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I. Introduction

Estimating the term structure of volatility has, in the past, focused on option
implied volatility. For instance, Stein (1989) estimated the term structure of
volatility using an autoregressive volatility model derived from implied
volatilities. He found the actual sensitivity of medium term to short term implieds
was greater than the estimated sensitivity from the forecast term structure, and
concluded that medium term implied volatilities overreact to information. Diz
and Finucane (1993) rejected the overreaction hypothesis using different
estimation techniques. They found some evidence for underreaction of medium

term implieds.

Heynen et. al. (1994) estimated the term structure of volatility by comparing how
well elasticity parameters generated by autoregressive volatility (ARV), GARCH,
and EGARCH models explained the relationship between long term and short
term implied variances for Philips and the EOE index. The EGARCH model was
found to best model this relationship, and, thus to represent the best estimate of
the term structure of volatility. Xu and Taylor (1994) used regression and
Kalman filter techniques to fit a term structure model to the time series of

forward implied variances for currency options.

Since we cannot observe actual market volatility, tests of the performance of the
term structure implied by different volatility models necessarily take an indirect
form. The previous papers use the implied volatility of different maturity options
as point estimates of the term structure of average volatility. This paper takes a
different approach, using hedging tests as the basis for comparing volatility

models. Because option price changes are an observable feature, and their
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behavior is partly determined by changes in underlying asset's volatility, it is

natural to relate hedging effectiveness to the accuracy of the volatility models.

In our tests, a medium term option position (call, put or straddle) is held and
hedged with other assets. First, an appropriate amount of the most similar short
term position is sold to hedge the volatility sensitivity of the medium term
position. Then, an appropriate amount (delta) of the underlying stock is
purchased or sold to eliminate first order price risk. Of course, the key to a
successful hedging program is determination of these 'appropriate' amounts,
which correspond to the hedging ratios derived from different assumptions about

the volatility process.

Hedging volatility in a pure Black-Scholes world is not necessary, since volatility
is assumed to be constant over the life of the option. However, a natural
generalization of BS is to consider the effect of a unit change in volatility on the
option price. To eliminate the volatility sensitivity of an option position, a vega

hedge is formed by selling a second option.

An alternative hedge that can be constructed with a second option is a gamma
hedge, which eliminates risk associated with non-linearity of the option price
response to changes in the underlying price. This non-linearity is also known as
convexity and optionality. Analogous hedges can be constructed under various

models of stochastic volatility.

Clearly, the optimal number of short term options to short per medium term
option, the vega hedge ratio, depends on sensitivity of the options prices to
volatilities and on the estimated term structure of volatility. If movements in a

state variable affect primarily short volatilities rather than long volatilities, then
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it will take relatively few short options to hedge this risk. Thus, the accuracy of
the forecast term structure of volatility is a key determinant of vega hedging

performance.

We also test efficiency in the options market by searching for trading strategies
that earn excess profits. The ability to earn excess profits is an indicator of
inefficiency and thus mispricing. We are concerned with mispricing because
hedging ratios depend on a correct pricing formula. Deviations from this formula
will diminish hedging performance and may impair comparisons of volatility
models. Our tests of inefficiency focus on time spreads and jelly rolls, which are
positions whose prices are sensitive to the term structure of volatility. We also

consider straddles, which are volatility sensitive portfolios.

This paper is structured as follows. Section II presents a general method for
option pricing under stochastic volatility, and Section III presents a general
method for hedging. Section IV applies these methods to several stochastic
volatility models. In Section V, the stochastic volatility models are estimated and
their hedging performance is tested. Section VI explores the effects of

mispricing, and Section VII concludes the study.
I1. Pricing options in a stochastic volatility environment

Pricing options in a stochastic volatility environment is not a solved problem, at
least in practice. Theoretically, the value of a European style put option which

eliminates arbitrage possibilities can be found from -

(1) P =E°[max(K-5,,0)]
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where the expectation is taken with respect to the risk-neutral distribution as of
time t. In the equation, K is the strike price, S is the underlying price and T is the
expiration date. The risk-free rate of interest is taken to be zero for ease of
notation. This expression is only useful once the risk-free conditional distribution

is specified, and this paper can be thought of as seeking useful parameterizations.

When the underlying asset follows a geometric Brownian motion with constant
volatility, then it is well known that a solution to (1) is the Black-Scholes (1973)

formula which can be written as

(2) P, = BS(0.S,.T)

In this case, o is the constant volatility which is also the average daily volatility
over the life of the option. Hull and White (1987) point out that if volatility is
stochastic and independent of the stock price path, then the expectation

conditional on average volatility, can be taken conditionally in (1) to get

(3) P, = E’{E[max(K - 5;,0)] o} = E*{BS(0.5,.T)}

as long as S, is conditionally lognormal. For at-the-money options, the Black-
Scholes formula is approximately linear in volatility. Therefore, a striking

~ simplification of Hull and White is the Black-Scholes Plug-in (BSP) given as

4) P, = BSP(E’(0),S,T)

Various options pricing formulas result from various assumptions about the
process of the volatility. In each case however, it is natural to suppose that the

most recent stock price S,, which is known, would have potential value in
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forecasting average volatility over the life of an option. Thus, the optimal

forecast will be expressed as a function the stock price.

