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ABSTRACT

This paper considers two models for analyzing the dynamics of firm

behavior that allow for heterogeneity among firms, idiosyncratic (or firm-

specific) sources of uncertainty, and discrete outcomes (exit and/or entry).

Models with these characteristics are needed for the structural econometric

analysis of several economic phenomena, including the behavior of capital

markets when there are significant failure probabilities, and the analysis of

productivity movements in industries with large amounts of entry and exit.

In addition, these models provide a means of correcting for the self-section

induced by liquidation decisions in empirical studies of firms responses to

alternative policy and environmental changes. It is shown that the two

models have different nonparametric implications - implications that depend

only on baaic behavioral assumptions and mild regularity conditions on the

functional forms of interest (one distinction between them corresponds to the

distinction between heterogeneity and an ergodic form of state-dependence; a

form in which the effect of being in a state in a particular period erodes

away as time from that period lapses). The nonparametric implications enable

the construction of testing and selection correction procedures that are easy

to implement (they do not require the computstionslly difficult, and

functional-form specific, estimation algorithms that have been used to

empirically analyze stochastic control models with discrete outcomes in the

past). The paper concludes by checking for the implications of the two

models on an eight-year panel of Wisconsin firms. We find one model to be

consistent with the data for retail trade.
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1. Introduction

This paper considers the empirical implications of two models of the

dynamics of firm behavior that allow for heterogeneity among firms,

idiosyncratic (or firm—specific) sources of uncertainty, and discrete

events (exit and/or entry). Our reason for providing an empirical

framework with these features are twofold. First, the nature of

uncertainty, and its relationship to exit and/or entry, is at the heart of

several issues we, as economists, try to analyze. Examples include the

analysis of capital markets when there are diverse possible outcome paths

and significant failure probabilities; the evolution of the size

distribution of the firms in an industry; and the analysis of industry

supply (or productivity) changes when more efficient firms thrive and grow,

and less efficient contract and, in the extreme case, exit. The second

reason for studying models that allow for uncertainty and exit is that some

allowance has to be made for these phenomena before we can get an accurate

empirical picture of firms' responses to any policy or enviornmental

change. Table 1 illustrates why this is so.

The table provides information on the fraction of firms operating in

'wisconsin in 1978 that were liquidated by 1986 (more details on the data

will be given in Section 5). Firms are classified as liquidated only if

they physically closed down (changes of ownership are treated separately).

If we were to use these data to build a panel of firms to follow the impact

of some (say) policy change, we would, at least traditionally, start
from

the 1978 cross—section and then construct the panel by eliminating those

firms not in operation over the entire eight—year period. Column 5 shows

that this procedure would lose a third of the firms due to liquidations,

and column 6 shows that this third would account for about a fifth of the
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jobs in 1978. If we decided to consider only the larger of the 1978 firms,

say those with more than 50 employees (and as column 7 shows, this is a

selection which, by itself, omits over a third of the 1978 jobs),

liquidation would be somewhat less prevalent, but would still cause an

attrition rate of about 15 percent. The last two rows of the table give an

indication of the extent of changes in ownership in this data (this

includes mergers and acquisitions). To the extent that the pre and post

change firms cannot be spliced together, changes in ownership also generate

attrition. It is a relatively more important source of attrition among

larger firms, but even if we confine ourselves to firms with over 50

employees, and assume that all the changes in ownership result in

attrition, changes of ownership would still only account for 40 percent of

total attrition (liquidation accounts for the rest). Note that, when taken

together, liquidations and changes of ownership would cause the attrition

of almost half the firms in the 1978 sample, and of about a quarter of

those with more than 50 employees.

If liquidation decisions were independent of the economic phenomena

typically being investigated, then the omission of the liquidated firms

from the sample might lead to an imprecise, but would not lead to an

inconsistent, description of the phenomena of interest. This is, however,

hardly likely. Firms terminate their activities when they perceive adverse

changes in the distribution of their future profit streams. The phenomena

we typically want to investigate involve the actual profitability (and

productivity) changes resulting from alternative policy and environmental

changes. If there is any relationship at all between perceptions and

realizations we will, by eliminating those firms which liquidate, omit

precisely those firms for whom the events in question are likely to have
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had a particularly negative impact. That is, we will tend to omit one tail

of the distribution of responses we set out to study.1

To control for the selection induced by the liquidation process we

need a model that explains why firms operating in similar environments

develop differently — a model with idiosyncratic outcomes that allows for

exit. At least two such models are currently available, and each will, no

doubt, prove more useful in approximating the characteristics of different

industries in different time periods. This paper provides a simple set of

procedures which enable the researcher to determine whether either of them

might be relevant for the problem at hand.

The first model considered here is a model with passive Bayesian

learning. Firms are endowed at-birth with an unknown value of a

time—invariant profitability parameter which determines the distribution of

its profits thereafter. Past profit realizations contain information on

the value of the parameter which determines the distribution of possible

future profit streams, and this fact is used by management to form a

probability distribution over future net cash flows (see Jovanovic, 1982).

The second model is a model of active exploration. It assumes that the

firm knows the current value of the parameter that determines the

distribution of its profits, but that the value of that profitability

parameter changes over time in response to the stochastic outco.es of the

firm's own investments, and those of other actors in the same market (see

Ericson and Pakes, 1989). In both models firms act so as to maximize the

expected discounted value of future net cash flow, and in both cases

optimal behavior generates a set of stopping states; i.e. outcomes which,

if realized, would induce the firm to exit. loreover, both models are

'corplete' in the sense that if we were willing to append a set of precise
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functional form assumptions to them, they would produce frameworks rich

enough to take directly to data.

The strategy of appending precise functional form assumptions and then

using their implications to structure the data, is the strategy taken in

all of the recent econometric literature on analyzing stochastic control

models involving discrete outcomes (see liller, 1984; Volpin, 1984; Pikes,

1986; and lust, 1987). Its success depends upon, among other diverse

factors, the extent of prior information on the relevance of alternative

nssunptions. We eschew it here because there is not a great deal of a

information on either which of the models (if any) is appropriate

for different data sets or on the relevance of alternative functional form

assumptions. loreover, just as in all the previous literature on discrete

choice optimal stochastic control models, were we to estimate fully

parametric versions of these models we would have to build a different

—ion algorithm for each form estimated. This makes it difficult, if

npossible, to examine the robustness of the major empirical results to

ciLanges in the specification of the model.

The alternative strategy we choose is to look for empirical

implications of the different models that depend only on the models' basic

behavioral assumptions, and some mild regularity conditions on the relevant

functional forms. Precisely because these 'nonparametric' implications

have to be valid for a variety of functional forms, they cannot require

onal form specific estimation and testing algorithms. Consequently,

there are computationally simple ways of checking whether they are

consistent with the data. Therefore, in addition to not being dependent on

particular functional form assumptions, our strategy is easy to implement.

On the other hand, the nonparametric procedures provided here do not
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produce precise values for alternative response parameters. Their goals

are only to provide a low cost, easily interpretable, characterization of

the data which suffices to: 1) distinguish which, if either, of the

alternative models seems relevant for the problem at hand, and 2) act as a

basis for building a procedure for correcting for the selection problem

induced by the liquidation process when one of the models seems

appropriate.

One of the nonparametric differences between the two models

corresponds to the distinction between heterogeneity and state dependence

that has played so large a role in labor econometrics (see leckian, 1981;

Chamberlain, 1984; and Recknan and Singer; 1984). In particular the

passive learning model implies that the stochastic process generating the

size of a firm is characterized by a generalized form of heterogeneity,

while the model with active exploration implies that this stochastic

process is generated by a quite general form of state dependence. Theory

restricts the state dependence in the active learning model to have ergodic

characteristics; i.e. the effect of being in a state in a particular period

erodes away as time from that period lapses. So we develop a test for the

distinction between heterogeneity and ergodic forms of state dependence

based on —niixing conditions. The test is simple, intuitive, and seems to

be able to distinguish between the two models on panel data sets the size

of the ones used here (these follow about 400 observations over eight

years).

In particular, we find both the —mixing test, and an analysis of the

evolution of the size distribution of firms in a cohort, suggest that one

model is consistent with the data for manufacturing, while the other seems

consistent with the data for retail trade. The importance of this result
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is twofold. First the different models have distinctly different

implications for the manner and the extent to which fin—specific

uncertainties get resolved over time, and hence for the way in which issues

related to these uncertainties ought to be analyzed. Second, the two

models imply different determinants for the probability of liquidation, and

hence different procedures for correcting for liquidation induced attrition

in the analysis of firm's responses to alternative policy and enviromiental

changes.

Section 2 of the paper outlines the passive learning model and then

derives its nonparametric implications. Section 3 does the same for the

model with active exploration. In Section 4 we develop appropriate

estimation and testing procedures. Section 5 begins with a description of

the Visconsin panel, and then examines various subsets of it for the

implications of the two models. Section 6 considers further implications

of the empirical results.

Notation

The distribution of any random variable, say x, conditional on any

event, say z, is denoted Px(.lz), and its density (with respect to the

implied dominating measure) by px(•Iz)• Superscripts denote the vector of

all prior realizations of a process, and subscripts denote a particular

value, so x = (x1, ..., xt). Veak vector inequalities are interpreted

element by element, but a strong vector inequality means only that at least

one of the element by element inequalities is strong. Z will be used for

the generic set, and z for a member of that set. Lemmas, theorems,

examples etc. will be numbered in one consecutive ordering within each

section. They are referred to in the following sections with a section
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prescript.

Section 2. Passive Learnin&.

This section considers models in which each firm is endowed with a

time—invariant characteristic which determines the distribution of its

prof its, but whose value is not known to management at the time the firm

begins operation. lodels of industries composed of f iris which learn about

an unknown profitability paraneter have been provided by Jovanovic (1982)

and Lippman and Rumelt (1982). Following Jovanovic (1982), we consider a

Bayesian learning process. At entry the firm believes the value of its

characteristic, say 9, is a random draw fro. some known distribution. Each

period the firm is in operation it obtains a realization from the

distribution of profits conditional on the true value of its 9. These

realizations are used to compute a sequence of posterior distributions.

The posterior available in each period is used as a basis for

decision—making in that period. The decisions of interest are whether to

produce at all and, if so, at what scale. If the firm does decide not to

produce it sells off its assets and exits, never to reappear again. Note

that in this model learning is passive in the sense that information is

obtained as a costless byproduct of operating. One possible analogy is to

the operation of a retail outlet. The outlet learns whether its

neighborhood will support its product, and, if so, at which scale of

operation.

Jovanovic (1982) focuses on establishing the existence of a perfect

foresight equilibrium for a homogeneous product industry composed of firms

which operate in this manner. Ve focus on the implications of the learning

process on the evolution of cohorts of firms, where cohorts are defined by
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entry dates. In particular we shall look for empirical implications that

rely on the nature of the learning process, and only some mild regularity

conditions on the form of the profit function and the underlying

distributions of interest. Later we compare these implications to data in

an attempt to identify those sectors in which this for. of learning process

seems relevant.

2.1 The lodel

It will be assumed that each entrant is endowed with a value of 0

which, in turn, determines the distribution of a payoff relevant random

variable 17, say
P,7(.I0).

To motivate our assumptions, consider the example

of a homogeneous product industry of price—takers whose production

efficiencies are subject to random perturbations so that profits in period

t are = F(t) — where; is a vector of input quantities,

provides their prices, F(.) is a concave production function, {,} is a

sequence of independent and identically distributed (i.i.d.) random

variables, and is the product price. Assume is known at the time

is chosen. Then

= r(; '' p) =
maxL {0tF(Lt) —

and 7(17; p) is an increasing function of ,. In a perfect foresight

equilibrium future prices will be known, so that if 9 were also known the

distribution of future profits could be calculated directly from

Since management does not know 0 it is assumed to summarize its beliefs

about that parameter in terms of a probability distribution over the
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possible values of 0. At entry, ianage.ent only knows that 9 is a random

draw from G0(0). The first period produces an which .anagenent uses,

together with Bayes law, to update its prior [G0(9)] and for. a posterior

which is then used to .ake second period decisions. If the fir. stays in

operation, this updating process continues and decisions are .ade on the

basis of the sequence of updated posteriors.

