AGGLOMERATION AND THE PRICE OF LAND: EVIDENCE FROM THE PREFECTURES

Robert Dekle
Jonathan Eaton

Working Paper No. 4781

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138
 June 1994

We thank Aditya Bhattacharjea, Rabindra Bhandari, and Akiko Tamura for excellent research assistance and seminar participants at the Board of Governors of the Federal Reserve System, Tufts University, Tel Aviv University, New York University, Harvard University, Indiana University, and participants at the conference "Asset and Land Prices: Conceptual Issues and the Japanese Experience," Boston University, for comments. We gratefully acknowledge the support of the Japan-U.S. Friendship Commission and the National Science Foundation. This paper is part of NBER's research program in International Trade and Investment. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

AGGLOMERATION AND THE PRICE OF LAND: EVIDENCE FROM THE PREFECTURES

Abstract

We use Japanese prefectural wage and land price data to estimate the magnitude of agglomeration effects in manufacturing and finance. We also examine the range of agglomeration effects by estimating the extent to which they diminish with distance, using a specification that encompasses the polar cases of purely local agglomeration economies, on the one hand, and national increasing returns to scale, on the other. We find that agglomeration effects are slightly stronger in financial services than in manufacturing, and that they diminish substantially with distance in either sector. Our estimates indicate that agglomeration effects can explain about 5.6 per cent of the growth in Japanese output per worker in manufacturing and about 8.9 per cent of the growth in output per worker in financial services during 1976-1988. Our estimates imply that, while the average elasticity of productivity with respect to agglomeration is between 10 and 15 per cent, agglomeration economies in the largest prefectures are nearly exhausted.

Robert Dekle
Department of Economics and International Relations
Boston University
270 Bay State Road
Boston, MA 02138

Jonathan Eaton
Department of Economics
Boston University
270 Bay State Road
Boston, MA 02138
and NBER

A number of explanations of economic growth focus on increasing returns to acale external to the firm as a source of increased productivity. ${ }^{1}$ External effects also play a central role in the literature on urban location, where they provide an explanation for the existence of cities. ${ }^{2}$ Indeed, Lucas (1988) notes the similarity of his explanation of economic growth and explanations for cities:
"It seems to me that the 'force' we need to postulate for the central role of cities in economic life is of exactly the ame character as the 'external human capital' I have postulated as a force to account for certain features of aggregative development. If eo, then land rents should provide an indirect measure of this force....(p. 39)."

The two literatures differ in two basic respects, however. For one thing, the growth literature has assumed externalities at the aggregate level, while the urban literature treats externalities as local. Second, most models of growth have not incorporated a productive role for land; all factors of production except labor are reproducible. Hence there is no natural limit to the supply of complementary factors availabla to an individual worker. However, not surprisingly, land plays a central role in the urban literature.The competition among factors for scarce land in an
${ }^{1}$ See, for example, Arrow (1962), Romer (1986), and Lucas (1988).
${ }^{2}$ Examples of models that focus on externalities at the urban level are Mills (1967). Arnott (1979), Helpman and Pines (1980), and Henderson (1988). Henderson (1987) surveys this literature.
urban location provides a centrifugal force to offset centripetal agglomeration effects. Congestion effects explain the existence of multiple cities and economic activity in nonurban locations. If agglomeration effects are never offset by competition for acarce land then activity should converge to a single point that would become a "black hole" of economic activity. Presumably the limitations on economic activity implied by finite natural resources act as a constraint on economic growth as well.

Data on urban activity over time and acrosg countries indicate a strong correlation between economic growth and urbanization. This relationship suggests that the benefits of proximity increasingly outweigh the costs of congestion as aconomies develop.

The relationship between urbanization and growth has been attributed to various interrelated factors. © One is local acale economies, both internal and external to the firm, in industrial activity (as modeled, for instance, by Henderson (1988)). Another explanation is that the increased specialization of labor and differentiation of comodities associated with development make trade at a central location more desirable (as suggested, for example, by Diamond's (1982) models of search). The first argument explains urbanization and city size by the development of particular industries. Sassen (1991). for example, relates the most recent growth of New York, London, and Tokyo to the growth of international finance." The second suggests that urbanization is

[^0]likely to be associated with agglomerations of more apecialized, and more educated, individuala (as suggested by Glaeser et.al. (1991)).

The lack of comprehensive, uniform data on land rents or prices across time and space has impeded serious investigation of the extent and range of agglomeration effects on productivity. An exception to this absence of data is Japan, where the Economic Planning Agency of the Government of Japan has reported commercial and residential property values by prefecture since the early 2970s. Given the enormoul range in the intensity of land use across the 46 prefectures of the Japanese archipelago, these data provide an excellent source of information on agglomeration effects. Our purpose here is to exploit these data to measure the intensity and scope of the effects of agglomeration on productivity.

We proceed as follows. In Section 2 we develop a model of industry production with positive production externalities among firms: More production by one firm raises productivity in firms nearby. The effect diminishes across space. The model encompasses the two polar cases that have received the most attention:

In one, agglomeration effecta are completely local, with possible positive spillovers between firms within a region but not across regions. The urban economics literature has devoted the most attention to this case. Ciccone and Hall (1993) have recently estimated the extent of spillovers of this type with U.S. county and state data, finding an elasticity with respect to density of .04 . A maintained assumption ia that apillovers are purely local.

In the other polar case, spillover effects are nationwide, with distance imposing no impediment. The international trade and macroeconomics ifterature
has focused on externalities of this typa." Caballero and Lyons (1992) recently estimated the external economies in U.S. manufacturing as a whole at about 20 to 30 per cent. ${ }^{7}$

In Section 3 we describe how we use the model to infer the magnitude and geographical reach of external economies from Japanese prefectural data on land prices, wages, outputs, and regional characteristica. We use annual data for the period 1976 through 1988. Because of apectacular growth in the output of financial services in Japan during this period, and the attention given to it by Sassen (1991) and Boone (1989), we estimate tha extent and range of agglomeration effects in manufacturing and financial services separately.

Section 4 analyses our results. We find elasticities of productivity with respect to local activity botween 10 and 15 per cent in manufacturing and between 12 and 20 per cent in finance. Our estimates of the elasticities vith respect to nationwide activity are about 2 to 5 per cent higher in each case. For both sectors we find that the impact of agglomeration on productivity diminishes substantially with distance. Activity 10 kilometers away has half or less the impact of activity in the immediate vicinity. The estimated effect of agglomeration on productivity is within two per cent of the theoretical maximum implied by our specification for the largest prefectures, but only about threa-fourths of the theoretical maximum in prefectures with the mallest agglomeration offects. Agglomeration influences the comparative advantage of prefectures as financial and manufacturing centers, and we discusa how this comparative advantage has shifted over time. Our estimates imply that increased agglomeration can explain about 5.6 per cent of the

[^1]growth of output per worker in manufacturing and about 8.9 per cent of the growth of output per worker in finsnce during the period that we examine.

Section 5 discusses some implications of our results.
2. A Model of Prefectural Production and Land Rents

We first discuss the theoretical framework that we use to estimate the extent and range of agglomeration affects in manufacturing and finance. As is standard in much of the literature on externalities, we treat technology at the plant level as linear homogeneous in the plant's inputs, but allow productivity at the plant level to depend on the general level of activity at nearby plants in that industry in the region. Specifically, we measure the agglomeration economies provided by prefecture p in industry i with the index:

$$
\begin{equation*}
A_{i p}=\sum_{j=1}^{46} \frac{Y_{i j}}{\left(1+\delta_{i} d_{p j}\right)^{2}} \tag{1}
\end{equation*}
$$

where $Y_{i f}$ is a measure of the overall activity of industry in in prefecture \mathcal{I}, and $d_{p j}$ is the distance between prefecture p and prefecture j. At one extreme, if $\delta=\infty$ then agglomeration economies are purely local in nature: Increased activity in neighboring prefectures creates no externalities. At the other extreme, if $\delta-0$ then increased activity in this industry anywhere in the country increases productivity in prefecture p to the same extent:

External economies are then nationwide."
We introduce agglomeration effects into the production function as

[^2]follows: Output $y_{\text {fip }}$ of plant f in industry i producing in prefecture p, as a function of its inputa $k_{f i p}$ of capital, $l_{f i p}$ of labor, and $t_{f i p}$ of land, and prefectural agglomeration in that industry, $A_{i p}$, is:
\[

$$
\begin{equation*}
y_{f i p}=0^{-\phi_{i} / \Lambda_{i p}} \varphi_{i}\left(k_{f i p}, 1_{f i p}, t_{f i p}\right) \phi_{i}\left(c_{p}, t\right) U_{i p t} \tag{2}
\end{equation*}
$$

\]

where:

$$
\begin{equation*}
\varphi_{1}(k, 1, t)=k^{1-\beta_{L 1}-\beta_{T 1}} i_{L i}^{\beta_{L 1}}{ }_{t}^{\beta_{T 1}} \tag{3}
\end{equation*}
$$

Here ϕ_{1} captures the extent of external economies in industry 1 and $\beta_{L i}, \beta_{T 1}$, and $1-\beta_{L 1}-\beta_{T 1}$ are factor shares for that industry. The function ϕ_{1} contains time and prefectural characteristics c_{p} that affect productivity as arguments. The term $U_{\text {ipt }}$ is a lognormally distributed error.