(5 P, = BSP(3(S),S,.T)

Hedging parameters are then derived by differentiating BSP with respect to the
volatility model's random variables as well as the familiar variables in BS. An
approach that does not rely on the plug-in formulation can be implemented
directly from (1) using simulation methods and particular specifications of the

risk-neutral distribution.
III. Hedging options in a stochastic volatility environment

In order to hedge option portfolios that are held for discrete periods of time,
where this period is long enough that volatility news is observed, but short
enough so that a dynamic hedge is impractical, it is useful to develop a discrete
time hedging formula. A one day holding period is used for this application.
When a day passes, the option value will change in part because the underlying
asset price changes and in part because the volatility changes. Changes due solely

to the passage of time or changes in interest rates will be ignored.

To approximate the change in the option value, a Taylor series expansion is
typically used. In this case, it is natural to think of expanding the option price at
tomorrow's close as a function of tomorrow's state variables. Evaluating the
derivatives of (2) at today's values of the state variables, gives the familiar Black-

Scholes delta, gamma, and vega hedge parameters for constant volatility:
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In a stochastic volatility environment, the chain rule can be used to develop
extended hedge parameters. These will depend upon the form of the stochastic
volatility process and will be combinations of the BS delta, gamma, vega, and
derivatives of the volatility process. For example, the stochastic volatility (SV)
delta is given by

~nD

1 co
(7) Asv - Aas + Aas'ég_' 5S;+1s Py

For all the volatility processes used here, the first derivative of variance with
respect to price is zero, since both positive and negative price movements
increase volatility equally. However, models such as the EGARCH (Nelson, 1991)
and AGARCH will have non-zero first derivatives and will therefore affect the
deltas.

More interestingly, the gammas are potentially very different in a stochastic

volatility environment in which volatility depends on the underlying stock price.

1 7*6*

(8) Ly = Dps + Ags %5SZH15M=S'
The stochastic volatility gamma effectively incorporates both a volatility hedge

and a hedge against non-linear price response, since it includes both BS vega and

BS gamma.
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For volatility processes in which the relationship between price and volatility
shocks is ignored, such as the BS and ARV models, the stochastic volatility
gamma will have the same form as the BS gamma. The appropriate volatility
hedge parameter is BS vega multiplied by the derivative of volatility with respect
to the shock specific to the volatility process. The multiplier relates the change in

volatility today to the change in average volatility.

For the BS model, vega is derived by considering a permanent change in the level
of volatility which is deterministic, so the effect on the average volatility is the
same as the effect on the contemporaneous volatility. Thus, the multiplier is one.
For the ARV model, the shock considered directly effects the one day volatility
forecast and has a declining effect on subsequent forecasts. So, the effect on
average expected volatility is less than the effect on contemporaneous volatility,

and the multiplier is less than one.

Hedging an option position entails reducing exposure to various risk factors,
which correspond to random variables. In general, the most important risk
factors are considered to be risk due to underlying price shocks, i.e. delta and
gamma risk, and risk due to a volatility shock, i.e. vega risk. Exposure to the risk
factors is measured using the hedging parameters, so that a hedge portfolio has

zero exposure to some or all of these factors.

To create a delta-neutral hedge portfolio, it is necessary to short A of the
underlying asset, where A is the delta hedge ratio. Since a put has a negative
delta, the hedge involves a long position in the underlying asset. A straddle will
typically have a delta close to zero already; and therefore, only small amounts of

the underlying asset will be added to the portfolio.
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To create a vega-neutral or gamma-neutral hedge portfolio, a second option
contract is required, since the underlying asset has a vega and gamma of zero.
For the vega hedge, the hedge portfolio is short A,/A, contracts of the second
option, while the gamma hedge portfolio is short I",/T",. contracts of the second
option. In each case, the hedge ratio is the number of contracts of the second

option which are sold to hedge the first.

To compare the effectiveness of various hedging strategies, and thus the accuracy
of the underlying volatility models, a series of hedged portfolios will be
constructed based upon a particular theory of how volatility hedging should be
accomplished. Each position will be held for one day. The returns on this series
of portfolios will then be examined for effectiveness in hedging risks. The

simplest measure of success is simply the volatility of the hedge portfolio.

In addition, the hedge portfolio returns will be regressed on the underlying
return and return squared to see whether these risk factors are effectively
eliminated. Finally the portfolio returns will be checked for serial correlation and
ARCH. Any finding of serial correlation suggests a mispricing of the assets, but
there is no reason to suspect these portfolios would have constant variances, so

the ARCH test is merely descriptive.

