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ABSTRACT
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to two types of uncertainty over the cost of completion. The first is technical uncentainty, i.e.,
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1. Introduction.

In most studies of investment under uncertainty, it is the future payofs from the invest-
ment that are uncertain. The emphasis on uncertainty over future payoffs also applies to
the growing literature on irreversible investment. Much of that literature (see Dixit (1992)
and Pindyck (1991) for an overview) studies optimal stopping rules for the timing of sunk
costs of known magnitude, in exchange for capital whose value fluctuates stochastically.

At times the cost of an investment is more uncertain than the future payoff. This is oltcn
the case for large projects that take considerable time to build. An example is a nuclear
power plant, where iotal construction costs are hard to predict due to both engineering
and regulatory uncertainties. Although the future value of a completed nuclear plant is
also uncertain (because electricity demand and costs of alternative fuels are uncertain),
construction cost uncertainty is much greater, and has deterred utilities from building new
plants. There are many other examples, ranging from large petrochemical complexes, to the
development of a new line of aircraft, to urban construction projects. Also, large size is not
a requisite. Most R&D projects involve.considerable cost uncertainty; the development of a
new drug by a pharmaceutical company is an example,

In addition to their uncertain costs, all of the investments mentioned above are irre-
versible. Expenditures on nuclear power plants, petrochemical complexes, and the develop-
ment of new drugs are firm- or industry-specific, and hence are sunk costs that cannot be
recovered should the investment turn out, ez post, to have been a bad one. In each case, Lhe
investment could turn out to be bad because demand for the product is less than anticipaied,
or because the cost of the investment turns out to be greater than anticipated. Whatever
the reason, the firm cannot “disinvest” and recover the money it spent.

This paper studies the implications of cost uncertainty for irreversible investment deci-
sions. | am concerned with projects that take time to complete, so that two different kinds of
uncertainty arise. The first, which I call technical uncertainty, relates to the difficulty of com-
pleting a project: Assuming prices of construction inputs are known, how much time, effort,

and materials will ultimately be required? This kind of uncertainty can cnly be resolved by



undertaking the project; actual costs and construction time unfold as the project proceeds.!
These costs may from time to time be greater ar less than anticipated as impediments arise
or as the work progresses faster than planned, but the total cost of the investment is only
known for certain when the project is complete. Also, this uncertainty is largely diversifiable.
It results only from the inability to predict how difficult a project will be, which is likely to
be independent of the overall economy.

The second kind of uncertainty relates to input cosés, and is external to what the irm
does. [t arises when the prices of labor, land, and materials needed to build a project fluctuate
unpredictably, or when unpredictable changes in government regulations change the required
quantities of construction inputs. Prices and regulations change whether or not the firm is
investing, and are more uncertain the farther into the future one looks. Hence input cost
uncertainty is particularly important for projects that take time to complete, or are subject
to voluntary or involuntary delays. Also, this uncertainty may be partly nondiversifiable;
changes in construction costs are likely to be correlated with overall economic activity.

This paper derives decision rules for irreversible investments subject to both types of cost
uncertainty. For simplicity, [ first assume that the value of the completed project is known
with certainty, and then show how the model can be extended so that this is also stochastic,
The decision rules [ derive allow for the possibility of abandoning the project midstream, and
maximize the value of tha firm in & competitive capital market. These rules have a simple
form: Invest as long the expected cost to complete the project is below a critical number.
Also, the derivation of the decision rule yields the value of the investment cpportunity, i.e.,
what one would pay for the right to undertake the project. I explore how this value, and the
critical expected cost to completion, depend on the type and level of uncertainty.

Both types of uncertainty increase the value of an investment opportunity. The reason
is that the payoff function is max|0,V — K}, where K is the cost and V the value of the

completed project. The investment oppertunity is like a put option; the holder can sell an

This is a simplification, in that for some projects cost uncertainty can be reduced by first undertaking
additional engineering studies. The investment problem is then more complicated because one has three
choices instead of two! start construction now, undertake an engineering study and then begin construction
only if the study indicates costs are likely to be low, or abandon the project completely.
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asset worth an uncertain amount K for a fixed “exercise price” V. Like any aption, its value
is increased by an increase in the variance of the price of the underlying asset.?

However, the two types of uncertainty affect the investment decision differently. Technical
uncertainty raises the critical expected cost to completion. Hence a project can have an
expected cost that makes its conventional NPV negative, but it can still be economical to
begin investing. The reason is that investing reveals information about cost, and therefore
has a shadow value beyond its direct contribution to the completion of the project; this
shadow value lowers the full expected cost of the investment.* Also, since information about
cost arrives only when investment is taking place, there is no vajue to waiting.

As an example, a project requires a first phase investment of $1. Then, with probability
.5 the project will be finished, and with probability .5 a second phase costing 34 will be
required. Completion of the project vields a certain payoff of §2.8. Since the expected cost
of the project is 33, the conventionally measured NPV is negative. But this ignores the value
of the option to abandon the project should the second phase be required. The correct NPV
is - 1 + {.5)(2.8) = §0.4, so the firm should proceed with at least the first phase.

Input cost uncertainty reduces the critical expected cost. Hence a project could have a
conventional NPV that is positive, but be uneconomical. This is because costs of construction
inputs change whether or not investment is taking place, so there is a value of waiting for new
information before committing resources. Also, this effect is magnified when Auctuations in
construction costs are correlated with the economy, i.e., in the context of the CAPM, when
the “beta” of cost is high. The reason is that a higher “beta” implies that high cost outcomes
are more likely to be associated with high stock market returns, so that the investment
opportunity is a hedge against nondiversifiable risk. Put another way, a higher “beta” raises
the discount rate applied to expected {uture costs, which raises the value of the investment

opportunity, as well as the benefit from waiting rather than investing now.

?Using put-¢all parity, we can also think of this as a ¢all option with a stochastic exercise price (K} on
an asset with a fixed value (V). In my model, the firm has a more complicated compound option; it ean
spend an unceriain amount of money in reiurn for an option Lo continue the partially completed project.

