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ABSTRACT

We study security-bid auctions in which bidders compete by bidding with securities whose payments
are contingent on the realized value of the asset being sold. Such auctions are commonly used, both
formally and informally. In formal auctions, the seller restricts bids to an ordered set, such as an
equity share or royalty rate, and commits to a format, such as first or second-price. In informal
settings with competing buyers, the seller does not commit to a mechanism upfront. Rather, bidders

offer securities and the seller chooses the most attractive bid, based on his beliefs, ex-post.

We characterize equilibrium payoffs and bidding strategies for formal and informal auctions. For
formal auctions, we examine the impact of both the security design and the auction format. We
define a notion of the steepness of a set of securities, and show that steeper securities lead to higher
revenues. We also show that the revenue equivalence principle holds for equity and cash auctions,
but that it fails for debt (second-price auctions are superior) and for options (a first-price auction
yields higher revenues). We then show that an informal auction yields the lowest possible revenues
across all possible formal mechanisms. Finally, we extend our analysis to consider the effects of

liquidity constraints, different information assumptions, and aspects of moral hazard.
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1. Introduction

Auction theory and its applications have become increasingly important as an area of
economic research over the last twenty years. As a result, we now have a better
understanding of how the structure of an auction affects its outcome. Almost all the
existing literature studies the case when bidders use cash payments, so that the value of a
bid is not contingent on future events.

In a few cases, such as art auctions, the realized value is subjective and cannot be used as
a basis for payment; however, this is the exception. In many important applications, the
realization of the future cash flow generated by the auctioned asset or project can be used
in determining the actual payment. That is, the bids can be securities whose values are
derived from the future cash flow. We call this setting a security-bid auction, and
provide an extensive characterization of such auctions.

Formal auctions of this type are commonly used in government sales of oil leases,
wireless spectrum, highway building contracts, and lead-plaintiff auctions. Informal
auctions of this type (in the sense that formal auction rules are not set forth in advance)
are common in the private sector. Examples include authors selling publishing rights,
entrepreneurs selling their firm to an acquirer or soliciting venture capital, and sports
associations selling broadcasting rights.'

The major difference between a formal and an informal mechanism is the level of
commitment by the seller. In an informal mechanism, bidders choose which securities to
offer, and the seller selects the most attractive offer ex-post. In this case, the auction
contains the elements of a signaling game because the seller may infer bidders’ private
information from their security choices when evaluating their offers. In a formal
mechanism the seller restricts bidders to use securities from a pre-specified ordered set,
such as an equity share or royalty rate. The seller is committed to disqualify any offer
outside this set. The seller also commits to an auction format, such as a first or second-
price auction. One of our main results is that the revenues from an informal mechanism
are the lowest across a large set of possible mechanisms. In other words, the seller
benefits from any form of commitment. Moreover, we show how to rank security
designs and auction formats in terms of their impact on the seller’s revenues and that the
design of the securities can be more important than design of the auction itself.

In our model, several agents compete for the right to undertake a project that requires an
upfront investment. Bidders are endowed with private signals regarding the value they
can expect from the project. Our initial structure is similar to an independent private
values model, so that different bidders expect different payoffs upon winning, though we
also consider correlated and common values. The model differs from standard auction

' See Hendricks and Porter (1988) for a discussion of oil lease auctions, in which royalty rates are
commonly used. In wireless spectrum auctions, the bids are effectively debt securities (leading in some
cases to default). Highway building contracts are often awarded through “build, operate, and transfer”
agreements to the bidder that offers to charge the lowest toll for a pre-specified period. See Fisch (2001)
for the use of contingency-fee auctions in the selection of the lead plaintiff in class action suits. In mergers,
acquisitions and venture capital agreements, equity and other securities are commonly used (see Martin
(1996)). McMillan (1991) describes the auction of the broadcast rights to the Olympic games, where bids
contained revenue-sharing clauses. Similarly, publishing contracts include advance and royalty payments.



models, in that bids are securities. Bidders offer derivatives in which the underlying value
is the future payoff of the project. Because the winner may make investments or take
other actions that affect this future payoff, we also discuss the possibility of moral hazard.

One might conjecture that the results from standard auction theory carry over to security-
bid auctions by simply replacing each security with its cash value. However, unlike cash
bids, the value of a security bid depends upon the bidder’s private information. This
difference can have important consequences as the following simple example
demonstrates:

Consider an auction in which two bidders, Alice and Bob, compete for a project.
The project requires an initial fixed investment that is equivalent to $1M. Alice
expects that if she undertakes the project then on average it would yield revenues
of $3M; Bob expects that future revenues will equal only $2M. Hence, Alice sees
a profit of $2M while Bob sees a profit of $1M. Assuming these estimates are
private values, in a standard second-price auction it is a dominant strategy for
bidders to bid their reservation values. As a result, Alice would win the auction
and pay Bob’s bid, $1M.

Now suppose that rather than bidding with cash, the bidders compete by offering
a fraction of the future revenues. As we later discuss, it is again a dominant
strategy for bidders to bid their reservation values. Alice offers 2/3 of future
revenues while Bob offers 1/2. As a result, Alice wins the auction and pays
according to Bob’s bid; that is, she gives up one-half of the future revenues. This
yields a higher payoff for the auctioneer; (1/2)x$3M = $1.5M > $§1M.

This example is based on Hansen (1985), who was the first to examine the use of
securities in an auction setting. Hansen showed that a second-price equity auction yields
higher expected revenues than a cash-based auction. In a related paper, Riley (1988)
considers first-price auctions where bids include royalty payments in addition to cash.
He shows that adding the royalty increases expected revenues. The intuition in both
cases is that adding an equity component to the bid lowers the difference between the
winner’s valuation and that of the second highest bidder. Because this difference is the
rent captured by the winner, reducing it benefits the seller.

In this paper, we generalize this insight along several dimensions. First, we consider a
general class of securities that includes debt, equity or royalty rates, options, and hybrids
of these. Second, we consider alternative auction formats (e.g., first-price vs. second-
price). Third, we consider informal auctions, in which the seller cannot commit to an
auction mechanism in advance.

The structure of the paper is as follows. The basic model is described in Section 2. We
begin our analysis in Section 3 by examining formal mechanisms, which consist of both
an auction format and a security design. There we establish the following results:

e We characterize super-modularity conditions under which a monotone — and
hence efficient — equilibrium is the unique outcome for the first and second-price
auctions.

e First we compare security designs holding fixed the auction format (first or
second-price). We show that for either format, the seller’s expected revenues are



positively related to the “steepness” (a notion that we define) of the securities. As
a result, debt contracts minimize the seller’s expected payoffs while call options
maximize it. This result generalizes the observations of Hansen (1985) and Riley
(1988).

e Fixing the security design, we then consider the role of the auction format. We
define two important classes of sets of securities: Sub-convex and super-convex
sets For sub-convex sets — which include, for example, the set of debt securities —
we show that a second-price auction yields higher expected revenues than a first-
price auction. Alternatively, if the set is super-convex (e.g., call options), the
reverse conclusion holds and first-price auctions are superior. However, we find
the effect of the auction format to be small relative to the security design.

e We then ask whether the Revenue Equivalence principle for cash auctions, which
states that expected revenues are independent of the auction format, can be
extended to security bid auctions. We show it holds if the ordered set of securities
is convex. This is true for important classes of securities, such as equity.

e Finally we combine these results to show that the first-price auction with call
options maximizes the seller’s revenue, while the first-price format with debt
minimizes it, over a general set of auction mechanisms.

In the second part of the paper (Section 4), we consider the case in which the seller is
unable to commit ex-ante to a formal auction mechanism. Instead he accepts all bids and
chooses the security that is optimal ex-post. Though often not labeled as “auctions”
because they lack a formal mechanism, we believe that these informal auctions represent
the vast majority of auction-like activity in practice, since in most transactions the seller
is unable to commit to a decision rule ex-ante. As mentioned above, in this case the task
of selecting the winning bid is not trivial; it involves a signaling game in which the seller
uses his beliefs to rank the different securities and choose the most attractive one. Our
main result is as follows:

e In the unique equilibrium satisfying standard refinements of off-equilibrium
beliefs, bidders use only debt securities. Moreover, the outcome is equivalent to a
first-price auction. As a result we conclude that this ex-post maximization yields
the worst possible outcome for the seller!

The intuition is that debt provides the cheapest way for a high type to signal his quality.
Thus, bidders find it optimal to compete using debt.

Section 5 extends the model by considering the effects of: relaxing liquidity constraints,
moral hazard regarding the bidder’s investment, reservation prices, and the introduction
of affiliated as well as common values. We demonstrate that the main insights of our
analysis carry over to these settings. For example, we show that:

e If the bidder’s investment in the project is unverifiable and subject to moral
hazard, then it is not optimal for the seller to offer cash compensation to the
winner for this investment.

e Combining cash payments with bids effectively “flattens” the bids and reduces
the expected revenues of the seller.



e Our conclusions regarding the revenue consequences of the security design carry
over to the case of affiliated values with both private and common components.

Section 6 concludes and the Appendix contains proofs omitted in the text.

Related Literature

As mentioned above, Hansen (1985) and Riley (1988) first demonstrated the potential
advantages of equity versus cash auctions. In a more recent paper, Rhodes-Kropf and
Viswanathan (2000) focus on first-price auctions in a setting that is similar to the model
we study in the first part of the paper, and show that securities yield higher revenues than
a cash-based auction. However, none of these papers provides a general means of
comparing sets of non-linear securities, as we do here. Nor do they compare auction
formats or consider informal auctions. Finally, the results in Riley (1988) and Rhodes-
Kropf and Viswanathan (2000) are conditional upon the existence of a separating
equilibrium in which a higher type bids a higher security. For example in Rhodes-Kropf
and Viswanathan (2000), there always exists a pooling equilibrium and in some cases it is
the unique outcome. This is because they assume that the project does not require any
costly inputs — thus the lowest type can offer 100% of the proceeds to the seller and
breakeven. Thus, a low type is always willing to imitate the bid of a high type. We use a
framework that is closer to Hansen (1985), in which the project requires costly inputs. In
this case, we show that under certain conditions the first-price auction has a unique
equilibrium, and it is separating.

One reason security-bid auctions may not have received greater attention in the literature
is perhaps due to Cremer (1987), who argues that the seller can extract the entire surplus
if he can “buy” the winning bidder. Specifically, the seller can offer cash to the bidder to
cover the costs of any required investment, and ask all bidders to reveal their type. The
seller then offers the project to highest type in exchange for its full value. Since bidders
earn zero profits regardless, truthful reporting is incentive compatible.