As the exaaple illustrates, the .odel viii require at least four

primitives; a sequence of random variables, a class of distributions for

those random variables indexed by 0, a prior distribution for 9, and a

payoff function. Before introducing these pri.itives we need a way of

comparing distribution functions; i.e. we need an interpretation for the

statement that one value of 0 is 'better than' another. Ve shall assume

that the family of distributions foraed froa different values of 9 can be

ordered in the likelihood ratio sense defined below. This ensures that

higher realizations of the payoff relevant 77 lead to Bayesian posteriorS

for 6 that assign larger probability to higher values of 9 (see below, and

ilgroin, 1981).

1. Definition (likelihood ratio ordering, or

Let P1(.) and P2(.) be two distributions possessing densities

and p2(.) (with respect to some douiinating .easure), and with support,

a compact subset of &, k—dimensional Euclidean space. Ye will say that P1

likelihood ratio dominates P2, in the strong sense, and write 'i >lr P2

and only if,

—
p2(z1)p1(z2) > 0,
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whenever > z2, and p1(z1) or p2(z2) > 0, z1,z2 E zk. If weak

inequalities replace the strong inequalities in this definition, we will

say that F1 likelihood ratio dominates P2 in the weak sense, and write

Fl P2.
[ ]

If P1 >tr 2 then, for any two possible values of z, the ratio of the

probabilities of a larger to the smaller z value is always higher for F1;

i.e., P1 is more likely to have generated the higher z value.2 The

following lenuna points out that >Lr is a stronger criteria for ordering

distribution functions than the more familiar first order stochastic

- :e criteria.

2. (likelihood ratios and stochastic dominance).

Say P1 stochastically dominates P2, and write P1 > F2, if and only if

for every nondecreasing nonconstant function, h(.), such that

fh()P1(dC) <T

h(C)P1(d) > fh()P2(dC).

Then,

l >tr implies, P1 > P2.

If weak inequalities replace the strong inequalities in this definition we

say that P1 stochastically dominates P2 in the weak sense, and write

l >sw 2 p1 >lrw P2 implies P1
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EtQQI See koss (1983), Appendix 1, 3.1, and 4.1. [

Assumption 3 provides the primitives of the passive learning •odel and

endows then with some regularity conditions. It generalizes the

assumptions used in our example. In particular the exasple assned that

conditional on a 6E8, the sequence of payoff relevant random variables,

are independently and identically distributed (i.i.d.) over time.

Then the joint distribution of the sequence {,j} conditional on a DEB is

entirely described by the single distribution, P,7(I). Though the i.i.d.

case is easy to deal with, it produces a host of very strong empirical

implications which are a result of the i.i.d. assumption and not of the

logic of the passive learning model per se. Ve, therefore, allow for

dependence in the stochastic process generating conditional on 9. In

(3.i) we assume only that the marginal distribution of conditional on 0

is stationary (does not depend on time), and that the conditional

distribution of (conditional on past 17—realizations) satisfies the

condition that higher past values of , are at least as likely to lead to

higher future values of ,. (3.ii) insures that higher values of 0 are

better in the £r—sense; i.e. it insures that for any t, higher values of

the vector = (ia, ..., ,) are more likely to be generated by larger U

values. (3.iv) provides the profit and size functions. It is important

that both be increasing in 17.3

3. Assumption (primitives of the model)

(1) {} is a sequence of payoff relevant random variables (a

stochastic process) whose joint distribution, say (0), is indexed by a

98, where 8 is a compact subset of . The marginal distribution of t is
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stationary and is denoted by while its conditional distribution

satisfies a weak tr—ordering in realizations of say nt_i: i.e.

P(.In1, >irw P,7(.14', 0)

whenever > n4.

(ii) The family of distributions

F = {(O): ho),

have marginal distributions with support N (a compact subset of and

densities with respect to some dominating measure. Further, these

distributions satisfy an £r—ordering in 0; i.e., provided B > 0' we have,

for every t

P ' 0 P ' 0'
tr

(iii) G0(.) is a prior probability distribution with density g0(•) on

0.

(iv) i-(.) and S(.) are continuous increasing functions from N into P.

(.) provides the payoff to, and S(.) the size of, the firm. [ J

Our behavioral assumption is that management acts so as to maximize

the expected discounted value of future net cash flow conditional on

current information, where the conditional distribution of future net cash
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flows are formed, in a Bayesian fashion, from; the faaily of processes

(G), the prior for 0 [G0(.)], and past realizations of ', say

= (iii, ' 'Y The next assumption provides these conditional

distributions.

4. Assumption [posterior distributions]

Let contain all information available in period t. Then

Pr{6 � zIJ} =
P'7t(nItIO

� z)Go(z)//Pt(ntIC)Go(dC) P0(zlnt),

for z8. loreover P0(.Jnt) has a density, p#(.Int), with respect to the G0

measure (for N, and all t).

Lemma 5 states that, under the £r—ordering assumptions, higher past i

realizations lead to more favorable posteriors for 0. It follows directly

from Bayes law and assumption (3.ii).4

5. Lemma (monotonicity of posteriors)

For any t, let 4 with 4 > 4 , then

P0(.14) >lr 0(I4 [ ]

Now consider the decision problem facing the owners of a firm which

has been in existence t periods and has had r realizations of The

owners must choose whether to continue in operation over the coming period,

or close down and sell the firm at the value, I. If the owners decide to
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operate the firm they will obtain the profits over the coming period, plus

the option of keeping the firm in operation over subsequent periods should

they desire to do

Assume, temporarily, the existence of a bounded function, say

Vt+i(nt), from Nt41 into I, which provides the value of continuing in

operation from period t+1 given a realization of ij equal to Then,

letting flE(O,1) be the discount factor, we have

(6) t(nt) = E[I-(Vt+j)Int] +

where for any h(.), the expectation E[h(,?t)Int3 = fh(c,nt)p (dclnt).
Vt

Given (6) the optimal strategy of the owner is straightforward. Operate

the firm if and only if Vt(nt) � I. Theorem 7 insures that the value

function in (6) exists and then provides some of its properties.

7. Theorem (existence and montonicity of the value function)

At each t there exists a unique Vt(Nt which provides the value

of continuing in operation assuming optimal behavior in each future period.

is bounded, satisfies (6), and is nondecreasing in flt; i.e., if 4 �
4, then V(4) � V(4) [for ntcNt, and all t]

F.ip.i See Appendix I. [

Note that Theorem 7 depends only on Assumption 3. It does not depend

on: the precise functional form (or even the curvature) of the profit
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junction (so the production function could display regions of increasing

returns); on the form of G0(.); or on the family I' provided that it satisfy

the monotone likelihood ratio properties in (3) (in particular the

posteriors for 9 need not possess simple sufficient statistics, nor need

they be weakly continuous in their arguments). We now move on to consider

the empirical implications of the passive learning model and we shall focus

on implications which require only the assumptions reviewed above

2.2 Empirical Implications of Passive Learning.

Throughout we shall focus on the empirical i.plications of the passive

learning model that are true at each age (that model also has limit

properties as age grows large, but it is hard to use these as a basis for

empirical analysis without further, a priori, information). We begin by

deriving the implications of the passive learning model on the evolution of

the size distribution of firms.

The theorem that underlies our results on the evolution of the size

distribution is the economist's (far more palatable) version of the

Darwinian dictum of"survival of the fittest." It states that as age

increases the 0—distribution of the surviving firms improves (in the

stochastic dominance sense). This is a result of self—selection. As time

passes firms with lower 9's are more likely to draw lower 's and

self—liquidate.

8. Theorem (the evolution of the 0—distribution)
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Let At = {t =
(n1, •••' V1(n) > , •• '(') > I}, and

+ 11 ft6jt
Xt(n)=1 tLO ifn $L

Then a firm is still operating in period t if and only if = 1. Parther,

for every z 8 and all t let

F9(zlt)
Pr{0 < zx = 1).

Then

P0(jt+1) > P0(.It).

£° Take an arbitrary (z, t). Then, by Bayes law,

F0(zjt) Pr(X = 110 � z)Gü(z)/Pr{Xt = 1)

= � =
1IO}G0(dO)] / [9/Pr{Xt

=
1lO}G0(dO)].

,e must show that P0(zlt—1) > P9(zlt). For this is suffices that

8
e�jthlo}Goo)

( .1) JFr{Xt_i=1I8JGü(d0) - g(ZJPrXt_l=1I.O(dU

Using tb.e fact that

Pr{Xt=1 10) Pr{X=1 It 1:1, O}Pr{Xt_i=l I 9),
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and letting

Q1(dO)
= Pr{xt_i=1IS}Go(dO) / gJPr{xt_1419}Go(dS), and

(8.2)
C forS>z

q (dO) =
2

Pr{xt_i=lj O}C0(dO)/9< 2JPr{xt_i=1I S}G0(dS), otherwise

(8.1) can be rewritten as

(8.3) eJPr{xt=iIxt_irl,O}Qi(dO) � eJPr{xt=lIxt..1=1,O}Q2(dO).

Since (8.2) implies Q1(.) Q2(.), (8.3) will be true provided

Pr{x=1!xt_i=i,O} is nondecreasing in 0. To see that this is indeed the

case write

= JPr{xt=iInt,O}Fti{dntIntEAti,6}.

Then, taking C � 6'

JPr{x=i D)P t_i{dnt Int_lcAt_i,g}

JPr{xt=i I '' 0'
}Pt_i{dn1t

I
n €L 1)

/Pr{xt=iInt,0'}P t_i{dntIntd1t,0},
'7

where the first inequality follows from the monotonicity of V(.) and the

fact that P nt,0) is stochastically increasing in 0, and the second
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iron (3.1) and the fact that if F >tr (•19' then, for any ANt,

p 9) >tr Pt(.kteA,0) (see loss, 1982, appendix I).

Our first empirical implication of the passive learning model is a

direct corollary of theorem 8. Since size is an increasing function of 17,

and is stochastically increasing in 9, the fact that the 9 distribution

of the surviving firms is stochastically increasing over time implies that

the size distribution of surviving firms ought to be stochastically

increasing in time.

9. Corollary (The evolution of the size distribution.)

Let be defined as in Theorem 8, recall that S = S(17t), and for all

z and t define

P5(zlt) Pr{St< zIx=1}.

Then, provided t � t'

P(.It) P5(•It'). I I

There are many ways of employing Corollary 9 to identify industries

that might abide by the passive learning .odel. The simplest is to plot

the size distribution for different ages and compare then; the proportion

of the sample greater than any given size should increase in age. lore
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generally the corollary implies that if h(.) is any increasing function,

then whenever t � t'

E(t) =
Jh(C)P5(dClt) Jh(C)P8(dIt') =

So we could take the sample analogue of E(t) [the sample mean of h(s)), and

investigate whether it increases in age. We come back to these points

below. Note also that Theorem (8) and Corollary (9) imply that each

sequence of distribution functions, {P9(•lt)}, and {P5(.It)}, converges

(pointwise), to a well—defined limiting distribution, say P8(•Im) and

1=).

Implications of the passive learning model that specify a sonotonic

relationship between two or more observables are particularly useful since

they can be checked against data without imposing undue functional form

restrictions. Though the literature on the passive learning model seems to

have missed Corollary 9, it has associated at least three other monotonic

relationships with passive learning. These are that:

i) the hazard rate is nonincreasing in current size; i.e., that

Pr{Xt=OIyt_il, S_1=si} is nonincreasing in

ii) the hazard rate is nondecreasing in age (usually, but not always,

conditional on size);

iii) and that the variance in growth rates (again usually conditional

on size) is nonincreasing in age

(these implications are discussed in Jovanovic, 1982; Evans, 1987a and

1987b; and Dunne, Roberts and Samuelson, 1987).