31t is analogous to the shadow value of production arising from a learning curve, which lowers Lhe full
cost of production; see Majd and Pindyck {1989).



For example, suppose an investment can be made now or later. The cost is now $3, but
next period it will either fall to 82 or rise to 34, each with prebability .5, and then remain at
that level. Investing yields a certain payoff of $3.2, and assume the risk-free rate of interest
is zero. [f we invest now, the project has a conventional NPV of $0.2. But this ignores the
opportunity cost of closing our option to wait for 2 better cutcome (a drop in cost). I we
wait, we will only invest if the cost falls to $2. The NPV if we wait is (.5)(3.2 - 2) = $0.6,
so it is beller to wait. Now suppose the “beta” of cost is high, so that the risk-adjusted
discount rate is 25 percent per period. Because the payofl from completing the project is
certain, this discount rate is only applied to cost. Hence the NPV if we wait is now {.5)[3.2
- 2/1.25] = 30.8. The higher “beta” raises the present values of net payoffs, and thereby
increases both the value of the investment opportunity and the value of wailing.

This paper is related to several earlier studies. The value ol inlormation gathering has
been explored by Roberts and Weitzman (1981), whe developed a madel of sequential in-
vestment similar to mine in that the project can be stopped in midstream, and the process
of investing reduces both the expected cost of completing the project as well the variance of
that cost. They derive an optimal stopping rule, and show that it may pay to ga 2head with
the early stages of an investment even though the NPV of the entire project is negative.
Grossman and Shapiro (1986) alse study investments for which the total effort required to
reach a payolf is unknown. They model the payoff as a Poisson arrival, with a hazard rate
specified as a function of the curnulative effort expended. They allow the rate of progress to
be a concave function of effort, and [ocus on the rate of invesiment, rather than on whether
one should proceed or not, My results complement those of these authors, but my model is
more general in its treatment of cost uncertainty, and yields relatively simple decision rules.

This paper is also related to the basic madei of irreversible investment by McDonald and

Siegel {1986). They consider the payment of a sunk cost [ in return for a project worth

1Weitzman, Newey, and Rabin (1981) use this medel to evaluate demonstration plants for synthetic fuels,
and show that learning about costs could justify these invesiments. MacKie-Mason (1991) extends Lhe
Roberts and Weitzman analysis by allowing for investors (who pay the cost of & project) and managers (who
decide whether to continue or abandon the project) to have conflicting interests and asymmetric information.
He shows that asymmetric learning about cosl leads to inefficient overabandonment of projects. Finally, Zeira
(1987) developed a model in which a firm learns about its payoffl [unction as it accumulates capital.



V, where V and I evolve as geometric Brownian motions. The optimal investment rule is
to wait until V/J reaches a critical value that exceeds 1, because of the opportunity cost of
committing resources. Alsa, Majd and Pindyck (1987) study sequential investment when a
firm can invest at some maximum rate (so it takes time to complete a project), the project
can be abandoned before completion, and the value of the project, received upon completion,
evolves as a geometric Brownian motion. In this paper the firm can also invest at 2 maximum
rate, but it is the cost rather than the value of the completed project that is uncertain.®
The basic maodel is developed in Lhe next section. In Section 3, numerical solutions are
used to show how the value of the investment opportunity and the optimal investment rule
depend on the source and amount of uncertainty, as well as other parameters. Section 4
analyzes the decision to build a nuclear power plant; it shows how the model can be used in
practice, shows the importance of analyzing technical and input cost uncertainty together,
and illustrates the nature and implications of nuclear plant cost uncertainty during the

1980's. Section 3 discusses some extensions ol the basic model, and Section 6 concludes.

‘2. The Basic Model.

Consider an investment in a project whose actual cost of completion is a random variable,
K, and whose expected cost is K = E(K). The project takes time to complete; the maximum
rate at which the firm can (productively) invest is k. Upon completion, the firm receives an
asset (e.g., a factory or new drug) whose value, V, 1s known with certainty.

If there were no uncertainty over the total cost, valuing the investmenl opportunity and
determining the optimal investment rule would be straightforward. The project will take

time T = K/k to complete, so the opportunity to invest js worth:

Kk

PK) = max [Ve-”"f"— f ke dt, 0}
1]

SIn related work, Baldwin (1982) analyzes sequential investment decisions when investment opportunilies
arrive randomly and the firm has limited resources. She values the sequence of opporiunities and shows Lhat
a simple NPV rule leads to overinvestment, i.e., there is a value to waiting for better opportunities. Likewise,
il cost evolves stochastically, it may pay to wait for cost ta fall. Also, Myers and Majd (1984) determine the
value of a firm's option to abandon a project in return for a scrap value, S, when the value of the project,
V, evalves as a geometric Brownian motion (Lhe firm has a put option to sell a project worth V' for a price
5), and show how this abandonment value allects the decision to invest.
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= max [(V + kfr)e K — kfr, 0] (1)

where r is the (risk-free) rate of interest. The optimal investment rule is to proceed with the

project as long as F(K) > 0, i.e, as long as K is less than a critical K, given by:
K™ = (k/r)log(l + rV/E).

fr=0FK)=V-K,and K=V, Butifr >0, F(K) <« V—K,and K" < V¥, The
reason is thal the payoff V' is received only at time T', and must be discounted aceordingly,
but the cost of the investment is spread out from t = 0 ta T, Also, note that F(K)is a
convex [unction of K, so uncertainty over cost should increase F(K). Little can be said at
this point, however, about the effect of uncertainty on the optimal investment rule,
Iniroducing Uncertainty.
I fntroduce uncertainty over cost by letting the expected cost to completion, K(2), lollow

a controlled diffusion process. Suppose for Lhe moment that K'(f) is given by:
di = —Tdt + g(1, K)dz, (2)

where I is the rate of investment, z(t) is 2 Wiener process that might or might not be
correlated with the economy and the stock market, and gr > 0, g7 £ 0, and g > 0. Eqn.
(2) says that the expected cost to go declines with ongoing investment, but also changes
stochastically. Stochastic changes in & might be due to technical uncertainty, in which case
(0, K} = 0 and g; > 0, to input cost uncertainty, in which case g{0, K) > 0, or to both.%

I will again assume that there is & maximum rate of investment k. Let F(K) = F(K;V, k)

be the value of the investment opportunity. Then F(K) satisfies:
N 7
F(K) = rax Bo [Ve"‘T - / I{tje dt] , (3)
2

subject to eqn. (2}, 0 < Ift) < &, and K(T) = 0. Here y is an appropriate risk-adjusted

discount rate, and the time of completion, T, is stochastic.