In the first part of the paper, we rule out such reimbursement by assuming the seller is
cash constrained. Moreover, we show in Section 5 that even if the seller is not cash
constrained, reimbursing the winning bidder is extremely fragile to the introduction of
moral hazard. If the bidder’s investment is not verifiable and reimbursement were
offered, then all bidders would claim the highest type, collect the reimbursement, and
then fail to invest in the project. Thus, to insure that bidders invest, the seller will only
offer compensation that is contingent on the outcome of the project. Thus Cremer’s
approach is infeasible and the issue of security and auction design remains relevant.”

Board (2002), Che and Gale (2000), Rhodes-Kropf and Viswanathan (2002), and Zheng
(2001) consider auctions with financially constrained bidders who use debt, or external
financing, in their bids. Hence, while bids maybe expressed in terms of cash, they are in
fact contingent claims and are thus examples of the security-bids that we examine here.

Garmaise (2001) studies a security-bid auction in the context of a financing problem for
an entrepreneur. The entrepreneur commits to rank securities according to some

2 Samuelson (1987) points to some additional problems in the implementation of the Cremer mechanism as
it may yield an inefficient choice of a winning bidder.



announced beliefs regarding the distribution of the cash flows. He examines a common
value environment and obtains a partial characterization of the equilibrium in a binary
model (two bidders, two types, two values).

Other related literature includes McAfee and McMillan (1987), who solve for the optimal
mechanism in a model with a moral hazard problem. The optimal mechanism is a
combination of debt and equity, with the mixture depending on the distribution of types.
Laffont and Tirole (1987) examine a similar model. Board (2004) analyzes selling real
options to competing buyers. The seller offers a mechanism in which payments have two
components: unconditional and conditional on exercising the option. After the auction the
winner learns more about the profitability of the option and decides whether to exercise
it. For a given contract, higher types have a higher probability of exercising and hence
higher expected total payments. That linkage increases seller’s share of the expected
surplus. Unlike our paper, contingent payments also create an inefficiency as the winner
is not a full residual claimant and hence will not always exercise efficiently.

Some of our results are also related to the security design literature. DeMarzo and Duffie
(1999) consider the ex-ante security design problem faced by an issuer who will face a
future liquidity need. They show that debt securities are optimal because they have the
greatest liquidity. DeMarzo (2002) extends this result to the case in which the issuer
learns his private information prior to the design of the security, as is the case here. The
security design results of this paper are also related to the results of Nachman and Noe
(1994). They consider a situation in which the seller is obligated to raise a fixed amount
of capital, which leads to a pooling equilibrium using debt securities. None of these
models consider security design in a competitive setting like the auction environment
considered here.

2. The Model

Signals and Values

There are n risk neutral bidders who compete for the rights to a project. The project
requires a non-contractible investment by the winner of X > 0. For tractability, we assume
that this cost is non-random and equal across bidders. Conditional on being undertaken
by bidder i, the project yields a stochastic future payoff Z;. Bidders have private signals
regarding Z;, which we denote by V;. The seller is also risk neutral, and cannot undertake
the project independently. The interest rate is normalized to zero.

We make the following standard economic assumptions on the signals and payoffs:

ASSUMPTION A. The private signals V = (Vy, ..., V) and payoffs Z = (Z,, ..., Z,)
satisfy the following properties:

1. The private signals V;j are i.i.d. with density f(v) with support [V, VH].
2. Conditional on V =V, the payoff Z; has density h(z|vi) with full support [0, o).



3. (4, V) satisfy the strict Monotone Likelihood Ratio Property (SMLRP); that
is, the likelihood ratio h(z]v)/h(z]v') is increasing in z if v > v'.*

The important economic assumptions contained above are, first, that the private signals of
other bidders are not informative regarding the signal or payoff of bidder i. This
assumption does not imply a pure private value setting — there may be an additional
common value component that is common knowledge across all bidders. Second,
because Z; is not bounded away from zero, the project payoff cannot be used to provide a
completely riskless payment to the seller. Finally, the private signal V; is “good news”
about the project payoff Z;j using the standard strict version of the affiliation assumption
(see Milgrom and Weber (1982)).

Given the above assumptions, we normalize (without loss of generality) the private
signals so that

E[Zi|Vi]-X=V;.
Thus, we can interpret the signal as the NPV of the project, which we assume to be non-
negative.

To simplify our analysis, we make several additional technical assumptions regarding
differentiability and integrability:

ASSUMPTION B. The conditional density function h(z|v) is twice differentiable in
z and v. In addition, the functions z h(z|v), |z hy(z|v)| and |z hw(z|v)| are
integrable on z € (0, «).

These assumptions are weak, and allow us to take derivatives “through” expectation
operators. As a concrete example, we can consider the following payoff structure:

Zi=0(X+V)) (1)

where 0 is independent of V and log-normal with a mean of 1. Here we can interpret 0
as the project risk.

Feasible Bids

The focus of this paper is on the case in which bids are securities. Bidders compete for
the project by offering the seller a share of the final payoff. That is, the bids are in terms
of derivative securities, in which the underlying asset is the future payoff of the project
Z;. Bids can be described as function S(z), indicating the payment to the seller when the
project has final payoff z.

We make the following assumptions regarding the set of feasible bids:°

3 We use ‘increasing’ in the strict sense and explicitly note weak rankings. Similarly when we use ‘higher’
or ‘lower’.

* This is equivalent to the log-supermodularity of h, which can be written as <logh(z |v) > 0 assuming

ozov
differentiability.
> More generally, what is required for the SMLRP is that log(0) have a log-concave density function.
® These assumptions are typical of the security design literature (e.g. DeMarzo and Duffie (1999), Hart and
Moore (1995), and Nachman and Noe (1994)), making it easier to compare our results to the prior
literature.



DEFINITION. A feasible security bid is described by a function S(z), such that S is
weakly increasing, Z — S(z) is weakly increasing, and 0 < S(z) < z.

The set of feasible securities encompasses standard designs used in practice. However, it
is not completely general, and we discuss and motivate the restrictions below.

First, S(z) < z can be viewed as a liquidity or limited liability constraint for the bidder;
only the underlying asset can be used to pay the seller. We assume, for now, that bidders
do not have access to cash (or other liquid assets) that they can pledge as payment; they
can only transfer property rights in the project.” We make this assumption in order to
focus first on pure security bids and simplify the exposition; we will generalize the
setting to allow for cash payments in Section 5.

Similarly, S(z) > 0 corresponds to a liquidity or limited liability constraint for the seller;
the seller cannot commit to pay the bidder except through a share of the project payoft.
For example, the seller may not have the financial resources to do so, which may in fact
be the motivation for selling off the project. Because the seller cannot reimburse the
bidder for the upfront investment, this assumption rules out a solution a-la Cremer
(1987). We take this constraint as given for now, but we show in Section 5 that this
constraint can follow from an assumption that the bidder’s investment X is not verifiable.

Finally, we require both the seller’s and the bidder’s payment to be weakly increasing in
the payoff of the project. Monotonicity is a standard feature of almost all securities used
in practice, and so is a natural constraint to consider.® Most importantly, without
monotonicity for the bidders, equilibria would not be efficient, and without monotonicity
for the seller, the seller would have incentives to choose other than the highest bid.

Together, these requirements are equivalent to S(0) = 0, S is continuous, and S'(z) € [0, 1]
almost everywhere. Thus, we admit standard sets of securities, including

1. Equity: The seller receives some fraction a € [0,1] of the payoft: S(z) = a z.

2. Debt: The seller is promised a face value d > 0, secured by the project: S(z) =
min(z, d).

3. Convertible Debt: The seller is promised a face value d > 0, secured by the
project, or a fraction o € [0,1] of the payoff: S(z) = max (a z, min(z, d)). (This
is equivalent to a debt plus royalty rate contract.)

4. Levered Equity: The seller receives a fraction a € [0,1] of the payoff, after
debt with face value d > 0 is paid: S(z) = a max(z — d, 0). (This is equivalent
to a royalty agreement in which the bidder recoups some costs upfront.)

7 We assume the bidders can invest X in the project, but X might correspond to an illiquid asset, such as
human capital.

¥ A standard motivation for this constraint in the security design literature is that, if it did not hold, parties
would have an incentive to “sabotage” the project and destroy output. (Alternatively, if one party could
both sabotage the project and artificially inflate the cash flows, a similar constraint would apply. For
example, if S(zy) > S(z;) for zj < z;, the bidder may attempt to inflate the cash flows from z, to z, via a short-
term loan to get payoff z, — S(z;).) Whether it is reasonable that revenues could be distorted in this way
depends on the context. We do not try to defend this assumption here; but point out that it is a standard
one, includes typical securities used in practice and guarantees a well-behaved equilibrium.



5. Call Option: The seller receives a call option on the firm with strike price k:
S(z) = max(z — Kk, 0). Higher bids correspond to lower strike prices. (This
equivalent to the bidder retaining a debt claim.)

Given any security S, we define
ES(v) = E[S(Z) | Vi=V]

to denote the excepted payoff of security S conditional on the bidder having value V; = v.
Thus, the expected payoff to seller if the bid S is accepted from bidder i is ES(Vj). On the
other hand, the bidder’s expected payoftf is given by Vi — ES(V;). Thus, we can interpret V;
as the independent, private value for bidder i, and ES(V;) as the payment offered. The
key difference from a standard auction, of course, is that the seller does not know the
value of the bids, but only the security bid, S. The seller must infer the value of this
security. Since the security S is monotone, the value of the security is increasing with the
signal V; of the bidder, as we show below:

LEMMA 1. The value of the security ES(V) is twice differentiable. For S # 0,
ES'(v) > 0, and for S # Z, ES'(v) < 1.

Mergers and Acquisitions

Thus far we have interpreted the setting as one in which bidders compete for the right to
undertake a project. We remark, however, that the model can also be applied to mergers
and acquisitions. In this case, the bidders are rival firms, each competing to take over the
target company (the seller). We interpret X as the stand-alone value of the acquiring firm
plus any acquisition related costs, and V; as the bidder’s estimate of the synergy value of
the acquisition (i.e. the value of the target once acquired). The bids in this case represent
the securities offered to the target shareholders.

3. Formal Auctions with Ordered Securities

In many auctions, bidders compete by offering “more” of a certain security. For example,
they compete by offering more debt or more equity. We begin our analysis by examining
formal auctions in which the seller restricts the bids to elements of a well-ordered set of
securities. Bidders compete by offering a higher security.