IV. Stochastic volatility models

Four models of the term structure of volatility are examined in this paper: the
autoregressive volatility model (ARV) which infers the term structure from
implied volatilities, the GARCH(1,1) model, GARCH components model, and the

Black-Scholes model which assumes that the term structure of volatility is



Engle and Rosenberg
-10-

deterministic and flat. These models differ in structure and in the type of shocks
they allow to drive the volatility process. The differences between the models
result in different hedge ratios, and provide a basis for comparisons using

hedging tests. Details about each of the models are in Appendix A.

First, we will consider the ARV model. This is an approximation of what
sophisticated traders use on Wall Street and has been described by Stein (1989)
and Heynen, Kemna, and Vorst (1994). Let o, be the implied volatility of the
first option contract on day t and o, the implied volatility of the second contract

which is being used for hedging. These can be related by a regression:
) oy = Aoy, +u+1,

in which A is estimated by least squares and is interpreted as the partial derivative
of the first variance with respect to the second variance. In Stein (1989), the first
contract is a medium term option, the second is a short term option, and A is the
elasticity of medium term average volatility with respect to short term average
volatility. Because of the substantial serial correlation in n, this can perhaps be

better estimated in differenced form:

(10) Aol = AAc) + 17,

This A can be then used to construct optimal vega hedge ratios for options under
ARV. In this case, the optimal number of short term options to sell for each
medium term option held is A(A,/A,)(55/c,). The inclusion of A is due to the fact
that medium term volatility moves by A for a unit change in short term average

volatility. The ratio of the standard deviations is due to the fact that the volatility
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process is parameterized in variance, while the state variable in BSP is in

standard deviations.

Since lambda refers only to one pair of maturities, it is not generally applicable.
Because each of these volatilities, o2, is the average of the volatilities for the
remaining life of an option, it is natural to reparameterize the model in terms of
the one day volatility parameter to arrive at the more familiar specification for
an ARV model.

(11) ol=p(o], - 0)+ o+,

where o is the long run constant variance, so that

_ sl
(12) c)'f,:a)+ul ! (Gz—w)

(-p) T," "

and the lambda for contracts with maturity T, and T, is:

CT,la-pM]

(13) AIZI_EL(I—PT’)J

This allows time variation in the hedge ratio due to the maturities of the
contracts. Estimating p requires backing it out from (13), where a particular A is
estimated from the data on implieds. Now, ARV vegas can be computed by
multiplying BS vega evaluated implied volatility by the derivative of implied
volatility with respect to a volatility shock at time t. Notice that there is no

historical data on the underlying asset used in this procedure.
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In this case, the term structure of volatility forecasts is upward or downward
sloping depending on the level of today's volatility compared to the long term
average. And, the steepness of the term structure is determined by the mean

reversion parameter p.

In contrast to the ARV model, the GARCH(1,1) model (Bollerslev, 1986) uses
historical data from the underlying asset to estimate the process of volatility. The
GARCH model can be expressed as

(14) ol=w+a(el,-w)+p(c],~ o)

where g€ = (S§/S,,-1), o2 is the one day volatility, and ® is the long run volatility.
For this model, multistep forecasts are easily computed from the one step

conditional variances. The average variance from t until T, is given by

) 1l1- "o
(15) o,=0 +-771-t1—(_2%[% (G,H—co)

This model, like the ARV model, implies a monotonic upward or downwards

sloping term structure which mean-reverts at a rate alpha plus beta.

The GARCH components model was proposed by Engle and Lee (1993) and
allows more complex lag distributions. It models volatility as mean reverting to a
long run component of volatility, but this long run component itself mean reverts

to a constant level. The process for volatility can be written as:

0:2 =q,+ a(atz—l - ql)+ﬂ(alz—l - ql)

16)
( g, =0 +p(q_, ~o)+(el, - ,)
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where q is the long run component which mean reverts to © at rate p, while
instantaneous volatility ¢ mean reverts to q at a rate o+f. This term structure is
not necessarily monotonic since the day ahead, trend, and long term forecast all
influence the n-step ahead forecasts. The forecast of the average volatility from t

to T; is now given by:

1li-(a+p)" 1, 1F T

TIL I—a-B J( 1+1 qm -

(17) ol=w+— -

- )

GARCH gammas are computed by taking the derivatives of (15) and (17) and
substituting into (8). Since these derivatives are taken with respect to S, ,, these
formulas are derived by first advancing time one day further, and then

recognizing that there are only T-1 days remaining in the contract.

To better understand the hedging ratios derived from these models, consider
hedging the volatility sensitivity of medium term at-the-money call with 30 days
to maturity with a short term at-the-money call with 10 days to maturity.
Hedging volatility in a generalized Black-Scholes model requires a BS vega
hedge. This hedge shorts 1.73 of the short term contracts for each medium term
contract. A hedge ratio greater than one is counterintuitive but reflects the
increase in vega with maturity. This corresponds to an experiment where
volatility is changed once and for all, and therefore has a larger impact on
longer-lived options. Figure 1 illustrates that the term structure of BS vega is

upward sloping.

