is linear in
fn−1t − rt. Of course Fama does not impose the dynamic restrictions (22) and (23), because
(19) is essentially the starting point of his empirical analysis.
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Figure 1: Projections Coefficients φRn Implied by the One-factor Gaussian Model.

The calibrated values of (κ, λY ) are (0.0012, 0.0008). Using these values, we compute the
model-implied φRnT and plot them in Figure 1, along with the φnT from Table 1 estimated
under the null hypothesis that pnt is constant for all n. For all but the shortest maturities,
φRnT lie within one sample standard error of one.

19 Thus, our (calibrated) risk premiums
largely match MPY and, thereby, resolve the expectations puzzles.20

19These standard error bands reflect the sampling variation of the parameter estimates, but not of the
sample moments used in estimating φRnT . Accounting for the latter would most likely widen these bands.
20In the light demonstrated limitations of one-factor CIR-style models (Backus, Foresi, Mozumdar, and
Wu [1997]), a natural question at this junction is: can we generate an upward sloping mean yield curve with
our extended, one-factor Gaussian model? As demonstrated in an earlier version of this paper, this does not
present a serious challenge for the one-factor Gaussian model, because the three parameters θ, λ0, and σ
have not been used in matching MPY. The reason the Gaussian model out-performs the square-root model
is the restrictive form of the market price of risk in the latter, together with the fact that (as we discuss
more extensively below) allowing for time-varying volatility is not central to matching MPY.
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3.1.2 One-Factor Quadratic-Gaussian Models

Shifting attention to the quadratic-Gaussian models, the zero coupon bond price P (t, τ) is
given by

− logP (t, τ) = A(τ) + Y ′B(τ) + Y ′C(τ)Y (24)

where

B(τ) =

(
κ̃

Γ

eΓτ − 1
eΓτ + 1

+ 1

)
Q(τ) b0 +

(
2κ̃θ̃

Γ

eΓτ − 1
eΓτ + 1

)
Q(τ) c0 (25)

C(τ) = Q(τ) c0 (26)

Q(τ) =
e2Γτ − 1

(Γ + κ̃)(e2Γτ − 1) + 2Γ , (27)

with Γ2 = κ̃2 + 2c0σ
2. The expected short rate is

Et[rt+n] = µn + νnYt + ωnY
2
t , (28)

with the coefficients expressed as functions of the primitive parameters in Appendix B.
Letting a1 ≡ A(∆)/∆, b1 ≡ B(∆)/∆, c1 ≡ C(∆)/∆, A∆n ≡ [A((n + 1)∆) − A(n∆)]/∆,
B∆n ≡ [B((n+1)∆)−B(n∆)]/∆, and C∆n ≡ [C((n+1)∆)−C(n∆)]/∆, we show in Appendix B
that the forward risk premiums in this model can be expressed as pnt = δn+αn(f

n
t −rt)+βnrt

with coefficients

αn = 1− νn/b1 − ωn/c1
B∆n /b1 − C∆n /c1

(29)

βn = (B∆n /b1 − νn/b1)− (B∆n /b1 − 1)αn. (30)

Thus, the one-factor quadratic Gaussian model implies “two-factor” risk premium model in
that pnt depends linearly on both f

n
t and rt. In fact, it is easy to verify that the forward risk

premiums in the two-factor Gaussian model with λY 6= 0 and one-factor quadratic-Gaussian
model have the same structure, but they are not identical because the dynamic restrictions
imposed on the parameters αn and βn are different.
Figure 2 displays the forward-rate projection coefficients φRfnT (see footnotes 3 and 16)

implied by the one-factor quadratic-Gaussian model calibrated with the same moments used
in estimating the one- and two-factor Gaussian models. We see that the quadratic-Gaussian
model also does a good job of matching the forward version of MPY(ii) at all but the
shortest maturities. What is perhaps most striking about Figure 2 is that the φRfnT from the
one-factor extended Gaussian and quadratic-Gaussian DTSMs are virtually on top of each
other. In other words, with regard to their abilities to match MPY, these two one-factor
models perform equally well. This is because the estimated mean reversion coefficients and
the quadratic constant c0 are small.

21

21Strictly speaking, the quadratic model does not nest the one-factor Gaussian model, since in the limit as
c0 → 0 the forward risk premium model implied by the quadratic model maintains its two-factor structure,
but with fnt − rt and rt being perfectly collinear. Consequently, αn and βn are not identified in this limiting
case.
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Figure 2: Model-implied Estimates of Forward Projection Coefficients φRfn From the One-
factor Gaussian and Quadratic-Gaussian DTSMs.