There are two main reasons why sellers restrict the set of securities that are admissible as
bids in the auction. First, it allows them to use standard auction formats — such as first or
second-price — to allocate the object and to determine the payments. Without an imposed
structure, ranking different securities is very difficult and depends on the beliefs of the
seller. There is no objective notion of the “highest” bid.

The second reason a seller may want to restrict the set of securities is that it can enhance
revenues. We will demonstrate this result by first (in this section) studying the revenues
from auctions with ordered sets of securities and then (in Section 4) comparing this to the
revenues from auctions in which the seller cannot commit to a restricted set and bidders
can bid using any feasible security.

Before presenting the technical details of the analysis, we consider an example that
illustrates our main results.



Example: Comparison of Revenues Across Securities and Auction Formats

Two bidders compete for a project that requires an upfront investment of X = 100. The
NPV of the project if run by bidder i is Vi, where V; is uniform on the interval [20, 110].
The project is risky, however, with final value Z; which is lognormal with mean X + V;
and volatility of 50%.

Total surplus is maximized by allocating the project to the highest type, in this case
leading to an expected value of E[max(V;, V,)] = 80. This is the maximum expected
revenue achievable by any auction. On the other hand, using a cash auction, the expected
revenue is given by E[min(V, V;)] = 50 (which is the same for first and second-price
auctions by revenue equivalence). Next, we calculate the revenues for different security
designs and auction formats numerically. See Figure 1.

Expected Seller Revenues
Security Type First-price Auction Second-price Auction
Cash 50.00 50.00
Debt 50.05 50.14
Equity 58.65 58.65
Call Option 74.53 74.49

Figure 1: Expected Revenues for Different Security Designs and Auction Formats
Several observations can be made, which coincide with our main results of this section:

1. Fixing the auction format (first or second-price), revenues increase moving from
debt to equity to call options. In section 3.2 we will define a notion of “steepness”
for securities and show that steeper securities lead to higher revenues, and that all
security designs yield higher revenues than cash auctions.

2. The auction format is irrelevant for a cash auction and for an equity auction.
While the format does make a difference for debt and call options, the rankings
are reversed. In section 3.3 we will generalize these observations and show
precisely when revenue equivalence will hold or fail. Overall, though, the impact
of the auction format on revenues is minor compared to the security design.

3. Among the mechanisms examined the first-price auction with debt yields the
lowest expected revenues while the first-price auction with call options yields the
highest expected revenues. In section 3.4 we shall see that these are the worst and
best possible mechanisms in a broad class of security-bid auctions, and that all
security-bid auctions dominate cash auctions.

3.1. Securities, Auctions and Mechanisms

The first step in our analysis is to formalize the notion of an ordered set of securities. An
ordered collection of securities can be defined by a function S(s,z), where S € [So, S1] is
the “index” of the security, and S(s,-) is a feasible security. That is, S(S,z) is the payment

of security S when the output of the project has value z. As before we define ES(S,v) =
E[S(s,Zi) | Vi=V].

For the collection of securities to be ordered, we require that its value, for any type, is
increasing in S. Then, a bid of S dominates a bid of s’ if s > s'. We would also like to



allow for a sufficient range of bids so that for the lowest bid, every bidder earns a non-
negative profit, while for the highest bid, no bidder earns a positive profit. This leads to
the following formal requirements for an ordered set of securities:

DEFINITION. The function S(s,z) for S € [So,51] defines an ordered set of
securities if:

1. S(s,) is a feasible security.
2. Forallv, ES(s, v) > 0.
3. ES(So,vi) <vi and ES(S1,VH) > Vh.

Examples of ordered sets include the sets of (levered) equity and (convertible) debt,
indexed by the equity share or debt amount, and call options, indexed by the strike price.

Given an ordered set of securities, it is straightforward to generalize the standard
definitions of a first and second-price auction to our setting:

FIRST-PRICE AUCTION: Each agent submits a security. The bidder who submitted
the highest security (highest S) wins and pays according to his security.

SECOND-PRICE AUCTION: Each agent submits a security. The bidder who
submitted the highest security (highest S) wins and pays according to the second-
highest security (second-highest ). °

Next, we characterize the equilibria for both types of auction formats. We are interested
in the case for which these equilibria are efficient; that is, the case for which the highest
value bidder wins the auction. For second-price auctions this is straightforward; the
standard characterization of the second-price auction with private values generalizes to:

LEMMA 2. The unique equilibrium in weakly undominated strategies in the
second-price auction is for a bidder i who has value Vj =V to submit security S(V)
such that ES(S(Vv),v) = v. The equilibrium strategy S(V) is increasing.

The above lemma implies that similar to a standard second-price auction, each bidder
submits bids according to his true value. We now turn our attention to the first-price
auction. Incentive compatibility in the first-price auction implies that no bidder gains by
mimicking another type, so that S(Vv) satisfies

U (v) = max, F™ (0)(v = ES(5(V),v)) = F" (v)(v — ES(s(V),V)) )

where U(V) is the expected payoff of type v. The first-order condition of (2) then leads to
a differential equation for S. However, an additional assumption is required to guarantee
the second-order conditions hold:

ASSUMPTION C. For all (s, V) such that the bidder earns a positive expected
profit, i.e. v — ES(S,v) > 0, the profit function is log-supermodular:

Z-log[v—ES(s,v)] > 0.

? Note that with private values, the second-price auction is equivalent to an English auction.
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With this assumption we have the following generalization of the standard
characterization of the first-price auction to our setting:

LEMMA 3. There exists a unique symmetric equilibrium for the first-price
auction. It is increasing, differentiable, and it is the unique solution to the
following differential equation:

(n=1)f(v) y [v—ES(s(v),V)]
F(v) ES, (s(v),V)

s'(v) =

together with the boundary condition ES(S(VL), Vi) = VL.

Thus, given Assumption C, Lemma 3 characterizes the first-price auction and shows that
it is efficient. Of course, the question remains regarding how restrictive is Assumption
C.'" It is a joint restriction on the set of securities and the conditional distribution of Z. It
can be shown to hold generally in the lognormal setting (1) in the case of debt, equity,
and levered equity securities with d < X. It can be established numerically for other types
of securities, such as call options, under suitable parameter restrictions — for example, it
holds in the numerical example computed earlier. Throughout our analysis, we assume
that it holds for all sets of securities under consideration.

The first and second-price auctions are two standard auction mechanisms. They share the
features that the highest bid wins, and only the winner pays. The first property is
necessary for efficiency, and the second is natural in our setting, since only the winner
can use the assets of the project to collateralize the payment. One can construct many
other auction mechanisms, however, that share these properties. For example, one can
consider third-price auctions, or auctions where the winner pays an average of the bids,
etc. Below we define a broad class of mechanisms that will encompass these examples:

DEFINITION. A General Symmetric Mechanism (GSM) is a symmetric incentive
compatible mechanism in which the highest type wins, and pays a security chosen
at random from a given set S. The randomization can depend on the realization of
types, but not on the identity of the bidders (so as to be symmetric).

The first-price auction fits this description, with no randomization (the security is a
function of your type). In the second-price auction, the security you pay depends upon
the realization of the second-highest type. GSMs also allow for more complicated
payment schemes that depend on all of the bids.

It will be useful in what follows to derive a basic characterization of the incentive
compatibility condition for a GSM. We show that any GSM can be converted into an
equivalent mechanism in which the winner pays a security that depends only on his
reported type without further randomization.

1% Assumption C is the same condition imposed on utility functions in the auction literature; e.g., Maskin
and Riley (1984) use it to show existence and uniqueness of equilibria with risk averse bidders. The fact
that symmetry and Assumption C are needed underscores the fact that the efficiency of allocations is more
fragile in first-price auctions than in second-price auctions.
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LEMMA 4. Incentive compatibility in a GSM implies the existence of securities
S, in the convex hull of S such that''

Veargmax, F"'(v ')(v - E§V,(v)) .

Thus, it is equivalent to a GSM in which the winner pays the non-random security
S

v

This observation will allow us to compare revenues across mechanisms by studying the
relationship between the set of securities S and its convex hull.

3.2. Ranking Security Designs

Recall from Figure 1 that the seller’s revenues varied greatly with the security design. As
we will show, the revenues of different designs depend upon the “steepness” of the
securities. To do so, we need to formalize the notion of steepness of a set of securities.
A simple comparison of the slopes of the securities is inadequate: comparing debt and
equity, debt has higher slope for low cash flows and lower slope for high cash flows.
Rather, our notion of steepness is defined by how securities cross each other. Intuitively,
one security is steeper than another if it crosses that security from below. Thus, we
introduce the following definition:

DEFINITION. Security S; strictly crosses security S, from below if ES;(V") =
ESy(v") implies ES,'(v) > ES,'(V"). An ordered set of securities S; is steeper than

an ordered set Sy if forall S; € S;and S; € Sy, S strictly crosses S; from below.

The following useful lemma shows that steepness is naturally related to the shape of the
underlying securities — if the payoffs of the securities cross from below, then their
expected payoffs strictly cross:

LEMMA 5. (Single Crossing) A sufficient condition for S; to strictly cross S;
from below is that S; # S,, and there exists z* such that S;(z) < Sy(z) for z < z* and
S1(2) = Sx(z) forz > 7".

Comparing standard securities, note that a call option is steeper than equity, which in turn
is steeper than debt. See Figure 2.

A security S is in the convex hull of S if there exists mx > 0 and Sy € S such that > m = 1 and for all z,
S(2) = 2k T Sk(2).
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Why is steepness related to auction revenues? Consider a second-price auction, where
the winning bidder with type V' pays the security bid by the second highest type V. That
is, the winner pays ES(s(V?), V'). Since bidders bid their reservation value in a second-
price auction, ES(s(V?), V*) = V% Hence, the security design impacts revenues only
through the difference,

ES(s(V?), V') — ES(s(V?), V?)

which is just the sensitivity of the security to the true type. By definition steeper
securities are more sensitive, and so lead to higher revenues.

More generally, steepness enhances competition between bidders since even with the
same bid, a higher type will pay more. This is the essence of the “Linkage Principle,”
first used by Milgrom and Weber (1982) to rank auction formats for cash auctions when
types are affiliated.'> Applying the envelope theorem to the incentive condition (2) for a
first-price auction, we get

U '(v) = F™(v)(1-ES,(s(V),V)) . €)

Therefore, bidders’ payoffs are lower the higher is ES,(s(v),v); i.e., the steeper the
security. This leads to the following main result:

12 See also Krishna (2002) for a nice summary and discussion. Typically, the linkage principle is used to
compare formats when bidders’ signals are affiliated. Interestingly, the same argument can be applied to
rank security auctions when types are independent. In security-bid auctions, unlike cash auctions, even
with independent types the expected payment of the winner depends on his true type, as pointed out by
Riley (1988) in the context of royalty rates.
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PROPOSITION I. Suppose the ordered set of securities S; is steeper than S;. Then
for either a first or second-price auction, for any realization of types, the seller’s
revenues are higher using S; than using S.