The next example shows that of these three only the first survives our

search for nonparametric implications of the passive learning model (the
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example assumes, as did Jovanovic, 1982, that the distribution of {v)

conditional on 0 is i.i.d.). It is true, however, that the first

implication, that is that hazard rates are nonincreasing in size at a given

age, both persists and is consistent with the data from every empirical

study we are aware of [Churchill, 1955; Vedervang, 1965; Evans 1987s and

1987b; Dunne, koberts, and Sanuelson, 1987]. lowever, most other models

that allow for mortality, including Ericson and Pales's (1989) model of

active exploration, also imply mortality rates that decrease in size for a

given age. Therefore, this property fails to distinguish among the

alternative models, and we do not pay further attention to it in this

paper.

As to the other implications, the fact that the passive learning model

does not imply that either hazard rates, or the variance in growth rates,

decline in age (at least not without further ad hoc assumptions) is

somewhat disconcerting. Decreasing hazards and decreasing variances in

growth rates have both been associated with the passive learning model in

the past, and, in addition, have been shown to be fairly robust features of

the data. On the other hand, the intuition underlying our counterexample

is clear enough. For many functional forms it will tale time to accumulate

the information necessary to ensure that exit is optimal, and this fact

generates an initial increasing portion to the hazard function (actually

the example generalizes this intuition and generates a hazard function

which oscillates over age). As to differences in the variance in growth

rates over age, these will depend upon, among other factors, the relative

variances of , conditional on 0 for different values of 0. If 6—values

which are more likely to induce exit are associated with low variances, the
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observed variance in growth rates may well increase over age.

10. Exaile

Let = with {,} i.i.d. conditional on 9,

1 with probability 0 6 with probability £

'7
= ;andO=

0 otherwise 0 otherwise

The posterior for 9 in this problem depends only on the couple (xt,t),

where x = max[n1, ..., ni]. Consequently the value function in (6) has

the simple form,

v(t V
tT) ) — (x,t

x is either 0 or 1. If management knows that 0=5 and a direct

calculation shows

V(i,t) =

where the inequality is by assumption. This inequality ensures that if

x=l management will never drop out. If x=O the firm continues in

operation if and only if V(0,t) � I. It is easy to show that

Pr{xti=1Ixt=0,t} = Pr{'7t+i=1xt=O,t} decreases in t, and converges to

zero. This ensures that V(0,t) decreases in t and converges to zero.

Clearly then, there exists a unique t such that V(0,t) � $ if and only if

t � t Let S('7t=l) S, S(i=0) = 0, ft(t,St) be the hazard rate for the

firms of size St in period t, and E(t) be the unconditional hazard.
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Straightforward calculations show that for

li(t,St=O) I(t,St=S) 1(t)

*lit 0 , 0 , 0

::
{_t)t*_t)j_t)t+@_t)j,

: )t0j+0_t)

So neither the conditional, nor the unconditional, hazard declines in age.

T. imply reflects the fact that for many possible assumptions on the

relevant functional forms it will take tue to gather the information

required to decide whether exit is optimal.
*

liext we consider the variance in growth rates. Provided t > t , any

firm that is active has B = 5, and V(St+i_StIS)=V(St+iIO4) = 525(1_a),

of St. If t < t and St = 5, then B still is 5 with probability

and V(S÷t—StISt) is still given by the above formulae. So the

,c.:iance in growth rates conditioned on St = S is constant over age.

However, if t < t , and St = 0, then 0 can equal either 5 or 0 with

positive probability, and the variance in the growth rate is

[5S2(i_1)(1_5)t]/[(1t) + (15)1]2. Thus

V(St+i—StlSt = 0, t> t*)/V(St+l_StISt=0, t<tt) = 1(i+;5fl2,

which cLE be made as large as we like by choosing 5 or £ small enough. The

variance in growth rates need not decline in age. Vhether or not they do

Will depend upon whether growth rates associated with high 0's are more
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variant than growth rates associated with low l's, an issue which the basic

passive learning model is silent on.

To see how this example generalizes, consider the case where 9 has a

beta prior distribution with parameters (r,s), i.e., G0(.) = B(r,s), so

that 9 can take any value between zero and one. The posterior in this case

t
is another beta with parameters r + and a + t — so that the sum,

t
x = and t, can be used as sufficient statistics. (Note that x is a

nonnegative integer.) Using an argument analogous to that given above we

find that for any fixed x, V(x,t) declines to zero with t. Thus for each x

there exists a t(x) such that V(x,t) I according as t tt(x) [see

Figure 1] . Both the mortality, and the hazard rate will be zero for a

* *
value of t such that t (x) < t < t (x+l) (for x = 1, 2, ...). loreover it

* *
can be shown that t (x-*l) cannot equal t (x)+1 for consecutive values of x.

That is, the hazard function will usually have a zero between any two

*

positive portions, making it oscillate over age. For t = t (x) the hazard

and mortality rates will be determined by the precise form of the prior.

One such sequence of hazard rates is given in the bottom part of Figure 1.

Similar pictures could be drawn for the variance in growth rates. [

This example illustrates that if we are interested in other

nonparametric implications of the passive learning model we should look

beyond the implications of passive learning on the pattern of either the

hazard or the variance in growth rates. It is, therefore, fortunate that

the passive learning model has some very distinctive implications on the

underlying structure of the conditional probabilities generating growth and

mortality.
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These implications stem primarily from the fact that 0 is

time—invariant. As a result, early realizations of contain information

about the parameter that determines the distribution of its future values;

and this will be true no matter the time that elapses in the interim. Put

differently, the dependence in the joint distribution of and does not

erode away as t grows large. This is seen most clearly in the special case

where, conditional on 0, the {,j} are an i.i.d. process. In this case, for

any n' and z

Pt(zIVk = n') =
BJPv(zIO)Pe(dOIlk

= n')

=
9fP,7(z O)P,7(n' O)g0(O)dO/9fP(nI O)g0(O)dO;

which is independent of t and k. This strong invariance property is

destroyed when we allow 0 to index the more general family of stochastic

processes permitted in (3). In the general case we have, for any zfN,

P7(zlVk = n') = (zkk = n',O)Po(dOIVkn'),

and since P (zIVk = n',O) can depend upon t and k, so can P (zI7 = n').
Vt

fiowever, the passive learning model does imply that the dependence in this

latter distribution has two sources, one of which will erode away as t

grows large. That is, though the dependence in the process generating

conditional on 0 (in the integrand) may erode away with t (it will if the

process generating is ergodic), the dependence that results from the

effect of the realization of on the posterior for 0 will not.

This argument can be formalized and then used to produce a test for
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the passive learning model based on differences between the marginal

distribution of St = S(t), and the distribution of S conditional on S1.

Actually we can do better than this and produce tests based on a comparison

of the distribution of S conditional on to the distribution

of S conditional on S_1,... and Si, for any k�O. With a positive k

this test is likely to be more powerful against alternatives in which the

value of the paraLeter determining the firm's distribution of profits

evolves in a larkovian fashion over tile (and one such alternative is the

model of active exploration considered in the next section).

Our test is a direct implication of the following theorem. The

theorem states that if we choose group of years for which there is

information on past realizations of , and derive the family of posterior

distributions for 0 conditional on possible ,—realizations in those years,

then members of the family with higher past n—realizations will

stochastically dominate those with lower n—realizations.

11. Theorem (conditional distributions for

Let t and k be positive integers with t�k, and (i1,.. ,i) be any

selection of k distinct elements from {l,.. . ,t—1}. Then if n =

(n ,...,n ) and n = (n2 ,...,n2 ) are arbitrary (1'k histories of
1 k '1

'' satisfying > and is defined as in (8),

P(.In2, X 1).

EIQ.Q1. See Appendix I.
[
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The empirical implication of theorem (11) that we will be using is

that it implies that for any k � 0, and any •••

(12) P,7Hnt_l,.,mt_fj!Xt=l))

whenever n1 n. Corollary (13) is an immediate i.plication of (12).

13. Corollary

Let t and k be nonnegative integers with t>k, and let Xt be defined as

in Theorem 8. Then

E[StISt_i
=

5t—k, S1 5p
= 1]

is strictly increasing in s for almost every [1

That is, expected future size conditional on I past sizes and survival

will be strictly increasing in the initial size. This is because the

parameter which determines the conditional distribution of the payoff

relevant r is time—invariant. In models in which these conditional

distributions depend on a paraieter which evolves over time in response to,

say, the outcomes of a firm's exploratory investment, corollary (13) will

not necessarily be true. Ve turn to these types of models now.

Section 3. Active Exploration

This section considers the empirical implications of a model

(originally developed by Ericson and Pakes, 1989), in which firms can
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invest to improve the value of a parameter, say w, which deter.ines the

distribution of its profits. In the model with active exploration (in

contrast to in the passive learning •odel) management is assumed to know

its current value of , (and hence the actual profit distribution it faces),

and makes current production decision based on it. On the other hind a,

itself evolves over time in response to the outcomes of the firm's own

investment process, and the investments of other firms operating in related

markets. These outcomes are stochastic; in the active exploration model

the firm invests to explore and develop alternative market niches which

may, or may not, prove profitable.

In this model the distribution of futures states is determined

entirely by the current state and the optimal investment policy. It is,

therefore, independent of the age of the firm per se. Startup is treated

as the appearance of an idea which, given current market conditions,

- -°ars worth exploring. Formally it is an initial location on the &—axis.

idea requires substantial successful development before it can

noticeable profits, the initial & is associated with a

distribution of profits which is degenerate (or nearly so) at zero.

Successful investment will enable the idea to be embodied in a more

profitable marketable good or service. 3nsuccessful exploration may well

convince the entrepeneur that the whole idea is not worth pursuing and lead

to liquidation.

Ericson and Pakes begin with a simple model in which the distribution

of the firm's profits depends only on the difference between the firm's own

level of development and an exogenous aggregate index of the state of the

industry. They then generalize to cases in which the firm's profit

distribution also depends explicitly on the levels of developueTit of all
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the encumbents in, and the potential entrants to, the industry. Here we

suffice with a brief description of the simpler model, as this special case

of the more general framework is sufficient to contrast its empirical

implications to those of the passive learning model just described. Again

we consider only those empirical implications that are nonparaaetric in the

sense that they require only mild regularity conditions on the relevant

functional forms.

The Active Exploration Nodel

Ve will assume that the state space is countable and index it by the

integers so that n1l. Each firm operating in period t is endowed with an

Higher values of i are better in the sense that the distribution of

the payoff relevant i is stochastically increasing in . lanagement has

three choices to make in each period, and they are made to maximize the

expected discounted value of future net cash flows. First the firm must

decide whether to operate at all. If it decides against it receives a

liquidation value of I and exits never to reappear again. If the firm does

operate management must decide on both a level of current input demand, and

an amount of exploratory investment, say x. Given a realization of ,

current input choices will determine current operating profits, say r(7).

Current cash flows are

=

where c(.)>O, and can be decreasing in & to reflect the possibility that

more profitable firms may find it easier to raise finance capital.

Increases in current investment decrease current cash flow but make higher



30

values of and hence higher future profits, more likely. In

particular, let Tt+l=Yt+1—ft, and be the information available to

management at t. Then we assume that for zd,

P(r+i�zIJt) = Pr(ZtIXt)

where P(.Ixt) is stochastically increasing in x. lence, to formalize the

firm's decision problem we will require the following primitives.t

1. Assumotion (primitives of the active exploration model)

i) iP = {P(.I):41(}, is a family of distribution functions indexed

by . The family has support, ti, a compact subset of D containing zero,

and exhibits a weak first order stochastic dominance ordering in w, i.e.