®Eqn. (2) is a generalization of Roberts and Weitzman (1981), who also model the expected cost to go
as & stochastic process thal is controlled by the rate of investment,



For eqn. (2} to make economic sense, more structure is needed. In particular, we would
iike: (1} F(K;V,k) to be homogeneous of degree one in K,V, and k; (i) Fx < 0, e,
an increase in the expected cost of an investment should always reduce its value; (i) the
instantaneous variance of d K to be bounded for all finite K and to approach 0 as &' — 0; and
{iv) if the firm invests at the maximum rate & until the project is complete, Eg fof kdt = K,
so that K is indeed the expected cost to completion, We can meet these conditions and still
allow for reasonably general cost structures by letting g{I, K) = K (I/K)*, with0 < a < 1.
This clearly satisfies conditions (i) and (iii). As will become evident later, 0 < a < § rather
than U < a < 1, which also satisfies (i) and (jii), is necded to satisfy (11). Finally, it is shown
in Appendix A that {iv) is also satisfied.

We will restrict the analysis to @ = 0 and §, which correspond naturally to cur two
types of cost uncertainty, and which result in simple corner solutions for aptimal investment.
{As discussed in Section 4, other values of a result in interior soluticns where I is varicd
in response to changes in the variance of dK.) The case of o = % corresponds to technical
uncertainty; & can change only if the firm is investing, and the instantaneous variance of
di{ K increases linearly with J/K. When the firm is investing, the expected change in X
over an interval Af is —ITA¢t, but the realized change can be greater or less than this, and
K can even increase. As the project proceeds, progress will at times be slower and at times
faster than expected, The variance of K falls as K falls, but the actual total cost of the
project, _,ruf 1 dt, is only known when the project is completed.

The case of @ = 0 corresponds to input cost uncertainty; the instantanecus variance
of dK/K is constant and independent of J. Now K will fluctuate even when there is no
investment; ongoing changes in the costs of labor and materials will change K irrespective
of what the firm does. And since the project takes time to build, the actual total cost of the
project is again only known when the project is complete.

We can allow for both types of uncertainty by combining these two cases in a single

equation for the evolution of K:

dK = —Idt + S(IK)Y/%dz + vKdw, (4)



where dz and dw are the increments of uncorrelated Wiener processes, We will assume that
all risk associated with dz is diversifiable, i.e., dz is uncorrelated with the econemy and the
stock market. However, dw may be correlated with the market. Note that eqn, (4) combines
uncertainty over the amount of effort required to compleie a project, uncertainty over the
cost of that effort, and uncertainty over the time the project will take.

The Optimal Investment Rule.

Given that dw in eqn. (4) may be correlated with the market, we cannot use the risk-
free rate of interest for the discount rate g in eqn. (3). We can eliminate p from the
problem, however, if dw is spanned by existing assets in the cconomy, i.e., if in principle one
could replicate meovements in dw with some other asset or dynamic portfolic of assets. The
investment problemn can then be solved using contingent claims methods. II spanning does
not hold, we could instead find an optimal investment rule using dynamic programming,
subject to some choice of discount rate p.7

We will assume that spanning halds. Let = be the price of an asset or dynamic portfolio

of assets perfectly correlated with w, so that dz follows:
dz = o.zdt + o.zdw. &)

By the CAPM, the risk-adjusted expected return on z is 7, = r 4 8p,,, 0, where § is the
market price of risk,® and p,., is the instantaneous correlation of z with the market portfolio,

The Appendix shows that F{K) must satisfy the following diferential equation:
%ﬁEII{FKK-P%TEKQF}(KﬁIFK—qb’YK-FK—I=T‘F., (G)
where ¢ = (r; —r)/a.. Recall that ro = r + 8pzmor. Thus ¢ = 8., Since 0 is 2 economy-

wide parameter, the only project-specific parameter needed to determine ¢ is papm, which is

equal to the coefficient of correlation between fluctuations in cost and the stock market.

"Bul without spanning we would have no theory lor delermining the correct discount rate (other than by
making assumptions ahout the risk preferences of managers or the firm’s stockholders), Furthermore, the
correct discount rate need noi be constant. If dw reflects unpredictable changes in Lhe prices aof factors such
as labor and raw materials, spanning should hold, at least roughly.

9That s, § = (rq — r)/om, where r., is the expected return on the market, and o, is the standard
deviation of that return. If we take the New York Stock Exchange Index as the market, over the period
1926-88, ry — ray 0B and oy &= 2, 50 § & 4



Note that eqn. (6) is the Bellman equation for the stochastic dynamic programming
problem given by {3}, but with g replaced by r. Because eqn. (6) is linear in I, the rate of

investment that maximizes F{K) is always equal to either 0 or the maximum rate k:

{ b for S K Fxx — Fx— 120

(7

0  otherwise
Eqn. {6) therefore has a {ree boundary at a'point K=, such that /() = k¥ when K < K~ and
I{t) = 0 otherwise. The value of K~ must be {ound as part of the solution for F(K). To

determine F{K) and K*, we solve (6) subject to the [ollowing boundary conditions:

Fl0)=V (8)
Jim F(K)=0 (9)
LB K Frp(K) - Fx(K™) =1 =0 (10}

and F({) continuous at K. Condition (8) says that at completion, the payoff is V. Con-
dition {9) says that when K is very large, the probability is very small that over some finite
time it will drop enough to begin the project. Finally, condition (10) follows from (7), and
is equivalent to the “smooth pasting” condition that Fx(K) be continuous at K",