As a result, flat securities, like debt, lead to low expected revenues, and steep securities,
like call options, lead to high expected revenues. In fact, since debt and call options are
the flattest' and steepest possible securities, they represent the worst and best designs for
the seller. We can also extend the logic of Proposition I to cash auctions, as a cash bid is
flatter than any security. Thus, we have the following:

COROLLARY. For a first or second-price auction, standard debt yields the lowest
possible revenues, and call options yield the highest possible revenues, of any
security bid auction. All security-bid auctions yield higher revenues than a cash
auction.

Note that in all cases, these rankings are for any realization of types, and hence are
stronger than the usual comparison based on an expectation over types.

3.3. Ranking Auction Formats

In our setting of symmetric independent private values and risk neutrality, a well-known
and important result for cash auctions is the Revenue Equivalence Principle. It implies
that the choice of the auction format is irrelevant when the ultimate allocation is
efficient.'* We now turn to examining the revenue consequences of the choice of auction
format in a security-bid auction. As we have seen from the numerical example of Figure
1, revenue equivalence seems to hold for some security designs but not for others. To
develop some further intuition, we begin with two simple examples.

Example: Equity Auctions and Revenue Equivalence

There are two bidders with independent types V; distributed uniformly on [0, 1]. Upfront
investment is X = 1. The distribution of Z; has full support with mean X + V;.

Consider a second-price equity auction. As we know, it is a dominant strategy to bid the

reservation value: o> (V) = T which is increasing in V. In a first-price auction it is an
v+

_M , which is also increasing.]5

equilibrium strategy for agents to bid a™*(v) =1
Now observe that both auctions yield equal payoffs to the auctioneer, as in both auction
formats the highest type wins and the average losing bid in a second-price auction equals
the highest bid in the first-price auction:

1 By flattest, we mean that all other sets of securities are steeper.
" Vickery (1961), Myerson (1981), Riley and Samuelson (1981).
' To verify that this is indeed an equilibrium consider the payoff of a type v who pretends to be v’:

w[@(uﬂ—&:(1+V)1n(1+V')_V'

and note that it is maximized by setting V’=V.
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From this example one may be tempted to conclude that revenue equivalence across

auction formats holds for all security-bid auctions. Interestingly, as the next example
shows this is not the case for all securities.'®

Example: Second-Price Auctions Yield Higher Revenues for Debt

Consider a debt auction. There are two bidders, types V; are independent and uniform on
on [0, 1], X = 0, and the distribution of Z; given V; is uniform on [0, 2Vi]."" If a bidder
wins and pays according to a debt bid with face value b the payoff to the seller is min(b,z)
which for a type Vv yields on average:

E[Z, —min(b,Z)|V, :v]:%zjv(z—b)dz “4)
b

_(2v-b)’
4v
In a second-price auction it is an equilibrium strategy for agents to bid their reservation

values: b** (V):ZV. In a first-price auction it is an equilibrium strategy to bid
bFPA (V) — %V'IS

Suppose, without loss of generality, that bidder 1 wins the auction. In a first-price
auction, his payoff is

(2v, —b””*(vl))2 C(2v,-2v,/3) 4

4v, 4v, 9"

while in a second-price auction, his payoff is
(2v, -2V, ) 1 ]l(v1 ~V

2
2v, —b%A(V,) 2 v
( l 2) V,<vy, |=E V,<v, |=— ) dv, =1
4v, 4v, viy VY 3
We conclude that bidders” welfare is higher in the first-price auction and, since in both
auction formats the highest type wins, revenues are higher in the second-price auction.

Thus, revenue equivalence fails.

To gain some insight into why revenue equivalence fails, note that in the second-price
auction, the winner pays a random security (determined by the second highest bid). This
is equivalent to paying a convex combination of securities. Now, a convex combination

'® We thank a referee for this example.
"7 While this example violates some of our technical assumptions (X > 0 and Z has full support), it provides
a simple closed form solution (and also suggests that our results are somewhat more general).
'8 To verify that this is an equilibrium note from (4) that the payoff of a type v who pretends to be V' is
v (2v—2v'/3)?
4v
which is maximized for V' = v.
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of debt securities is not a debt security.” Specifically, in the second-price debt auction,
the winner’s payment is equivalent to paying the “expected” security

. 7
S,,(2)=E[ min(z,2V,) |V, <v, | = z—4—v1

in a first price auction.”® This security is not a debt security, and therefore is steeper than
debt. As a result of this steepness, the seller’s revenues are enhanced. On the other hand,
in the case of equity, a convex combination of securities is also an equity security. Thus
there is no change in steepness, and so no change in revenues.

Sub and Super-Convex Sets of Securities

The previous examples suggest that the revenue differences across auction formats will
stem from the differences in steepness between the set of securities and its convex hull.
This motivates the following formal classification:

DEFINITION. An ordered set of securities S = {S(s,) : S € [So, Si1]} is super-
convex if it is steeper than any non-trivial convex combination of the securities in
S. It is sub-convex if any non-trivial convex combination of the securities in S is
steeper than S.*'

Not every set falls into one of the above categories. Still, there are some important
examples of sub- and super-convex sets:

LEMMA 6. The set of standard debt contracts is sub-convex. The set of
convertible debt contracts indexed by the equity share a, the set of levered equity
contracts indexed by leverage, and call options are super-convex sets.

Based on the above characterization, we can again use the Linkage Principle to rank the
expected revenues of first and second-price auctions. Here the proof relies on Lemma 4,
which allows us to interpret the second-price format as a first-price mechanism in the
convex hull of the set of securities:

PROPOSITION I1. If the ordered set of securities is sub-convex, then the first-price
auction yields lower expected revenues than the second-price auction. If the
ordered set of securities is super-convex, the first-price auction yields higher
expected revenues than the second-price auction. This revenue comparison also
holds conditional on the winner’s type, for all but the lowest type.

One subtlety in the proof of Proposition II is that the security paid by the lowest type is
the same for both auction formats (and is defined by the zero profit condition). Thus
neither format employs a “steeper” security for that type. We get around this problem by
slightly perturbing the support of the types for one of the auction formats, comparing
revenues, and taking the limit.

" For example, consider a 50-50 mix of debt with face value 50 and debt with face value 100. For z €
(50,100), this security has slope %2 and so is not a debt security.
% In this example the support of Z; is bounded by 2v,, so the security is monotone. Note that the bidder’s

expected payoff with this security is E[ Z; =S, (Z))[Vy =V, | = E[ Z,” /4v, |V, =V, | =v,/3 as before.

21 A non-trivial convex combination puts positive weight on more than one security.
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Proposition II reveals that the auction format can impact revenues. However, as we have
seen, this revenue impact stems from the difference in steepness between the set of
securities and their convex hull. This difference is always less extreme than the
difference in steepness that can be obtained by changing the security design directly. In
that sense, the design of the securities is much more important than the design of the
auction format in determining revenues.

Revenue Equivalence for Convex Sets of Securities

While revenue equivalence does not hold for general security auctions, it does hold for
cash, and holds for equity in our examples. Here we ask whether it can be recovered for
some classes of securities — that is, what is special about cash?

From Proposition II, revenue equivalence fails in one direction for a super-convex set,
and in the opposite direction for a sub-convex set. Hence, a natural candidate is a set in
the middle; i.e., a convex set:

DEFINITION. An ordered set of securities S is convex if it is equal to its convex
hull.

In fact, convex sets of securities have a simple characterization — each security is a
convex combination of the lowest security Sy and the highest security s;.> Thus, each
security can be thought of as Sy plus some “equity shares” of the security (S; — Sp), and so
it can be thought of as a generalization of a standard equity auction. Our main result in
this section is that under convexity, the Revenue Equivalence continues to hold.

PROPOSITION 111 (REVENUE EQUIVALENCE). Every efficient equilibrium of a
general symmetric mechanism (GSM) with securities from an ordered convex set
yields the same expected revenues. This equivalence also holds conditional on
the winner’s type.

Note that this is a stronger statement than equivalence between a first and second-price
auction, as it holds for any symmetric mechanism. Also note that the standard envelope
argument behind Revenue Equivalence does not extend directly to security auctions. For
cash, there is no linkage between the true type and the bidder’s expected payment when
types are independent, so revenues only depend upon the allocation.”” That is not the
case with security-bids, as we have seen. However, when the security set is convex,
because paying a random security is equivalent to paying the expected security drawn
from the same set, the expected linkage across all mechanisms is identical.

Thus, we have shown that the important property needed for the revenue equivalence
principle is that the securities be ordered and convex. This is true for cash, but also true
more generally for equity-type auctions. Also, because we can construct a first-price
equilibrium by computing the expected security in a second-price equilibrium, we can

22 To see why, note that since the set is convex, for each A there exists a mapping s:[0, 1] — [So, 1] such
that S(s(A), z) = (1-A) S(Sp, ) + A S(S1, 2). Then s(0) =S, S(1) = s; and since the set is ordered and S, # S,
S(A) is increasing. Thus, the result follows if S(A) is continuous. But since ES(S(A),v) = (1-L) ES(Sy, V) + A
ES(sy, V) is continuous, so is S(A) since ES(S,V) is increasing in S.

2 That is, in the case of cash auctions, (3) reduces to U'(v) = F"(v).
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weaken our condition for the existence of an efficient equilibrium in the first-price
auction:

COROLLARY. Even absent Assumption C, given a convex ordered set of
securities, there exists an efficient symmetric equilibrium in a first-price auction
with the same expected revenues as in a second-price auction.

3.4. Best and Worst Mechanisms

We can combine the results of the previous two sections to determine the best and worst
security design and format combinations. Note that, since debt is a sub-convex set, from
Proposition II the first-price auction is inferior to the second-price auction, and
conversely for call options, which are super-convex. The following proposition
establishes that a first-price auction with debt and with call options bound the range of
outcomes for the seller for a broad class of mechanisms.

PROPOSITION IV. A first-price auction with call options yields the highest
expected revenues amongst all general symmetric mechanisms. A first-price
auction with standard debt yields the lowest expected revenues amongst all
general symmetric mechanisms.