P(.Iu) >sw P(.i')

whenever & > ui'. It is assumed that Liz P(Ol&)=1. (This, together with

the assumption that 7(0) = 0, insures that for small enough w payoffs are

zero with probability arbitrarily close to one.)

ii) r = {P(.Ix):x+} is a family of distributions with support T,

a compact subset of , exhibiting a weak first order stochastic dominance

ordering in x, i.e.
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P(.Ix) P(.Ix')

whenever x > x', and satisfying the condition that

P(OIO) = 1,

so that the firm's product cannot be isproved without some investment. The

family of densities {p7(.jx):xdR}, is (pointwise) differentiable in x with

derivatives which are decreasing in x for r > 0, and increasing in x for r

c 0 (this insures that the investment problem is concave and therefore has

a unique solution), and both p(OIx) and p(_1Ix) are strictly positive for

all x less than any finite upper bound (these are technical conditions

whose roles are explained in more detail below).

iii) r(.) and S(.) are increasing functions of ,, and c(.) is

non—increasing function of w, into Dc. r(.) provides the profits, and S(.)

provides the size, of the firn; while c(.) provides the cost of a unit of

x. z(0) = 0, and c() is bounded away from zero. [ ]

le now consider management's choice of policies. Letting w0 be the

initial state and x,. be the indicator function which takes the value one if

the firm is active in period r and zero elsewhere, a policy, say d, is a

sequence of functions mapping available information into operating and

investment decisions, that is
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d = {0(J0), x0(30), x1(J1) x1(J1),...},

with x. = and x. = 0 implying = 0 for x,. = and

{wr,Xr_i,xr_i,r_i,.,wO}. kecall that =

if x=l and zero otherwise, so the expected discounted value of net cash

flows given the policy d is

Ed {EfiTR(r&rxrXr) + '(Xr_iXr)JI"}

where fi(O,l) is a discount factor, and the expectation is taken assumin

that the d—policy is followed. Note the (1) iiplies that 1(.) is bounde'

and let

V(w) = sup V(()
d

for each . A policy d will be optimal if vd.(w) = V(a) for all w. If

optimal policy exists management chooses it, in which case the expected

discounted value of future net cash flow is V(i). lanagement will opera

the firm if and only if V(&) > I, the liquidation value. The following

theorem combines the results from Ericson and Pales (1989) that are used

our derivation of the empirical implications of their model. The theore

is followed by diagrammatic and verbal expositions of its contents.

2. Theorem (properties of the active exploration model).

A unique optimal policy and associated value function exist and the

have the following characteristics:
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i) V() is bounded and nondecreasing in a.

ii) The optimal policy, x(J) is bounded, depends only on current i, and

is stationary, i.e. for all r

= x) = x*(á/r) i < m.

iii) There exists a couple, (, ) with, — < < m, such that

x*(i) = 0 if 0 {,': � o' �

iv) There exists a second couple (, ), with — £ � . � ' � < ,
such that

V() > I if and only if & > £,

and

mi mi Pr{1t � = 1.

Proof: See Appendix 2.

Parts (i) and (ii) of this theorei ensure that both the value function

and investment policy are stationary functions of w, the value function

being increasing in 4/. Figure 2 illustrates this with one special case.

In the figure A(4/) =
/T(i)P,7(d17I4/),

provides expected profits conditional

on . The value of 4/ below which a firm exits, i.e. the £ in (2.iv), is
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determined by the point at which V(i) equals I. In this example = v,

that value of & below which a firm stops investment. So positive

investment occurs at # 1, even though profits at that point are zero vi

probability one. The incentive for the investment is that it sakes highe

values of and hence higher future profits, sore likely. The moneta

value of an increase in w is V(w.1) — Y(u). Since V(w) is bounded, aft

some point increases in i cannot bring with it such of a change in V(.).

It follows that, after some w, it will not be in the firs's interest to

invest at all. The & at which this occurs is the of (2.iii). If w >

"o investment takes place and this insures (see 1.ii) that the firs's w

not increase (in fact it will stochastically deteriorate as other

firms gradually develop goods and services that obsolete the product of

*

this firm). Let r be the largest value of r that has positive probabll
* *

when x = x (recall that x = max x (ii), and that r is finite by virtue o

1.1±). Then firms with < ' have
— *

= , and firms with

have So if � , so must be This explainE

the second statement in 2.iv; that is, if � , then, with probability

one, so will be the entire sequence

S

+

Figure 2: Policies in the Active Exploration lodel

V (w)

&
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Since all values of w a induce permanent exit, there is no need to

distinguish among them. It is, therefore, convenient to transform the

state space by the map f(.), where

0 forw�a'
f(&) =

a, — a' elsewhere.

Let K = — a,, so that if f(a,t) � K, so is f(&t+l). We shall work only

with values of f(i) in what follows. At the risk of some notational

confusion, then, we also label its values by a'.

With this understanding, theorem 2.2, implies that the sequence {a't}

together with any a, < K is a finite state Iarkov chain on ft = {0,1,... ,K}.

Its 'zero' or 'death' state is absorbing, so the transition matrix for the

chain is given by , where

P [p. •1—
1,3

andfor0<i�K (3)

for I � j > 0p.r *
E p(r=J_1Ix (i)), for j = 0.

TwO remarks are in order here. First, recall that realizations of a,

are not observable. Realizations of are, but S(7)=S(aJt)4-V(t?t) where

= fS(17)P(dvJwt), and U(i7) = S(,) —
S(at). Since the distribution

of is also determined by a, and {t} is a Iarkov process, S is a

s of two Mackay processes. But a process which is a sum of Mackay
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processes is not, in general, Iarkov. So the observable 51 process is

not Iarkov.

The second point to note concerns the mortality of firms. Assumption
*

(Liii) insures that there exists a finite n , such that for n>n

sun {p?o: iefl} � c > 0,

where p'7 .= Pr{w + = ilu' = i}. Since p0 0 = 1, this implies that all
i,] n

states but 0 are 'transient'. That is, no matter its initial ai, a firm

will, with probability one, reach zero in finite time and stay there.

Firms, like people, eventually die.

Since the passive learning model implies that fins can survive

forever there is a sense in which this latter result differentiates the

model with active exploration from the passive learning model. However, i

order to make empirical use of this distinction we would require a very

long time series of data. On the other hand, the passive learning model

did have the additional implication that the size distribution of survivir

firms ought to be stochastically increasing in any finite range of ages

(corollary 2.9). For comparison, we now consider the properties of the

sequence of survivor distributions generated by the model with active

exploration.

Let

{lRL; Eq=1}

be an L—1 dimensional simplex, so that any qfQK can be regarded as a
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density on fl. Note that a potential entrant with an w=O would not enter,

so that the initial distribution of the & in a cohort is a it can

be shown (see Ericson and Pakes, 1989) that no tatter the initial

the w and S distributions of the survivors in period t, say

P(.jt,p°) and Ps(.lt, p0)

each converge (point wise), as t grows large, to a unique invariant

distribution, say

and

(these distributions are invariant to both p0 and to the passage of time).

One can actually go one step further than this and show that, given some

additional regularity conditions on the location of p0 and on the

transition probabilities, there will be a finite t , such that for any p

(4) P5(.t+1, 0) P5(•tt,p°)

I

provided t>t . That is, not only does the size—distribution of surviving
*

firms converge to an invariant distribution, but after some t the

convergence will be 'monotone' and the size distribution of surviving firms

will stochastically increase from period to period (just as in the passive

learning model).

Still, however, the empirical implications of the active learning

model on the evolution of the size—distributions of surviving firms are

weaker than those of the passive learning model. In particular the active
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learning model does not predict that the size distribution will be

stochastically increasing at each age. On the other hand, the active

learning model does not bar this event from occurring, and it can predict

that the size distribution will be stochastically increasing at later ages.

There is, however, at least one set of observable implications which

differentiate between the two models more sharply. tecall that in the

passive learning model the parameter that determines the distribution of

profits is tine invariant. This induces a dependence between the initial

size of a firm and the size at any future date. Indeed as equation (2.12)

shows, the passive learning model implies the stronger result that the

conditional distribution of size at t, conditional on the immediate past

sizes and the initial size, will always be strictly increasing in the

initial size. In the active learning model the parameter determining the

firm's profitability distribution, i.e. &, evolves over time. Later year

size realizations are governed by a different value ofi than those from

earlier years and, as time passes, the dependence between the later and

earlier values of , and therefore of size, dies out. This is also true

for the conditional distribution of S; i.e. the distribution of St

conditional on immediate past values of S should gradually become

independent of initial year sizes. loreover, since the dependence of on

its history is only through the value of we might expect that if we

condition on immediate past sizes the dependence on initial size will die

out relatively quickly. Indeed, in the extreme case where S = (&), so

that sales is a deterministic function of '' the conditional distribution

of St depends only on Sf1. In this case a three year panel is enough to

differentiate the active from the passive learning model.

Vhen there is noise in the relationship between and size we must
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base our distinction between the active and the passive learning model on

more detailed properties of the stochastic process generating size

conditional on survival. Let be that process (it is described

formally in Appendix 2). Then, the active learning model implies that as r

grows large the distribution of (S7, becomes, roughly

spe:ing, independent of realizations of (St,.. .,S). lore precisely, we

have lemma 6 and its implications (explained i.mediately after presentation

of the lemma).

5. Lemma (—inixing of the {S} process).

Let {S}1 be the stochastic process formed from the distribution of

sales conditional on survival and any initial Q0e(1,2,. .. ,K), and l be the

u—algebra generated by possible realizations of S, S1,. ..,S. Then {S}

—nüxes at a geometric rate, i.e.

sup(P(E2IE1)-P(E2fl, E1 with P(E1) >
0 and E1fI,E2I7) AT

with < 1.

EiQ.i. See Appendix 2 [1

Lemma 5 states that any dependence between size realizations that

occur after xr, and size realizations that occur before x, goes down

geometrically in r. It implies that for k � 0
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(6) sup [E p5(zst_i,. ..,st_k,sl,xt=1) — Ps(zIst_i...stpxt=1)I]� Akc

1

for some 0<1, on a set of t—i''"t--k with probability one. That is b

choosing k sufficiently large we can make the conditional distribution of

conditional on '5t—k' and i' as close as we like to being

independent of the precise realization of s1. Note that equation (2.13)

insures that this is not the case in the passive learning model. The neil

corollary is an immediate implication of (5) and (6).

7. Corollary

For any k � 0

—
E[St!stl,...,stk,xt=1] �

on a set of with probability one. [1

Recall that corollary (2.14) insures that in the passive learning

model the conditional expectation of S, conditional on any realization,

(_ 5t—2'5t—k' s1) and survival until t, is strictly increasing in

lience corollary (1) differentiates the active from the passive

learning model. The distinction between the two models is particularly

striking in the special case where St = S(&t), in which case 1k=0 for hi

Ve now consider the econometric techniques needed to bring this

distinction to data.
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Section 3: Estimation and Testing

There are two nonparametric implications of the models we are

considering that will be investigated empirically. The first is whether

the size distribution of surviving fins is stochastically increasing in

age; or whether, for all t

P(it) > P(.It—l). (1)

The passive learning model implies it must, while the active exploration

model implies it may, but need not — at least in the early ages. The

second question posed of the data is whether, for different values of k,

E[StlS_i = s,... ,St_k = 5tk' s1 = s, Xt = 1] (2)

is strictly increasing in s1. Again the passive learning model says it

must be. But here there is a sharper contrast with the implications of the

active exploration model. The model with active exploration implies that,

for t large enough, the regression function in (2) cannot depend on s. To

check whether (1) seems consistent with the data, we will simply plot and

compare the size distribution at different ages. It is more difficult to

present a pictoral representation 0f the regression function in (2). Our

analysis of its properties must, therefore, be somewhat more formal.