We adapt this functional form for the contribution of external economies from Henderson (1987). This specification implies that the elasticity of productivity with respect to total economic activity is large at low levels of activity and diminishes with increased economic activity as the contribution of agglomeration reaches its theoretical maximum of one. The specification differs, for example, from what is implied by the Dixit-Stiglitz (1977) model of product differentiation, which has been applied to urban analysis by fujita (1988). Two simple microeconomic models that yield this specification are the following:

[^3]One model captures the ame Smithian notion that productivity increases with the division of labor among planta as the Dixit-Stiglitz (1977) framework. Specifically, ay that the output y_{f} of plant f is a function of the number of plants N in its industry from which it buya inputs to produce its own output. In particular, let:

$$
y_{f}-\sum e^{-\phi / N} \varphi_{i}\left(k_{f}, 1_{f}, t_{f}\right)
$$

If the minimum efficient plant aize in the industry is X_{i}, then the number of plante in a prefecture will be proportional to industry output. Say that the output of a plant used as an input olaewhere is tradable at zero cost over a radius r. Also assume that it is so expensive to trade the output over a larger radius that it is not worth using elsewhere. If r has distribution $1-1 /(1+\delta r)^{2}$, then the probability that that a plant will buy from another plant a diatance r away is $1 /(1+\delta r)^{2}$. Together these assumptions imply the specification that we use here.

Harket Information

Another motivation for this specification is the superior knowledge about market conditions provided by greater levels of economic activity. Say, for example, that consumers desire a characteristic of a product ot at time t, and that evolves continuously according to the random walk process:

$$
d \theta t=o d z
$$

where 2 is a standard normal Wiener process. Consumers value a commodity embodying characteristic as equivalent to $e^{-(\theta-\beta *)^{2}}$ of a product embodying characteristic *. Hence producers of product with characteristic will have to price it at a discount of $e^{-(1-8 *)^{2}}$. Plants can embody any value of in their products at equal cost.

Producers form their beliefa about by observing the price at which products of different qualitios are sold. The most recent observation providea the best estimate of the current value of 0 , and will predict the current value with variance $\sigma^{2} t$, where t is the time that has lapged since that transaction.

Suppose that the frequency of transactions in a prefecture is proportional to economic activity in the industry there, with a share $1 /(1+\delta r)^{2}$ of transactions observed in a prefecture a distance r away. Under these assumptions, firms in prefecture p will have a forecast error that is proportional to $1 / \Sigma Y_{j} /\left(1+\delta d_{p j}\right)^{2}$. The average value of their products will fall as this forecast error rises according to the specification in equation (2).
3. Data and Estimation

Our task is to estimate the parameters and from Japanese prefectural data. We do so not by estimating the production function in equation (2), but by estimating the corresponding cost function. Cost minimization by firms Lmplies that prefectural external economies and prefectural production amenities should exactly offset differences in factor costs across prefectures. Our procedure is to relate prefectural factor cost to external economies and prefectural amenities in order to estimate ϕ and δ.

```
We use data for the period 1976-1988. \({ }^{\circ}\) Hence we have a panel with 598 observations ( 46 prefectures ovor 13 years). All data are in 1980 real yen:
```


sectoral Decomposition

We estinate the parameters and 6 for manufacturing and for financial services separately. of the remaining sectors listed in Table l, we remove agriculture and mining from the anslyais. Both contribute negligibly to output and employment, and we regard the determination of their location as largely independent of the agglomeration and congestion effects that we address here. ${ }^{2}$

Of the remaining sectors, we treat (1) manufacturing and (2) finance and insurance as producing output that is primarily tradable among prefectures, and subject to the external economies modeled in Section 3. We treat the remaining 6 sectors as producing outputs that are nontradable, selling either to businesses or to households within the prefecture. We assume that these eectors produce at constant returns to ecale at both the plant and industry levels, so are not themselves aubject to external economies.