PROOF: The proof follows that of Proposition II, except that instead of the second-price
auction we consider a general symmetric mechanism over some subset of the feasible
securities. The result follows as a call option contract is steeper and a standard debt
contract is flatter than any convex combination of feasible securities (where we use the
same trick as in the proof of the Corollary to Proposition I if the sets of securities
intersect).*

Proposition IV establishes that the design of the security is more important than the
specific auction format: the revenue consequences of shifting from debt to call options in
a first-price auction exceeds the consequences of any change in the auction mechanism.

We remark that Proposition IV is stated with respect to the particular set of feasible
securities we have allowed thus far. It can be extended in the obvious way: for any
feasible set, if there is a steepest set of securities which is (super-)convex, then a (first-
price) auction using this set yields the highest possible revenues. Similarly, if there is a
flattest set which is (sub-)convex, then a (first-price) auction using this set yields the
lowest possible revenues.

For example, if bidders can pay cash, a cash auction is the worst possible auction for the
seller. This is because cash, which is insensitive to type, is even flatter than standard debt
securities (see Section 5.1 for a further discussion of this case).

Alternatively, the seller may be able to increase revenues by using securities that are even
more leveraged than call options. For example, the seller might pay the bidder cash for
additional equity. This strategy is related to the result of Cremer (1987). We have
assumed so far that the seller does not have the resources to make such a payment. We
also show in Section 5 that even if the seller does have the resources, due to moral hazard
he will not make such payments if the bidder’s investment X is non-verifiable. (Indeed,
even call options may be too levered in some settings of moral hazard, as we discuss in
our concluding remarks).
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4. Informal Auctions: The Signaling Game

In the previous section we considered formal auctions in which bidders are restricted to
choose securities from a specific well-ordered set. In reality, there is often no such
restriction. That is, the seller is unable to commit to ignore offers that are outside the set.
As a result, the seller will consider all bids, choosing the most attractive bid ex-post. In
this case, the “security design” is in the hands of the bidders, who can choose to bid using
any feasible security.

Without the structure of a well-ordered set, once the bids are submitted there is no
obvious notion of a “highest” bid. In this case, the seller faces the task of choosing one
of the submitted bids. Since there is no ex-ante commitment by the seller to a decision
rule, the seller will choose the winning bid that offers the highest expected payoff. Since
the payoft of the security depends on the bidder’s type, the seller’s choice may depend
upon his beliefs regarding the bid each type submits in equilibrium. Thus, this setting has
the features of a signaling game that takes the form:

1. Bidders submit simultaneous bids that are feasible securities.
2. The seller chooses the winning bid.
3. The winner pays his bid and runs the project.

We consider a sequential equilibrium of this game. We argue that in the informal
auctions bidders will choose the flattest securities possible. That is, they will bid with
cash, if it is feasible; otherwise, they will bid with debt. Thus, Proposition IV implies
that the seller’s expected revenues are the lowest possible from any general auction
mechanism.

To gain some insight, consider first a case in which bidders can use cash. We argue that
in equilibrium bidders use only cash. The intuition for this result is as follows. Let S, be
the security bid by type v. When a bidder of type v decides on his bid, he has the option
to mimic other types. In particular, he can mimic a type V' =V — dv just below him. Such
a deviation has two effects. First, it will reduce his probability of winning to that of type
V'. Second, it will lower his expected payment if he wins from ES, (v) to ES,(v). On

the margin, these two effects must balance out (otherwise there is a profitable deviation).
But now suppose types just below V use security bids rather than cash. Consider the
deviation by type Vv to a cash bid of amount b(v')=ES (v'). Since the seller values this
cash bid the same as the bid S, by type V', the marginal effect on the probability of
winning is the same as if he deviates to S, . However, because the expected value of the
security is increasing in the true type, the expected payment is b(v') = ES, (v') < ES,.(v).
Thus, if type v is indifferent to a deviation using securities, he will profit from a deviation
using cash. As a result, an equilibrium will only involve cash bids.

The second step of the logic above can be applied even when cash bids are not available.
When mimicking a lower type, it is cheaper for a higher type to use a security that is less
sensitive to the true type — i.e., a flatter security — than that used in the proposed
equilibrium. This reasoning suggests an equilibrium will involve the flattest securities
available.
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However, there is a difficulty with extending this result when cash is not available. The
gain from a deviation depends crucially on the seller’s evaluation of the bid. The
argument we gave above is simplified by the fact that the value of a cash bid is
unambiguous; the seller does not need to rely on his beliefs. But when bidders do not use
cash, the value of any off-equilibrium bid depends on the seller’s off-equilibrium beliefs.
As with general signaling games, there are many equilibria of this game if we do not
impose any restrictions on the beliefs of the seller when an “unexpected” bid is
observed.* We turn to such restrictions next.

Refining Beliefs — The D1 Criterion

To rule out equilibria supported with arbitrary off-equilibrium beliefs, the standard
refinement in the signaling literature is the notion of strategic stability, introduced by
Kohlberg and Mertens (1986). For our purposes, a weaker refinement, known as DI, is
sufficient to identify a unique equilibrium.”> The D1 refinement (see Cho and Kreps
(1987), Cho and Sobel (1990)) is a refinement commonly used in the security design
literature.”® Intuitively, the D1 refinement criterion requires that if the seller observes an
out-of-equilibrium bid, the seller should believe the bid came from the type “most eager”
to make the deviation.

In order to define the D1 criterion in our context, we introduce the following notation.
First, let S' be the random variable representing the security bid by bidder i, which will
depend on Vi. For any feasible security S, let R'(S) be the scoring rule assigned by the
seller, representing the expected revenues the seller anticipates from that security, given
his beliefs. Along the equilibrium path, the seller’s beliefs are correct, so that the scoring
rule satisfies

R‘(S):E[ES(\/J\S‘:S]. (5)
Given the seller’s scoring rule, Ri, it must also be the case in equilibrium that bidders are
bidding optimally. That is, conditional on V; =V, S' solves

U'(v) = max, P'(R'(S))(v — ES(V)), (6)
where Pi(r) is the probability that r is the highest score.”” Thus, Ui(v) is the equilibrium
expected payoff for bidder i with type v.

Suppose the seller observes an out-of-equilibrium bid, so that the score is not determined
by (5). Which types would be most likely to gain from such a bid? For each type v, we
can determine the minimum probability of winning, B'(S,v), that would make bidding S
attractive:

** In our context, if the seller believes all off-equilibrium bids are made by the lowest type, this will
minimize the gain from deviating using securities. These beliefs seem unreasonable, however, since many
securities would be unprofitable for the lowest type.

 Strictly speaking, D1 is defined for discrete type spaces. However, it can be naturally extended to
continuous types (see, e.g., Ramey 1996).

% See, e.g. Nachman and Noe (1994) and DeMarzo and Duffie (1999).

27 If there are ties, we require that P' be consistent with some tie-breaking rule.
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B'(S,v)=min{p: p (v—ES(v)) 2U'(v)}.

Then the D1 criterion requires that the seller believe that a deviation to security S came
from the types which would find S attractive for the lowest probability of winning:**

R'(S) € ES(argmin, B'(S,V)). (7)

Thus, a sequential equilibrium satisfying the D1 criterion for the auction game can be
described by scoring rules R' and bidding strategy S' for all i satisfying (5)-(7).

Equilibrium Characterization

Using the D1 refinement, we can now extend the argument we made for cash deviations
to other securities. Suppose type V mimics type V' =V — dv. The cost of doing so for type
vis ES, (V). Now suppose V instead deviates to a security S that is flatter than S, and

such that ES(v') = ES,.(v'). Because the security is flatter, it has a lower cost for type v,
ES(v) < ES,.(vV) . How would the seller respond to the deviation S?

Because S is flatter than S, it is a more expensive security for types below V', and

V'
cheaper for types above V', than S,,. Therefore, the types that are “most eager” to deviate

to S must be above V. By DI, this implies that the seller will evaluate S as at least as
valuable as S,.. Therefore, if type v is indifferent to a deviation to S, , he will profit

from a deviation to a flatter security S. As a result, an equilibrium will involve only the
flattest possible securities.

We now proceed with a formal statement of our results. As is standard in the auction
setting, we will focus on symmetric equilibria.”’ We continue to maintain Assumption C
for standard debt, so that existence of an efficient equilibrium of the first-price auction is
assured. Then we have

PROPOSITION V. Given symmetric strategies, there is a unique equilibrium of the
informal auction satisfying D1. This equilibrium is equivalent, in both payoffs
and strategies, to the equilibrium of a first-price auction in which players bid with
the flattest securities feasible. In particular, if they can bid with cash, they will
only use cash; if cash is not feasible, they will bid with standard debt contracts.

Again, we can now combine this result with the result of the previous section to formalize
the value of the seller’s ability to commit to a restricted set of securities.

COROLLARY. If the seller can commit to a formal auction with an ordered set of
securities other than debt contracts, then expected revenues are higher than
without such commitment.

PROOF: Follows immediately from Proposition IV and Proposition V. ¢

 We have economized on notation here. If the set of minimizers is not unique, the score is in the convex
hull of ES(v) for v in the set of minimizers.

% That is, we restrict attention to equilibria in which the bidders use symmetric strategies and the seller
uses the same scoring rule for all players.
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5. Extensions

Here we consider several extensions to the basic model. First, we consider expanding the
space of security bids by relaxing the liquidity constraints. Second, we consider
expanding the space of mechanisms by allowing the seller to set reservation bids. Third,
we consider changing the information structure by allowing for correlated types and
common values.

5.1. Relaxing the Liquidity Constraints

We have assumed that both the seller and the bidders are liquidity constrained. We now
explore implications of either the seller or bidders having access to cash.

Moral Hazard: Non-Contractible Investment

Up to now, we have restricted bids to satisfy S(0) > 0 assuming the seller is liquidity
constrained. But if the seller has cash, securities in which the seller reimburses the winner
for a portion of the initial investment (and thus have S(0) < 0) are feasible. Importantly,
these securities can be steeper than call options and so increase revenues. For example,
the seller could auction off the rights to a fraction € of the cash flows, and reimburse the
winner directly for the investment (1-¢)X. By making ¢ arbitrarily small, the seller can
extract the entire surplus. While this theoretical mechanism was proposed by Cremer
(1987), it is not observed in practice. A likely reason is moral hazard: if the winner’s
investment is not fully contractible, and if the winner receives only a small fraction of
future revenues, then he may under-invest.*

For example, suppose that after the auction the winning bidder i can choose whether to
invest X. If X is invested, the payoff of the project is Z; as before, and his payment to the
seller is S(Z;). If X is not invested, the payoff is 0, and his payment to the seller is S(0).
If S(0) > 0, the bidder’s payoft is non-positive without investment, and so the option not
to invest is irrelevant. But suppose a bid with S(0) < 0 is accepted with positive
probability. Then every bidder, including the lowest type, can earn positive profits by
making such a bid and not investing. Yet if bidders do not invest and S(0) < 0, the seller
loses money. As a result, the seller would choose not to accept such securities, as shown
below:

PROPOSITION V1. Suppose that the seller is not liquidity constrained and the
investment X is not contractible. Then,

1. In a first and second-price formal auction (with an ordered set of securities):

a. If a security without reimbursement is allowed, then with probability 1
the winning bid satisfies S(0) > 0. That is, competition between
bidders rules out reimbursement.