When I =0, egn. {6) has the following simple analytical solution:
F=ak! (11)

where, to satisly boundary condition (%), b is the negative root of the quadratic equation

Lytb(b—1)— grb—r =0, ie,

1 1
b=5+$—ﬂ\/(7+2¢)’+8’” (12)

The parameter a is determined from the remaining boundary conditions, together with [
and the solution for F{K) for £ < A*. This must be done numerically, which is relatively

easy once eqn. (6} has been appropriately transformed.® A family of solutions for K < K~

FWhen [ = k, eqn. (6) has a first-degree singularity at K = (. To eliminate this, make Lhe substitution
F(K) = f(y), where y = log K. Then [§) becomes:

2kf 2k + 2rf(y)
Suu(¥) — fily) — Bk —:E;;)e“ = 32ke—yr+ 12'

and boundary conditions (8) to (10) are transformed accordingly.

9



can be found that satisfy condition (8), but a unique solution, together with the value of a,

is determined from (10) and the continuity of F(X) at K~

3. Solution Characteristics.

The effects of cost uncertainty can be seen by first examining solutions of eqn. (6) lor
the case of pure technical uncertainty, i.e., ¥ = 0, and then for the case of pure input cost
uncertainty, i.e., 8 = 0. Afterwards we will return to the general case.

Technical Uncertainty.

When only technical uncertainty is present, eqn. (6) reduces to:
AFIK Frxg — I1Fx — I =rF. (13)

In this case, K can change only when investment is taking place, so if & > K™ and the
firm Is not investing, it never will, and F(X) = 0. Hence beundary conditions (8) and (14)
remain the same, but condition (9) is replaced with F(K*) = 0.

When r =0, eqn. (13) has an analytical solution:

FIKY=V-K+48 (

W 2 {87 +2)/6°
) () (4)

2 B +2

and the critical value of K, K=, is given by:
K*=1+18V

Eqn. (14} has a simple interpretation. With » = 0, ¥V — K would be the value of the
investment opportunity were there no possibility of abandoning the project. The last term
is the value of the put option, i.e., the option to abandon the project should costs turn out
to be much higher than expected. Note that for 8 > 9, K= > V, and K* is increasing in 4.
The more uncertainty there is, the greater the value of the jnvestment opportunity, and the
larger is the maximum expected cost for which beginning to invest is economical.

When r > 0, eqn. {13) does not have an analytical solution, but can be solved numerically

for different values of 4. To choose values for F that are reasonable, we need to relate this

10



parameter to the variance of the project’s total cost. The Appendix shows that for this case

in which v = 0, the variance of the cost to compietion is given by:

Var(K) = (2 fzﬁi) K, (15)

Hence if one standard deviation of a project’s cost is 25 percent of the expected cost, §
would be 0.343, and if one standard deviation is 50 percent of the expected cost, # would be
0.63. Standard deviations of project cost in the range of 25 to 50 percent are not unusual,
so we will use these values for 3 in the calculations that follow.

Figure 1 shows F{K) as a function of K for V = 10, k = 2, r = .03, and 3 = 0, .343,
and .63, Observe that F(K) looks like the value of a put option, except that F{K) = 0
when [ exceeds the “exercise” point K=, Although F(X) is larger the higher is 3, the effect
is greatest for larger values of K. Also, the effect of technical uncertainty on the optimal
investment rule is moderate; only when 7 = .63 does /{* substantially exceed ifs value for
the certainty case. In fact, for K* to increase by 50 percent ({rom about 9 to about 13.5}, a
value of 3 close to ! is required, which in turn implies that the standard deviation of total
cost be about 100 percent of the expecied cost.

Finally, Figure 2 shows how F(X') depends on the maximum rate of investment, k. (Here,
A = .63.) As in the certainty case, a larger k implies a larger F{'), because the payolf V
is expected to be received earlier, and hence is discounted less, Also, when the investment

opportunity is worth more, the critical value K is larger.
Input Cost Uncertainty.

With enly input cost uncertainty, eqn. (6) becomes:
%'TZI{'IFKK—IFK—¢'TI\,FK—I=TF. {16)

This is again subject to boundary conditions (8) and (9), but condition (10) is replaced with
Fr(K*) = ~1. Now K can change whether or not investment is taking place, so like a
financial put option, F(K) > { for any finite K.

When 4 > 0, eqn. (16) has no solution when r = 0, because then there would be no

reason to ever invest. One would always be better off waiting until & fell close to 0 so that

11



the net payoff from investing is larger. It would not matter that substantial time might have
to pass for this to happen, because net payoffs would not be discounted.

Hr=0 Kis lognormally distributed. Then - can be interpreted as the standard
deviation of percentage changes per period (in this case, a year) in K. Determining a value
for v that is reasonable depends on the makeup of cost; Section 5 shows how this can be
done for a specific example. Figure 3 shows numerical solutions of eqn. (16) for v = 0, .2
and .4. (In each case, V' =10, k =2, r = .05, and ¢ = 0.} Observe that even when 7 is .2,
there is a substantial effect on the value of the investment opportunity {particularly when
K is large), and on the critical cutoff K. When v = .2, K" is about half of what it is when
7 = 0, so that a correct net present value rule would require the payoff from the investment
to be about twice as large as the expected cost before the invesiment is undertaken. This is
similar to the kinds of numerical results obtained by McDonald and Siegel (1986) and Majd
and Pindyck (1987} for uncertainty over the payoff to an investment, and shows that the
effects of input cost uncertainty can also be quantitalively important.