4 MPY and Multi-Factor Affine Models

The preceding calibration of one-factor models, while demonstrating that MPY can be
matched by judicious choice of admissible parameters in certain DTSMs, leaves open the
question of whether we can simultaneously match MPY and other, higher-order moments of
yield distributions. We turn next to a more demanding assessment of affine DTSMs by com-
puting maximum likelihood (ML) estimates of models within the families Am(3) : 0 ≤ m ≤ 3
and examining whether the implied risk premiums, computed at the ML estimates, resolve
the expectations puzzles. Our shift to three-factor models is in recognition of the widely
documented observation that more than one risk factor is necessary to describe yield curve
dynamics.
Initially, we focus on the “canonical” Am(3) models, denoted AmC(3), and defined as

r(t) = δ0 + Y1(t) + Y2(t) + Y3(t), (31)

where Y (t) follows the affine diffusion (11) with volatilities given as in (12) with the normal-
ization αi + βi1 = 1, Σ is a diagonal matrix of free parameters, and

κ =

( K11 0
K21 K22

)
, θ =

(
Θ1
0

)
, (32)
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where K11 is an m×m diagonal matrix, K21 and K22 are (N−m)×m and (N−m)×(N−m)
matrices of free parameters, and Θ1 is an m × 1 vector of free parameters.22 For the case
m = 0, κ is normalized to be lower triangular and θ = 0. For the cases m ≥ 2, we assume
that the state variables following square-root diffusions are mutually independent.23 The
market prices of risk are given by (14) with the first m rows of λY set to zeros in the AmC(3)
model to assure admissibility, and the λYi1 normalized to zero for i = m+ 1, . . . , 3.
For estimation we used 312 monthly observations on U.S. treasury zero-coupon bond

yields for maturities six months and two, three, five, seven, and ten years over the sample
period 1970 through 1995. The yields on bonds with six months and two and ten years
to maturity were assumed to be measured without error, while the yields of the remaining
maturities differed from the model-implied yields by an i.i.d. normally distributed error with
mean zero. This specification assures that, evaluated at the maximum likelihood estimates,
the respective observed and model-implied yields of all maturities are equal on average.
Additionally, the assumption that pricing errors are serially independent forces the DTSM
to capture, as best it can, all aspects of the forecastability of observed yields – a model must
match LPY without assistance from measurement errors.
ML estimation of the A0C(3) and A3C(3) models proceeded using the known conditional

Gaussian and non-central chi-square density functions of r, respectively. Full information
ML estimation of the A1C(3) and A2C(3) models proceeded using the methods proposed by
Duffie, Pedersen, and Singleton [2000]. They exploit the affine structure of the model to
approximate the true, unknown conditional density of Y and use this approximate density
function in constructing the likelihood function of the data. In all cases, standard errors
were computed using the sample “outer product” of the scores of the log-likelihood function.
For most cases, comparable standard errors were obtained from the sample Hessian matrix.
Out of concern that model A0C(3) is over-parameterized, we re-estimated it after setting
to zero the coefficients with the largest relative standard errors, (κ13, λ

0
1, λ

0
2, λ

Y
21, λ

Y
13, λ

Y
33).

This led to virtually the same value of the likelihood function, so we henceforth study this
constrained version of A0C(3).

24

The ML estimates of the models AmC(3), along with their estimated standard errors and
the values of the log-likelihood functions, are displayed in Table 2.25 Focusing first on κ we
see that, consistent with many previous studies (e.g., Chen and Scott [1993] and DS), all of
the canonical models with m > 0 have one state variable with very slow mean reversion (a κii
22See DS and Duffee [2000] for discussions of canonical affine models. In contrast to DS, we normalize the
δ weights on Y (t) in the definition of r(t) to unity and treat the factor volatilities (the diagonal elements
of Σ) as free parameters. Additionally, for models with m > 0 we normalized αi + βi1 = 1, i = 1, . . . ,m,
instead of αi = 1 in the volatility specifications. Adopting the normalization in DS instead gave virtually
identical values of the likelihood.
23This is the standard assumption in models with state variables following square-root diffusions. As noted
in DS, it is possible to extend these formulations to allow for positively correlated state variables through
the drifts. However, our ML estimation method (see below) does not accommodate this extension.
24For the case of model A1C(3), we found little change by constraining λ

Y
32 = 0, and constraining other

parameters to zero led to a notable decline in the value of the likelihood function, so we proceed to study
the unconstrained model A1C(3).
25We have suppressed the estimates of δ0, θ (the long-run means), and the βi (the coefficients on Y in the
factor volatility specifications), because they do not play central roles in subsequent discussions of matching
MPY. They are available from the authors upon request.
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close to zero). This is the “level” factor that is correlated most highly with the first principal
component of U.S. treasury yields (see, e.g., Litterman and Scheinkman [1991]). (Continuing
with this analogy, the factor with the intermediate (fastest) rate of mean reversion is most
highly correlated with the “slope” (“curvature”) principal component.) In contrast, the
minimal κii in model A0C(3) is notably larger: κ22 = 0.378. Moreover, as we discuss more
extensively below, the state vector in model A0C(3) is a stationary stochastic process under
both the P and Q measures while, for the models with m > 0, Y is nonstationary under the
risk-neutral measure (hereafter Q-nonstationary).26