To hedge the non-linear response to a price change, the BS gamma hedge is used.
The hedge ratio is .57 indicating just over half a short term contract be shorted
for each medium term contract. This is intuitive since the second derivative of the

current stock price has dramatically reduced impact over longer horizons. As
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shown in Figure 2, for at-the-money options, the term structure of BS gamma is

downward sloping.

In the ARV model, the effect of price shocks on volatility is ignored, so the
stochastic vega hedge is used. The vega multiplier incorporates mean reversion in
volatility, which somewhat counteracts the rise in vega with maturity. For this
example and the estimated ARV model, the vega hedge ratio is .99 requiring a

one-for-one hedge strategy.

Using GARCH models, the volatility hedge is formed using stochastic gamma
hedge ratios, since volatility changes respond to underlying price changes. In this
example, the GARCH(1,1) gamma hedge ratio is .90, while the GARCH
components gamma hedge ratio is .78. Since these hedge ratios are approximately
linear combinations of the BS gamma and BS vega, they lie between these
extremes. The shape of the term structure and the persistence of shocks
determines how these are weighted. In general, if only short term variances are
sensitive to volatility shocks, then the weights will give more emphasis to the BS

gamma. If the process is IGARCH, then more weight will be given to BS vega.

V. Hedging test results

We compare the term structures of the four volatility models by constructing
hedges for medium term option positions using short term positions and the
underlying asset. Since accuracy of the hedging ratios depends on the forecast
term structure of volatility, we expect that the most effective hedges will be

generated by the best volatility model.
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This paper uses daily data for the nearest-to-the-money Standard and Poor's 500
Index put and call option with closest and next-closest maturities. The data was
gathered by Chicago Board Options Exchange and covers the period October
1985 through February 1992. Only the 654 data points for which option prices
are available for the medium and short term calls and puts are included in the
analysis. Options that are further than five percent from the money are excluded.
See Table 1 for details.

Estimating the volatility models

The first step in the testing procedure was estimation of the stochastic volatility
models. See Table 2 for details. The ARV model was estimated using an OLS
regression of differenced implied medium term variance on the differenced
implied short term variance. The lambda from this regression, .54 ,implies a rho
of .93, assuming that the medium term option has 37 days to maturity and the
short term option 13. Diz and Finucane use maximum likelihood estimation to

arrive at similar results for S&P100 implieds.

From the implieds, there is strong evidence for mean reversion in volatility. The
change in medium term implied volatility is a fraction of the change in the short
term implied. Also, short term implied variances and their first differences are
more volatile than for medium term. That is, the volatility of volatility is
declining with maturity. This is consistent with raw data for option prices, which
indicates that short term option portfolios are substantially more volatile than

medium term portfolios.

The GARCH(1,1) and GARCH components models are estimated using maximum
likelihood estimation. The GARCH(1,1) model assumes an underlying normal
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density, and the components model assumes that the underlying density is
Student's-t. The GARCH decay parameter is .97, which implies mean reversion in
volatility and a declining volatility of volatility. The components model also

exhibits this pattern.

The BS hedges use the one step ahead GARCH(1,1) forecast as the estimate of
future volatility at all dates. Even if there are no volatility shocks, it is reasonable
to update the volatility estimates daily using the most current information. The
original BS model assumes that volatility is deterministic and constant over the
life of the option. However, to investigate volatility hedges under BS, we consider

the effect of a permanent change in the level of volatility.

Using these models, it is straightforward to estimate hedge ratios. Calculating
average hedge ratios generated by the models over the sample period gives a
clearer picture of the model differences. For near-the-money call positions, all
average hedge ratios are less than one except for the BS and ARV vega hedges.
This is due to the strong upward slope of the vega term structure. In addition, the
slope of the term structure of hedge ratios flattens for all models except the BS
and ARV. The BS gamma hedge and the GARCH components hedge have the
lowest hedge parameters and are also closest to the empirical best hedge

parameters. Details are in Table 3.
Hedging tests
The hedging tests are implemented as follows. Each trading day, three one

hundred dollar portfolios are purchased. One contains medium term calls, one

medium term puts, and one medium term 1:1 straddles. Then, hedge ratios are
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calculated and hedge portfolios created based on the appropriate formula from

each stochastic volatility model.

For tests of the ARV and BS models, each portfolio is vega hedged by selling the
appropriate number of short term positions. For tests of the GARCH(1,1),
GARCH components model, and BS model, each portfolio is gamma hedged by
selling the appropriate number of short term options. The short contract is
designed to match the long contract, so that when long calls are being hedged, a
short call is sold with the same strike. The same is true for puts and straddles.
Finally, the entire portfolio is delta hedged with the composite delta. Each
portfolio is held for one day and then sold. Price differences are calculated, and

new positions established.