[^4]```
 We treat capital as completely mobile across prefectures, so that plants
everywhere face the same cost of capital. Time effects thus pick up the
effect of variations in the cost of capital over time. Hence only differences
in wages and land rents create variation in local factor costs across
prefectures. In order to obtain estimates of the cost of production by
prefecture for manufacturing and financial sorvices, then, we need to measure
vage and land rents by prefecture, and their local (direct and indirect)
shares in production.
```


## Wages

Wages by industry and prefecture for the two traded and gix nontraded sectors are calculated as the average labor cost per worker. ${ }^{13}$

## Land Rents

The user cost of land is the rent, but we could only obtain comprehensive data on land prices. ${ }^{14}$ Denoting the rent during period $t$ as $R_{t}$, the price of land in period $t$ as $P_{t}$, and the nominal opportunity cost of capital as $r_{t}$, the magnitudes are related by:

[^5]$$
R_{t}=r_{t} P_{t}=P_{t+1}^{e}-P_{t}
$$
where $P_{t+1}^{e}$ ia the price of land in that in expected in period $t+1$. We use the expected return on the stock market as our cost of capital variable. ${ }^{5}$ We infer the expected land rent by estimating the equation:
\[

$$
\begin{equation*}
\ln \left(r_{t}-\frac{P_{p t+1}-P_{p t}}{P_{p t}}\right)=\mu_{t} D_{t}+\mu_{r} D_{p r}+u_{p t} \tag{E1}
\end{equation*}
$$

\]

on our prefectural panel. Here $\mu_{p r}$ is the coefficient of the dummy variable $D_{p r}$ that indicates the prefecture' a region, $\mu_{t}$ is the coefficient on the time dummy $D_{t}$, and $u_{p t}$ is the error. ${ }^{16}$ We use the forecast from this equation as our measure of local factor cost. We estimate this equation simultaneously with our estimation of the cost functions in manufacturing and in financial sarvices.

Factor ahares

We veight land and labor costs by their direct and indirect shares in production for each sector, using the 1980 national input-output matrix. ${ }^{19}$ We partition this matrix between its two traded and six nontraded components as:

[^6]The total share of factor $n$ in sector 1 , then, is $\bar{\beta}_{\text {fm }}$ given by:

$$
\bar{\beta}_{\mathrm{im}}-\lambda_{1} \beta_{\mathrm{im}}+\beta_{\mathrm{Nm}}^{\prime}\left(I-A_{\mathrm{No}}\right)^{-1} A_{\mathrm{Nm}}
$$

where $\beta_{\text {in }}$ is the direct, share of factor $:$ in value added in industry $1, \lambda_{1}$ is the share of value added in the output of industry $1, \beta_{\mathrm{Nm}}^{\prime}$ is a $6 \times 1$ column vector of the direct shares of factor $n$ in the nontraded sectors, and $A_{\text {Nm }}$ is the $6 \times 1$ vector of the corresponding shares of nontraded sectors in producing the output of sector 1 .

Wa calculate direct factor sharea in value added for each of the aight sectors from national income accounts data from 1981 to 1985. The labor share In production for each gector is taken from national accounts data on wage payments by sector. Data on the reproducible capltal stock by sector are multiplied by the long-term real interest rate to provide an estimate of the share of reproducible capital. ${ }^{\text {: }}$ We traat the residual as the land share.

Industry Activity

We employ two different meagurea of industry activity. One is aimply Industry value added in the prefecture. The other is the density of industry. value added, or value added per unit of usable land. ${ }^{19}$ Which measure is more

[^7]
#### Abstract

appropriate dependa upon the nature of agglomeration effects vithin and between prefectures. One possibility is that transportation and commications costs within a prefecture are very lov relative to those between prefectures. This would be the case, for example, if individual prefectural boundaries tend to correspond to geographical barriers, such as mountain ranges and rivers, or if transportation and communications aystems vere much thicker within prefectures than between them. In this case total prefectural value added would provide the better measure of prefectural activity. Another possibility is that prefectural boundaries have ifttle bearing on the range of agglomeration effecta, in which case the density of activity in the prefecture captures economies of agglomeration better than the total level.

In fact, as we discuss belov, the two measures yield similar estimates of the acale of external economies. The total value added measure provides somewhat better explanatory power and allovs us to identify the role of distance much more precisely.


Prefectural Amenities

To capture other features that might affect productivity, ve include the number of ports (PORTS) and Shinkansen (bullet train) atations in the prefecture. ${ }^{20}$ Only the number of porta was significant, and resulte with the number of Shinkansen stations are not reported.

Hence for the two sectors $1-M, F$ we estimated the equation:

[^8]\[

$$
\begin{gather*}
\bar{\beta}_{\mathrm{TI}}\left[\operatorname{lnP_{\mathrm {pt}}}+\ln \left(\mu_{\mathrm{r}} \mathrm{D}_{\mathrm{pr}}+\mu_{t} D_{t}\right)\right]+\bar{\beta}_{\mathrm{Li}} \ln W_{\mathrm{pt}}-  \tag{E2}\\
\omega_{0}+\phi \sum_{j=1}^{46} \frac{\mathrm{Y}_{11}}{\left(1+\delta d_{p j}\right)^{2}}+\kappa \operatorname{PORTS}_{\mathrm{p}}+\omega_{t} D_{t}+\omega_{r} D_{\mathrm{pr}}+v_{\mathrm{pt}}
\end{gather*}
$$
\]

jointly with equation (E1) to determine $\mu_{t}, \mu_{d}, \omega_{0}, \omega_{t}, \omega_{d}, \phi, \delta$, and $K$. We also estimated the equations without the regional dumies in the cost equation.

A potential source of aimultaneity blas is that unobserved prefecture characteristics that onhance productivity in the prefecture may simultaneously raisa value added in that and in nearby prefectures and raise the cost of labor and land in that prefecture. To correct for possible simultaneity blas we also estimated equations (E1) and (E2) using instrumental variables for the term Apt. Instruments were the amount of land in the prefecture designated ag "capable of development", average temperature, and the average number of days of sunshine per year. ${ }^{11}$ Our instrumental variables appear to have better explanatory power for manufacturing than for finance, and for total value added than for density. Since manufacturing is the larger sector for all of the prefectures we consider, there is also more reason to think that simultaneity bias is greater in this sector. For these reasons we place more weight on the instrumented (IV) equations in the case of manufacturing and on the uninstrumented (non-IV) equations in the case of finance, although we report all sets of results.

We estimated all apecifications with the Full-Information Maximum-Likelihood Technique in TSP. Because of the very nonlinear nature of. the estimation, we estimated each system of equations for given values of $\delta$ between 0 and 1 . Wa report the astimate that maximized the $\log$ likelihood function. The reported atandard errors for other coefficients, calculated by

[^9]the Berndt-Hall-Hall-Hausman method, are thus conditional on the indicated value of 6 being the true value.

When density eerves as the industry ecale variable, the likelihood function as function of $\delta$ is very flat. The value of $\delta$ that maximized the log likelihood was consequently vary unstable, and sensitive to the use of instrumental variablea. The implied national agglomeration effects at the national level are similar to those wo obtain when wo use the level of activity. For these reasons our discussion focuses mostly on the results in which total value added rather than its density serves as the measure of prefectural activity.
4. Results

Appendix A reports the basic estimation results. We discuss four aspects in turn: (1) the effect of distance, or the range of agglomeration effects, (2) the elasticity of productivity with respect to agglomeration at the local and national levels, (3) the magnitude of agglomeration effects across prefectures and industries, and (4) the contribution of increased agglomeration to productivity growth both to individual prefectures and nationally.

## Distance

Table 3 reports, in its third column, the coefficient $\delta$ on distance in the agglomeration term for the various cases. A value of zero implies that agglomeration effecta are nationwide, corresponding to aggregate external economies of scale, while an infinite value means that agglomeration effects


#### Abstract

are purely local. Except for the case of finance with IV correction, the estimated distance coefficient $\delta$ is 0.06 or 0.07 for both manufacturing and finance. The coefficient on distance in finance with IV correction is .03 .

Table 4 reports the implication of these estimates for the gradient of the agglomeration effect. In fact, the range of estimates of $\delta$ imply a quite sfillar, and fairly steep, gradient. Moving activity a kilometer away from a location reduces its contribution to productivity at that location by between 87 and 94 per cent of its impact in the imediate vicinity, while moving it away 10 kilometers raduces its impact to between 39 and 57 per cent. Moving activity 100 kilometers away dilutes ita impact to only 2 to 6 per cent of ita local impact. ${ }^{22}$

We conclude, then, that aggiomeration effects are substantially local in character. Nevertheless, this range of estimates leaves room for substantial productivity spillovers across prefectures, as we now discuss.


Prefectural and National Agglomeration Elasticities

Since the magnitude of the parameter $\phi$ depends on units in which value added is measured, we find it more inatructive to report the elasticity of the effect of activity on productivity implied by our estimates of $\phi$ and $\delta$. Our apecification implies that this elasticity declines ag the overall measure of nearby activity increases, however, so that the effect can vary substantially from prefecture to prefecture. Hence we calculate the elasticities implied by our estimates for each prefecture at the average value of the agglomeration