Param. A0C(3) A1C(3) A2C(3) A3C(3)
κ11 3.012 (.403) 0.002 (.001) 0.628 (.088) 2.714 (.121)
κ21 0 0.204 (.075) 0 0
κ31 0 0.295 (.175) -5.55 (1.18) 0
κ12 2.081 (.463) 0 0 0
κ22 0.378 (.122) 0.983 (.355) 0.006 (.002) 0.005 (.002)
κ32 0 -2.740 (.953) -0.349 (.320) 0
κ23 -0.154 (.081) -0.403 (.204) 0 0
κ33 0.466 (.110) 2.510 (.499) 2.01 (.285) 0.526 (.082)
Σ11 0.011 (.002) 0.030 (.000) 0.055 (.005) 0.063 (.002)
Σ22 0.005 (.002) 0.048 (.011) 0.028 (.000) 0.030 (.000)
Σ33 0.025 (.001) 0.080 (.013) 0.192 (.023) 0.105 (.013)
λ01 0 -0.256 (.049) -1.29 (1.58) -0.669 (.022)
λ02 0 -6.521 (.772) -0.389 (.048) -0.328 (.090)
λ03 -0.361 (.269) -8.490 (1.42) -0.514 (2.41) -0.646 (.764)
λY11 -101.8 (36.91) 0 0 0
λY31 158.0 (30.90) 0 -0.996 (2.41) 0
λY12 -100.6 (27.21) 0 0 0
λY22 -58.09 (26.12) -19.35 (9.18) 0 0
λY32 49.81 (22.50) 9.920 (5.17) -0.643 (.938) 0
λY23 21.91 (8.92) 18.36 (5.51) 0 0
λY33 0 -2.071 (5.81) -0.069 (1.50) 0
ML 33.43 33.54 33.54 33.14

Table 2: Maximum Likelihood Estimates of Canonical AmC(3) Models. Standard errors of
the estimates are given in parentheses. The row “ML” gives the maximized values of the
log-likelihood functions. κ13, λ

Y
13, and λ

Y
21 are zero in all four models.

Finally, some of the estimated elements of λY are statistically different from zero in models
A0C(3) and A1C(3), but all of the non-zero elements in λ

Y for model A2C(3) are insignificant
from zero at conventional significance levels. (Admissibility requires that λY = 0 for model
A3C(3).) Thus, extending the risk premium specification in affine models as in Duffee [2000]
is potentially material for matching MPY with models A0C(3) and A1C(3), but the point
estimates suggest extended risk premiums are less important for model A2C(3).

26Q-nonstationary state vectors do not present a conceptual problem for valuation or estimation.
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4.1 Matching MPY(i)

Matching MPY(i) requires a positive correlation between excess returns and the term spread,
which is typically associated with a negative correlation between r and the expected excess
return µe(t, τ).27 The intuition for this is that if risk premiums are negatively correlated with
the short-term rate, then an expected rise in the short-term rate has two opposing effects:
first, holding the risk premium fixed, the prices of long-term bonds will fall; and second,
a falling risk premium tends to increase the values of long-term bonds. The expectations
puzzle LPY arises whenever the second effect dominates the first, causing the slope of the
yield curve to fall as interest rates rise – in which case the slope of the yield curve and the
risk premium are positively correlated.
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Figure 3: Model Implied Estimates of Unadjusted φn from the Projection of R
(n−1)
t+1 − Rnt

onto (Rnt − rt)/(n− 1) for the A0C(3) Models.

In assessing the goodness-of-fit of a model based on whether it matches the pattern LPY
we are led to confront several important issues, including: (i) should we compare the model-
implied population φn or sample φn computed from fitted yields to the historical φnT in
Table 1; and (ii) might the φn computed from fitted yields be “biased” due to the highly
persistent nature of the fitted yields? To motivate our answers to these questions, con-
sider model A0C(3) and the projection coefficients implied by this model that are displayed

27This is unambiguously true for a one-factor model with mean-reverting short rate under the risk-neutral
measure. It is usually true for more general models under reasonable parameter values.
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in Figure 3. Focusing first on the issue of small sample bias, the graph labeled “A0C(3)-
population” displays the population φn implied by this model taking the ML estimates as
the true parameters of the data-generating process. To examine the small-sample properties
of the φnT generated by this model, we conducted the following, limited Monte-Carlo exer-
cise: five hundred samples of length 312 (the length of our sample of treasury yields) were
simulated from model A0C(3) and, for each sample, the φn were estimated. The mean of
these estimates across the five hundred samples (displayed in Figure 3 as “A0C(3)-MC”) lies
very close to “A0C(3)-population,” suggesting that small-sample biases are negligible for this
model. Moreover, historical estimates of these projection coefficient from Table 1 (displayed
as graph “LPY” in Figure 3) lie well inside the Monte Carlo confidence bands – the 5%
quantiles of the small sample distribution of the φnT . Thus, based on the model-implied
population results, we conclude that model A0C(3) is successful in matching MPY(i).
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Figure 4: Model-Implied Population Estimates of φn from the Projection of R
(n−1)
t+1 −Rnt onto

(Rnt − rt)/(n− 1) for the AmC(3) Models.

From Figure 4 we see that the remaining three AmC(3) models do not fair nearly as well
at matching MPY(i) in the population. Indeed, none of these graphs have the characteristic
downward sloping pattern of LPY and graphs for models A2C(3) and A3C(3) are approxi-
mately horizontal lines at unity! From these population values we conclude that only model
A0C(3) is successful at matching MPY(i) in the population.
A very different, and we feel misleading, assessment comes from analysis of the “fitted” φn
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obtained by inverting the model for the fitted state variables, computing model-implied fitted
zero-coupon bond yields, and then estimating the regressions for Table 1 with these fitted
yields. The results for model A0C(3) (graph “A0C(3)-fitted” in Figure 3) show that it looks
very much like “A0C(3)-population.” It turns out that the corresponding “fitted” graphs for
all three of the other canonical models are virtually on top of “A0C(3)-fitted.” Yet we have
just argued that their population counterparts look very different than “A0C(3)-population.”
We conclude that assessments of fit based on fitted yields can give very misleading impres-
sions of the actual population distributions implied by DTSMs and, therefore, we henceforth
focus on the population φn.