This section develops an intuitive nonparaetnic estimator for (2),

and then considers tests of whether or not it is increasing in s. Indeed,

since both models imply that the regression junction is nondecreasing in

s1, we employ a two—part testing sequence. Ve first test whether (2) is
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weakly increasing in s1. If this were not the case we would doubt whether

either of our models provided an adequate approximation to the process

generating the data being analyzed. If, on the other hand, the hypothesis

of weak monotonicity is acceptable, we love on to test the null of whether

the regression function does not depend on s against the alternative of it

being strictly increasing in that variable. Acceptance of both null

hypotheses is interpreted as support for the active exploration model,

while acceptance of only the first is interpreted as support for passive

learning.

To obtain our estimator of the regression function we define J

positive numbers, say {j}1' and use them to break into cells, as in

figure 3. e then define the function o(.): LR [i,...,J] which assigns

to each St the number of the cell it falls into, i.e. for j=1,. .. ,J,

= (S)=i if and only if, < St � (3a)

where it is understood that 0, and = a.

I I I

o(S)=l r(S)=2 o(S)=3
l

0

Figure 3: The Function. o(S)..
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Similarly for k < t define the junction ok(.): [1,... ,J]l, by

k(st_l) = {u(S_i), (St_2), ..., (S), (S1)}. (3b)

In the empirical analysis we treat all values of S that fall into the

same cell as equivalent (for the theoretical properties of the test

statistics we require that the cell or 'band' width go to zero at an

appropriate rate). For our purposes, then, a {S_i, S_2,...,St,Si}

history of a firm which survives until period t is one of the Jk possible

values of cl((St_1). Each of these values is a k+1 diiensional cell, and we

denote the set 0f such cells by {c;p=1,... ,J1}. Our testing procedure

is based on estimating the mean and the variance of the regression function

in (2) in the intervals defined by these cells.

'ore precisely let and denote the vectors

= [ = E{St(St_l) = k}
-

and (4)

= [ V Var{StI(St_l) = k}
Now consider a random sample of firms from the population of interest and

let and be the sample analogues of and k (that is the vector of

the sample's cell means and the sample's within cell variances). Finally

let be the vector containing the square root of the nuiber of firms

falling into each cell. Then the central licit theorem and the law of

large numbers imply that

> N(O, diag[Vk])
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while (5)

diag[Vk] diaglvk],

where diag[x] denotes a diagonal Latrix with x on the principal diagonal,

> reads converges in distribution, denotes convergence in

probability, and N(.,.) denotes the .ultivariate norial distribution.

Now consider possible values of = [c(St_l),...,c(St..¾)]. The tes

for weak monotonicity of the regression function in S1 is a test of

whether, for all u [1,...

*

u(s1) u1)
> (u* u(S1)

=

whenever
a1

u2. Similarly the test of whether the realization of S1 do

not effect the regression function is a test of whether for all u

(u* u(S1) ) =
* () =

whenever
u1

sore formally assume that, for each c, the vector is ordered by

the associated values of u(S1). Then each of the weak Lonotoflicity

constraints can be represented as a linear inequality
constraint of the

form r' 2 0, when r' = [0,...O,—1,1,O,...O]. Gathering all such

constraints into the matrix R, the null hypothesis of weak ionotoniCitY

written as
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r 0, (6).

!ote that k is of full row rank, say C. Ve want a test of (6) under the

maintained hypothesis that r IRc.

Using results dating back to Barlow, Bartholemew, Breaner and Brunk

(193), Appendix 3 shows that the difference between an unconstrained

estimate of r, and an estimate constrained to satisfy (6), cam be used to

build a test statistic for the hypothesis in (6), say which,

conditional on r=O, has a limiting distribution given by a weighted average

of chi—square deviates. That is, if we let {V(c)}0 be the required

sequence of weights, then the probability that is greater than any a>0,

say T(a), has a limit (as N or sample size grows large), given by

C
(7) T(a) = > ar=O}

cO V(c)Pr{X a)

Note that, if is the realized value of T1[] provides the p_value

(or the probability of type I error) of a test that would reject the null

if when the true value of r was zero. The p—value when r is any

value greater than zero cannot be larger.

Unfortunately there is no simple way of calculating the values of the

weights, that is of the {V(c)}0, needed to obtain T1[X]. As a result

Appendix 3 develops a simulated estimate of the V(c), say V

[V(1),. ..,V(C)J, and a consistent (as the number of simulations draws grows

large) estimator for the variance—covariance matrix of , say V(V). This

allows us to base our empirical work on estimated p—values and their

variances. That is, each test result given in the next section will
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contain the two numbers,

(8a) T1[] =cO V(c)Pr{X > x} V'I (say),

and

(8b)
= X'V(V)X

The test of the null hypothesis that the regression function in (2)

does not depend on s1 conditional on it being nondecreasing in that

variable is a test of the null hypothesis,

(9) ll: RkO

under the maintained hypothesis given by in (6). The test

statistic for this hypothesis, say is based upon the difference betwe

the estimate that satisfies the nonnegativity constraints in (6) and zero

and Appendix 3 shows it to have a limit distribution which, conditional 0'

the null in (9), is also a weighted average of chi—square deviates. Agai

the weights are difficult to calculate but easy enough to sisiulate.

Letting the simulated values of these weights be V' = [V(i),...,V(C)], an

the observed value of the test statistic be the empirical results for

the test that the regression function does not depend on s1 conditional o

it being non—decreasing in that variable each contain the two nuiribers,
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C -

(lOa) Tz[xJ =cO V(c)Pr{ > x} V'X, (say),

and

(lob) v[Tz[x]] = I'v[v]x.

Ve also compare this sequence of tests, that is the test for weak

montonicity under an unconditional iaintained hypothesis coupled with the

test of the hypothesis that s has no effect on the regression function

conditional on the maintained that any effect is nondecreasing, to the uiore

familiar test of whether s has no effect on the regression function

conditional on an unconstrained maintained hypothesis. The latter test

statistic of the null hypothesis in (9), say has the familiar

chi—square limit distribution with C Degrees of freedom. It can be shown

that

= +

with probability one. So the observed value for the test of no effect of

s1 conditional on an unconstrained maintained, say will be just the sua

of and y. For comparison, our tables will also provide the p—value of

x, T[x] (these can be found in standard tables).

Section 5. The Data and the Emoirical Results

The data used in this study were obtained from the Visconsin

Department of Industry, Labor and Human Relations' (bURR's) records for

unemployment insurance (UI) coverage. The records for the years between

1978 and 1986 (inclusive) were linked together by UI account number by
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David Neuendorf and Ron Shaffer (see Neuendorf and Shaffer, 1987).7

Any private employer hiring at least one worker and paying at least

$1,500 in a quarter is required to file information on the number of

workers, wages, and UI tax contributions to DILIk. For the purposes of our

analysis the first time it does so is treated as the 'birth' of the firm.

Size in that, and in subsequent, years is measured by the number of

employees.

The unit used to match observations over time was the UI account

number. Vhen a new business changes ownership or legal status, DILER

freezes its current account and either creates a new account, or, in the

case of an acquisition, merges the employment information into another

account. Vhen this occurs the old account has a successor code, and a new

account, if created, will have a predecessor code. New accounts which were

a result of a change in legal status (and therefore had a predecessor code)

were separated out and not treated as a part of a birth cohort in this

analysis. Analogously we use the successor code to distinguish between

attrition due to liquidation, and attrition due to mergers (and other

changes in legal status). A major advantage of this type of data is that

it can distinguish between these two sources of 'exit'.

Tables 2 and 3 provide information on the evolution of the size

distribution of the surviving firms from the 1979 birth cohort in retail

and in manufacturing, respectively (recall, from Table 1, that these two

sectors account for 80 percent of the employment in our sample). The row

labelled 'count' gives the number of firms active in the column age. The

row labelled transferring out provides the number of firms which were

active in the column year but transferred out (due to a change in legal

status) before 1986. This source of attrition accounts for about 8Z of the
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1979 cohort in retail trade, and about 4% in manufacturing. This should be

compared to the extent of liquidation (the figures given in the row

labelled mortality rates). Over 60% of the 1979 birth cohort in retail

liquidated before 1986, and the analogous figure in manufacturing was over

50%. Since liquidation was quantitatively so much sore important a source

of attrition in these data, we simply omitted those fins who subsequently

changed ownership from the analysis. (Kowever, almost identical empirical

results are obtained if we include the fins in the analysis until the year

before they transfer out.)

The passive learning model implies that the proportion of surviving

firms with size greater than any I, or the numbers in each row of the body

of the tables, should increase with age (i.e., as we move from left to

right on the table). Ye have 'squared off' the adjacent transitions which

do not satisfy this condition. On the whole, the consistency of the data

with the hypothesis is quite striking — particularly in retail. Of the

seventy—seven possible adjacent transitions, only six are decreasing, and

none of them indicate a fall of more than 1.0%. In manufacturing there are

nine transitions which decrease; two fall by more than i.5%, and two more

by .6%. Given the possibilities for reporting and recording errors in this

type of data (see Neuendorf and Shaffer, 1987), if the null were true, we

would not find these results to be 'surprising'. That is, to us these

results are quite consistent with the implications of passive learning —

indeed amazingly so for retail trade. Note also that, in both sectors, the

means are strictly increasing in age.

A more detailed look at these two tables uncovers some revealing

contrasts between the evolution of the size distributiod in the two

sectors. The size distribution in the initial year is not much different
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between the two sectors; indeed if anything the initial size distribution

is slightly 'larger' in retail trade (retail has the larger initial year

mean, 5.4 vs. 4.9, and a higher percentage of the firms in the largest size

classes). However, by age eight this ordering has turned around. That is,

by age eight the size distribution for manufacturing is stochastically

larger (even in the strict sense) than that in retail (the means are 13.3

vs 8.8, and manufacturing has over twice the fraction of firms with 50 or

more employees). The size distribution is stochastically increasing in age

in both sectors, but it is increasing at a much more rapid rate in

manufacturing.

loreover, the age eight distribution in retail is quite close to the

cross—sectional distribution of all retail firms active in 1978 (or 1986,

see the last two columns of the table). Both have about 3 of their firms

with more than 50 employees (though the cross—sectional distribution still

has the larger mean, 14 vs. 9). In contrast, the age eight distribution in

manufacturing is much smaller than the 1978 cross—sectional distribution in

that sector. In manufacturing the cross—sectional distribution has more

than three times the fraction of firms with more than 50 employees (19.6

vs. 6.5), and a mean which is almost six times that from the age eight

distribution (73.8 vs. 13.3). Thus, if we were to think of the

cross—sectional distribution as an approximation to the limit distribution

(even though formally it is not), then we might conclude that by age eight

the retail cohort had almost reached it, but the manufacturing cohort was

still nowhere near its limit distribution. Indeed, if we also assumed that

eight years was enough time to form a fairly precise posterior about a tine

invariant profitability paramenter, then we would conclude that the data

from retail was supportive of the passive learning model, but the data from
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manufacturing was not.

A more formal check of the consistency of the data with the two models

can be derived from an analysis of the regression for size at age eight on

size in the immediate preceding periods, and size at age one. Both .odels

imply that this function will be weakly increasing in initial size, but the

passe learning model implies that it be strictly increasing in that

variable, and the active learning .odel isplies that it will not.

Tables 4 and 5 provide some evidence on the relevant hypothesis.