Figure 4 shows the dependence of F(K) and K~ on ¢, i.e., on the extent to which
fluctuations in K are correlated with the economy and the stock market. Recall that ¢ =
Opzm = Bpgm- A reasonable value for 6, the market price of risk, is 0.4, so we wculd expect
® to be less than this, perhaps on the order of .1 to 3. Figure 4 shows F(K) for ¢ = 0, .3,
and for illustrative purposes, .. As is clear from this figure, a value of ¢ on the order of .1
will have cnly a negligible effect on F{K) and K. For a value of .3, however, the effect is
large, and reduces K= by around 25 percent compared to ¢ = 0. Thus input cost uncertainty
with a large systematic component can have a substantial impact on the decision to invest.

The Genera] Case.

The value of the investment opportunity and the critical expected cost K= can be found
for any combination of g, 7, and ¢ by numerically solving eqn. (6) and its associated
boundary conditions., Since increases in 4 and « {(or ¢) have opposite effects on K7, it is
usefu] to determine the net effect for combinations of these parameters.

Table 1 shows K* as a function of both S and v, for ¢ =0, V =10, k =2, and » = .05,

12



Table 1 — Critical X" as a Function of § and .
(Note: V =10,k=2,r = .05, and ¢ =0.)

-
B 0 01 02 03 04 05
0 | 8.9257 6.6113 4.9463 3.7524 2.8857 0.9550
0.1 |B9844 66504 4.9756 3.7720 2.9016 2.2681
0.2 [ 9.1309 6.7578 5.0537 3.8330 2.9468 2.3032
0.3 [9.3750 6.9385 5.1855 3.9307 3.0225 2.3608
0.4 | 97168 7.1875 5.3711 4.0674 3.1274 2.4438
0.5|10.156 7.5098 5.6104 4.2480 3.2617 2.5488
0.6 | 10.693 7.0053 5.8984 4.4629 34277 2.6758
0.7 11328 83691 6.2402 4.7168 3.6230 2.8271
0.8 | 12051 8.8965 6.6309 5.0146 3.8477 3.0005
0.9 | 12.861 9.5020 7.0801 5.3467 4.1016 3.1982
1.0 | 13.770 10.166 7.5732 57178 4.3848 3.4180

Note that K™ decreases with ~ and increases with d, but is much ﬁ;ore sensitive to changes
in y. Whatever the value of 3, a ¥ of 0.5 reduces K™ to about a fifth of the value it has when
% = 0. Also, this drop in K™ would be even larger if there were a systematic component to
the input cost uncertainty. Thus for many investments, and particularly for large industrial
projects where input costs fluctuate, increasing uncertainty is likely to depress investment.
The opposite will be the case anly for investments like R&D programs, where technical
uncertainty is far more important and # could easily exceed 1‘.

Table 2 shows F(K;f,4) as a function of § and v for £ = 8.92, which is the value of
K~ when # = 4= 0. This is the “premium” in the value of the investment opportunity
that results from the two sources of cost uncertainty. Note that this premium is increasing
in both B and -y, but is again more sensitive to v. Also, if 7 is largel (say, 0.5), this premium

changes very little when § is increased.
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Table 2 — F(K) as a Function of § and 7.
{Evaluated at A" correspanding to 8 =+ = 0)

Y

8 0 0.1 0.2 0.3 0.4 0.5
0 G 1.0877 2.1553 3.1688 4.0535 4.3345
0.1 .1384 1.091% 2.1596 3.1599 4.0565 4.83T1
0.2 | .2026 1.0983 2.1642 3.1670 4.0606 4.8409
03| 2428 11149 21753 3.1747 4.0692 4.8456
0.4 .3924 1.143¢ 21956 3.1878 4.0810 4.8593
0.3 | .5199 1.1918 2.2277 3.2146 4.0974 4.8746
0.6 | .749% 1.2650 2.2697 3.244C 4.1240 4.8920
0.7 | .9067 1.3652 2.3280 3.2837 4.1572 4.9184
0.8|1.1664 1.4942 23998 3.3401 4.1978 4.0487
0.9 | 1.3606 1.6848 12,4939 3.4024 4.2460 4.5884
1.0 | 1.6034 1.8724 25596 3.4764 4.3021 5.0323

The use of this mode! for investment decisions requires estimates of § and «, and, sec-
ondarily, an estimate ol ¢ or pxm. This requires estimating confidence intervals around
projected cost for each source of uncertainty. To break total cost uncertainty down into
technical and input cost componernts, one can utilize the fact that the first is independent of
time, whereas the variance of cost due to the second component grows linearly with the time
horizon., Thus, & value for + is found by estimating the standard deviation of cost T years
into the future assuming no investment takes place prior to that time. This estimate, o7,
could come from experience with construction costs, or [rom an accounting model of cost
combined with variance estimates for individual inputs. Then, 4 = ér/+/T. Likewise, using
egn. (15) and an initial estimate of expected cost, K(0), a value for § can be based on an
estimate of the time-independent standard deviation of K. In the next section, I illustrate

this in the context of a specific example — the decision to build a nuclear power plant.
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4. Example — The Construction of Nuclear Power Plants.

We will examine the decision te start or continue building a nuclear power plant in the
context of market conditions in late 1982 or 1983. This was about three years after Three
Mile Island, and was a time of considerable uncertainty over nuclear plant construction costs,
which had begun rising sharply. Many utilities faced difficult decisiona whether to go ahead
with planned or ongoing construction, and some cancelled plants that were well on their way
towards completion.!® Examining this investment problem will show how the model can be
used, and provide insight into the evolution of nuclear power in the U.S.

To apply the model, we need estimates of the expectation and variance of the cost of
building a kilowatt of nuclear generating capacity, a decomposition of thal variance into
technical and factor cost compouents, the ﬁaximum rate of inves-tment, and the value of the
unit of capacity. The last two numbers are relatively straightforward. Given the prices of
alternative fuels during the early- and mid-1980s, the value of a unit of capacity was about
$2,000, with Auctuations in real terms within only a & 10% range.”” The ectual constructian
time for nuclear plants varied through time and across plants during the late 1970s and
1980s, from 6 to as long as 16 years, bitt tended to move proportionally with realized costs,
and increased over the years as (real) costs increased. During the early 1980s, however,
estimates of erpected construction time were clusterec-l around 10 years, so a good estimate
of the maximum rate of investrment is 10 percent of expected cost.