28

4.2 Matching MPY(ii)

Whether or not a DTSM adequately captures the persistence of expected excess returns, or
equivalently of the market risk premiums, is measured in part by it effectiveness at matching
MPY(ii). Given well-specified risk premiums, the term structure of risk-adjusted φRn should
be a horizontal line at unity. In this case, the most interesting φRn to examine are those
computed from (17) using actual historical yields Rnt and risk premiums ct and pt evaluated
at the fitted state variables. Were we instead to compute population model-implied φRn , they
would be identically equal to unity for any DTSM regardless of its descriptive qualities.
Figure 5 displays the model-implied φRn along with the historical results from Table 1

(“LPY”). We see that models A0C(3) and A1C(3) imply risk premiums that fully meet the
challenge MPY(ii), at least beyond maturities of about two years. In contrast, as with
MPY(i), models A2C(3) and A3C(3) fail entirely to match MPY(ii); adjusting for risk premi-
ums in these models gives virtually the same results as in the unadjusted regressions. Since
the “LPY” results challenge expectations theories most dramatically at the longer end of
the yield curve, we focus on the results for two years and beyond, deferring until Section 4.5
further discussion of the fit to under two years to maturity.

4.3 Further Observations On Matching MPY

Why does model A0C(3) outperform the other canonical models in its ability to match both
dimensions of MPY? There are at least two notable differences between model A0C(3) and
the other canonical models: (1) models AmC(3), m ≥ 1, accommodate stochastic volatility
and model A0C(3) does not, and (2) in model A0C(3), Y (t) is a stationary process under both
the P and Q measures,29 while Y is P -stationary, but Q-nonstationary in models AmC(3),
m ≥ 1.
28This point was stressed in a related context by DS. The reason the “fitted” graphs are misleading is that
the fitted yields give the model the benefit of using the actual data, through the inversion of the model to
obtain the fitted state variables, when matching MPY(i).
29The relatively large values of the κii in A0C(3) is clearly a consequence of our having extended the usual
specification of risk premiums in Gaussian models to allow λY 6= 0. When we re-estimate model A0C(3) with
λY = 0, the smallest diagonal element of κ is κ22 = .002. So by letting λ

Y 6= 0 we fundamentally change
the persistence of Y under the P probability measure which, as we have seen, has material implications for
matching MPY. Duarte [1999] reports a similar change in persistence due to a different reparameterization
of the risk premium in a three-factor square-root diffusion model.
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Figure 5: Model-Implied Estimates of φRn From the Models AmC(3).

The stationarity properties of Y are documented in columns two and three of Table 3 for
models A0C(3) and A1C(3), where the actual and risk-neutral (in parentheses) values of κ are
presented. To gain some insight into the role of Q-nonstationary Y for matching MPY, we
re-estimated model A1C(3) under the constraint that Y be Q-stationary, model A1S(3), and
the resulting κ matrix in displayed in column four of Table 3. Imposing Q-stationarity leads
to a “rotation” of the risk factors: in model A1C(3) the first, volatility factor is the “level”
of the yield curve (the factor with slowest mean reversion), whereas it becomes “slope”
(the factor with intermediate mean reversion) in model A1S(3). The consequences of this
change for matching MPY are displayed in Figure 6. The population φn now exhibit the
downward sloping pattern of their sample counterparts. However, they do not come close
to achieving the large negative numbers for long maturities exhibited in Table 1. Moreover,
now the coefficients φRn are notably less than unity for all maturities, suggesting that the
model-implied risk premiums no longer have the requisite properties to match MPY(ii).
Still unresolved in the role of stochastic volatility in matching MPY within the A1(3)

family. The third model, A1L(3), displayed in Table 3 and Figure 6 is obtained by further
constraining model A1S(3) to have β21 = β31 = 0. In this case, only Y1 exhibits instantaneous
stochastic volatility. These constraints lead to another factor rotation with the volatility
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Param. A0C(3) A1C(3) A1S(3) A1L(3)
κ11 3.01 (1.91) 0.002 (-0.005) 0.653 (0.574) 1.95 (1.94)
κ21 0 0.204 (-0.107) -5.45 (-6.33) -0.44 (0.08)
κ31 0 0.295 (-0.384) 0.029 (0.039) 1.01 (3.99)
κ12 2.08 (0.99) 0 0 0
κ22 0.378 (0.062) 0.983 (0.062) 1.50 (1.80) 0.13 (0.002)
κ32 0 -2.740 (-1.95) -0.022 (-0.011) 0.25 (-0.03)
κ23 -0.154 (-0.035) -0.403 (0.471) -16.6 (-38.2) -0.26 (0.005)
κ33 0.466 (0.466) 2.510 (2.340) 0.500 (0.244) 0.61 (0.58)
ML 33.43 33.54 33.54 33.42

Table 3: Maximum Likelihood Estimates of κ from Constrained Am(3) Models. Risk-neutral
κ’s are given in parentheses.