Because there were less than half the number of entering firms annually in

manufacturing, we aggregated the 1979 and 1980 Lanufacturing cohorts and

examined the regression for expected sales at age seven of the aggregated

cohort. The cell size cutoffs were set at the beginning of the analysis

and not changed thereafter. For the weak sionotonicity, and the zero

conditional on monotonicity, restrictions, we have presented two sets of

'p—values' for each observed value of the test statistic. The first column

provides the simulated estimates of the true p—values as explained in

Section 4 (the estimated standard errors of these estimates appear in

parentheses below their values). The second column provides the p—values

that would be obtained if the components of the estimator of the vector of

constraints being tested had mutually independent distributions under the

null. In this case the weights required for the calculation of the limit

distribution (see equation 4.7) have an analytic form (see appendix 3), so

there is no need for simulation. Though the independence assumption is

wrong in our (and probably in most) cases, it does provide an easily

calculable approximation to the non—analytic true p-value which might be of

use in (at least) the preliminary stages of analysis if the approximation

produced numbers that were sufficiently close to those we are after.
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Comparing columns (1) and (2) in the next four tables it is clear that in

the cases where the true p—values were low (say less than .10), so that

there was some chance of rejecting the null, the approxilation did produce

a value within .05 of the value we were after.

iote first that none of the tests reject weak ionotonicity at

traditional levels of significance. So both the retail and the

manufacturing data are consistent with the hypothesis that the regression

function is nondecreasing in i' just as both our aodels predict. There

the similarity in the test results on the two data sets ends. In retail it

is clear that if we condition on one lagged value of S, that is on

realizations of S7, and then vary s1, firms with larger s have larger

average sales at age 8. There is really no doubt about this point as the

p—value of the test statistic is essentially zero, so we would reiect the

null at any traditional significance level. The same is true if we

condition on s7 and or on s7, s6 and s5; or even on s7, S6, 65 and s4;

and then vary s. In all these cases realizations of S1 have an

independent effect on the expectation of sales at age eight. This

dependence only starts to become insignificant at five percent significance

levels when we condition on five past sales realizations. Rowever, this

might well be a result of the possibility that, with our limited amount of

data, a fifth order nonparanietric autoregression would provide an adequate

approximation to the expectation for size generated from any stochastic

process — (—niixing or not; we come back to this point below).8

The results for the test of zero conditional on weak sonotonicity are

strikingly different in manufacturing. Table 5 indicates that, in

manufacturing, once we condition on a single lagged value of S, i.e. a

realization of S6, an' differences in s do not effect the expected size at
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age seven. This time there is little doubt about accenting the null as the

p—value is well above .5. loreover, the same results obtain if we

condition instead on and s; or on 6' and 54; or 6' 84 and 83.

Tables 6 and 7 push the nonparametric analysis one step further and

ask what order of Iarkov process provides an adequate nonparametric fit to

the (npectation from the) stochastic process generating size conditional

on survival in retail and in manufacturing. The tests in these tables

follow a pattern analogous to that in Tables 4 and 5. That is, we first

test whether first year size, size in the first two years, . .. , have a

nondecreasing effect conditional on the variables left in the regression

function; and then test whether we can accept a zero effect conditional on

any of the existing effects being nondecreasing. Again the results are

quite clear. Ye never reject weak monotonicity. In retail we need a fifth

order nonpararnetric Iarkov process to adequately approximate the data.

Recall that this is precisely the same 'k' we needed before we could accept

the null that the conditional regression function for size, conditional on

'5t—k' did not depend on In contrast, in manufacturing a third

order nonparametric Iarkov process seems to provide an adequate fit to the

data. That is, in manufacturing there is a distinction between the orders

needed for the —inixing and the Iarkov tests (compare tables 7 and 5).

Table 5 says that conditional on realizations of S6 realizations of S1 do

not affect the regression function. Table 7 says that realizations ofS5,

and of S4, do. The active exploration model explains this difference by

allowing the parameter that determines the size distribution to evolve over

tine in a 'smooth' fashion, so that its value in year 5 will tend to be

closer to its value in year 7, and therefore have a more distinct effect on
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the regression function for 57, than its value in year 1 wjll.

Section 6. Further Imolications of the Emuirical Lesults.

Our empirical results can be suamarized quite succinctly. The

nonparametric implications of the active exploration model are consistent

with the data in manufacturing, while the monparaaetric iaplications of the

passive learning model definitely are not. On the other hand, the

nonparametric implications of the passive learning model seem consistent

with the data in retail trade, while those from the active learning model

do not. These distinctions ought to effect the typeof models we use to

analyze phenomena that depend upon firm—specific uncertainties and

differences in output paths among firms within an industry; phenomena such

as the behavoir of capital markets when there are significant failure

probabilities, or supply responses to environmental and policy changes that

can induce exit.

The nonparametric results ought also to effect how we account for

liquidation induced attrition in the analysis of longitudinal firm—level

data. As an example of the importance of such corrections, consider the

following excerpt from Davis, Galiman, and Rutchins, "Productivity in

American Vhaling: The New Bedford Fleet in the Nineteenth Century."

"The age of the vessel (entered as age and age squared) also

captures the effects of more than a single set of factors.

Elements of wear and tear that influenced productivity, a

technical characteristic that one might hope to capture in the

age variable, are confounded with the consequence of qualitative

differences among survivors; ineffective vessels were transferred
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by their owners to other activities, were condemned at an early

age, or were destroyed in service."

Davis, Gallian and lutchins (1987) p.26.

The quotation illustrates how even one of the most traditional of

varibles (age), in one of the most traditional of settings (productivity

analysis), can have its "structural" effects (as a measure of the likely

extent of physical deterioration) confounded by the self—selection process

induced by the endogeneity of the liquidation decision (it also

demonstrates a remarkable understanding of the environment generating the

data). Davis, Galiman and Rutchins (1987) do indeed find a significant

Dositive first order effect of age on vessel productivity.

To see how the nonparametric implications used to test for the

relevance of alternative models can also be used to separate out the

structural production function coefficients in examples such as this one,

assume that output is a parametric function of inputs, say f(xt, fi), and an

additive disturbance,-say , whose value is not known when input decisions

are made. Then the expectation of output conditional on the current

value of inputs (xt), survival until period t (x. = 1), and the information

set available in t—l is a sum of two functions; the structural

production function, and the expectation of the disturbance conditional on

and it—i' i.e.

E[yIx, =l, J] = f(xt,fi) + E[EtIxt=l,

Now note that both models imply that the decision as to whether to operate

the firm in year t is determined by information available in t—l (i.e. x



56

is measurable with respect to so the last term depends only on

variables in This implies that none of the determinants of E[ytIx,

h—i] are determinants of both, f(.;fi) and E[EtIxt=l, J1]. As a

result, once we determine which of the dynamic models are relevant for the

data at hand, and therefore what variables determine E[tIxt=1, we

can, under mild regularity conditions, obtain a (root n) consistent

asymptotically normal estimator for fi0 (the true value of fi) by minimizing

a distance between t and the sum of f(xt,fi) and a nonparametric estimator

for the 'nuisance' function E[cIx_i=l, J1] (for details see Lobinson,

1988). Note that this method of correcting for the selection process

induced by liquidation behavior is fully consistent with the economic

models generating liquidation behavior and does not either; 1) depend on

the precise functional form of the relevant dynamic stochastic processes;

or 2)require a solution to the computationally difficult problem of finding

the optimal stopping states as a function of the parameters of the model.

If the model with active exploration were relevant then the

distribution of conditional on would be determined by productivity

realizations in the immediately proceeding periods and the amount of

exploratory investment; while, in the passive learning •odel, this

expectation would depend on age and earlier, as well as the immediately

preceeding, productivity realizations. So the selection correction

procedure would differ with the nonparametric implications of the

behavioral model assumed to generate liquidation decisions: implications

which can be checked for their consistency with the data using the framework

outlined above.
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Figure 1: A Beta/Binomial Example
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Table 4. Tests for Mean Independence of the Distribution of St

Conditional on S1,..., Sk, from S1

Data Retail, 1979 Cohort and tB,

Si7a Cutoffut 2,5,10,25,50, 4—

k
C

Weak
Monotonicity b

p—values
(1) (2)

Zero Conditional

on Montonicity b
C x p—values

(1) (2)

Unc

Of

onditio
Zero

nal

p—value

1 17 1.1 1.00 .99

(.00)
17 37.2 .00

(.00)

0 17 38.2 .00

2 22 6.5 .88 .80

(.03)

22 23.9 .00
(.00)

.02 17 30.4 .11

3 25 11.5 .66 .52

(.05)

25 28.0 .00
(.00)

.01 25 39.5 .03

4 22 19.1 .05 .05
(.01)

22 19.1 .04
(.01)

.08 22 38.2 .02

5 19 17.6 .05 .07
(.01)

19 13.6 .12
(.02)

.19 19 31.2 .04

acohort dimensions: number in cohort — 1,275; number of firma reaching

age eight 464.

bTh value in column (1) is a simulated estiaate of the true p—value and

the value just below it is the standard error of this estimate. Ten
simulation draws were used to calculate the estimates of the orthant
probabilities. The value in column (2) is obtained by assuming each
orthant has equal probability (see the explanation in the text).



Table 5. Tests for Mean Independence of the Distribution of St

Conditional on S1,..., Sk, from S1

Data: Manufacturing, Combined 1979 and 1980 Cohorts

for t

Size Cutoffs: 2,5,10,25,50, + —

Weak Zero Conditional Unconditional

k Monotoicity b on Mont8nicity b Zero b
C

XM p—values C x p-values Df
XT p—value

(1) (2) (1) (2)

1 16 8.0 .54 .44 16 3.5 .57 .86 16 11.5 .78

(.06) (.07)

2 25 17.6 .19 .17 25 5.8 .79 .91 25 23.6 .55

(.03) (.03)

3 23 14.3 .28 .27 23 4.9 .81 .92 23 19.3 .67

(.05) (.06)

4 15 10.1 .13 .24 15 5.9 .54 .59 15 16.0 .39

(.02) (.03)

aFi dimensions: number born in cohorts — 737, number of firms

reaching age seven — 353.

b5 note b to Table 4.



Table 6. Markov Tests for Propertiea of Retail Regression Punction
for Size at Age tight

Data: Retail, 1979 Cohorta

Size Cutoffs: 2,5,10,25,50, +

Markov Weak Markov Conditional Unconditional
Order Monotoeicity on Hont5nicity Makovfor C y p—value C x p-value Df

XT p—value
Tests (1) (2) (1) (2)

7 6 13 9.5 .13 .20 13 5.0 .48 .58 13 14.5 .34
(.03) (.05)

7 • 5 23 18.3 .16 .11 23 5.9 .64 .87 23 24.2 .40
(.02) (.05)

7 4 32 18.3 .47 .32 32 96 .00 .00 32 114 .00
(.05) (.00)

7 • 3 38 18.7 .56 .48 38 100 .00 .00 32 118 .00
(.05) (.00)

7 • 2 43 19.7 .76 .56 43 107 .00 .00 43 121 .00
(.03) (.00)

7 • 1 48 20.1 .92 .67 48 149 .00 .00 48 169 .00
(.01) (.00)

8Cohort Dimensions: number in cohort — 1275; number of firns reaching

age eight — 465; number in cells with ) 2 — 291.

bceii Dimensions: possible number — 279,936; number populated 228;
number with > 2 observations — 54.

cSee note b, Table 4.



Table 7. Test! for Properties of Manufacturing aegression Function
for Size at Age Seven

Dntr Mnniifncttiring, Combined 1979 snd 1980 Cohortee

Size Cutoffs: 2,5,10,25,50, + _b

Markov Weak Markov Conditional Unconditional

Order Monotoicity on Hont8iticity Ma5kov
for C

y, p—value C ; p—value Of x p—value
Teats (1) (2) (1) (2)

6 + 5 9 11.9 .02 .04 9 2.0 .65 .75 9 14.0 .12

(.01) (.10)

6 + 4 15 13.3 .09 .10 15 11.7 .07 .16 15 25.1 .05

(.02) (.02)

6 • 3 25 15.5 .24 .27 25 17.6 .11 .17 25 33.1 .13

(.05) (.03)

6 • 2 31 16.1 .42 .42 31 61.3 .00 .00 31 77.4 .00

(.04) (.00)

6 • 1 37 16.3 .66 .59 37 76.0 .00 .00 37 92.3 .00

(.04) (.00)

acohort Dimensions: number of firms — 737; number of firms reaching

age seven — 353; number in cells with ) 2 — 179.

bceii Dimensions: possible number — 46,656; number populated 217;

number with 2 observations 43.