3% A real example of the importance of moral hazard is provided by several oil lease auctions run by the
U.S. Department of the Interior in which the bidders bid high royalty rates (see Binmore and Klemperer
(2002)). As a result, though development was economically efficient, many of the oil fields were left
undeveloped because bidders did not capture enough of the revenues to warrant their private investment. In
the end, the government was left with almost no revenues.
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b. If all securities involve reimbursement, then all bidders bid the highest
allowed security and do not invest, leading to negative revenues for the
seller.

2. Any mechanism in which bids with S(0) < 0 win with positive probability
cannot be efficient.

3. Inan informal auction, securities with S(0) < 0 are used with probability 0.

Thus, when X is not contractible, even if the seller has cash we can rule out
reimbursement from the seller — it would either not occur in equilibrium or not be in the
seller’s best interest.

Partial Cash Bids

Suppose bidders have cash equal to B, where B is known and common to all bidders.’’
Cash relaxes the limited liability restriction for bidders so that the flattest securities are
now debt claims on the total assets of the bidder (cash + project), defined by

S°(d, z) = min(d, B + z) = min(d, B) + min((d — B)", 2).

As the decomposition above reveals, we can think of this security as an immediate cash
payment (up to B), plus a standard debt claim on the project (for amounts above B).
Because these securities become flatter as B increases, the seller’s expected revenues
decrease with B. A pure cash auction, yielding the lowest possible revenues, is possible
for a second-price auction if B exceeds vy, and for a first-price auction if B exceeds the
expected maximum type for n—1 bidders (which is less than vy). Thus a first-price
auction yields lower revenues for the seller as long as B < vy. These results are consistent
with Board (2002), who considers debt auctions and shows that they yield higher
revenues than cash auctions, with the smallest effect for first-price auctions.

5.2. Reservation Prices

In this section we discuss briefly how reservation prices can be incorporated into our
analysis. Commitment to a reservation price can improve the seller’s revenues, and even
absent commitment, a reservation price may be relevant if selling the project entails an
opportunity cost.

In the case of formal auctions, we assumed earlier that the lowest security, Sy, was such
that all types earn non-negative profits; that is, ES(Sp,v.) < VL. A reservation price is
equivalent to assuming that Sy restricts that set of types that can profitably participate. In
particular, if we choose Sy so that

ES(So, Vr) = Vy

for some type Vy € [V, vy], then v, is the reservation price’”, and types below v, will not
be allocated the project.

3! Che and Gale (2000), Rhodes-Kropf and Viswanathan (2002), and Zheng (2001) consider models where
the cash amount is heterogeneous and privately known.

32 We refer to this as a “price” since it is the minimum amount the seller will accept in order to sell the
object.
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All of our results regarding formal auctions generalize to this case. In particular, holding
fixed the reservation price, the seller’s revenues are higher using steeper securities. In
addition, first-price auctions are superior for super-convex (sets of) securities, second-
price auctions are superior for sub-convex securities, and revenue equivalence holds for
convex ordered securities. The proof of these results follows exactly as the proofs in
Section 3: we apply the linkage principle to compare U’(V) across settings, but now use
the boundary condition U(vy) = 0 rather than U(v.) = 0.

A similar generalization applies to informal auctions. There, since there is no
commitment, it is natural to interpret v, as the outside opportunity for the seller. Thus,
the seller will not sell unless he believes the best security is worth more than v,. Consider

the standard debt security S° defined by ES’(v,)=v,. Types below Vv, would lose
money submitting this security. Thus, in a D1 equilibrium, the seller must believe the
bidder submitting S’ is at least type Vy, and this bid would be accepted. The remainder
of the proof can be extended to show that the unique D1 equilibrium is a first-price

standard debt auction with reservation price Vr, which has the lowest possible revenues
for any auction mechanism with this reservation price.

5.3. Affiliated Private and Common Values

Our model thus far is based on the classic independent private value framework. We
discuss here how our results generalize when values are affiliated (see Milgrom and
Weber, 1982) and may have common, as well as private, components.®> Formally we
assume that:

ASSUMPTION D. The private signals V = (Vy, ..., Vp) and payoffs Z = (Z,, ..., Zn)
satisty the following properties:

1. The private signals V; are affiliated and distributed symmetrically with full
support [Vi, VH].

2. Conditional on V = v, the payoff Z; has density h(z|vi,v_;) with full support [0,
o). The distribution is symmetric in the last n-1 arguments.

3. (4, V) are strictly affiliated.

First we consider formal auctions with a fixed auction format. Under appropriate
conditions there exists a unique symmetric increasing equilibrium for both the first and
the second-price auction.’* Given an efficient equilibrium, we can generalize our result
regarding the impact of the security design on the resulting revenues:™

3 Affiliation (essentially, the log-supermodularity of the joint density function) implies that “good news”
about one of the variables (learning it lies in a higher interval), raises the expectation of any monotone
function of the variables. With two random variables, it is equivalent to the MLRP.

3 For a second-price auction we do not need extra conditions. For a first-price auction, we again need log-
supermodularity of the winner’s profit, which becomes more complicated in this case.

%% See appendix for proofs.

24



= Given a symmetric increasing equilibrium, then fixing the mechanism (first or
second-price), steeper sets of securities yield higher revenues for the seller. *°

The intuition for this result is the same as before — steeper securities increase the effective
competition between bidders since they are more costly for higher types.

What about the comparison of auction formats? Here it is useful to consider first the case
of affiliated private values (i.e., h(z|vi,v_i) does not depend on v_;). In this setting, revenue
equivalence fails even for cash auctions, as shown by Milgrom and Weber (1982). In our
setting,

= With affiliated private values, for both convex and sub-convex sets of securities,
second-price auctions generate higher expected revenues than first-price auctions.

This result again follows from the linkage principle, since the second-highest bid is
affiliated with, or “linked” to, the winner’s value. This linkage creates an advantage for
the second-price auction.

On the other hand, if there is a common value component to the asset, this can have an
opposing effect regarding the optimal auction format, and create and advantage for a
first-price auction. We show this below for a case of independent signals and common
value:

= Suppose V; are independent, and E[Zi |V:|:ZjVj 37 Then for an equity

auction, the first-price auction generates higher expected revenues than a second-
price auction.

The intuition for this result is that, since the equity-share is increasing with the bidder’s
type, and therefore correlated with the asset’s value, to generate the same expected
revenues the expected equity-share in the second-price auction is lower than in the first-
price auction. But the lower average equity share reduces the linkage to the winner’s
own type, reducing revenues in the second-price auction.

Finally, consider the setting of an informal auction. With affiliated private values, our
conclusions regarding the informal auction hold — high types prefer to use flat securities
to separate from lower types:

= In the unique D1 equilibrium, bidders use the flattest possible securities leading to
the lowest revenues for the seller.*®

With common values the signaling game becomes much more complex. Now, after
observing the bids, the seller is potentially more informed than the bidder. Thus the
bidder faces an adverse selection problem. This adverse selection is mitigated by making
the seller’s payoff sensitive to revenues, potentially leading bidders to bid using steeper
securities. We leave the analysis of this case for future research.

%% In this case, the notion of steepness is that given in Lemma 5, which, combined with affiliation, will
imply that securities strictly cross in terms of their expected costs.

37 This is the so-called “Wallet Game”; see Bulow and Klemperer (2002).

¥ The proof is the same as Proposition V with a minor modification to step 3. Intuitively, affiliation
provides the seller with information about the bidder’s type after observing other bids, but this plays no role
in a separating equilibrium.
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6. Conclusion

We have examined an aspect of bidding relatively ignored in auction theory — the fact
that bidders’” payments often depend on the realization of future cash flows. This embeds
a security design problem within the auction setting. First we analyzed formal auctions in
which the seller chooses the security design and restricts bidders to bid only using
securities in an ordered set. This enables a simple ranking of the securities and the use of
standard auction formats. We showed conditions for which Revenue Equivalence holds,
and determine the optimal and worst format and security design combinations. In
particular, we showed that revenues are increasing in the steepness of the securities, and
demonstrated that the first-price debt auction yields the lowest revenues, whereas a first-
price auction with call options yields the highest revenues, across a broad class of
possible mechanisms.

Next we considered informal auctions in which the seller does not restrict the set of
securities or the mechanism ex ante, but chooses the most attractive bid ex post. In this
case, security design is in the hands of the bidders. We show that this yields the lowest
possible expected revenues for the seller, and is equivalent to a first-price auction using
the flattest feasible securities, such as debt or cash. Thus there are strong incentives for
the seller to be actively involved in the auction design and select the securities that can be
used.

Finally, we generalized our results to include relaxed liquidity constraints (incorporating
aspects of moral hazard), partial cash bids, reservation prices, and affiliated and common
values. All of our main insights and results are robust to these features.

There are a number of natural extensions to our framework. For example, the role of the
security design often extends beyond the auction to determine the winner’s and seller’s
incentives ex-post. While we discuss a simple moral hazard setting in Section 5.1, more
general settings can be considered. Some of these can be modeled as further restrictions
on the set of feasible securities. For example, consider the case in which the winner has
the opportunity to divert cash flows from the project, with each dollar diverted generating
a private payoff of & < 1. In this case, by the usual revelation principle argument, we
can restrict attention to securities that do not induce diversion; i.e., such that 1 — S'(z) > o.
Because this limits the steepness of the security, it lowers the revenues the seller can
achieve using the optimal formal auction. On the other hand, it also rules out debt. So if
bidders are cash constrained, the flattest possible securities have the form S(d, z) = min(d,
(1-0) z). Because these securities are not as flat as standard debt, the revenues of the
seller are in fact enhanced by this restriction.*

More generally, our analysis provides clear intuition for the way in which moral hazard
concerns will interact with competition and revenues in the auction. For example, if the
revenues of the project are costly to verify, we know from Townsend (1979) that it is
optimal for the party who observes the cash flows to be the residual claimant. Thus, if

%9 This is a special case of Lacker and Weinberg’s (1989) model of “costly state falsification.”