factor Y1 becoming the “curvature” factor (the one with the fastest rate of mean reversion).
From Figure 6 we see that this model matches quite well both MPY(ii) for longer maturities
and the downward sloping pattern of the unadjusted φn, MPY(i).
Taken together, these results suggest two broad conclusions. First, at least for the fam-

ilies A0(3) and A1(3), we have found strong support for our heuristic that time-varying
risk premiums of a form consistent with the Fama-Bliss evidence resolve the expectations
puzzles for longer maturity bonds. Second, the reason the model A1C(3), with or without
Q-stationary Y , cannot fully match MPY is not the presence of stochastic volatility per se.
Rather it appears to be the desire of the likelihood function to trade off matching MPY,
and related features of the conditional means of yields, with fitting the stochastic volatility
in the yield data. Given the flexibility to introduce stochastic volatilities for Y2 and Y3 (set
(β21, β31) 6= 0), the likelihood optimization will do just that in order to achieve a higher
value of the likelihood (compare the likelihood values for models A1C(3) and A1L(3)). The
higher value of the likelihood and better fit to the conditional second moments of returns
is achieved at the expense of matching MPY, however. In other words, affine models do
not appear to have the flexibility to simultaneously fit MPY and the volatility properties of
returns.30

The worst performing model is the three-factor CIR-style model A3C(3) in which Λi(t) =
`0i
√
Yi(t), so that Y affects the market prices of risk only through factor volatilities. Models

in the families AN (N) are not easily “fixed up” to match MPY with market prices of risk of
the form (14) without introducing arbitrage opportunities (Cox, Ingersoll, and Ross [1985]).
Model A2C(3) also has more flexibility in principle than model A3C(3). However, the non-
zero admissible elements of λY are all insignificantly different from zero and this shows up in
Figure 5 as risk-adjusted projection coefficients that are nearly the same as in model A3C(3).

30Complementary evidence on the limitations of A1(3) models for fitting the conditional variances of yields
is presented in Ahn, Dittmar, and Gallant [2000].
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Figure 6: Model implied projection coefficients from constrained versions of model A1C(3).
For each model the upper (lower) graph is a plot of φRn (φn).

4.4 Risk Premia Versus Factor Correlations in Matching MPY

Though we have focused on the role of risk premiums in matching MPY, as stressed by
DS, there are also important differences between affine models in terms of the nature of the
factor correlations accommodated. In particular, model A0C(3) offers the most flexibility
in specifying factor correlations, so it is of interest to explore the relative contributions of
non-diagonal κ and nonzero λY in matching MPY in Gaussian models.
Figure 8 displays the model-implied φRn from four different A0(3) models. Models A0V U(3)

and A0V (3) are standard “Vasicek” models in which λ
Y = 0 (market prices of risk are

constants); see Langetieg [1980]. The former imposes zero factor correlations (diagonal κ),
while the latter allows maximal flexibility in the correlation structure. Clearly neither model
matches MPY(ii).
Maintaining the assumption of zero factor correlation through the drift, model A0U(3)

relaxes the assumption that λY = 0 (this is model A0C(3) with diagonal κ). We see a notable
improvement in matching MPY in this model, but state-dependent risk premiums per se are
clearly not sufficient. Rather, comparing the results for models A0C(3) and A0U(3), we see
that it is the combination of non-zero factor correlations through both the drift, κ, and
state-dependent market prices of risk, λY , that allow model A0C(3) to match MPY.
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Figure 7: Estimated φRn implied by ML Estimates of Constrained A0(3) Models.

4.5 The Short End of the Yield Curve

We have deferred examination of the failure of affine models to match MPY(ii) at the short
end of the yield curve, under two years to maturity. We now show that the mismatch at
the short end is rectified by the addition of a fourth “short-end” factor. That is, failing to
match MPY at all maturities was simply the consequence of an omitted factor with relevance
primarily for very short-dated bonds. To show this, we proceed to estimate the canonical
Gaussian four-factor model, A0C(4), assuming the one- and six-month, and two- and ten-year
yields are measured without errors. The match to MPY(ii) at the short end is now nearly
perfect as can been seen from Figure 8.31

That the omission of the fourth factor from model A0C(3) can potentially lead to its
failure to match MPY(ii) at maturities under two years can be seen intuitively as follows.
Equations (2), (6), and (7) imply that

Rn−1t+1 −Rnt − (cn−1t+1 − cn−1t ) +
1

n− 1p
n
t =

1

n− 1(R
n
t − rt)−

n−1∑
i=1

(Et+1rt+i − Etrt+i) (33)

The estimated φRn displayed in Figures 5 and 8 are obtained by projecting the left-hand-
31In a different context, Longstaff, Santa-Clara, and Schwartz [2000] find that a four-factor model, and in
particular a model with a factor dedicated to the very short end of the curve, is necessary to model the term
structure of LIBOR and swap rates.
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Figure 8: Estimated φRn implied by ML Estimates of Models A0C(3) and A0C(4).

side of (33) onto (Rnt − rt)/(n − 1), where the Rnt are historical yields and cnt and pnt are
model-implied risk premiums evaluated at the fitted state variables. If a model is correctly
specified, then (in large samples) the projection of the second term on the right-hand-side
of (33) onto (Rnt − rt)/(n − 1) gives zero, so we get φRn = 1. However, if the time-series
properties of the fitted rt do not match those of the historical one-month rate, then the
model-implied forecast error

∑
i(Etrt+i−Et+1rt+i) and historical slope (Rnt −rt)/(n−1) will

be correlated. In fact, the model-implied forecast error
∑
i(Et+1rt+i −Etrt+i) is predictable

using historical data over a maturity range that induces a downward bias in φRn out to about
two years. The fourth factor in model A0C(4) corrects for this mispricing at the very short
end and, as such, it fully resolves the expectations puzzles.