[^10]variable during the period of estimation. Table 5 reports the calculated elasticities prefecture by prefecture. Note that they vary widely, and are abstantially lower in large prefectures. Table 3 reports the aimple average of the prefectural elasticities.

We report elasticities of two types. One we call the local elasticity, which is the percentage increase in productivity at a location resulting from a one per cent increase in activity at that location hoiding activity -laewhere constant. We also calculate the national elasticity for each prefecture, which is the percentage effect on productivity in that prefecture of a one per cent increase in activity in all profectures.

The presence of regional dumies in the cost equations tends to reduce the size of the elasticities by between 3 to 8 per cent. Thi reduction is not surprising since the 10 regional dumies eliminate the contribution of cross-regional variability to the estimation.

Instrumental variables correction reduces the estimated elasticities for finance when total value added measures activity, and for both industries when density measures activity. This direction is expected eince unobserved prefectural characteristics that raise productivity in a prefecture will also raise factor cost in the prefecture. Surprisingly, IV correction actually raises the estimated elasticitiea alighty in manufacturing when total value added measures activity.

Without IV correction, both the local and national elasticities in finance exceed those in manufacturing by 3 to 8 percentage points. Since instrumental variables correction reduces the estimated elasticities for finance considerably, and slightly raises those for manufacturing, ingtrumental variablea correction revernes the ordering between the two industries. Since finance is a smaller share of prefectural GDP than is


#### Abstract

manufacturing for all prefectures, there is less acope for simultaneity bias in finance. Moreover, our instruments explain manufacturing GDP more successfully than they explain financial GDP. For this reason we concentrate Fore on the IV corrected equations in manufacturing and the uncorrected equations in finance.

The elasticitie indicate that externalities for both industries are largely local. With total value added measuring activity, estimates of local elasticities range from 9 to 20 per cent, with the national elasticity a quarter to half as much higher.

It is useful to compare our results on the regional scope of externalities with Caballero and Lyons' (1992) finding about their aectoral acope. Their study finds that, within U.S. manufacturing, external effects are amall within aectors but substantial across manufacturing as a whole. In contrast, we find strong externalities within regions but less between them. Together, our results suggest that location rather than specialization is a much greater source of external effects.


The Exhaustion of Agglomeration Externalities

Table 6 reports the contribution of total agglomeration economies in each industry in each prefecture, i.e. the value of term $\exp \left(-\phi / A_{i p}\right)$ where $A_{i p}$ is given in equation 1 , at the beginning and at the end of the sample. We report these for the case in which regional dumies are included in (E2), using the IV-corrected measure of manufacturing activity and the non-IV corrected measure of financial activity.

The agglomeration measure $\exp \left(-\phi / A_{i p}\right)$ has a theoretical maximum of 1 . Note that the measure for some prefectures is within one or two percentage
points of this maximum, indicating that the potential for agglomeration economies is nearly exhausted.

For manufacturing, Tokyo and Aichi (Nagoya) prefectures report the largest agglomeration extemalitiea in 1990, both above .99. At the other extreme, Aomori prefecture in northern Honshu and Nagasaki prefecture in Kyushu have the lowest manufacturing externalities in 1990 , at about 75 and 77 per cent of the theoretical maximum, respectively. These figures imply that the low level of manufacturing in and around this second pair of prefectures lowered productivity there to little over three-fourthe of what it is in the first pair.

In finance, the largest agglomeration effecta appear again for Tokyo now followed by Kanagawa (Yokohama). Miyazaki prefecture in Kyushu, and then Akita prefecture in Northern Honshu, report the lowest level of agglomeration externalities.

Relative agglomeration effecta also contribute to the comparative advantage of prefectures between manufacturing and finance. In Chiba and Hokkaido, for example, the contribution of agglomeration to productivity is about the same in manufacturing and finance, but in prefectures like Aichi and Shiga, the contribution of aggloweration to productivity is about 3 per cent higher in manufacturing than it is in finance.

Moreover, the contribution of agglomeration economies to comparative advantage has shifted over time. Over the entire period externalities in finance have grown by about three per cent in Kanagawa and only by one per cent in manufacturing. In Aomori prefecture, however, manufacturing externalities grew by about 9 per cent in manufacturing, but only by about 5 per cent in finance.

Our functional form forces the contribution of agglomeration to
productivity to diminish with the agglomeration parameter $A_{p}$. To test whether or not a diminishing agglomeration offect is implied by the data, we estimated the model using the following variant of the production function (2):

$$
y_{f i p}=\left(A_{i p}\right)^{\left(\alpha_{1+} \alpha_{2} l n A_{i p}\right)_{\phi_{i}}\left(k_{f i p}, 1_{f i p}, t_{f i p}\right) \phi_{i}\left(c_{p}, t\right) U_{i p t}}
$$

This specification allows the agloweration elasticity aither to increase $\left(a_{2}>0\right)$ or to decrease $\left(\alpha_{2}<0\right)$, and ancompasses the special case of a constant elasticity of productivity with respect to agglomeration ( $\alpha_{2}-0$ ) assumed, for example, by Ciccone and Hall (1993). For most values of $\delta$, we obtained significantly positive estimates of $\alpha_{1}$ and aignificantly negative estimates of $a_{2}$. For all values of $\delta$ that we considered, the estimated coefficienta imply an average agglomeration elasticity for Japan as a whole similar to what we report here, and negative agglomeration elasticities for the largest prefectures.

Agglomeration and Growth

Table 6 also reports the growth in the agglomeration measure during the sample period for each prefecture. The GDP-weighted national average growth in the manufacturing agglomeration measure is .17 per cent while the growth in the finance aglomeration measure is .26 per cent. These measures compare vith an overall growth in output per vorker of 3.0 per cent in manufacturing and 2.9 per cent in finance. Hence, agglomeration effects can account for a amall but nontrivial part of ovarall growth in per capita output in these sectora.

## 5. Conclusion


#### Abstract

This paper has used data on land prices and wages in the Japanese prefectures to infer the extent and range of agglomeration economien in manufacturing and in financial services. The main implications are that: while the extent of agglomeration economies in both sectors in agnificant (with agglomeration elasticities of around 10 per cent or more), they are fairly localized geographically. (2) Leas conclusively ve find agglomeration economies to be larger in finance than in manufacturing. (3) Agglomeration economies appear to be nearly exhausted in the prefectures where they are most pronounced. (4) The lowest observed measures of agglomeration economies imply productivity levels that are about three-quarters of the highest observed agglomeration economies. The exploitation of agglomeration economies can explain about 5.6 per cent of the labor productivity growth in manufacturing and 8.9 per cent of labor productivity growth in finance during the period of our sample.

These results suggest an explanation for the increased concentration of land prices in Japan based on the growth of the financial service sector. If financial services tend to occupy localities with larger land areas, either because of historical accident or because agglomeration effects are more pronounced in these sectors, then an increase in the relative price of these services in terms of manufactures will act to increase relative land prices in larger areas. Of the ten regions in Table Al, the Greater Tokyo region has the largest area of land that could be used for building purposes, followed by the Kinki area. ${ }^{2:}$ As a consequence of higher land prices in these areas, and


[^11]of higher wages that workers must therefore be paid to compensate them for the higher cost of living in these areas, manufacturing activity vill shift toward smaller areas. The net effect on total prefectural output may be relatively small.
individual prefectures of Chiba, Kanagawa, and Tokyo have more usable land area than any othera except Hokkaido and Aichi.

## REFERENCES

Arnott, Richard (1979). "Optimum City Size in a Spatial Economy," Journal of Orban Economics, 6: 65-89.

Arrow, Kenneth J. (1962), "The Economic Implications of Learning by Doing," Revien of Economic studies, 29: 155-173.

Asahi Newspapera (1991), Minryoku (Tokyo: Asahi Newspapers).

Boone, Peter (1989), "High Land Valuea in Japan: Is the Archipelago Worth Eleven Trillion Dollarsi" Draft, Harvard University.

Cabaliero, Ricardo J. and Richard K. Lyons (1992), External Effects in U.S. Procyclical Productivity," Journal of Monetary Economica, 29: 209-226.

Chenery, Hollis B. and Moises Syrquin (1975), Patterns of Development: 1950-1970 (London: Oxford University Press).

Ciccone, Antonio and Robert E. Hall (1993), "Productivity and the Density of Economic Activity," NBER Working Paper No, 1313.

Deardorff, Alan V. (1984), "Testing Trade Theories and Predicting Trade Flows," Bandbook of International Economien, Volume I, edited by Ronald $W$.

Jones and Peter B. Kenen (Amsterdam: Elsevier Science Publishers).