To estimate the expectation, variance, and variance decomposition of cost, [ use survey
data on individual nuclear plant costs published by the Tennessee Valley Authority, and a
cross-section regression analysis by Lewis Perl (1987, 1988) that explains differences in these
costs across plants. The TVA obtained guarterly estimates of expected cost for nuclezr
plants planned or under construction in the U.S. These numbers, published in the TVA's

“Costs per Kilowatt Report for U.S. Nuclear Plants,” provide dafa on the expected cost of

0For example, Virginia Electric Power cancelled its Northanna III and IV units,-which were 10% com-
pleted, Public Service of Iudiana cancelled Marble Hill (35% completed), Washington Public Power Supply
Systerns cancelled four of its five plants (5% to 50% compieted), and Cleveland Electric Illuminating cancelled
its Zimmer plant, which was more than 90% completed.

HA|l numbers are in 1985 constant dollars. This figure is based on Perl (1987, 1988).
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a kilowatt of generating capacity on a plant-by-plant basis. The variance ol cost and its
decomposition can be estimated from the time-series and cross-sectional variation of these
numbers, using the [act that the variance of cast due to technical uncertainty is independent
of time, but the variance due to input cost fluctuations grows with the time horizon.

In any year, expected costs per kilowatt will vary across the 50 to 60 plants in the TVA
survey, but part of this variation can be explained by differences in the type of plant, the

experience of the contractor, region of the country, etc. Consider the cross-section regression:
COSTi = ap + ey Xt + a2 Xzie + .. + 6, (17)

where COST;, is expected cost for plant 7 in year ¢, and the X;,'s are a set of explanatory
variables. This regression filters cut the predictable part of the cross-sectional variation,
Then, for plant 4 in year 1, an estimator of the variance of cost due to technical uncertainty
1s the variance of the cross-sectional forecast error for COST,; from the regression equation
(17), given the values of X);,, X3;, etc., that apply to plant i.

A lower bound on this variance is the (squared) standard error of the regression; this
would be the variance of the forecast error if, for plant ¢, Ay for each & were equal to its
cross-sectional mean. In general, the X;,'s for any plant will differ from the means, so the
variance of the forecast error will exceed the squared standard error of the regression. (The
reasoll is that the true coefficients a,, ag, etc., are unknown, and only estimated.) An upper
bound on the variance of ihe forecast error is the cross-sectional sample variance of CQST,,.
Hence I consider values of # in eqn. {6) that correspond to forecast error variances ranging
from the squared standard error of the regression to the sample variance.

Perl (1987, 1988) ran such regressions in logarithmic form for 1977-1985, using the TVA
data on COST for the last quarter of each year, with up to ten explanatory variables.!® [infer

values of 4 from his results, using the 1982 data and regression. Converting to levels, the

12He regressed the log of COST (in constant 1085 dollars) against a sel of variables thal included the
log of the real wage, the log of the net design electric rating (reflecting the scale of the plant), the Jog of
the experience of the architect/engineer (measured in number of plania designed), and dummy variables [or
the region of the country, for the type of tock foundation, far whether the plant was the first or subsequent
built by the utility, for whether it was a boiling water reactor, for whether the utility served as its own
construction manager, and for whether the planL had a complex coocling tower. Only variables that were
statistically significant were retained, so regressions for some yeats included only a subset of the abaove,
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mean expected cost for that year was §1435 per kilowatt, with a standard error of regression
of 17 percent. This is a lower bound on thé standard deviation of the cross-sectional forecast
error, and using eqn. (15), implies 8 = .24 The upper bound is the sample standard
deviation, which for 1982 was 46 percent of expected cost, and corresponds to 3 = .59,
Next, I estimate the variance due to input cost uncertainty by fitting the annual time
series for mean expected cost to a geomeiric random walk. The drift and standard deviation
of percentage changes in mean expected cost are .12 and .06 respectively for 1977-1985, and
11 and .07 for 1977-1982. Since | consider decisions at the end of 1982, I use the latter
numbers. However, an estimate of the dnft based or six years of data (1977-82) is very
imprecise, and an expected real rate of increase of mean cost of 5 percent per year would
have been reasonable at the time. This would yield an estimated standard deviation of

.20, so I take .07 to .20 as a reasonable range for v in eqn. (6). Also, most input cost

" uncertainty was due to continual and unpredictable regulatory change, rather than [actor

price fluctuations. Since this is largely uncorrelated with the economy, [ set ¢ = 0.

Table 3 shows solutions for 8 = 0, .24, and .59, and y = 0, .07, and .20. In each case,
V' = 52000 per kilowatt, k = 3144 per year (10% of the $1435 mean expected cost in 1982),
¢ =0, and r = .045." The table shows the criiical cost K™, and the value of the utility’s
investment option (per kilowait) for an actual expected cost equal to the mean of $1435.

Observe that absent input cost uncertainty (v = 0), K™ ranges from $1609 to $1881, so
that these investments would have been largely economical. (Technical uncertainty increases
K* by 4 to 21 percent compared to its value of $1550 when # = v = 6.) But input
cost uncertainty lowers K™ considerably, making the average plant uneconomical. Even for

7 = .07, in most cases it would have been preferable to wait and see how regulations (and

-the expected costs they implied) evolved. And for 4 = .20, it would have been economical to

13Nate that this accounts for construction experience and movermnent down the learning curve. For a discus-
sion of the impact of experience on nuclear plant operating costs, see McCabe {1981). McCabe also examines
technology adoption with uncertain operating ¢cst, and argues that utilities buy a mix of technologies in
order to reduce the variance of operating cost.

MThe average yield on J-year and 10-year Treasury bonds in 1982 was 13%. I take the 1979-82 average
tate of inflation of 7% in the PP and 10% in the CPI as estimates of expected inBation, which puts the real
risk-free rate at about 3-6%.
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Table 3 — Critical Cost per Kilowatt of Capacity at End of 1982.
(Based on V' = $2000 per Kilowatt, r = .045, k = $144 per year,
and ¢ = 0. Mean expected cost was K = §1435 per kilowatt.)