* Similarly, if the seller can divert cash flows, the constraint becomes S'(z) > 8, which rules out cash or
debt and enhances revenues. Other moral hazard settings can also be considered. If the winner can add
arbitrary risk (see, e.g., Ravid and Spiegel (1997)), then bidders are restricted to using convex securities,
enhancing revenues.
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the seller observes the cash flows, the optimal agency contract is a call option, which also
maximizes the auction revenues. If the winner observes the cash flows, there is a tradeoff
between verification costs, which are minimized with debt securities, and auction
revenues.

For mergers and acquisitions, tax implications and accounting treatment are likely to be
important. For example, the deferral of taxes possible with an equity-based transaction
may give rise to the use of equity bids even in an unrestricted setting. Our results imply
that this tax preference can also lead to enhanced revenues for the seller.

It would be useful to allow for more complicated information structures. For example,
bidders may have private information not only about V but also about X, or the seller may
have private information. Another extension of our model that would be useful in
applications would be to allow for asymmetries in bidders’ valuations and costs. We
believe that our result showing that debt is the outcome for the informal auction
generalizes to this setting. However, for formal mechanisms, we are confronted with the
relative lack of theoretical results in the presence of asymmetries, even in the case of cash
auctions.

7. Appendix

PROOF OF LEMMA 1: Using Assumption B and the fact that S(z) is between 0 and z,
dominated convergence implies that the derivatives exist and are equal to

ES'(v) :.[S(z) h,(z|v)dz and ES"(v)= j S(z) h,,(z|v) dz. Then, for any z",

ES'(v) :IS(Z) h,(z|v)dz :j[S(z)—S(z*)] {%} h(z|v)dz,

since jS(z*) h,(z|v)dz = S(z*)%jh(z IV)dz=0.

From SMLRP, [ h, / h ]is increasing in z. Therefore, we can choose z" so that
NEW 1> irand onlyif z°~ 7.
h(z|v) | < <

Then, since S is weakly increasing,

* hv(zlv)
[S(2)-5(z")] {W}zo,

and the inequality is strict for z such that S(z) # S(z"). This set has positive measure since
S # 0 and Z has full support conditional on v. Hence, ES'(v) > 0. The proof of ES'(V) < 1
is identical, substituting Z — S(Z) for S. ¢

PROOF OF LEMMA 2: The proof that s(v), which solves ES(s,v) =V, is the unique weakly
undominated strategy is standard. Differentiating ES(S(V),v) = V yields,
Z[v—ES(s,v)]

L ES(s,V)

s'(v) =

27



Thus s increasing in v follows, since ES is increasing in S, and from Lemma 1,
O%[V ~ ES(S,V)] > 0 as long as S(s,Z) # Z (which is not possible in equilibrium since X >
0). *

PROOF OF LEMMA 3: Let P(S) be the probability of winning with a bid of's, and (s, V) =
log(P(s)) + log(v — ES(s, v)). Then

S(v) e argmax, P(s)(v - ES(s,V)) = argmax n(s,V).

By Assumption C the objective in the second expression is strictly supermodular, and so
by Topkis (1978), any selection S(v) is weakly increasing in v. If S(V) were constant on an
interval, then the highest type in that interval can increase his bid marginally and increase

his probability of winning, and thus his payoff, by a discrete amount. Thus, S(V) is
increasing. This implies P(s(V)) = Fy(v) = F(v)" .

Continuity of s follows since otherwise a type just above a discontinuity could gain by
lowering his bid. For differentiability, note that we can rewrite the bidder’s optimality
condition as

v eargmax, F (v')(v—ES(s(v'"),V)).
Letting u(s, v) = v — ES(s,v), this implies that for any V' > v,
F,(VU(s(V),v) > F,(v)HU(s(v"),v) = F, (V)] U(S(V), V) +U, (57, v)(s(V) = s(V)) |,

for some s” between s(V) and s(V'). Since U; < 0, this can be rewritten as

Changing the roles of v and V' yields, for some s™* between s(V) and s(V'),

F(v)-F(v)  _ulsv),v) o s(v)—s(v)
VAR -F(vu,s™,v)  v'-v

Taking limits establishes the differential equation for s.

For the boundary condition, note that P(s(v.)) = 0, and since all types earn non-negative
profits ES(S(vL), Vi) < Vvi. But if the inequality were strict, the lowest type could raise his
bid and earn positive profits with positive probability.

Having established uniqueness, it remains to verify existence by establishing the
sufficiency of the bidder’s first order condition. Consider any s’ such that s(v.) < s’ <
S(V). There exists Vi < V' <V such that s(V') =s'. Thus, by Assumption C,
ms(S', V) > ms(S', V') = 0.

A similar argument shows that for S(v) < s’ < s(vn), ms(S’, V) < 0. Hence, w is
quasiconcave in S and the first order condition is sufficient. ¢

PROOF OF LEMMA 4: Using the revelation principle, note that if type Vv reports V' he will
win with probability F"'(v'). His expected payoff conditional on winning is equal to (v
—T(v, V")), where T(v, V') is the expected payment by type V when he reports v'. Thus,
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type v will choose V' to maximize F""'(v")(v—T(v,v')). Thus, we need to establish the

correct form for T.
Letting V', be the highest type excluding i, bidder i wins with report v/ if V., <v'. Let
S, € S be the random security that he will pay if he wins. Then define

$,.(2) = E[s],(z)\vj; sv'}, (8)

a security in the convex hull of S (which does not depend on i by symmetry). This is the
“expected security” paid with a report of V'.  Using the fact that types are independent
and that Z; and V_; are independent given V; (private values), we then have that:

TWV)=E[S.(Z) |V, =v.V <v']
= E:E[év.(zi)\ Z,Vi =v Vv [Vi=v, v sv'}

- E:E[év,(zi)\ Z,V<v]|Vi=v V] sv'}

=E[$.(Z)|Vi=v.V <v']
= ES,(v)
This completes the proof. ¢
PROOF OF LEMMA 5: Let G(2) = S1(2) — S2(2). Then if EG(V*) =0,

h(z|v)
h(z|v")

_ h(z|v) h(@E|v) .
_.[G(z){ V) V) } h(z|v")dz

EG'(v") = [G(2) h,(z|v") dz =J.G(z){ }h(z V") dz

where the last equality follows since
h,(z" V)
h(z" |v")
From SMLRP, [ h,/ h ] is increasing in z. Therefore,

h(z|v) h(|v) 50
h(z|v) h@E@' |v) |

M@ V) egy 0.

h(z|v)dz= h(Z V)

jG(z)

G(z){

and the inequality is strict on the set {z : S;(z) # Sx()}. Thus, EG'(Vv") > 0. ¢

PROOF OF PROPOSITION I: Consider a second-price auction. From Lemma 2, the winner
is the highest type, V', and pays the second highest security bid by the second highest
type, V2. Let S, be the security bid by type V under S; and S, be the security bid by type
V2 under S,. Since ES(s(V), V) = v in a second-price auction, V* = ES;(V?) = ESy(V?). But
then, since Sy is steeper, S; strictly crosses S, from below and so ES;(V') > ESy(V").
Thus, the seller’s expected revenues are higher under S;.
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For the first-price auction, let U(v) be the equilibrium payoff for type v, and S’ the
security bid, with the set S;. First, note that efficiency implies U'(v,) = U*(v.) = 0. Since

U’ (v) = max, F"'(V)(v—ES](v)) = F"'(v)(v—ES/ (v)),
if U'(v) = UXv), we have ES!(v)=ES?(v). But if S; is steeper than Sy,

ES!'(v)>ES} '(v). Thus, from the envelope condition,

U''(v)=F"'(v)(1-ES! '(v)) < F™'(V)(1-ES?'(v))=U*"(v).

Hence, U'(v) < UX(v) for v > v.. Since bidders’ payoffs are lower, the seller’s expected
revenue is higher for each realization of the winning type under S;. ¢

PROOF OF COROLLARY TO PROPOSITION I: Since debt has slope 1 and then 0, it strictly
crosses any other non-debt security from above. Call options have slope 0 and then 1,
and so strictly cross any other non-option security from below. The result then follows
directly from Proposition I.

What about the comparison of debt securities to other sets that may include debt? The
proof for second-price auctions is unchanged. But for first-price auctions, we have the
minor difficulty that a debt security does not strictly cross another debt security. In that
case we modify the set of debt securities by adding ¢ in cash — i.e., the security payoff is
S(z) = min(z, d) + €. This set strictly crosses any other set from above, and so the
revenues can be ranked as in PROPOSITION I. The result then follows from the continuity
of the equilibrium strategies and payoffs in the first-price auction as we take the limit as €
— 0. We can do the same for call options by subtracting cash ¢ from each security. ¢

PROOF OF LEMMA 6: For debt securities, consider any feasible security S,. If Sy(z) >
min(d, z), then z > d and so S,(z') > min(d, z") for all 2’ > z. Hence min(d, z) crosses S,
from above.

For levered equity, note that a convex combination of these securities for different levels
of leverage is a security Sy(z) that is convex in z with maximum slope a. Thus, any
levered equity security crosses S, from below. A similar argument applies to call options,
and to convertible debt when indexed by the equity share o.. *

PROOF OF PROPOSITION Il: Consider the direct revelation game corresponding to the
two auctions. Let S| be the security bid in the first-price auction, and let S; be the

expected security payment in the second-price auction for a winner with type v, defined
according to (8) in the proof of Lemma 4. Then, if the set of securities is super-convex,

S! crosses S} from below, and a nearly identical argument to that used in the proof of

Proposition I for first-price auctions can be applied to prove that the seller’s expected
revenues are higher in the first-price auction.

The only complication is that the securities issued by the lowest types are identical in the
first and second-price auctions, so that the securities do not strictly cross and

U''(v,)=U?'(v,). To resolve this, we can change the support in the first-price auction

to [VL+e, V4], with an atom at v +& with mass equal to that originally on the set [v|, v +€].
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Now, U'(vi+€) = 0 < U*(v_+¢), and by the same argument as in the proof of Proposition I,
U'(v) < U*(v) for all v > vi+&. Then by the continuity of the strategies and payoffs in the
boundary of the support v +e, the first-price auction has weakly higher revenues.
However, since the securities strictly cross for higher types, the revenues cannot be equal.