```
Dixit, Avinash and Joseph E. Stiglitz (1977). Monopolistic Competition and
Optimum Product Diversity," American Economic Roviov, 72: 389.
Economic Planning Agency, Govermment of Japan (1988), Gross Capital stock of
Private Enterprise# (Tokyo)
Economic Planning Agency, Government of Japan (Various years), Annual Roport
on Prefectural Account:' (Tokyo).
Economic Planning Agency, Govermment of Japan (Various years), Annual Report
on National Account: (Tokyo).
Fujita, Masahisa (1989). Orban Economic Theory: Land Ose and City siro
(Cambridge: Cambridge University Press).
Glaeser, Edward L., Hedi D. Kallal, Joso A. Scheinkman, and Andrei Shleifer
(1992), "Growth in Cities," Journal of Political Economy, 100: 1126-1152.
Hamao, Yasushi and Roger Ibbotson (1989), Stocks, Bonds, and Inflation: Japan
(Chicago: Ibbotson Associates).
Helpman, Elhanan (1984), "Increasing Returns, Imperfect Markets, and Trade
Theory," Handbook of International Economies, Volume I, edited by Ronald W.
Jones and Peter B. Kenen (Amsterdan: Elsevier Science Publishers).
```

```
Helpman, Elhaman and David Pines (1980), Optimal Public Investment and
Dispersion Policy in a System of Open Cities," American Economic Reviev, 70:
507-514.
Henderson, J. Vernon (1987), General Equilibrium Modeling of a System of
Cities," Gandbook of Regional and Orban Economies, Volume II, edited by E.S.
Mills (Amsterdam: Elsevier Science Publishers).
Henderson, J. Vernon (1988), Orban Devolopment: Theory, Fact, and Illugion
(New York: Oxford University Press).
Henderson, J. Vernon (1994), "Extermalities and Industrial Development," NBER
Working Paper No.4730
Jacobs, Jane (1969), The Economy of Cities. (New York: Random House).
Jacobs, Jane (1984), Cities and the Wealth of Nations. (New York: Random
House).
Kuzneta, Simon (1966), Modern Economic Growths Rate, Structure, and Spread
(New Haven: Yale University Press).
Lucas, Robert E. (1988), On the Mechanics of Economic Development," Journal of Monetary Economica, 21: 3-42.
Mills, Edwin S. (1967), "An Aggregative Model of Resource Allocation in a Metropolitan Area," American Economic Review, 57: 197-210.
```

Rauch, James E. (1993), "Productivity Gaina from Geographic Concentration of Human Capital: Evidence from the Cities," Journal of Orban Economics, 34 : 380-400.

Romer, Paul (2986), "Increasing Returns and Long-Run Growth," Journal of Political Economy, 94: 1002-1037.

Sassen, Saskia (1991), The Global City. (Princeton: Princeton Univeraity Press).
Table 1Gros: Prefectural Product: Private Sector Industries
"Traded" Goods and Services:
Manufactures
Finance and Insurance
"Nontraded" Goods and Services:
Construction
Electricity, Gas, and Water
Wholesale and Retail
Real Estate
Transportation and Communtation
Other Services
Primary Goods and Services:
Agriculture and ForestryMining
Table 2
Parameter Estimates
$\beta_{\text {LM }}$ Direct and indirect labor share in manufacturing value added ..... 72
$\beta_{\text {FL }}$ Direct and indirect labor share in financial service value added ..... 70
$\beta_{\text {TM }}$ Direct and indirect land share in manufacturing value added ..... 12
$\beta_{\text {tF }}$ Direct and indirect land share in financial services value added ..... 28
Valuations are in bllifons of 1980 yen, distances are measured inkilometers and areas in aquare kilometers.

TABLE 3:
AVERAGE ELASTICITIES AND DISTANCE COEFFICIENTS

| IOIAL VALUE ADOED | LOCAL ELASTICITY | NATIONAL ELASTICITY |
| :--- | :---: | :---: | :---: | :---: |
| MANUFACTURING |  |  | DELTA

TABLE 4:
AGGLOMERATION GRADIENTS

| DELTA | DISTANCE | GRADIENT |
| ---: | ---: | ---: |
| 0.03 | 1 | 0.94 |
| 0.03 | 10 | 0.59 |
| 0.03 | 100 | 0.06 |
| 0.08 | 1 | 0.89 |
| 0.06 | 10 | 0.39 |
| 0.06 | 100 | 0.02 |
| 0.07 | 1 | 0.87 |
| 0.07 | 10 | 0.35 |
| 0.07 | 100 | 0.02 |

TABLE 5: AGGLOMERATION ELASTICITIES

| Prefecture | Number | Loc Man Elas |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hokkaldo | Number 1 | Loc Man Elas | Nai Man Elas 0.071 | Loc Fin Elas 0.066 | Nat Fin Elas 0.065 |
| Aomori | 2 | 0.320 | 0.38 | 0.233 | 0.241 |
| Iwato | 3 | 0.202 | 0.221 | 0.265 | 0.283 |
| Mlyagl | 4 | 0.098 | 0.108 | 0.131 | 0.144 |
| Akta | 5 | 0.238 | 0.257 | 0.279 | 0.307 |
| Yamagata | 6 | 0.143 | 0.168 | 0.198 | 0.234 |
| Fukushima | 7 | 0.082 | 0.089 | 0.142 | 0.162 |
| Nilgata | 8 | 0.07 | 0.072 | 0.123 | 0.131 |
| Ibaragi | 0 | 0.038 | 0.043 | 0.087 | 0.119 |
| Tochigi | 10 | 0.039 | 0.045 | 0.084 | 0.129 |
| Gunma | 11 | 0.045 | 0.053 | 0.077 | 0.109 |
| Sahama | 12 | 0.011 | 0.018 | 0.01 | 0.027 |
| Chiba | 13 | 0.018 | 0.027 | 0.021 | 0.041 |
| Tokyo | 14 | 0.007 | 0.008 | 0.008 | 0.007 |
| Kanagawa | 15 | 0.011 | 0.013 | 0.018 | 0.020 |
| Yamanashi | 16 | 0.081 | 0.127 | 0.109 | 0.2 |
| Nagano | 17 | 0.059 | 0.084 | 0.097 | 0.108 |
| Shizuoka | 18 | 0.029 | 0.03 | 0.068 | 0.072 |
| Toyama | 19 | 0.091 | 0.103 | 0.168 | 0.109 |
| tshikawa | 20 | 0.114 | 0.142 | 0.169 | 0.198 |
| Gifu | 21 | 0.03 | 0.048 | 0.068 | 0.108 |
| Alcht | 22 | 0.013 | 0.013 | 0.034 | 0.035 |
| Mie | 23 | 0.045 | 0.059 | 0.103 | 0.141 |
| Fukui | 24 | 0.118 | 0.159 | 0.188 | 0.238 |
| Shiga | 25 | 0.025 | 0.044 | 0.032 | 0.102 |
| Kyoto | 26 | 0.023 | 0.036 | 0.042 | 0.062 |
| Osaka | 27 | 0.012 | 0.013 | 0.015 | 0.016 |
| Hyogo | 28 | 0.018 | 0.021 | 0.032 | 0.042 |
| Nara | 29 | 0.029 | 0.072 | 0.041 | 0.113 |
| Wakayama | 30 | 0.058 | 0.089 | 0.09 | 0.17 |
| Tottor | 31 | 0.176 | 0.273 | 0.257 | 0.374 |
| Shimane | 32 | 0.237 | 0.304 | 0.334 | 0.404 |
| Okayama | 33 | 0.051 | 0.057 | 0.107 | 0.129 |
| Hiroshima | 34 | 0.053 | 0.055 | 0.091 | 0.093 |
| Yamagucht | 35 | 0.091 | 0.094 | 0.178 | 0.193 |
| Tokushima | 36 | 0.09 | 0.155 | 0.139 | 0.226 |
| Kagawa | 37 | 0.065 | 0.112 | 0.114 | 0.168 |
| Ehime | 38 | 0.108 | 0.118 | 0.184 | 0.199 |
| Kochi | 39 | 0.318 | 0.377 | 0.261 | 0.304 |
| Fukuoka | 40 | 0.046 | 0.047 | 0.068 | 0.069 |
| Saga | 41 | 0.156 | 0.215 | 0.224 | 0.301 |
| NagasakJ | 42 | 0.228 | 0.256 | 0.254 | 0.267 |
| Kumamoto | 43 | 0.158 | 0.164 | 0.207 | 0.224 |
| Oita | 44 | 0.169 | 0.166 | 0.259 | 0.277 |
| MlyazakJ | 45 | 0.305 | 0.323 | 0.37 | 0.392 |
| Kagoshima | 46 | 0.236 | 0.244 | 0.212 | 0.212 |
| Averages |  | 0.101 | 0.12 | 0.136 | 0.167 |

table 6: AGglomeration coefficients and growth

| refecture | Number | 1990 Man Agglom | 1977-1990 Growth | 90 Fin Agglom | 1977-1990 Growth |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hokksido | 1 | 0.939 | 0.086 | 0.948 | 0.17 |
| Aomori | 2 | 0.750 | 1.23 | 0.81 | 0.688 |
| Iwate | 3 | 0.843 | 0.782 | 0.789 | 1.28 |
| Miyagi | 4 | 0.019 | 0.432 | 0.888 | 0.404 |
| Akita | 5 | 0.83 | 1.13 | 0.777 | 1.02 |
| Yamagata | 6 | 0.888 | 0.734 | 0.837 | 0.877 |
| Fukushima | 7 | 0.938 | 0.433 | 0.879 | 0.618 |
| Niigata | 8 | 0.939 | 0.18 | 0.901 | 0.439 |
| Jbaragi | 0 | 0.968 | 0.204 | 0.928 | 0.676 |
| Tochigl | 10 | 0.972 | 0.24 | 0.922 | 0.7 |
| Gunma | 11 | 0.982 | 0.304 | 0.929 | 0.494 |
| Saitama | 12 | 0.985 | 0.071 | 0.985 | 0.187 |
| Chiba | 13 | 0.979 | 0.085 | 0.978 | 0.255 |
| Tokyo | 14 | 0.993 | 0.022 | 0.997 | 0.043 |
| Kanagawa | 15 | 0.989 | 0.033 | 0.983 | 0.159 |
| Yamanashi | 18 | 0.912 | 0.731 | 0.877 | 1.02 |
| Nagano | 17 | 0.95 | 0.26 | 0.918 | 0.405 |
| Shizuoka | 18 | 0.977 | 0.141 | 0.948 | 0.278 |
| Toyama | 18 | 0.923 | 0.393 | 0.851 | 0.8 |