5 Conclusion

We began this exploration of expectations puzzles with the conjecture that richer risk pre-
miums than those accommodated by traditional “Vasicek” or “CIR” models will give the
requisite flexibility for DTSMs to match MPY – thereby explaining LPY. For several of
the popular families of one-factor DTSMs, we showed that this is indeed the case as these
models were calibrated to match MPY quite closely. We then took up the more demand-
ing challenge of formulating models that match MPY and at the same time match other
features of the conditional distributions of bond yields as summarized by the scores of the
model-implied log-likelihood functions. Focusing on the case of affine models, we showed
that Gaussian models with correlated factors and state-dependent risk premiums fully re-
solved the Campbell-Shiller expectations puzzles at the maximum likelihood estimates for
this model.
In the process, several observations about the empirical fits of affine and quadratic-

Gaussian models emerged. First, since quadratic-Gaussian and “extended” Gaussian affine
models have the same structure of their risk premiums, they are both capable in principle
of matching MPY. In our calibration exercise, we found that one-factor versions of these
models perform equally well in this regard. Second, seemingly central to the goodness-
of-fit of the multi-factor Gaussian models to MPY was the non-zero correlation among the
factors: allowing for state-dependent risk premiums, but maintaining zero factor correlations
fell notably short of matching MPY.
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Third, we identified a clear trade-off within affine models between matching the condi-
tional first-moment properties of yields, as summarized by MPY, and matching the con-
ditional volatilities of yields. Gaussian models resolve this trade-off (trivially) by positing
constant volatilities. Once stochastic volatility is admitted as a possibility, in the families
Am(3) with m > 0, then the likelihood function seems to give substantial weight to fitting
volatility at the expense of matching MPY. Our findings that quadratic-Gaussian models
are also capable of matching MPY, together with the recent findings by Ahn, Dittmar, and
Gallant [2000] that quadratic-Gaussian models seem to fit the volatility properties of yields
better than affine models, suggest that quadratic-Gaussian models may be more successful
than affine models at matching both features of return distributions.
More generally, we conjecture that there is a much larger class of DTSMs with suffi-

cient flexibility to match MPY. For instance, Naik and Lee [1997] introduce Markov regime
switching into an affine (CIR-style) model (see Evans [2000] for the analogous result for
discrete-time CIR-style models). Bansal and Zhou [2000] study Markov switching in the
context of richer discrete-time affine models. In all of these cases, the presence of Markov
switching introduces additional free parameters into the pricing relation, thereby giving the
model more flexibility to match MPY.32 Another family of DTSMs that might match MPY
are the models proposed by Duarte [1999] in which the state vector follows the affine diffusion
(11) and Λ(t) =

√
S(t)`0 +Σ

−1c, for some constant N -vector c. The only state-dependence
of Λ(t) in Duarte’s model is through the factor volatilities.
Given these findings, a natural next step is providing economic underpinnings for our

parameterization of Λ(t) in (14). While this is beyond the scope of this paper, we briefly dis-
cuss two possible structural underpinnings of this affine parameterization within a one-factor
Gaussian model. (Obviously, moving to more factors only expands the possible structural
interpretations.) First, it turns out that McCallum [1994]’s resolution of the expectations
puzzle based on the behavior of a monetary authority is substantively equivalent to our
affine parameterization of the market price of risk. McCallum [1994] starts by exogenously
specifying the yield premium as an AR(1) process, and the riskless rate process as an AR(1)
process augmented by an linear policy reaction rule: rt = σrt−1 + λ(Rt − rt) + ζt, where
the first term is a mean-reverting or “smoothing” component, the second term is a “policy
reaction” component with 0 ≤ λ ≤ 2 to rule out bubble solutions, and ζt is a policy shock.
Under the assumptions that (i) σ = 1 (which is the case studied by Kugler [1997]), and (ii)
the bond yield is linear in the short rate (i.e., Rt = b0+b1rt), the monetary policy rule implies
that rt is an AR(1) process with mean reversion coefficient κ = (1 − b1)λ/[1 + (1 − b1)λ].
Supposing that r is also an AR(1) process under the risk-neutral measure (with mean re-
version coefficient κ̃), then b1 ≈ 1 − κ̃/2 and λ ≈ 2κ/κ̃. Thus, the condition 0 ≤ λ ≤ 2
translates into the condition κ̃ ≥ κ > 0. In other words, the constraints on λ that produce
McCallum’s “policy reaction” interpretation of interest rate behavior are equivalent to our
state-dependent formulation of the market price of risk.
An alternative motivation comes from the general equilibrium production economy with

stochastic habit formation studied in Dai [2000]. He shows that, in a neoclassical setting