At the end of the analysis, the hedging effectiveness is calculated using the
standard deviation of realized price changes for each hedge portfolio. Also, the
best ex-post hedge portfolio is constructed by regressing the medium term calls,
puts, and straddles on the underlying asset and the matching short term position.
While the ex-post portfolio is unattainable in practice, it indicates reasonable
average values for the hedge parameters, although there is no reason why it

should not be dominated by a time-varying hedge ratio.

A number of conclusions can be drawn from the data. See Table 4 for details.
Hedging with the underlying index, i.e. delta hedging, reduces the risk of the
option positions by about 50% for the medium term calls and puts, but by a
negligible amount for the straddle. This is expected since the straddle deltas are
near zero. Hedging with a short term option position further reduces risk by
about 4-12% using the best hedging ratios. The models performed best in hedging
straddles, followed by puts, and then calls.
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Hedging performance can be ranked in terms of the average hedge ratio, with the
models that generate the lowest hedge ratios doing best. The minimum risk
hedges were generated by the BS delta-gamma hedge. It is important to note that
this is not a volatility hedge; rather, it is a hedge against the non-linear option
price response associated with large moves in the underlying price. If the BS
model of volatility were correct, then a BS delta-vega hedge would also improve
upon a delta hedge, by reducing the risk due to volatility shocks. In fact, the
delta-vega hedges for both of the models in which volatility shocks ignore price
information, the BS and ARV models, have significantly inferior performance
compared to the delta hedge.

The second best hedging performance, and the best volatility hedging, was from
the GARCH components delta-gamma hedge. It reduced risk over the delta hedge
by 0%, 5%, and 8% for calls, puts, and straddles. Its success may be due its
flexible parameterization of the term structure of volatility. The GARCH(1,1)
delta-gamma hedge did not improve on the delta hedge for calls, but reduced risk
by 3% and 5% for puts and straddles. This provides evidence that GARCH
models of volatility are useful in hedging the volatility sensitivity of options

positions.

A perfectly hedged portfolio would have no structure in its price changes. None
of the hedge portfolios are able to attain this goal. However, the price changes for
hedge portfolios constructed using BS and GARCH components delta and gamma
are uncorrelated with the index price change and square. No model consistently

generates hedge price changes free of autocorrelation and heteroscedasticity.

Interpretation of the results
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It is rather surprising that the best overall hedge is the BS delta-gamma hedge.
This suggests that volatility should be treated as deterministic and constant over
the life of the option, and that the relationship between price and volatility shocks
can be safely ignored in hedging. In constrast, evidence from the BS delta-vega
hedge indicates that if there are volatility shocks, they are not effectively hedged

under the BS assumptions.

[s it possible that we have considered the wrong stochastic volatility models to
generate hedging ratios? While this is probably true to some degree, it will not
resolve this paradox. Any stochastic volatility process that depends on price
changes will add some vega to the BS gamma and will generally give too large a
hedge ratio over the sample period. Only if movements in short term volatility
are systematically reversed after the short term option expires can the hedge ratio

be reduced; this seems highly implausible as a continuing process.

Another potential explanation is that the Black-Scholes Plug-in approach to option
pricing systematically overestimates hedge ratios. To examine this possibility, we
revert to the basic option pricing model in equation (1) and simulate the risk-
neutral terminal distribution under several assumptions. In particular, this
distribution is simulated under the GARCH(1,1) and GARCH component
processes estimated in this paper. We use a numerical approach to estimate the

GARCH gamma without using the Black-Scholes formula.

The finite difference method is used to estimate the GARCH gammas, using
simulated option prices. Standardized shocks are drawn from a Student's-t
distribution with 6 degrees of freedom to represent the leptokurtosis in the

standardized residuals from the volatility models. These are generated for 40
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days with 10,000 replications, and option prices are calculated as the expected
payoff from this risk-neutral distribution. The simulation is then restarted with

the same random numbers and S, increased and decreased by .5%. The three

option prices with the same strike and maturity are used to estimate gamma.

It appears that the problem with the hedge ratios is not a problem with the option
pricing formulation, at least for these at-the-money options. The simulated
GARCH gammas are very close to the BSP values and much higher than the BS
gammas. Even the GARCH component model with leverage, which is simulated
with the same persistence as the component model, has only a slightly lower
hedge ratio. There is no clear definition of the BSP for this case, as the function
is non-differentiable. See Table 3. We consider the possibility is that the options

are mispriced in the next section.
VI. Option pricing tests

Another explanation for the effectiveness of the BS delta-gamma hedge compared
to stochastic volatility alternatives is mispricing in the S&P500 index options
market. A systematic overreaction of short maturity options to news would make
them excessively variable and would make the low hedge ratio observed in our
sample optimal. Mispricing may be in the market, or it may be due to data

errors. In either case, the optimal hedge ratios may be different than those
derived from BSP.