| Ishikawa | 20 | 0.889 | 0.404 | 0.852 | 0.639 |
| Gifu | 21 | 0.963 | 0.179 | 0.921 | 0.402 |
| Aichi | 22 | 0.99 | 0.054 | 0.975 | 0.131 |
| Mie | 23 | 0.953 | 0.203 | 0.902 | 0.644 |
| Fukui | 24 | 0.872 | 0.38 | 0.832 | 0.882 |
| Shiga | 25 | 0.967 | 0.214 | 0.825 | 0.364 |
| Kyoto | 26 | 0.97 | 0.128 | 0.952 | 0.204 |
| Osaks | 27 | 0.989 | 0.02 | 0.887 | 0.032 |
| Hyogo | 28 | 0.981 | 0.032 | 0.967 | 0.104 |
| Nara | 29 | 0.939 | 0.25 | 0.908 | 0.286 |
| Wakayama | 30 | 0.913 | 0.077 | 0.888 | 0.424 |
| Tottori | 31 | 0.811 | 1.06 | 0.725 | 0.948 |
| Shimane | 32 | 0.785 | 1.2 | 0.718 | 1.5 |
| Okayama | 33 | 0.957 | 0.224 | 0.909 | 0.467 |
| Hiroshima | 34 | 0.957 | 0.119 | 0.928 | 0.247 |
| Yamaguchi | 35 | 0.934 | 0.332 | 0.848 | 0.48 |
| Tokushima | 38 | 0.873 | 0.42 | 0.827 | 0.655 |
| Kagawa | 37 | 0.905 | 0.287 | 0.871 | 0.478 |
| Enime | 38 | 0.899 | 0.077 | 0.846 | 0.546 |
| Kochl | 39 | 0.897 | 2.49 | 0.764 | 0.904 |
| Fukuoka | 40 | 0.962 | 0.13 | 0.948 | 0.244 |
| Saga | 41 | 0.834 | 0.682 | 0.788 | 1.17 |
| Nagasakl | 42 | 0.768 | 0.022 | 0.819 | 1.04 |
| Kumamoto | 43 | 0.888 | 0.954 | 0.839 | 0.91 |
| Oita | 44 | 0.889 | 1.32 | 0.792 | 0.813 |
| Miyazakd | 45 | 0.769 | 1.41 | 0.722 | 1.33 |
| Kagoshima | 48 | 0.82 | 0.818 | 0.848 | 0.024 |

## TABLE A1: REGIONAL ASSIGNMENTS OF THE PREFECTURES

| 1 HOKKAIDO | 7 KINKI |
| :--- | :---: |
| Hokkaido | Shiga |
| 2 TOHOKU | Kyoto |
| Aomori | Osaka |
| lwate | Hyogo |
| Miyagi | Nara |
| Akita | Wakayama |
| Yamagata | CHUGOKU |
| Fukushima | Tottori |
| 3 HOKURIKU | Shimane |
| Niigata | Okayama |
| Toyama | Hiroshima |
| Ishikawa | Yamaguchi |
| Fukui | SHIKOKU |
| KANTO | Tukushima |
| Ibaragl | Kagawa |
| Tochigi | Ehime |
| Gunma | Kochi |
| Yamanashi | 10 KYUSHU |
| Nagano | Fukuoka |
| 5 TOKYO | Saga |
| Chiba | NagasakI |
| Tokyo | Kumamoto |
| Kanagawa | Oita |
| Saitama | Miyazaki |
| 6 TOKAI | Kagashima |
| Shizuoka |  |
| Gifu |  |
| Aichi |  |
| Mie |  |

## Variable Definitions

| Equation 1: | Unit Cost of Production (E2) |
| :---: | :---: |
| Parameter | Coefficient |
| PHI | Inverse Agglomeration Measure |
| PORTS | Number of Ports |
| Z2-210 | Dummies for Regions 2-10 (See Table Al) |
| X1-X13 | Dummes for years 1976-1988 |
| Equation 2: | User Cost of Land (E1) |
| Parameter | Coefficient |
| BPLI-BPLI 3 | Dummies for Years 1976-1988 |
| BPL14-BPL22 | Dumiles for Regions 2-10 (See Table Al) |
| Equation 3: | Instrumental Varfable Equation |
| Parameter | Coefficient |
| BIN1 | Amount of Land Capable of Development |
| BIN2 | Number of Ports |
| BIN3 | Average Annual Temperature |
| BIN4 | Average number of days of aunshine per year |
| BINS-BIN17 | Dummies for years 1976-1988 |
| BIN18-BIN26 | Dumies for Regions 2-10 (See Table Al) |

All specifications were estimated by the Full-Information Maximun-Likelihood routine in TSP. Reported equations are for the value of distance deflator delta that maximizes the log likelihood function. Standard orrora are calculated by the Berndt-Hall-Hall-Hausman mathod, and are conditional on the reported estimate of delta being the true value.

## MANUFACTURING 1

(value added, no IV's, no Regionsl Dummies) NUMBER OF OBSERVATIONS - 598

| Parameter | Estimate | Standard Error | t-atatigtic |
| :---: | :---: | :---: | :---: |
| PHI | -124.197 | 6.47492 | -19.1812 |
| PORTS | . 203389 | . 021130 | 9.62565 |
| X1 | -4.51051 | . 029520 | -152.796 |
| X2 | -4.57924 | . 040385 | -113.391 |
| X3 | -4.66484 | . 050076 | -93.1550 |
| X4 | -4.59954 | . 054460 | -84.4575 |
| X5 | -4.51357 | . 056534 | -79.8378 |
| X6 | -4.44328 | . 053083 | -83.7038 |
| X7 | -4.22626 | . 065272 | -64.7486 |
| X8 | -4.09467 | . 053654 | -76.3163 |
| X9 | -4.06904 | . 038302 | -106.235 |
| $\times 10$ | -4.01311 | . 038260 | -104.890 |
| X11 | -3.97258 | . 035457 | -112.041 |
| X12 | -4.03143 | . 038590 | -104.468 |
| X13 | -3.95837 | . 033546 | -118.000 |
| BPLI | . 126496 | . 034018 | 3.71854 |
| BPL2 | . 050971 | . 034003 | 1.49900 |
| BPL3 | . 021273 | . 032248 | . 659686 |
| BPL4 | . 020859 | . 032255 | . 646689 |
| BPLS | . 020500 | . 032261 | . 635464 |
| BPL6 | . 020502 | . 032237 | . 635983 |
| BPL7 | . 051284 | . 039544 | 1.29690 |
| BPL8 | . 113081 | . 061138 | 1.84960 |
| BPL9 | . 108012 | . 041405 | 2.60868 |
| BPL10 | . 126672 | . 040799 | 3.10479 |
| BPLId | . 125637 | . 035046 | 3.58494 |
| BPL12 | . 060582 | . 032628 | 1.85674 |
| BPL13 | . 070645 | . 033718 | 2.09514 |
| BPL14 | . 014801 | . 033129 | . 446756 |
| BPL15 | . 024372 | . 034068 | . 715393 |
| BPL16 | -. 983557E-02 | . 032344 | -. 304088 |
| BPL17 | -. 017687 | . 032087 | -. 551211 |
| BPL18 | -. $893958 \mathrm{E}-03$ | . 032529 | . . 027482 |
| BPL19 | -. 013207 | . 032017 | . .412503 |
| BPL20 | -. $746828 \mathrm{E}-02$ | . 032462 | -. 230060 |
| BPL21 | -.443974E-02 | . 032241 | -. 137705 |
| BPL22 | -. 908986E-02 | . 031986 | -. 284185 |


|  | 1 | 2 |
| :---: | :---: | :---: |
|  | 12.43811 | 3.90043 |

@LOGL - 967.256
DELTA $=0.070000$

## MANUFACTURING 2

(value added, no IV'a, with Regional Dummies) NUMBER OF OBSERVATIONS - 598

| Parameter | Estimate | Standard Error | t-statistic |
| :---: | :---: | :---: | :---: |
| PHI | -100.613 | 10.0620 | .9.99933 |
| PORTS | . 272563 | . 023646 | 11.5268 |
| 22 | -. 102467 | . 247915 | . 4413315 |
| 23 | -. 115460 | . 246898 | -. 467643 |
| 24 | . 139461 | . 247525 | . 563422 |
| 25 | . 250999 | . 245839 | 1.02099 |
| 26 | . 040343 | . 247057 | . 163293 |
| 27 | . 126269 | . 246727 | . 511776 |
| 28 | . $640784 \mathrm{E}-02$ | . 247716 | . 025868 |
| 29 | .117302E-02 | . 248121 | . $472760 \mathrm{E}-02$ |
| 210 | . 023091 | . 246686 | . 093603 |
| X1 | -4.64925 | . 248263 | .18.7271 |
| X2 | -4.69623 | . 248520 | -18.8968 |
| X3 | -4.97856 | . 459455 | -10.8358 |
| X4 | -4.93616 | . 491446 | -10.0442 |
| X5 | -4.90391 | . 483200 | -10.1488 |
| X6 | -4.81818 | . 491975 | -9.79356 |
| X7 | -4.33684 | . 257092 | -16.8688 |
| X8 | -4.22331 | . 256266 | -16.4802 |
| X9 | -4.19566 | . 250849 | -16.7258 |
| X10 | -4.14043 | . 249750 | -16.5783 |
| X11 | -4.09999 | . 248429 | -16.5037 |
| X12 | -4.14281 | . 248490 | -16.6719 |
| X13 | -4.06841 | . 247482 | -16.4392 |
| BPLI | . 124812 | . 011899 | 10.4890 |
| BPL2 | . 054724 | . 013014 | 4.20501 |
| BPL3 | . $235463 \mathrm{E}-02$ | .895073E-02 | . 263065 |
| BPL4 | . $168306 \mathrm{E}-02$ | . $715157 \mathrm{E}-02$ | . 235342 |
| BPLS | . $769055 \mathrm{E}-03$ | . 397977E-02 | . 193241 |
| BPL6 | . $101614 \mathrm{E}-02$ | . 483033 E -02 | . 210366 |
| BPL7 | . 057230 | . 036633 | 1.56225 |
| BPL8 | . 112076 | . 067051 | 1.67151 |
| BPL9 | . 107277 | . 028262 | 3.79583 |
| BPL10 | . 125291 | . 026851 | 4.66608 |
| BPLII | . 124212 | . 014049 | 8.84114 |
| BPL12 | . 064509 | . 897403E-02 | 7.18842 |
| BPL13 | . 074044 | . 010790 | 6.86222 |
| BPL14 | . $324046 \mathrm{E}-03$ | . 315601E-02 | . 102676 |
| BPL15 | . $750149 \mathrm{E}-03$ | . $388756 \mathrm{E}-02$ | . 192962 |
| BPL16 | .861460E-03 | . $413594 \mathrm{E}-02$ | . 208286 |
| BPL17 | . $402926 \mathrm{E}-03$ | . $321804 \mathrm{E}-02$ | . 125208 |
| BPL18 | . $756407 \mathrm{E}-03$ | . $391346 \mathrm{E}-02$ | . 193283 |
| BPLI9 | . $378464 \mathrm{E}-03$ | . $321350 \mathrm{E}-02$ | . 117773 |
| BPL20 | . $296778 \mathrm{E}-03$ | . $315885 \mathrm{E}-02$ | . 093951 |