CSee note b, Table 4.



Footnotes

1 See Beckman and Robb, 1985, and the literature cited there, for a
discussion of related issues in static frameworks.

2 lore detailed discussions of tr orderings can be found in lilgrom
(1981), Ross (1983), and larshall and 01km (1979, chapter 18).

3 Twa points should be noted here. First we are ignoring the effect (on
both r(.) and S(.)) of random variables which have the same value for
different individuals at the same point in time, but differ in value over
time (this would have occurred in our example ii prices had varied over
tine). At the cost of complicating the notation we could add a price
process to our problem without changing any of our major results (though
some modifications would have to be made to the procedure that matches the
model to data; see below). Second, it should be noted that the
interpretation of r(.) and S(.) as mappings fro. realizations of , would
only be appropriate for our example if were realized before input
decisions were made (larschak and Andrews, 1944). In this case both output
and inputs can be determined from and the size measure can be either

output produced or inputs purchased. The extreme alternative is to assume

there is no within—period adjustment to 17 (Zeliner, Imenta, and Dreze,
1966), in which case inputs are chosen to maximize 04

E(t) t+i F(Lt+1) —
where Et provides expectations conditional on current information

(and will be defined more precisely below). In this case r(.) and S(.)
would be interpreted as mappings from Et to Etrt+i, and input demand

in period t1 respectively. There are, of course, ineriiediate cases where

within period adjustment is either partial, or more costly (the appropriate
characterization is likely to depend upon the characteristics of the
industry being studied). Ye shall come back to some of the alternatives
below, but for now suffice it to note that the results we focus attention
on do not depend on the timing of the input decision.

4 The following counterexample shows that this would not be the case if we
were to assume only a weaker first order stochastic dominance ordering.
Let 0 = (01,82) with 02 > 01, and consider the following family of

densities (with respect to the counting measure): p(17 = 2102)
=

= 4182) = 1/2, and p(17 lIOi) = (' 3t0) = 1/2.
Clearly, P17(. 02)

> P,7(. Oi). However, if
= 2, the posterior is 0 02 with probability

one, whereas if = 3, the posterior is 0 = with probability one; i.e.,

the posterior for 2 dominates the posterior for i =

5 The assumptions that + is the same known value for all agents, and is
constant over time, are made for expositional convenience. Vhat is

required is that I not increase too rapidly with lore precisely, if



Vt(nt) is the value of continuing in operation at t given that nt=nt (a

more precise definition of this function is given below), then what we need

is that Vt(nt) — tt(nt) be nondecreasing in nt. Of course, the actual

behavior of "exit values" is an empirical question. If the process
generating the exit we are modelling is indeed a liquidation process, and
not a process generated by changes of ownership and continued operation of
the firm in a different guise, the assumptions we require ought not to be

problematic.

6 Just as in our description of the passive leaning model we will assume
here, for expositional simplicity, that input choices are made after the

realization of r, that liquidation values are a constant I, and that there

is no time—specific, firm—invariant process. Further, the formulation
presented here assumes that the conditional distribution of r does not
depend on w, an assunption not required for our results.

7 Ye are grateful to them for granting us access to their data, and for
graciously answering our subsequent queries, lore detail on the data can

be found in the appendix of Neuendorf and Shaffer (1987). Though
multiestablishment firms have a choice as to whether to report as a single,
or as multiple units, the establishments of multiestablishment firms that
reported separately have been merged into single observations. This should
therefore be thought of as firm—level data.

6 Ye have been motivating our two—part testing sequence as a way of
providing additional information on the relevance of alternative models.
Inequality tests were originally motivated as providing more powerful ways
of testing a given null. Table 4 also illustrates this point. Take, for
example, the case where k=2. The p—value in column 2 for acceptance of the
null that realizations of S do not matter under the maintained hypothesis

that any effect of S is non—decreasing, is zero; but the p—value for the

test that S does not matter under the unconstrained maintained hypothesis

(the unconditional zero columns) is a traditionally acceptable .11.

Footnote 2 discussed the possibility that input decisions are either
wholly, or partially, made before the realization of ,, and concluded by
asserting that the various alternatives would not affect the results we
focus on. Table 7 insures this is so for the very special, but important,
case which Jovanovic's (1982) original article was based on. His
assumptions were a special case of the following ones; the process
generating {n} conditional on 0 was i.i.d., the posterior for U had

sufficient statistics (xt, t) with x = ft(xt_i, i) for some and

that no input could be adjusted after any information about was

available. In this case, if input quantities were our size measure, size
in period t is determined by (xti,t) and for a given t, there is a 1:1

correspondence between and x_2. So size is a first order Iarkov



process. This conclusion would be destroyed if so'e, say costly,
adjustments could be made after i were realized, or if there were any

dependence in the process generating {'} conditional on 0. However, if

Jovanovic's restrictions were true, the passive learning model would
satisfy the constraint that the regression for St conditional on S_1,

St_k does not depend on S1 provided k � 1; i.e., it would satisfy the

constraint used to test for the active learning model. On the other hand
Table 7 makes it clear that the stochastic process generatin; size is not
first order Iarkov, so the special case discussed by Jovanovic (1982) is
not relevant.
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AnDendices

The three appendices provide results used in Sections 2, 3, and 4

respectively. Lemmas, equations, etc. are numbered in a separate

consecutive orderring within each appendix.

ApDendix I. Proofs of Results Vsed in Section 2.

Part 1. Theorem 2.7 (existence and lontonicity of the value function)

At each t there exists a unique Vt(.):Nt which provides the value

of continuing in operation assuming optimal behavior in each future period.

is bounded, satisfies (6), and is nondecreasing fl flt; i.e., if 4

4, then V(4) > V(4) [for ntNt, and all t].

The proof proceeds as follows. First it considers the finite horizon

problem in which a firm which remains active until_period T must liquidate

for 4 dollars at T+l. For this problem the value of continuing in

operation from period t (as a function of past ,7—realizations) will be

denoted by V(.): Nt -. R,, and the resulting stopping function by XT(.): Nt

- {o,i). V(.) can be determined by backward recursion from the terminal

year and a stopping policy which dictates liquidation if and only if the

value of continuing in operation is less than I. The implied stopping

function, x(nt), is one if and only if fltfjT {t: 4(4) > i,

> 4,... ,V(n) > I). As T increases V(.) converges (pointwise)

to a limit function, V(.). This limit function is bounded, monotonic in

and satisfies the Bellman condition, i.e. equation 2.6, in the text.

The proof concludes by showing that V(.), and the associated limit



stopping policy, are indeed the solution to the infinite horizon

problem.

Al Lemma P (I4)>P (.14) whenever 4 � 4 (4,4N, and all t)
t+l

Proof Take any zeN. Then P (zlnt) = J p
(zlnt,o)pe(delnt).

'7t+1 17t+1

P (zlnt,O) is nonincreasing in nt by (3.i) and strictly decreasing in 0

by (3.ii), while p0(.1t) is stochastically increasing in yt by (4)

A2 Lemma Fix any T then, V(4) � V(4) whenever 4 > 4 (flt,4,t, and

t � T).

ELQ.c!I The proof is by backward induction on t. Note that

yT(flT) = f(C)P (d(InT)+fiI
1

which is nondecreasing in nT by

ow assume monotonicity at t+l.

yT(flt) = JT(C)P (dc14)
'7t+ 1

� J(C)P (dC14)
'7t+ 1

> fr()P (dl4)

virtue of the monotonicity of r(.), and Al.

Then if 4 > 4

+ fifmax[+,V1(C,4)JP (dC14)
,7t+l

+ flhl[s,vT1(c,nt)]p (dC14)1

+ flf,c[IyT(C,nt)]p (d(14)
=

2



where the inequalities are due to Al, the •onotonicity of r(.), and the

hypothesis of the inductive argunent. [ I

A3 Leiiuna Fix T. Then, V(nt) > V(n) (t Nt, and t � T)

Proof. The proof is again by backward induction on t. For the initial

condition of the inductive argument, note that

%4l(nT) J7(P (dCInT) Jax[I,4(C,nT)]P (dCInT)
17t41

) fi()P (dCInT) + flu = (ST)
1

Assuming the condition is true for a = t+1 we have

VT1(nt)=f(C)p (dCInt)8Jwax[+,VT(,nt)]P (d(jnt)
l7t+1 '7t+l

> Ji(P (d(Int)+flJinax[f,V+i(C,nt)]P (dCInt)V(nt). [

Proof of Theorem 2.7

Lemma A3 insures that for each (t,nt) the 1iit,

Vt(nt) = lim..V(nt),

exists. Let sup,NT(17) [ exists and is finite by virtue of the

compactness of N and the continuity of i(.)]. It is straightforward to

sho that is bounded, uniformly over t, by the constant function

Since boundedness and (weak) uionotonicity are preserved



by limit functions, this insures that Vt(nt) is .onotonic and bounded.

Also

lim..V(nt)

= /7(C)P (dCInt)+fl/Iax[I,Vt+l(,nt))P (dClnt),
t+1

because limT..jmax[+ vT+(c,nt)]p(dclnt)

f ii max [I ,Vl(,nt)] (dIn)

by the Lebesgue dominated convergence theorem, since {max[,VT+l(C,nt)} is

dominated by max(,(1—fi)1i) which is integrable with respect to

P (.Int).
-1

Ve have shown that if and the associated stopping policy, were

optimal, then they would satisfy the conditions of the theorem. Yhat

remains is to show that they are indeed optional. To see this assume, to

the contrary, that there exists an alternative stopping policy, say

where Xr(nT) is one if a firm with , realizations of n' is in

operation in period r and zero otherwise, which generates a value function,

say V(nt), which satisfies, for at least one (t,nt),

(A4) V(nt) - Vt(nt) > > 0.

Note that for any arbitary T



< Et{EfiT[Xt+r(t4T)f(flt+T)+{Xt+r(t4T)_Xt+r_l(tnl)}I+$ i/(1_fi)

(A5)

vT(nt) flT/(1fl) � V(n) + pT(1_p)_1 � +

where vT(.) is the value function that arises when the policy {x,.(•)} is

followed for a T—horizon problem. The first inequality follows from the

fact that current returns are bounded by I, the second from the fact that

V(nt) is the optimum for the T horizon problem, and the third is from A3.

Provided T is chosen to be greater than —tn[f(1—fi)/] / —tnfl, equations A4

and A5 contradict one another.

Part 2. Theorem 2.11 (conditional distributions for

Let t and k be positive intergers with t > k, and (i1,. i) be any

selection of k distinct elements from {1,. . . ,t—1}. Then if

(n ,. .. ,n ) and n = (n ,. ..,n2 ) are arbitrary (il,...ik) histories of

'1 2 '1

rj satisfying n1 > 2' and is defined as in (2.8),

P(.ln1,x=l) >s x=i).

Proof. For any zN and n = or

(A6)
P,7(zln, x=i) x=1, 0) Po(d0l,x1),

where

r (zIn, =1,0) = JP (zIt_1,e)P (dt_hI,xt=1,0)
It '7t



Now use Bayes law to show that for > 4-4,

p(t_1fl1,9)p(4_lfl2, 0) - p(t_1j2,e)p(4lIfl1,o)

= k[p(iI,7t_l,0) p(24,0) — p(n114,°) p(21,t_l,g)] , o,

where the inequality is a trivial consequence of being deteruined by

Since conditioning on ,7tEA = {t: xt(t) = 1} does not affect the

£r—ordering, we have

(A7) P(.Ini,xt 1,0) trw P,7 (.1n2,Xt = 1,0).