.
0 07 20
K* =1550 K* = 1251 K= =867
0
F(K)y=121 F{R) =194 F(K) = 465
K- = 1609 K= = 1260 K= =871
g 24 .
FKy=131 F(R)=20 F{K} =469
K™ =188] K= =1293 K= = 887
50
F(R) =215 P(K)=1228 F(K) = 487

stop construction on plants that were 40 percent complete.'® This would seem to justify the
decisions that some utilities made at the time to cancel planned or ongoing construction.'®

The resuits are not very sensitive to the maximum rate of investment, k. Taking g = .24
and 7 = .07, if k = 288 (so expected construction time is 5 years instead of 10), K~ rises to
$1307. If k = 96 (so construction is expected to take 15 years), K~ falls to $1154. Thus for
a reasonable range of expected construction times, K~ varies by £ 10 percent.

These results show that for nuclear power plants, input cost uncertainty matters most for
the investment decision, even though there is substantial technical uncertainty. They also
show the importance of incorporating both types of uncertainty in the analysis, rather than

treating them separately. Note fram the table that the dependence of K~ on J Is much less

1$This assumes that there is no cost Lo stopping, and that construction could be resumed in the fulure.

18The TVA surveys were available to all U.S. utilities, so presumably they could have performed the same
analysis.

18



when 7 is .07 or .20 than it is when 7 is zero. So, if one first calculated the change in K™
due to, say, 2 § of .59 (holding v = 0}, and then the percentage change due to a 7y of .07,
the result would be a K~ of about 81518, rather than the correct value of $1293.

5. Extensions of the Model.
This section shows how the model can be extended to account for uncertainty over the
future value of the compieted project, and te allow for more general processes for J((t).
Uncertainty over the Value of the Completed Project.

Suppose the evolution of K is again given by eqn. (4}, but V also evolves stochastically:
dV = a,Vdt + 7, Vdz,, (18)

where dz, is assumed to be uncorrelated with dz or dw. Thus future values of V are log-
normally distributed, and since the project takes time to complete, the payoff is always
uncertain. For simplicity, we will assume that all risk is diversifiable. Then we can use
dynamic programming, discounting with the risk-[ree rate of interest.

The value of the investment opportunity is again given by eqn. {3), but with V now

stochastic, and hence replaced by V(). The Bellman equation is:
rF = max {~1t) - IFx + }5*TK Fex + 37 K*Fyeie + o,V Fy + 302 ViIFpy}  (19)

This is linear in f, and eqn. (7) again applies. The optimal rule is to invest whenever
K £ K=(V). Eqn. (19)is an eﬂibtic partial differential equation with a free boundary along
the line K*(V). The solution must satisfy the boundary conditions: (i) F(0,V) = V, (ii)
limy o F(K, V) = 0, (iii} limg—.o F(K, V) = 0, (iv) L2 K" Fie (K", V)= Fe (K, V) =1 = 0,
and F{K,V) and Fi (K, V) coniinuous at K=(V). Condition (i1} reflects the fact that 0 is
an absorbing barrier [or V; the other conditions are interpreted as before.

When K > K*(V), so that I =0, eqn. (19) has the following analytica! solution:

F(K, V) =m(K/V), (20)

1 a,—-d 2y + e?)
- = U 1 _ u
< (2+72+03)( \j1+(-r“+2au—aﬁ)2 (21)
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When K < K(V), use the continuity of F(K,V) and Fx(K,V) at K~ to eliminate m:
FUC, V) = (K ) Fre (K7, V) (22)

Eqn. (19) together with conditions (i) and {22) can be solved numericaily using a finite

difference method. The boundary, £*(V), is found simultaneously with FP(K, V).

Generalizing the Pracess for K(£).

We imposed restrictions on K(¢) that resulted in a simple investment rule and let us

clearly differentiate between two types of cost uncertainty. We let K(t) follow:
di = —Idt + SK(I/K)*dz, (23)

with @ = { or ;. Now suppose § < a < . We will again assume that dz is diversifiable, and

that ¥ is fixed and certain. Then the Bellman equation is:
= max {-~1{) = 1Fc + Lg2 1 204 Feye | (24)

Maximizing with respect to I gives the optimal investment rule in terms of F(X):

(23)

Qﬁ2 I(?(I—Q]FKK /(120
1+ Fy

I'K) = [
Substituting J*(&') into (24} yields the following nonlinear differential equation for F{K):
rF=1+Fg— (aﬁsz"“FKK)lf(l‘z“J(l + Fﬁ_)—!a,’(l—Za) (25)

To find F{K), (26) must be solved (numerically) subject to conditions (8) and (9).

Eqn. (26) has solutions for which —1 < Fr <0 and Fgg > 0.17 Note from eqn. (25)
that 7 — 0 as & — 0, so for small K, I falls as the net payoff V' — K rises. This is Lhe
opposite of Grossman and Shapire's (1986) finding that [ rises as the net paycff rises when
there are decreasing returns to effort. In my model there are constant returns to effort; J

falls because the variance of K falls as & falls, so that the shadow value of learning falls.

At K =0, Fx must be grealer than -1 as long as construclion takes finite time and the discount rate is
positive. Likewise, Fyx rnusl remain Anite as K — 0.
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6. Conclusions.

The model developed in this paper, as well as such predecessors as Roberts and Weitzman
(1981) and Grossman and Shapiro (1986), belong to a broad class of optimal search probiems
anatyzed by Weitzman (1979). In what he characterized as a “Pandora’s box™ problem,
one must decide how many investment opportunities with uncertain cutcomes should be
undertaken, and in what order. In this paper, each dollar spent towards completion of
a project is a single investment opportunity, and the uncertain outcome is the amount of
progress that results. The model developed here is more general in that expected outcomes
can evolve stochastically even when no investment js taking place (input cost uncertainty),
but more restrictive in that the order in which dollars are speat i3 predetermined.