| BPL21 | . $599839 \mathrm{E}-03$ | . $360296 \mathrm{E}-02$ | . 166485 |
| BPL22 | . 399089E-03 | 321795E-02 | . 124020 |

12
$\begin{array}{lll}\text { @SSR } \quad 10.06253 & 3.79330\end{array}$
@LOCL - 1037.94119
DELTA $=0.060000$

## MANUFACTURING 3

(value added, with IV'a, no Regional Dumies)
NUMBER OF OBSERVATIONS $=598$

| Parameter | Estimate | Standard Error | t-Etatistic |
| :---: | :---: | :---: | :---: |
| PHI | -139.890 | 40.1049 | -3.48810 |
| PORTS | . 213857 | . 037567 | 5.69273 |
| X1 | -4.49424 | . 051698 | -86.9331 |
| X2 | -4.56385 | . 053290 | -85.6411 |
| X3 | -4.66045 | . 062713 | -74.3144 |
| X4 | -4.59592 | . 065430 | -70.2422 |
| X5 | -4,51003 | . 068001 | -66.3231 |
| X6 | -4.43867 | . 065471 | -67.7964 |
| X7 | -4.21173 | . 076465 | -55.0806 |
| X8 | -4.08318 | . 062647 | -65.1779 |
| X9 | -4,05833 | . 047823 | -84.8608 |
| X10 | -4.00280 | . 047387 | -84.4705 |
| X11 | -3.96221 | . 044916 | -88.2146 |
| X12 | -4.01980 | . 045648 | -88.0616 |
| $\times 13$ | -3.94964 | . 038274 | -103.194 |
| BPLI | . 129060 | . 037018 | 3.48637 |
| BPL2 | . 053846 | . 036454 | 1.47709 |
| BPL3 | . 022447 | . 034727 | . 646390 |
| BPL4 | . 022073 | . 034729 | . 635574 |
| BPLS | . 021689 | . 034725 | . 624607 |
| BPL6 | . 021701 | . 034700 | . 625398 |
| BPL7 | . 054318 | . 043144 | 1.25900 |
| BPL8 | . 115753 | . 064261 | 1.80131 |
| BPL9 | . 110739 | . 044223 | 2.50408 |
| BPLIO | . 129342 | . 044144 | 2.92998 |
| BPLII | . 128314 | . 038257 | 3.35401 |
| BPL12 | . 064221 | . 035503 | 1.80888 |
| BPL13 | . 074272 | . 036182 | 2.05275 |
| BPL14 | . $954924 \mathrm{E}-02$ | . 037117 | . 257274 |
| BPL15 | . 021377 | . 036727 | . 582043 |
| BPL16 | -. 011714 | . 034793 | -. 336671 |
| BPL17 | -. 018988 | . 034511 | -. 550188 |
| BPL18 | -. 246110E-02 | . 034646 | -. 071036 |
| BPL19 | -. 014720 | . 034424 | -. 427619 |
| BPL20 | -. $987922 \mathrm{E}-02$ | . 034719 | -. 284550 |
| BPL21 | -. 761267 E -02 | . 034436 | -. 221065 |
| BPL22 | -. 010970 | . 034109 | -. 321619 |

Instrumental Variable Equation

| BIN1 | $-.107082 \mathrm{E}-06$ | $.414517 \mathrm{E}-07$ | -2.58329 |
| :--- | :--- | :--- | :--- |
| BIN2 | $.996451 \mathrm{E}-03$ | $.411794 \mathrm{E}-03$ | 2.41978 |
| BIN3 | $-.149639 \mathrm{E}-03$ | $.452713 \mathrm{E}-04$ | -3.30537 |
| BIN4 | $.237044 \mathrm{E}-06$ | $.461968 \mathrm{E}-06$ | .513117 |
| BIN5 | $.270284 \mathrm{E}-02$ | $.642480 \mathrm{E}-03$ | 4.20689 |
| BIN6 | $.255305 \mathrm{E}-02$ | $.638663 \mathrm{E}-03$ | 3.99749 |
| BIN7 | $.246789 \mathrm{E}-02$ | $.644902 \mathrm{E}-03$ | 3.82677 |
| BIN8 | $.240897 \mathrm{E}-02$ | $.653398 \mathrm{E}-03$ | 3.68684 |
| BIN9 | $.245121 \mathrm{E}-02$ | $.654170 \mathrm{E}-03$ | 3.74705 |
| BIN10 | $.250518 \mathrm{E}-02$ | $.649871 \mathrm{E}-03$ | 3.85489 |
| BIN11 | $.247243 \mathrm{E}-02$ | $.645981 \mathrm{E}-03$ | 3.82740 |
| BIN12 | $.238829 \mathrm{E}-02$ | $.651813 \mathrm{E}-03$ | 3.66407 |
| BIN13 | $.233437 \mathrm{E}-02$ | $.660507 \mathrm{E}-03$ | 3.53421 |
| BIN14 | $.231689 \mathrm{E}-02$ | $.661964 \mathrm{E}-03$ | 3.50003 |
| BIN15 | $.232041 \mathrm{E}-02$ | $.663377 \mathrm{E}-03$ | 3.49788 |
| BIN16 | $.223909 \mathrm{E}-02$ | $.674112 \mathrm{E}-03$ | 3.32154 |
| BIN17 | $.208692 \mathrm{E}-02$ | $.667406 \mathrm{E}-03$ | 3.12692 |


| eSSR | 12.62479 | 3.88510 | 0.00058590 |
| :--- | :--- | :--- | :--- |

@LOGL - 4256.51651
DELTA - 0.070000

MANUFACTURING 4
(value added, with IV's, with regional dumies) NUMBER OF OBSERVATIONS - 598

| Parameter | Estimate | Standard Error | t-statistic |
| :---: | :---: | :---: | :---: |
| PHI | -96.2981 | 14.8514 | -6.48412 |
| PORTS | . 270093 | . 028620 | 9.43713 |
| 22 | -. 098902 | . 270244 | -. 365974 |
| 23 | -. 108989 | . 271872 | -. 400882 |
| 24 | . 143995 | . 273818 | . 525879 |
| 25 | . 257305 | . 269786 | . 953735 |
| 26 | . 045314 | . 271444 | . 166935 |
| 27 | . 133869 | . 270228 | . 495392 |
| 28 | . 015537 | . 271099 | . 057312 |
| 29 | . 011721 | . 271654 | . 043148 |
| 210 | . 027080 | . 271879 | . 099605 |
| X1 | -4.65137 | . 272539 | -17.0668 |
| X2 | -4.69858 | . 272246 | -17.2586 |
| X3 | -5.24009 | 10.8905 | -. 481164 |
| X4 | -5.25787 | 10.7589 | -. 488699 |
| X5 | -5.20529 | 10.7571 | -. 483894 |
| X6 | -5.11699 | 10.7575 | -. 475668 |
| X7 | -4.33918 | . 281017 | -15.4410 |
| X8 | -4.22578 | . 282184 | -14.9752 |
| X9 | -4.19819 | . 274323 | -15.3038 |
| X10 | -4.14296 | . 274166 | -15.1112 |
| X11 | -4.10254 | . 272362 | -15.0628 |
| $\times 12$ | -4.14530 | . 272482 | -15.2131 |
| X13 | -4.07152 | . 272007 | -14.9685 |
| 8PLI | . 125305 | . 012504 | 10.0212 |
| BPL2 | . 055202 | . 015262 | 3.61693 |
| BPL3 | . 125067E-03 | . 011340 | . 011029 |
| EPL4 | . $279231 \mathrm{E}-04$ | . 250222E-02 | . 011159 |
| BPLS | . $206157 \mathrm{E}-04$ | . $184852 \mathrm{E}-02$ | . 011153 |
| BPL6 | . $263598 \mathrm{E}-04$ | . $236224 \mathrm{E}-02$ | . 011159 |
| BPL7 | . 057720 | . 037064 | 1.55730 |
| BPL8 | . 112566 | . 067695 | 1.66284 |
| BPL9 | . 107764 | . 028401 | 3.79435 |
| BPLIO | . 125785 | . 027614 | 4.55508 |
| BPLII | . 124708 | . 013382 | 9.31927 |
| BPL12 | . 065089 | . 921915E-02 | 7.06019 |
| BPL13 | . 074659 | . 010560 | 7.06979 |
| BPL14 | . 598769E-05 | . 532990E-03 | . 011234 |
| BPL15 | . $155009 \mathrm{E}-04$ | . $138294 \mathrm{E}-02$ | . 011209 |
| BPL16 | .182672E-04 | .163039E-02 | . 011204 |
| BPL17 | . $131623 \mathrm{E}-04$ | . $117384 \mathrm{E}-02$ | . 011213 |
| BPLI 8 | . $166329 \mathrm{E}-04$ | . $148423 \mathrm{E}-02$ | . 011206 |
| BPL19 | . 853700E-05 | . $760323 \mathrm{E}-03$ | . 011228 |
| BPL20 | . $470610 \mathrm{E}-05$ | .418575E-03 | . 011243 |
| BPL21 | . $856244 \mathrm{E}-05$ | . $763009 \mathrm{E}-03$ | . 011222 |
| BPL22 | .106495E-04 | .948986E-03 | . 011222 |



MANUFACTURING 5
(densities, no IV'a, with regional dummies) NUMBER OF OBSERVATIONS - 598

|  | Standard |  |  |
| :--- | :--- | :--- | :--- |
| Parameter | Estimate | Error | t-atatiatic |
| PHI | -.046404 | $.381427 \mathrm{E}-02$ | -12.1660 |
| PORTS | .273610 | .022758 | 12.0226 |
| Z2 | -.637416 | .116874 | -5.45390 |
| Z3 | -.775445 | .124612 | -6.22287 |
| Z4 | -.500388 | .126975 | -3.94086 |
| Z5 | -.393336 | .125317 | -3.13874 |
| Z6 | -.606263 | .127472 | -4.75603 |
| Z7 | -.537543 | .126706 | -4.24245 |
| Z8 | -.689191 | .124148 | -5.55137 |
| Z9 | -.699545 | .124452 | -5.62100 |
| X1 | -3.98788 | .132287 | -30.1457 |
| X2 | -4.03592 | .132767 | -30.3986 |
| X3 | -4.38427 | .813469 | -5.38960 |
| X4 | -4.36798 | .768018 | -5.68734 |
| X5 | -4.35622 | .769250 | -5.66294 |
| X6 | -4.20014 | .776257 | -5.41076 |
| X7 | -3.67949 | .149538 | -24.6058 |
| X8 | -3.56816 | .149034 | -23.9420 |
| X9 | -3.54116 | .133974 | -26.4318 |
| Z10 | -.620508 | .119533 | -5.19109 |
| X10 | -3.48577 | .134158 | -25.9825 |
| X11 | -3.44629 | .131132 | -26.2811 |
| X12 | -3.49110 | .131446 | -26.5591 |
| X13 | -3.41789 | .128328 | -26.6341 |
| BPL1 | .125576 | .011898 | 10.5542 |
| BPL2 | .055520 | .013369 | 4.15288 |
| BPL3 | $.172693 \mathrm{E}-02$ | .011470 | .150557 |
| BPL4 | $.112654 \mathrm{E}-02$ | $.731849 \mathrm{E}-02$ | .153930 |
| BPLS | $.652289 \mathrm{E}-03$ | $.454506 \mathrm{E}-02$ | .143516 |
| BPL6 | $.115401 \mathrm{E}-02$ | $.750189 \mathrm{E}-02$ | .153829 |
| BPL7 | .058000 | .036902 | 1.57175 |
| BPL8 | .112825 | .066847 | 1.68781 |