32Bekaert, Hodrick, and Marshall [1997b] also explore “peso problem” interpretations of the failure of the
expectations hypothesis by positing a regime switching model for the short rate and exploring the implications
for the Campbell-Shiller regressions.
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of consumption, saving, and wealth accumulation with risky production, if an infinitely
lived representative agent has a time-nonseparable preference induced by stochastic habit
formation, then the implied negative correlation between rt and the Sharpe ratio of risky
production technology allows the model to explain LPY. The models with affine, state-
dependent market price of risk that we studied can be interpreted as approximations to the
(intrinsically nonlinear) interest rate dynamics implied by Dai’s model.
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Appendices

A Multi-factor Gaussian Model – Some Basic Facts

This appendix outlines the basic features of Gaussian DTSMs that we use in our analysis.
Assume that the instantaneous short rate r0(t) is a linear function of the N × 1 state vector
Y (t):

r0(t) = a0 + b
′
0Y (t), (34)

where a0 is a constant, and b0 is a N × 1 vector.
The state dynamics under the physical measure is given by

dY (t) = κ(θ − Y (t))dt+ σdW (t), (35)

where κ and σ are N ×N matrices and θ is a N × 1 vector.
The market price of risk33 is given by

Λ(t) = σ−1(λ0 + λY Y (t)), (36)

where λ0 is a N ×1 vector and λY is a N×N matrix of constants. If the Girsanov’s theorem
applies,34 the risk neutral dynamics of the state vector is given by

dY (t) = κ̃(θ̃ − Y (t))dt+ σdW̃ (t), (37)

where κ̃ = κ+ λY and θ̃ = κ̃−1(κθ − λ0).
We assume that κ can be decomposed as κ = X−1κdX, where κd is a diagonal matrix

with strictly positive diagonal elements κi, 1 ≤ i ≤ N , X is a non-singular real matrix, with
diagonal elements normalized to 1.35 Similarly, we assume that κ̃ can also be decomposed
as κ̃ = X̃−1κ̃dX̃, where κ̃d is diagonal with diagonal elements κ̃i, 1 ≤ i ≤ N , and X̃ is a
non-singular normalized matrix.
The relevant properties of the Gaussian model we need for later development are the

following. First, the conditional mean of the state vector is given by

E [Y (t+ τ)|Y (t)] = e−κτY (t) + (I − e−κτ)θ. (38)

The conditional variance is given by

Var(Y (t+ τ)|Y (t)) = X−1Ω(τ)X ′−1, (39)

33The pricing kernel is given by

dM(t)

M(t)
= −r0(t)dt− Λ(t)dW (t).

34See Appendix C for a proof that this is indeed the case.
35Alternatively, one could normalize the Euclidean length of each column vector of X to 1. If σ is
completely free, then we can choose to normalize κ to be diagonal. In which case, we set X ≡ I.
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where

Ωij(τ) = Σij
1− e−(κi+κj)τ
κi + κj

, (40)

Σ = Xσσ′X ′. (41)

The zero coupon bond price and yield (with term to maturity τ) are given by

P (t, τ) = e−A(τ)−B(τ)
′Y (t), (42)

R(t, τ) = a(τ) + b(τ)′Y (t), (43)

where a(τ) = A(τ)/τ , b(τ) = B(τ)/τ ,

b(τ) = (I − e−κ̃′τ )(κ̃′τ)−1b0, (44)

a(τ) = a0 + (b0 − b(τ))′θ̃ − 1
2
Tr
[
Ξ(τ)X̃

′−1κ̃
′−1b0b′0κ̃

−1X̃−1
]
, (45)

Ξij(τ) = Σ̃ij

[
1− 1− e

−κ̃iτ

κ̃iτ
− 1− e

−κ̃jτ

κ̃jτ
+
1− e−(κ̃i+κ̃j)τ
(κ̃i + κ̃j)τ

]
, (46)

Σ̃ = X̃σσ′X̃ ′. (47)

A.1 Risk Premiums

Let us fix ∆ as the length of a period, and define an ≡ a(n∆), bn ≡ b(n∆), An ≡ A(n∆),
and Bn ≡ B(n∆). We will also frequently use the short hand t + n to represent t + n∆,
whenever there is no confusion. Then the n-period zero yield is given by Rnt = an+ bnYt and
we let rt ≡ R1t . The conditional mean of the short rate is given by

Et [rt+n] = µn + ν
′
nY (t), where (48)

µn = a1 + θ
′(I − e−κ′n)b1 (49)

νn = e−κ
′nb1 (50)

The one-period forward rate, delivered n-period hence, fnt , is given by

fnt ≡ −
1

∆
ln
P (t, (n+ 1)∆)

P (t, n∆)
= A∆n +B

∆′
n Y (t), (51)

where

A∆n ≡
An+1 − An
∆

and B∆n ≡
Bn+1 −Bn
∆

. (52)
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Thus, the forward risk premium is given by

pnt ≡ fnt −Et[rt+n] = (A∆n − µn) + (B∆n − νn)′Y (t), (53)

which is linear in the state vector. It follows that the yield risk premium, cnt , defined by
cnt ≡ 1

n

∑n−1
i=0 p

i
t, is also linear in the state vector.