We test for mispricing by searching for trading strategies that earn excess profits,
using a methodology similar to Noh, Engle, and Kane (1994) If the options
market is not efficient in that it does not incorporate all available volatility

information into current prices, then it may be possible to earn excess profits by
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using alternative volatility forecasts. The trading strategy we use is to compare
stochastic volatility model option prices to market prices, buying options when
model prices are below market prices and selling in the opposite situation. At the
end of each day, a position is established, and it is sold at the end of the following
day. If the market prices the next day move in the direction of the model prices,

the model earns a profit. Otherwise, it has a loss.

To focus on the impact of mispricing on the hedging tests used in the previous
section, we select option positions that are sensitive to the term structure of
volatility. These positions are 1:1 call time spreads, 1:1 put time spreads, and a
jelly roll. The time spreads consist of a medium term at-the-money option held
long and a short term at-the-money option held short. The jelly roll consists of a
1:1 call time spread held long and a 1:1 put time spread held short. As a
comparison to Noh et. al. (1994), we also test two volatility sensitive positions:

short term at-the-money straddles and medium term at-the-money straddles.

The forecast volatilities used in the pricing tests are from the GARCH(1,1)
model, the GARCH components model, and implicitly, the ARV model. The
GARCH(1,1) model is used to generate forecasts of average volatility of the life
of the option and the one-step ahead forecast The GARCH components model
forecasts of average volatility of the life of the option are also used. The ARV
model cannot be explicitly tested, since it implies that the prices derived from
implied volatility are the correct prices. Of course, this will result in no trades,
since model prices will be equal to market prices by definition. The ARV model
is taken to imply a strategy of always buying one position. Of course, it is just as
sensible to consider it as an always sell strategy, or probably even more
reasonable is to use forecasts derived from an implied volatility regression as in

Harvey and Whaley (1992).
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The first part of Table 5 shows the average profits and standard deviation of
profits for each of the models. It is noteworthy that the 'Always buy' position
earns trading profits that are not statistically different from zero at the .01
percent level for the term structure sensitive portfolios, but the trading profits
are significantly negative for the volatility sensitive portfolios. This indicates that
consistently selling straddles was a profitable strategy over the period, implying
that the market volatility forecasts were too high on average, while the market

term structure of volatilities was not biased in this way.

The GARCH forecasts earn excess profits for all the term structure sensitive
positions, while the ARV model, which uses the market forecasts, earns zero
profits. This indicates that there may be inefficiency in the market's processing of
information to forecast the term structure of volatility. For the call time spreads,
the models earn an average profit of about .16 points per position with a standard
deviation of about 1 point. One point is equal to one hundred dollars. The profits
are slightly higher and the volatility of price changes is lower for the put time
spreads. The average prices of the call time spreads are about 4.3 points

compared to 3.4 for the puts.

All of the models are predominantly option sellers as shown in the Summary of
Trading Signals from Table 5. Each model, other than ARV, chooses to sell
positions at least 80% of the time. This indicates that overall, the models find
time spreads, jelly rolls, and straddles to be overpriced. In fact, all of the models,
except the ARV model, are able to earn profits significantly greater than zero on

sales of these positions.
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These tests reveal that a number of trading strategies based on alternative
volatility forecasts are profitable over the sample period. Even a simple sell and
hold strategy generates excess profits for straddles. This evidence is consistent
with mispricing, which may explain why short term option prices are more

variable than expected using the stochastic volatility models.

These findings are also consistent with previous studies. Noh et. al. (1994), which
uses a portion of the same data set, finds substantial evidence that GARCH models
can profitably forecast when to be short or long at-the-money straddles. Diz and
Finucane (1993) find evidence for short-term overreaction of implieds, which

indicates mispricing.
VII. Conclusions

This paper provides a methodology for testing the term structure of volatility
implied by stochastic volatility models, and implements it to analyze the term
structure of S&P500 index volatility. Hedging tests indicate that a BS delta-
gamma hedge is most effective, followed by a GARCH components delta-gamma
hedge, which is the most effective volatility hedge. Volatility hedges that ignore
the effects of price shocks on volatility, the ARV and BS delta-vega hedges, are
ineffective. Mispricing in the option market during the sample period may

explain the superiority of the BS delta-gamma hedge in our tests.
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APPENDIX A.