The proof for sub-convex sets is identical, with the inequalities reversed (and taking the
limit of the support for the second-price auction). ¢

PROOF OF PROPOSITION I11: In a GSM, the winner pays according to a random security.
From Lemma 4, the expected payment by type V reporting V' can be written as E§v.(v) ,

where S, is in the convex hull of the ordered set of securities S. Since S is convex, we
can define s"(V') such that

S(s"(v"),)=S,.().

Because S is ordered, incentive compatibility implies $"(V) must be increasing; otherwise
a bidder could raise the probability of winning without increasing the expected payment.
Thus, s*(v) defines an efficient equilibrium for the first-price auction. The result then
follows from the uniqueness of equilibrium in the first-price auction. *

PROOF OF PROPOSITION V: We focus on the no-cash case as the argument with cash is
similar (and even simpler as off-equilibrium beliefs do not play any major role). In step 1
we show existence of a debt-based equilibrium that survives the D1 refinement. In steps 2
and 3 we show that no other equilibrium exists. In step 2 we prove that any equilibrium is
equivalent to the equilibrium of a first-price auction in debt contracts. The logic is that,
by D1, a deviation to a debt contract with the same cost as the original equilibrium bid
cannot decrease the probability of winning. Therefore such a debt bid is also optimal and
we can construct a payoff-equivalent equilibrium in which only debt is used. In step 3,
we use the envelope condition to argue that the securities used in the original equilibrium
must have slopes equal to debt contracts. But we know from Lemma 5 that debt is flatter
than any non-debt security, so the original securities must have been debt as well. Finally,
we invoke Lemma 3 that states uniqueness of symmetric equilibrium in debt contracts.

The proof differs somewhat from the intuition in the text, which considers deviations by
type V to mimic type V' = v—dv. This “local deviation” is more intuitive, but is not precise
since types are not discrete and therefore there is no nearby type V' that type Vv is truly
indifferent towards mimicking. With continuous types, we first show that type Vv is
indifferent to switching to debt (without mimicking another type) in step 2, and then
show in step 3 that if the original equilibrium were not debt, because debt is flatter there
must be a profitable deviation.

STEP 1: The equilibrium from a first-price debt auction is a D1 equilibrium in the
unrestricted auction (with appropriate off-equilibrium beliefs).

We need to demonstrate that given the strategies from the debt auction, there is a set of
beliefs satisfying D1 that support this equilibrium in the unrestricted auction. We
construct the beliefs R using (5) and (7). If (7) does not produce a unique score, we can
choose the lowest one. We now show that this supports the equilibrium.
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STEP 1A: For debt contracts, the score is increasing in the face value of the debt. That is,
R(SY) is increasing in d, where $%z) = min(d,z).

Note that

v—ES?(v)

argmin, B(S?,v) = arg max
gmin, B(S",v) = argmax, U

Because the objective function is strictly log-supermodular by Assumption C, from
Topkis (1978) we know that v is weakly increasing with d. Thus, (7) implies R(Sd) is
increasing in d.

STEP 1B: R supports an equilibrium in the unrestricted auction.

Consider any deviation to a debt contract. From Step 1la, the probability of winning the
auction is the same as in a first-price auction. Since we have a first-price equilibrium,
there is no gain to the deviation.

Consider a deviation to a non-debt contract S. To show it is not profitable for any type,
we must show that P(R(S)) < min, B(S,v). Let v be the highest type in the set that
minimizes B(S,v). Then ES(v) > R(S). It is sufficient to show that type v does not find
the deviation to S profitable; i.e. to show that P(R(S)) < B(S,v).

Find d such that ES%(v) = ES(v). Then B(S°,v) = B(S,v). From Lemma 5, types V' <V find
s* more expensive than S, so that B(Sd,v’) > B(S,V') > B(S,\v). Therefore,
argmin,, B(S®,v") > v, and so from (7),

R(S%) > ES“(v) > R(S).

Thus, if a deviation to S is profitable, so is a deviation to S, But this contradicts the fact
that no deviation to a debt contract is profitable.

STEP 2: A symmetric D1 equilibrium in the unrestricted auction has the same payoffs as
the equilibrium of a first-price debt auction.

Our method of proof is to show that any non-debt bids can be replaced with an equivalent
debt bid without changing the equilibrium.

STEP 2A: If S is not a debt contract, then at most one type uses this security.

Suppose not, so that v; <V, are the lowest and highest types that use S. Then, by (5), R(S)
= ES(V") for some V; < V* < V,. Consider the debt contract S with the same cost for type
V', i.e. such that ES%Vv*) = ES(v*). From Lemma 5, types V < V* find the ¢ more
expensive than S, so that B(Sd, V) > P(R(S)). Therefore, argmin, B(S",v)>Vv". Thus,
from (7), R(S%) > ES%(v*) = R(S). But this contradicts an equilibrium, as type v, finds S°
strictly cheaper than S with a weakly higher score.

STEP 2B: Suppose type V uses contract S, and define d(Vv) as the debt level that for type v
has equal cost; i.e., ES™(v) = ES(v). Then bidding S has the same payoff as bidding
S, and so ™ is also optimal for type V.

Because S is an equilibrium bid, P(R(Sd(v))) < P(R(S)) by (6). However, by the same
argument used in the previous step, lower types find S' more costly than S so that
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B(S™, v') > P(R(S)) for V' < v. Hence R(S™) > ES*(v) = R(S). Thus, P(R(S"™)) =
P(R(S)). The result follows since the cost and probability of acceptance of bidding debt
with face value d(v) and bidding S are the same for type V.

STEP 2C: d(v) is the unique symmetric equilibrium for a first-price auction restricted to
debt and it is increasing.

From Step 2b, bidding debt d(Vv) is optimal and so solves
U (V) = P(R(S"))(v—ES*™(v)) = max, P(R(S*))(v—ES*(v)).

Using the same logic as in step 1a, R(Sd) is increasing in d. Therefore, this maximization
problem is identical to the problem faced by bidders in a debt-only first-price auction.
Uniqueness and monotinicity follow from Lemma 3.

STEP 3: In a symmetric D1 equilibrium in the unrestricted auction, almost every bid is a
debt contract.

From Step 2 and Lemma 3, the equilibrium payoff of type v in the first-price auction with
debt is

Uv) = F"'(v) (v - ES"(v)),

and so U is differentiable. Suppose type V € (VL, Vy) bids S in equilibrium. Then by a
standard envelope argument,

U'(v) = F"(v)(1 — ES'(v)).
Thus, ES(v) = ES*)(v) and ES'(v) = ES*”(v). Therefore by Lemma 5, S =S,
PROOF OF PROPOSITION VI:
Case 1: First and Second-Price Auctions

Let s’ be a bid that wins with positive probability such that S(s',0) < 0. Then, due to the
moral hazard problem, submitting this bid earns strictly positive profits for any type,
since any type can simply not invest and collect —S(s’,0) in a first-price auction, or even
more in a second-price auction (since the second highest bid is below s'). Thus, by
incentive compatibility, all equilibrium bids earn positive profits.

Let s be the lowest bid submitted. Then the above implies this bid must win with positive
probability. Since it is the lowest bid, this implies a tie -- that is, S is submitted with
positive probability. But then raising the bid slightly would lead to a discrete jump in the
probability of winning and hence in profits.

Incentive compatibility therefore implies S = S, the highest possible bid. If S(s;,0) > 0,
this contradicts the existence of s'. If S(s;,0) < 0, then all types bid s,. But at sy, all types
lose money if they run the project. Therefore, all types bid S;, do not invest, and collect
—S(S1, 0) > 0 from the seller.

Case 2: General Mechanisms

In an efficient mechanism, the lowest type wins with zero probability and so earns zero
expected profits. Since lowest type can claim to be any type and not invest, it must be the
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case that no type with positive probability of winning pays a security with S(0) < 0 with
positive probability.

Case 3: Informal Auctions

Here the result follows immediately from our result that an equilibrium will always use
the flattest possible securities. If S(0) < 0, we can “flatten” the security by raising S(0)
and flattening it elsewhere. ¢

PROOF OF RESULTS IN SECTION 5.3:

Result 1: Consider a first-price auction and two sets of securities A and B where A is
steeper than B. Let S* and S? be the equilibrium bid for type v using these two sets.

Consider the expected payments of a type v who bids as type V':
Mi(v,v')=E [sj,(zi) Vi =v.V < v'} for j = A, B.

Suppose MA(v,v)=M?®(v,v). Given affiliation, a direct generalization of Lemma 5
implies that M/ (v,v) > M®(v,v). The conclusion then follows from the same linkage
principle argument as in the proof of Proposition I.

Now consider a second-price auction. The equilibrium bid satisfies the zero profit
condition:

E[S)Z) |V, =v.V =v]=E[Z =X |V, =v,V | =V]

The proof follows the same logic as in Proposition I; the seller’s revenues depend on the
set of securities through the difference

E [S"jz(zi) ‘ V=,V = Vz} -E |:S\ljz(zi) ‘ Vi=v,,V = VZ}
Again, affiliation implies this difference will be larger for steeper securities.

Result 2: Consider a set A of securities that is convex or sub-convex. Let S be the bid

of type V in a j-price auction. The expected payment for type v who bids as V' in a first-
price auction is

M'(v,v) = E[ S1(Z) |V, =v.V <v' | = E[S1(Z)| Vi = V]

where the second equality follows from the private value assumption. For a second-price
auction,

M2(v,v) = E[ S} (Z)|V, =vV' <V | = E[82,(Z) |V, =V]

where S;,(2)=E [S\f (2) ‘ V,=v,V' < V'} for all z; the security S;,.is in the convex hull

of A. Suppose M'(v,v) = M*(v,v). To apply the linkage principle, we must show that
M/(v,v)<M}(v,v). But this follows since (i) sz’V is in the convex hull of A and
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therefore is steeper than S!, and (ii) affiliation and the monotonicity of bids implies that
E [S\iv.(Zi )|V = V"] is increasing in V.

Result 3: Let a’'(v) be the equity bid of type v in a j-price auction. Then
M'(v,v) = E[ a'(W)Z |V, =vV <v' | =a/(V)E| Z |V = v,V <]
M2(v,v') = E[az(vj)z Vi=v.V' < v'}

>E[a’(V)| V<V ]E[Z]V =v Vi <v]

where the inequality follows since o’(V_,) and Z are positively correlated, and we use the
fact that types are independent. Therefore, M'(v,v') = M*(v,v') implies that

o' (V') > E[az(\/ji)\vj sv']
But since EI:Z |V] = ZIV, ,
M,V =a' (V) > M2(v,V'") = E[oﬁ(v_"i)\vi =v,V sv']

Thus, the result follows from the linkage principle.

*
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