If we have N observed yields (or related yield curve variables, such as term spreads),
we can substitute out Y (t) by these yields. This is the general procedure for obtaining an
N -factor risk premium model in which the forward term premium is predicted by N observed
yields.

A.2 One-factor Case

The formulas for the factor loadings in the one-factor Gaussian model are

A(τ) = a0τ + (τ −B(τ))(θ̃ − σ
2

2κ̃2
) +
σ2

4κ̃
B(τ)2, (54)

B(τ) =
1− e−κ̃τ
κ̃

b0. (55)

The forward-spot spread is given by

fnt − rt = (A∆n − a1) + (B∆n − b1)Y (t). (56)

Substituting (56) into (53), we have

fnt −Et[rt+n] = δn + αn(f
n
t − rt), (57)

where

δn =
A∆n − µn
B∆n − b1

, (58)

αn =
B∆n − e−κ′n∆b1
B∆n − b1

=
e−κ̃n − e−κn
e−κ̃n − 1 (59)

Since E[pnt ] = E[f
n
t − rt], δn can be related to the sample mean of the forward spread:

δn = (1− αn)E(fnt − rt).

B Quadratic-Gaussian Model

Starting with the specification of the one-factor quadratic-Gaussian model in Section 3.1.2,
we let An ≡ A(n∆), Bn = B(n∆), Cn = C(n∆), a1 = A1

∆
, b1 =

B1
∆
, c1 =

C1
∆
, A∆n ≡ An+1−An

∆
,

B∆n ≡ Bn+1−Bn
∆

, and C∆n ≡ Cn+1−Cn
∆
. Then the one-period short rate is given by

rt = a1 + b1Yt + c1Y
2
t , (60)
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and the one-period forward rate, delivered n periods from t, is given by

fnt ≡ −
1

∆
log
P n+1t

P nt
= A∆n +B

∆
n Yt + C

∆
n Y

2
t . (61)

The expected short rate is given by

Et[rt+n] = µn + νnYt + ωnY
2
t , (62)

where

µn = a1 + b1θ(1− e−κn∆) + c1θ2(1− e−κn∆)2 + c1Vart(Yt+n)
νn = b1e

−κn∆ + 2c1θ(1− e−κn∆)e−κn∆
ωn = c1e

−2κn∆.

From above, we can deduce the functional forms of constant coefficients in a two-factor
forward risk premium model generated by the Quadratic-Gaussian model:

fnt − Et[rt+n] = δn + αn(fnt − rt) + βnrt, (63)

where (
B∆n − b1 b1
C∆n /c1 − 1 1

)(
αn
βn

)
=

(
B∆n − νn

C∆n /c1 − ωn/c1
)
, (64)

or

αn = 1− νn/b1 − ωn/c1
B∆n /b1 − C∆n /c1

(65)

βn = (B∆n /b1 − νn/b1)− (B∆n /b1 − 1)αn (66)

and

δn = (1− αn)E[fnt − rt]− βnEt[rt]. (67)

Note that due to the existence of invariant transformations, we can normalize θ = 0,
b = 1. Now, the parameters σ, c, and λ0 appear only in the combinations cσ2 and cλ0 in our
moment conditions. So one of the three parameters is not independently identified and must
be normalized to 1. Consistent estimators of the “true” parameter values can be inferred
once one of the parameters is identified through other means.36

36For an example, suppose that, under the normalization σ = 1, the estimators for c and λ0 are cT and λ0T ,
respectively. If we subsequently have a consistent estimator of σ, σT , then the consistent estimators for c and
λ0 would be cT /σ

2
T and λ0Tσ

2
T , respectively. For our purpose, however, only cT and λT matter, although

they should not be interpreted as consistent estimators of the population coefficients for the underlying DGP.
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C Conditions for Girsanov’s Theorem

The goal is to show that

Z(t) = e
∫ t
0 Λ

′
sdWs− 12

∫ t
0 Λ

′
sΛsds, (68)

is a Martingale, when Λs is an affine function of a Gaussian state-vector. It can be shown that
the standard Novikov condition imposes a strong restriction on model parameters. We use a
weaker condition to show that Z(t) is a Martingale without imposing parametric restrictions.
According to Corollary 5.16 of Karatzas and Shreve [1988], if, Λt is a progressively mea-

surable function of the Brownian motion, and for arbitrary T > 0, there exists a KT > 0,
such that

|Λt| ≤ KT (1 +W ∗(t)), 0 ≤ t ≤ T, (69)

where W ∗(t) = max0≤s≤t |W (s)|, then Z(t) is a martingale.
For simplicity, consider the one-dimensional case (extension to the multi-dimensional case

is straightforward.) Without loss of generality, we can assume that the long-run mean of
Y (t) is zero, and its volatility is 1. Then it can be shown that

Yt =

∫ t
0

e−κ(t−u)dWu = Wt +
∫ t
0

Wude
−κ(t−u).

It follows that

|Yt| ≤ |Wt|+
∫ t
0

|Wu|de−κ(t−u)

≤ W ∗t (1 +
∫ t
0

de−κ(t−u)) = W ∗t (2− e−κt)
≤ (2− e−κT )W ∗t ≤ (2− e−κT )(1 +W ∗t )

Since Λt is an affine function of Y (t), it is obvious that (69) holds.
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