Stochastic volatility model
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Elasticity of medium term average standard deviation with respect to short term

average standard deviation
T, | =
arvia = L1 P 153..(T)
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GARCHcomp: same as GARCH(1,1) but with different 2d derivative
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Table 1 - Summary of Options Data

Data gathered by the Chicago Board Options Exchange, Daily, Oct. 1987-Feb. 1992
Nearest-to-the-money options for which current and next day's price are available are used in the study

Year 1986 1987* 1988 1989 1990 1991 1992
Data Points
Availabie 36 88 68 119 140 180 23
“Only 5 points are used from Oct. 1987, these are before Oct. 14
Medium Term |Short Term Medium Term |Short Term Medium Term |Medium Term |Short Term Call 1:1 Time |Put 1:1 Time
Call Options |Call Options |Put Options |Put Options [Put Options |Straddles Straddles Spreads Spreads Jelly rolls
Number 654 654 654 654 654 654 654 654 654 654
Average Price 9.874 5.546 8.083 4.720 8.083 17.957 10.266 4.329 3.363 0.966
Std. Price 3.131 2.330 2.559 2.071 2.559
Average Time E
to Matur. 37.2 13.5 37.2 13.5 37.2
Std. Time to
Matur. 13.7 6.5 13.7 6.5 13.7
Average
Moneyness 1.002 1.002 1.002 1.002 1.002
Std.
Moneyness 0.009 0.009 0.009 0.009 0.009




Table 2 - Estimation of Stochastic Volatility Models

Autoregressive Volatility Model (ARV)
Regression of medium term differenced implied variance on short term
Daily implied variance used is average of put and call implied variances
678 observations based on data availability from Oct. 1985-Feb. 1992

Coefficient|Std Error |t-stat |[Prob > |t| |Adj-R2 DW
i 0.0000{ 0.0001} -0.27] 0.7873 0.7879 2.672
A 0.5418{ 0.0108} 50.19f 0.0001
Implied
rho 0.9325
GARCH(1,1)

Daily returns (price appreciation) for S&P500 index from CRSP
4551 observations (1975-1992)
Maximum Likelihood estimation with Normal as the underlying density

Jarque-
Robust Robust t- |Ljung- Bera(1980)
Coefficient|{Std Error |t-stat |Std Err stat Box(15) |normality test
« 0.0000 0.0000 7.95| 0.0000 2.6404 10.26 5808.86
a 0.0671 0.0018] 37.14f 0.0399 1.6829
B 0.9116 0.0049{ 187.96f 0.0398] 22.9188
GARCH Components Model
Daily returns (price appreciation) for S&P500 index from CRSP
4551 observations (1975-1992)
Maximum Likelihood estimation with Students-t as the underlying density
Jarque-
Robust Robust t- |Ljung- Bera(1980)
Coefficient|Std Error |t-stat |Std Emr stat Box(15) |[normality test
w 0.0000 0.0000 1.27] 0.0000 0.7238 25.08 13549.96
a 0.0139 0.0405 0.34{ 0.0480 0.2897
p 0.9560 0.0377| 25.37| 0.1310 7.2958
¢ 0.0245 0.0422 0.58] 0.0885 0.2767
p 0.9890 0.0087{113.96{ 0.0122] 80.9810




Table 3 - Hedge Ratios

Number of short term options to hold per long term option
S=200, K=200, all volatility forecasts=.01 daily

risk-free rate = .0002 daily

Average
hedge ratio
over sample

-0.61

-1.80

-0.90

-0.82

-1.00

Medium Medium Medium
Mat=20 / Mat=30 / Mat=40 /
Model Short=5 Short=10 Short=20
B-S Gamma -0.50 -0.57 -0.70
B-S Vega -2.00 -1.73 -1.41
GARCH(1,1) gamma -0.79 -0.89 -0.94
GARCH components gammg -0.66 -0.77 -0.88
ARV vega -1.26 -0.99 -0.87
Simulated GARCH(1,1) -0.83
Simulated GARCH
components -0.78
Simulated GARCH
components with leverage -0.77

Empirical Best Hedge, Call

Option -0.50
Empirical Best Hedge, Put

Option -0.35
Empirical Best Hedge,

Straddle -0.55




Table 4 - Option Hedging Results

Buy 100$ portfolio of medium term positions. Construct hedge portfolio.

Rebalance daily.

Data : CBOE S&P500 Index Options (Oct. 1, 1985 - Feb. 28, 1992)

Ljung-Box and ARCH tests are on first six lags of portfolio return

Regression is portfolio price change on contemporaneous S&P500 Index change and square
For this table, the simple delta hedge uses the GARCH(1,1) one-step ahead volatility forecast

Hedging Medium Term Calls

Standard Raw Raw
Average |Deviation of Data Data
Daily Daily Ljung- Engle |Regres
Portfolio Portfolio Box ARCH sion F

Price Price prob. (< |prob. (< | prob.
Position Change Changes .01) .07) |(< .01)
100$ Medium
Term Calls 0.69 18.23 -
100$ Medium
Term Calls Delta
Hedged -0.44 9.27 . *
1008 S&P500
Index 0.04 0.96 *
Black-Scholes
Delta-Gamma
Hedge -0.12 8.94 * .
Black-Scholes
Delta-Vega
Hedge 0.81 13.29 * " *
GARCH(1,1)
Delta-Gamma
Hedge 0.07 9.40 * * *
GARCH
Components
Delta-Gamma
Hedge 0.01 9.24 ) *
Autoregressive
Volatitity Delta-
Vega Hedge 0.26 9.87 * * "
Best Constant
ex-post hedge 0.06 8.88 " *