One advantage of this model is that it leads to a simple investment rule that is relatively
easy to apply in practice. Also, the restrictions that have been inllposed on the process [or
K (1) allowed us to clearly differentiate between two types of cost uncertainty. As we have
seen in the previous section, some of the restrictive assumptions in the model can be relaxed
(e.g., that V' is non-stochastic), but at the cost of added computational complexity., Other
restrictions can be relaxed as well. For example, we can relax the restriction that techﬁical
uncertainty is the same for each phase of the project (i.e., the uncertainty over the frst
third of a project’s anticipated cost is the same as for the last third) by making § in eqn.
(13) a function of K. As long as A(K) is a smooth monotonic function, it is reasonably
straightforward to obtain numerical solutions for F'(K).

The sources and amounts of cost uncertainty will vary greatly across different, projects.
However, based on the ranges of parameter values that would apply to the bulk of large
ca.pital investments, factor cost uncertainty is likely to be more important than technical
ulncertainty in terms of its effect on the investment rule and the value of the investment
opportunity. We saw that this is clearly the case for investments in nuclear power plants.
The opposite may be the case for some R&D projects. And although we found that K= is not
very sensitive to 3, this was based on the assumption, discussed above, that the uncertaiaty
is the same across all phases of the project. Increases in K™ may be much larger il much of

a project’s uncertainty gets resolved during its early phases.
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Appendix

A. Mean and Variance of K.

Here T show that if K'(¢) follows a controlled diffusion of the form:
dK = —kdt + JK{k/K)"dz, (A-1)
then K'(t) is indeed the expected cost to completion. Let:
T
M(K)=E [] kdﬂK(i)], (A—2)
t

where T is the first passage time for /¢ = 0, We will show that M{K)=K.
We make use of the fact that the functional M (X) must satisfy the Kolmogorov backward

eguation corresponding to (A - 1):
%ﬁzkhfl’z—iaMK]{ — kMg + k=0, {(A-13)

subject to the boundary conditions (i) M(0) = 0 and (ii} M(e0) = co. (See Karlin and
Taylor (1881), Chapter 15.) Clearly M(K) = K is a solution of (A - 3) and the associated
boundary conditions. Now consider a more general solution of the form M(R) = K + h({K),

where A(K) is an arbitrary function of K. By direct integration,

9 r2a—1
hﬂ]&')zCexp[ i ]

Ga— L)k (4-4
But since limp o Ax () = C, the constant C must egual zero to satisfy boundary cendition
(1), Hence M(K) =K.
For the case of @ = } (technical uncertainty), we can also find the variance of the cost
t 1.e.
o go, le., ] \
Var(K) = £, U kdrlK] — K1), (A —5)
t
Let G(K) = E; [f,T de|K]2. Then G(K) must satisfy the following Kolmogorov equation:

L1BRK Grx — kG + 2RK =10, (A -6}
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subject to the boundary conditions G(0) = 0 and G{oo) = co. (See Kaslin and Taylor
(1981}, page 203.) The solution to (A - 6) is G(K} = 2K?/(2 — 5%), so the variance is:
B 2
B. Derivation of Equation (8).

Given a replicating asset or portfolioc whose price r follows eqn. (5), we can value the
firm’s investment opportunity as a contingent claim. First, denote § = r; —a,. Now consider
the following portfolio: hold the investment opportunity, worth F(K), and sell short n units
of the asset with price z. The value of this portfolio is then & = F(K) — nz, and the
instantaneous change in this value is 4% = dF — ndz. Since the expected rate of growth
of 2 i3 & < 7, the short position will require a payment stream over time at the rate
n{r; — a;)x = ndz. Also, insofar as investment is taking place, holding the investment
opportunity implies 2 payment siream 7(f). Thus over an interval dt, the total return on the
perifolio is dF — ndz — nézdt — I(t)dt.

Next, using Ito's Lemma, write dF as:

dF

FrdK + 1 Fyr(dK)
—1Fxdt + BUK ) Frdz + vK Fiedw + L IK Fxedt + 1y K2 Fgedt

Substituting (5) for dz, the total return on the portfolio over an interval di is therefore:

—IFgdt + ATEM*Frdz + 4K Frdw + 151K Fedt + 192K Fregedt

— nozdt — no.zdw — ndzdt — Idt.

By setting n = 4 Fg/oyz, we can eliminate the terms in dw, and thereby remove nondi-
versifiable risk from the portfolio. With n chosen this way, the only risk the portfolio carries
is diversifiable, and hence the expected rate of return on the portfolio must be the risk-free
rate, r. Using this value of n and equating the expected portfolio return to r{F — nz)dt

yields equation (8) for F(K).
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E E1- AL UNCERTAINTY

Shows value of investment opportunity, F(K), as function of expected cost to completion, K, for § = 0,
343, and .63, where § describes degree of technical uncertainty. Other parameter values are V = 10,
k=2,r=.05 and v = ¢ = 0. Intersection of F(K) with K axis gives critical expected cost K.

) T T

1 1 T
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FIGURE 2 - NGES 1 F

Shows value of investment opportunity as function of expected cost to completion for three values of
maximum rate of investment; k = I, 2 and 10, Only technical uncertainty is present (§ = .63, v = ¢
= Q). Other parameter values are V = [0, and r = .05.




EIGURE 3 - INPUT COST UNCERTAINTY

N Shows value of investment opportunity as function of expected cost to completion, and critical expected
cost K*, fory =0, .2, and .4, where -y is annual standard deviation of percentage changes in cost due
to input cost fluctuations. Other parameter values are V = 10, k=2, r= 05,8 =0,and ¢ = Q.
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T UNCERTAINTY Y. I

Shows value of investnent opporunity as function of expected cost td completion, and critical expected
cost K, for ¢ = 0, .3, and .6. Only input cost uncertainty is ptesent {(y = .2, 8 = 0). Other parameter
values are V = 10, k = 2, and r = .05.
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