Given (A6), (A7) and lemma 2, the theorem requires only that

P0(. I) > P9(. 2) But by lemma 4, this condition is satisfied

provided -

P(I01) .er Pfl(.102).

whenever 01 > 02 Take any Ri > R2' then

P(Ril0i) p(IO2) — p(I02) p(2I01)

1[,7t(' R1I01)
112102) — R2I01) P,7t(d R1102)] >

where the integral runs over those whose indices are in {l,. . . ,t—i}, but

are not in 11'••''k}' and the inequality results from (3.11). [1



Appendix 2. Proofs of kesults Used In Section 3

Part 1. Theorem 3.2 (properties of the active exploration model)

A unique optimal policy and associated value function exist and they

have the following characteristics:

i) V() is bounded and nondecreasing in e'.

ii) The optimal policy, x(J) is bounded, depends only on current , and

is stationary, i.e. for all r

x(J7) = x(&7) = x*(r) � i

iii) There exists a couple, (, ) with, —a & < , such that

= 0 if i {': w " <

iv) There exists a second couple (i,), with —a & a, such

that

V() > + if and only if

and

inf inf_ Pr{J I&o} 1
t



Er.I: By Assumption 3.1, the model has a stationary larkovian structure.

Hence an optimal policy, if one exists, can be chosen from the class of

Iarkov policies [Dynkin and Yushkevich (1975), p. 148]. Existence and

properties (i) and (ii) are an immediate consequence of Theorem 5 of

Blackwell (1965). That is, let UEt() and define an operator T: t-1

pointwise as follows:

(Al) TU(u) max{sup(J R(i,,x)P (di&) + $(&+r)p(rx)), I},
x>O '7 '7

where p. is the density of It is straightforward to show that I is a

monotone contraction operator, so that the banach Fixed Point Theorem [D.R.

Smart (1974), p. 2—3] gives existence of a unique monotone function V:

uniformly bounded, and satisfying V = TV. That V is nondecreasing in

follows from the monotonicity of I-(17) and c(.i) and the dominance properties

of the families IP and Pr (3.l.i, 3.1.ii). As V() is uniformly bounded

both above and below, investment x (s') must also be bounded:

* *
x (s') [O,1. That x () is unique follows from the strict concavity

of the optimand in (Al) in x [Assumption 3.1.iii].

Since the optimal policy solves the pointwise optimization (Al) we

have the first order conditions

(A2) {c() - fi E [V(r) - V(&)] pr(rjx)}.x = 0

{V() .- I}.I1-()] = 0.

To show propertY (iii) we note that x(&) > 0 iff

! \() - V(wY p(rIx)} > c(&)r', and that c() is bounded away fror



zero (3.l.iii). Let = {V—V(i) < } and fl = {JIV(J)-4<e}, where V =

sup V(). These are clearly nonempty since V(i) is monotonic, I =

irif V() = lini V() and V = liii' V(&). If w then all j' < are also

contained in fl, and similarly & fl implies that all " � w are contained

in fl; hence each of these sets contains infinitely many states. Ve will

show that E[V(*r) — V(i)J P(rIx) can be made arbitrarily small in both

sets, implying that investment must optimally cease.

The boundaries, — 1 e and i + 1 fl, for some generally

different c's, will be the highest, respectively — lowest, in those sets

such that E[V(&+r)—V(41)] .p(rx)
<
£i)—.

To complete this argument we

show that the l.h.s. of this expression can be made arbitrarily small on

An identical argument, mutatis mutandus, can be used to show the same

for fl. Note that compact support for IPX, T, [Assumption 3.1.ii] implies

that there exists an such that V& , P{7l\flIx} = 0 Yx � 0, i.e.

the transition probability puts zero weight on states not in fl1. Then

E [V(r)-V( p(rx)} < .

Hence the impact of investment on future expected returns becomes

arbitrarily small as i increases in O, so we can find a boundary above

which no investment will optimally take place. Let the lowest of such

boundaries. Similarly we can find a greatest ai such that x(i) = 0,

which we label .

To show property (iv) we need only note that x(') = 0 implies

P{OO) 1 so that once � . for any t, Vs � t& � i. Since 3.1.i

insures there exists an such that for all , Jr()P,7(dI&)

(1—L) I. for < mm ( , w)



(A3) V(&) = max{J r()P (d 4') fi E V(&+i-)p(rJO), I) = I.
'7 '7 '7 r(O

Let w be the greatest such w at which A3 holds. To show existence of

, let k = {supp T). As P{OIO} = 1, � + k must surely hold since the

probability of transfering to a higher at from any at' > is zero, and the

highest ai potentially achievable from at' � 1 is at' + k. Hence, Vat0

Pr{w1
= 1, and by induction Pr{at � Iat} = 1, where is the

state following t transitions. Therefore

inf{ mi Pr{w<w0}} = 1
t

wo�&

Part 2. Lemma 3.6 (—mixing of the {S} process).

Let be the stochastic process formed from the distribution of

sales conditional on survival and any initial atoc{1,2,. . . ,E}, and be the

c—algebra generated by possible realizations of S, S1,. . . ,S. Then {S}

—mixes at a geometric rate, i.e.

sup{P(E2E1)—P(E2)j, E1 with P(E1) >
0 and E1cI,E2eJ+} � AØ

with < 1.

E.mQI Briefly, the probability space for this process is constructed from

the finite set S = {S:S=S('7), 7cN}, the family of probability measures for

,7, I?, and the Iarkov transition matrix for at, P as follows. The sample

space consists of the set of all possible infinite sequences of elements

from , say cY and the required u—algebra is the smallest c—algebra

containing o5 Let Q be formed from E by dividing its 1th row by 1p1,



(for i = 1,.. .,k) and then deleting its first row and column. Q is the

Iarkov transition matrix for conditional on and survival until

t1. !ote that 3.1.ii together with 3.2 insure that this transition matrix

is irreducible aperiodic (see Billingsley, 1979, chapter 1). The measures

for the alternative sample paths can be computed directly from Q, and

To prove the lemma let S = {S,...,S}. Then it suffices to show

that for any E1J such that P(E1) > 0, and any E2EI

P{(S'cE2)fl(SeE1)}
— p{S ;+rE} P{SE1}I � AT

(Billingsley 1968, section 20). Since both E2 and are finite sets we

can, without loss of generality, assume that both are singletons. Taking

r=x=l for siniplicity, and recalling that S = + k where the

distribution of conditional on depends only on , the first

probability within the absolute value sign can be wriften as

pf(ca — —- S -
S1

= P{u+is+i_i(w+ij)Iui5i_i(wi )''r+1 ' w1=i}
'i "r+l

P{w+1j Iu1=s1i(1=i) ,1=i} P{u1=s1—I(w1=i) Iw1=i}P{uii}

i1 E1 P(s+1-i(i)Ii)
q(T)p(S1_j(W1=i)i)p

where provides the 7-—period transition probabilities from the Q

chain. rRecall that p0 provides the initial —distribution]. Since Q is



irreducible aperiodic it has a unique invariant distribution, say

and

(A6) max
2

— ii �
(i,j)cfl q

(see Billingsley, 1979, sec. 1.8). Using this invariant distribution to

evaluate the unconditional probability that =
5r+1' so that P(S1 =

k * k
=

•E ur+i — i(j)Iw=j)q, noting that P(S = s1)
=

J=1 1=1

and substituting = — q q into (A5) we

have

P{Sa1
n S = —

P{S41
= r+i P{S1 = s1}

Ji
�

k k * k k *

•ql � A0 E E q.
i=1 j=1

' i=1 j=1

where the last inequality follows from (A6). [1

Appendix 3. The Test Statistics1

Ve begin by developing a test for the null hypothesis that

The reader interested in more detail on the testing procedures used in
this section should consult Barlow et. al. (1972), or the more recent

econometric literature on testing subject to inequality constraints
which begins with the work of Gourieroux, Folly, and lonfort (1982).

Golberger's (1987) exposition is particularly clear.



ll: RpK= r

where B. has full row rank, say C, under the maintained hypothesis that

rCRC. To this end we consider the following two estimators for r

(A2a) r

(A2b) r1 = arg mm [(r-r)' R{Vk]_1U(r_r)]
r>O

r is an 'unconstrained' estimator of r obtained from substituting sample

for population means. rk is a 'constrained' estimator, an estimator forced

to satisfy the inequality constraint of the null. Subject to that

constraint, it is obtained by minimizing a quadratic form in (r—r), where

the weighting matrix, R[Vk]_lR, is chosen to be the estimated

variance—covariance of r under the hypothesis that = o.

Since the quadratic form in (A2b) is nonnegative and equal to zero if

r = r, if r > 0, r = r. Figure (4) illustrates possible solutions for r

in the case where C = 2. The ellipsoids represent sets of r which produce

a constant (r—r)'B.[V R'(r—r) value.

r2) 2

l,r2)1



If

(A3)
= mm (r_r)K[Vk]_lk(r_r),
r>O

then large realized values of this statistic are evidence against E.

Indeed, Barlow, Bartholemew, Bremner, and Brunk (1972) have shown that for

all a ) 0

C

(A4a) T(a) = Pr{ > ajr=O} - E V(c)Pr{x > a}
c=0

as sample size grows large, where

(A4b) (c) Pr{r has exactly c zero components r=O},

and denotes a chi—square deviate with precisely c degrees of freedom

(c=O,.. . ,C). Thus, if is the realized value of T1[] provides the

'p—value" (or the probability of type I error) of a test that would reject

the null if when the true value of r was zero. The p—value when r

is any value greater than zero cannot be larger.

Unfortunately, the orthant probabilities, that is the values of

needed to obtain (A4a), are difficult to calculate. As a result

we obtain simulated estimates of their values, say ' and provide a

simulated estimate of T1(.) say T1, where

(A5) T11a1 = E Ii' Pr{X2>a} = V'X
c=0

C C

and

[vo,...,vci, whereas X' = > a},...,Pr{x > a}1.



Since the can be regarded as cell means from repeated draws from a

multinomial distribution (where NSII, the nuiber of simulations, is the

number of draws), the variance of F1[a] about its expected value of T1[a]

can be obtained from the formula for the variance of a u1tinoiial as;

(A6) Var[T1(a)J = X'[diag V—VV']I(NSII1

So, along with T1(a), we provide an estimate of its variance obtained from

substituting the simulated for the actual values of V in this variance

formula.

Next we need a test of

(A7) R: kkO

under the maintained hypothesis given by in (Al). Once again in

(A2b) will serve as our estimate of r given R, while under the estimate

of r is zero (thus, in Figure 4, the ellipsoids bring us from r to the

estimator which abides by li, while the dashed lines bring us from the

latter to the estimator which abides by B). A .easure of the distance

between the estimator obtained conditional on the null and the estimator

which is only constrained to satisfy the iaintained hypothesis is given by

(A8)
= rIE[Vk]_lRrI,

Once again, for all a > 0



C-
(A9a) T(a) = Pr{ > air = 0) E V(c)Pr{X > a}

Cr0

as sample size grows large, where, in this case

(A9b) V(c) = Pr{r1 has exactly c positive coaponentsr=0}

and 4 is defined as above (c = 0,1,.. .,C). Letting X°Z be the observed

value of we will provide estimates of Tz[x], say Tz{x] (obtained from

simulating the V(c)), together with an estimate of the variance of Tz[X1

To compare this sequence of tests, that is the test for weak

monotonicity under an unconditional maintained hypothesis coupled with the

test of the hypothesis that s1 has no effect on the regression function

conditional on the maintained that any effect is nondecreasing, to the more

familiar direct test of whether has no effect on the regression function

conditional on an unconstrained maintained hypothesis, note that one test

of the latter would check whether

= rR[VkilRr

were close to zero. Under the unconstrained maintained hypothesis x has

the familiar chi—square distribution with C degrees of freedom. Since the

properties of Lagrange multipliers insure that

[r_r]R[Vk]—lRrI 0

we have from (A2b) arid (A8), that



= x2 +

with probability one.