Hedging medium term puts

Standard
Deviation of Raw Raw
Average |Unexpected Data Data
Daily Daily Ljung- Engle | Regres
Portfolio Portfolio Box ARCH | sion F

Price Price prob. (< {prob. (< | prob.
Hedge Change Changes .01) .01) (< .01)
100$ Medium
Term Puts -1.40 20.66 *
1008 Medium
Term Puts Delta
Hedged -0.34 9.59 *
100$ S&P500
Index 0.04 0.96 *
Black-Scholes
Delta-Gamma
Hedge -0.08 8.54 * *
Black-Scholes
Delta-Vega
Hedge 0.60 16.73 * *
GARCH(1,1)
Delta-Gamma
Hedge 0.09 9.35 * * *
GARCH
Components
Deta-Gamma
Hedge 0.05 9.06 * *
Autoregressive
Volatility Delta-
Vega Hedge 0.26 10.87 * * *
Best Constant
ex-post hedge -0.38 8.88 *




Hedging medium term straddles

Standard
Deviation of Raw Raw
Average |Unexpected Data Data
Daily Daily Ljung- Engle | Regres
Portfolio Portfolio Box ARCH | sion F

Price Price prob. (< |prob. (< | prob.
Hedge Change Changes .01) .01) (< .01)
1008 Medium
Term Straddles -0.69 6.86 *
100$ Medium
Term Straddles
Delta Hedged -0.60 6.85 .
100$ S&P500
Index 0.04 0.96 *
Black-Scholes
Deita-Gamma
[Hedge -0.25 6.02 *
Black-Scholes
Delta-Vega
Hedge 0.66 11.41 * .
GARCH(1,1)
Delta-Gamma
Hedge -0.05 6.49 * * *
GARCH
Components
Defta-Gamma
Hedge -0.11 6.30 *
Autoregressive
Volatility Delta-
Vega Hedge 0.19 7.51 * * *
Best Constant
ex-post hedge -0.27 6.01 * *




Table 5 - Option Pricing Tests

Value portfolio of 1:1 time spreads (calls, puts), jelly roll, medium and short term straddie.
Sell if market price is greater than model price, otherwise buy. Rebalance daily.

* Average not different from zero at .01 level.

Model Always Buy - ARV model |GARCH(1,1) one-step GARCH(1,1) avg vol GARCH Components
Standard Standard Standard Standard
Average |Deviation of | Average Deviation Average |Deviation of Deviation of
Daily Daily Daily of Daily Daily Daily Average Daily
Portfolio Portfolio Portfolio Portfolio Portfolio Portfolio Daily Portfolio
Price Price Price Price Price Price Portfolio Price
Position Change Changes Change Changes Change Changes | Price Change Changes
1 position
1:1 Call
Time Spread| *-0.008 0.99 0.17 0.97 0.16 0.97 0.14 0.98
1 position
1:1 Put
Time Spread| *-0.006 0.82 0.15 0.81 0.18 0.81 0.18 0.80
1 position
Jelly Roll *-0.003 1.39 0.44 1.32 0.46 1.31 0.46 1.31
100%
Medium
Term
Straddle -0.69 6.86 1.06 6.81 0.81 6.84 1.00 6.82
100$ Short
Term
Straddle -1.48 11.52 1.61 11.50 1.62 11.50 1.54 11.51
Average Profit on Buy/Sell different from 0 at .01 level
Summary of Trading Signals + indicates significantly positive profit, O = insignificant, - = negative
Number of Buy signals First entry is buy / Second entry is sell
GARCH(1,1) |GARCH(1,1) [GARCH GARCH(1,1) [GARCH(1,1) |GARCH
Position ARV modeljone-step avg vol Components Position ARV Model one-step avg vol Components
1 position 1 position
1:1 Call 1:1 Call Time 0/0 +/+ +/+ +/+
Time Spread 654 50 46 38 Spread
1 position 1 position
1:1 Put 1:1 Put Time 0/0 +/ + +/+ +/+
Time Spread 654 126 137 126 Spread
1 position 1 position
Jelly Roll 654 134 155 157 Jelly Roll 070 v/ +/+ */+
100% 100%
Medium Medium -/0 0/+ 0/+ 0/+
Term Term
Straddle 654 49 31 24 Straddle
100$ Short 100$ Short
Term Term -/0 0/+ 0/+ 0/+
Straddle 654 82 43 45 Straddle




Vega

Figure 1 - Term Structure of Black-Scholes Vega
(5=100, K=100, sig=.01, rf=.0002)
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Gamma

Figure 2 - Term Structure of Black-Scholes Gamma
(S=100, K=100, sig=.01, rf=.0002)
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