| BPL9 | .108024 | .028198 | 3.83087 |
| BPL10 | .126057 | .026763 | 4.71020 |
| BPL11 | .124968 | .013199 | 9.46812 |
| BPL12 | .065249 | $.892956 \mathrm{E}-02$ | 7.30709 |
| BPL13 | .074948 | .010706 | 7.00048 |
| BPL14 | $-.349116 \mathrm{E}-03$ | $.303069 \mathrm{E}-02$ | -.115194 |
| BPL15 | $-.162270 \mathrm{E}-03$ | $.239413 \mathrm{E}-02$ | -.067778 |
| BPL16 | $-.127827 \mathrm{E}-03$ | $.232183 \mathrm{E}-02$ | -.055054 |
| BPL17 | $-.248853 \mathrm{E}-03$ | $.263566 \mathrm{E}-02$ | -.094418 |
| BPL18 | $-.157113 \mathrm{E}-03$ | $.238558 \mathrm{E}-02$ | -.065859 |
| BPL19 | $-.426359 \mathrm{E}-03$ | $.337755 \mathrm{E}-02$ | -.126233 |
| BPL20 | $-.326370 \mathrm{E}-03$ | $.293596 \mathrm{E}-02$ | -.111163 |
| BPL21 | $-.205046 \mathrm{E}-03$ | $.251108 \mathrm{E}-02$ | -.081656 |
| BPL22 | $-.254856 \mathrm{E}-03$ | $.266156 \mathrm{E}-02$ | -.095754 |
| X |  |  |  |

1
@SSR
10.13026

2
3.78874
@LOGL $=1036.05867$
DELTA = 0.50000
(densities, yith IV's, with regional dummies) NUMBER OF OBSERVATIONS - 598

| Parameter | Estimate | Standard Error | t-statistic |
| :---: | :---: | :---: | :---: |
| PHI | -. 726994 | 1.75116 | -. 415151 |
| PORTS | . 289515 | . 028304 | 10.2288 |
| 22 | -. 683598 | 1.15603 | -. 591331 |
| 23 | -. 756849 | 1.48987 | -. 507996 |
| 24 | -. 482273 | 1.58796 | -. 303705 |
| 25 | -. 367197 | 1.65784 | -. 221491 |
| 26 | -. 571878 | 1.60895 | -. 355436 |
| 27 | -. 505618 | 1.63760 | . . 308757 |
| 28 | -. 644747 | 1.42548 | -. 452301 |
| 29 | -. 701534 | 1.47069 | -. 477011 |
| 210 | -. 476003 | . 956378 | -. 497715 |
| X1 | -3.99796 | 1.88841 | -2.11710 |
| X2 | -4.04888 | 1.84550 | -2.19393 |
| X3 | -4.42834 | 1.99900 | -2.21527 |
| X4 | -4.41127 | 2.00451 | -2.20068 |
| X5 | -4.36031 | 2.01988 | -2.15870 |
| X6 | -4.28055 | 2.03998 | -2.09832 |
| X7 | -3.69502 | 1.81565 | -2.03509 |
| X8 | -3.58360 | 1.79112 | -2.00076 |
| X9 | -3.55618 | 1.77896 | -1.99902 |
| X10 | -3.50340 | 1.76988 | -1.97946 |
| X11 | -3.46098 | 1.77558 | -1.94921 |
| X12 | -3.50646 | 1.75253 | -2.00080 |
| X13 | -3.43187 | 1.71870 | -1.99678 |
| BPLI | . 125100 | . 012140 | 10.3045 |
| BPL2 | . 054867 | . 013251 | 4.14071 |
| BPL3 | . $967579 \mathrm{E}-03$ | .819219E-02 | . 118110 |
| BPLA | . $480453 \mathrm{E}-03$ | . $411166 \mathrm{E}-02$ | . 116851 |
| BPLS | . $257365 E \cdot 03$ | . 233010E-02 | . 110452 |
| BPL6 | . 301210E-03 | . 276041E-02 | . 109118 |
| BPL7 | . 057393 | . 037803 | 1.51821 |
| BPLB | . 112356 | . 067509 | 1.66431 |
| BPL9 | . 107542 | . 028745 | 3.74123 |
| BPLI0 | . 125560 | . 027356 | 4.58990 |
| BPLII | . 124483 | . 013654 | 9.11705 |
| BPL12 | . 064835 | . 870407E-02 | 7.44879 |
| BPL13 | . 074711 | . 011128 | 6.71362 |
| BPL14 | .186629E-03 | . 187510E-02 | . 099530 |
| BPL15 | . 287749 E -03 | . 253408 E -02 | . 113552 |
| BPLI 6 | . 350200E-03 | .297153E-02 | . 117852 |
| BPL17 | .189576E-03 | .188225E-02 | . 100718 |
| BPLI8 | . $297442 \mathrm{E}-03$ | .260130E-02 | . 114343 |
| BPL19 | .155047E-03 | . 168574E-02 | . 091976 |
| BPLL 0 | .162322E-03 | .172364E-02 | . 094174 |
| BPL21 | .275595E-03 | . 251169E-02 | . 109725 |
| BPL22 | .181084E-03 | . 183395E-02 | . 098740 |

Inscrumental Variable Equation

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| BIN1 | $.523507 \mathrm{E}-05$ | $.117057 \mathrm{E}-04$ | .447225 |
| BIN2 | $.743785 \mathrm{E}-03$ | .051920 | .014325 |
| BIN3 | $-.671814 \mathrm{E}-03$ | $.648847 \mathrm{E}-02$ | -.103540 |
| BIN4 | $-.257871 \mathrm{E}-04$ | $.614906 \mathrm{E}-04$ | -.419367 |
| BIN5 | 1.00613 | .273087 | 3.68429 |
| BIN6 | .982102 | .273534 | 3.59042 |
| BIN7 | .962883 | .273132 | 3.52534 |
| BIN8 | .954838 | .273201 | 3.49500 |
| BIN9 | .962702 | .273132 | 3.52467 |
| BIN10 | .971731 | .273016 | 3.55925 |
| BIN11 | .963852 | .273157 | 3.52856 |
| BIN12 | .949057 | .273034 | 3.47596 |
| BIN13 | .941717 | .273196 | 3.44704 |
| BIN14 | .935968 | .273170 | 3.42632 |
| BIN15 | .939189 | .273309 | 3.43636 |
| BIN16 | .925078 | .273329 | 3.38449 |
| BIN17 | .905282 | .273408 | 3.31110 |
| BIN18 | -.542689 | .237773 | -2.28238 |
| BIN19 | -.728995 | .249342 | -2.92367 |
| BIN20 | -.784601 | .263617 | -2.97629 |
| BIN21 | -.822427 | .267471 | -3.07483 |
| BIN22 | -.792753 | .265320 | -2.98791 |
| BIN23 | -.808511 | .274524 | -2.94513 |
| BIN24 | -.684071 | .267566 | -2.55664 |
| BIN25 | -.703303 | .272968 | -2.57650 |
| BIN26 | -.399443 | .265256 | -1.50588 |


|  | 1 | 1 | 2 |
| :--- | :---: | :---: | :---: |
| @SSR | 12.23521 | 3.78827 | 3.78523 |

@LOGL - 1647.97457
DELTA $=0.0050000$

FINANCE 1
(value added, no IV's, no Regional Dummies) NUMBER OF OBSERVATIONS - 598

| Parameter | Estimate | Standard Error | t-gtatiatic |
| :---: | :---: | :---: | :---: |
| PHI | -40.1214 | 3.65660 | -10.9723 |
| PORTS | . 279225 | . 029767 | 9.38042 |
| X1 | -4.87729 | . 049483 | -98.5647 |
| X 2 | -5.06639 | . 086344 | -58.6770 |
| X3 | $\cdots-5.28433$ | . 124461 | -42.4578 |
| X4 | -5.19470 | . 140378 | . 37.0051 |
| X5 | -5.10734 | . 161935 | -31.5395 |
| X6 | -5.00218 | . 149709 | -33.4127 |
| X7 | -4.63234 | . 174987 | -26.4724 |
| X 8 | -4.36703 | . 137500 | -31.7601 |
| X9 | -4.33638 | . 084796 | -51.1392 |
| X10 | -4.25813 | . 080467 | -52.9177 |
| XI1 | -4.20577 | . 060455 | -69.5690 |
| $\times 12$ | -4.35660 | . 062503 | -69.7021 |
| X13 | -4.33800 | . 064839 | -66.9047 |
| BPL1 | . 160986 | . 035808 | 4.49576 |
| BPL 2 | . 087798 | . 036652 | 2.39546 |
| BPL 3 | . 057343 | . 035228 | 1.62775 |
| BPL4 | . 056823 | . 035158 | 1.61623 |
| BPL5 | . 055861 | . 035129 | 1.59017 |
| BPL6 | . 055988 | . 035065 | 1.59670 |
| BPL7 | . 087270 | . 047508 | 1.83696 |
| BPL8 | . 147452 | . 066147 | 2.22916 |
| BPL9 | . 142634 | . 045253 | 3.15193 |
| BPLIO | . 161389 | . 043944 | 3.67263 |
| BPLII | . 160089 | . 037859 | 4.22852 |
| BPL12 | . 095830 | . 035277 | 2.71651 |
| BPL13 | . 104688 | . 035976 | 2.90992 |
| BPL14 | -. 033200 | . 034608 | -. 959331 |
| BPL15 | -. 023571 | . 035008 | -. 673289 |
| BPL16 | -. 044150 | . 034338 | -1.28576 |
| BPL17 | -. 045766 | . 034301 | -1.33426 |
| BPL18 | -. 042957 | . 034231 | -1.25492 |
| BPL19 | -. 046447 | . 034329 | -1.35300 |
| BPL20 | -. 033568 | . 034779 | -. 965185 |
| BPL21 | -. 043140 | . 034512 | -1.25000 |
| BPL22 | -. 032171 | . 034680 | . 927657 |
|  | 1 |  | 2 |
| @SSR | 25.09544 |  | 3.91988 |

@LOGL - 754.65579
DELTA $=0.060000$

FINANCE 2
(value added, no IV'a, with Regional Dummies) NUMBER OF OBSERVATIONS = 598

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| Parameter | Estimate | Standard |  |
| Error | t-statisti |  |  |
| PHI | -26.8632 | 5.73063 | -4.68766 |
| PORTS | .369011 | .028765 | 12.8286 |
| Z2 | .120955 | .290286 | .416674 |
| Z3 | .033419 | .292451 | .114271 |
| Z4 | .367025 | .286958 | 1.27902 |
| Z5 | . .429971 | .285705 | 1.50494 |
| Z6 | .306420 | .286551 | 1.06934 |
| Z7 | .413994 | .287459 | 1.44018 |
| Z8 | .106248 | .293422 | .362102 |
| Z9 | .248903 | .291184 | .854797 |
| Z10 | .084588 | .290185 | -291498 |
| X1 | -5.27125 | .290651 | -18.1360 |
| X2 | -5.43008 | .294422 | -18.4432 |
| X3 | -6.12737 | .867284 | -7.06500 |
| X4 | -6.08661 | 1.08879 | -5.59024 |
| XS | -6.21901 | 1.09185 | -5.69584 |
| X6 | -6.04690 | 1.12739 | -5.36364 |
| X7 | -4.96524 | .339737 | -14.6149 |
| X8 | -4.73289 | .329855 | -14.3484 |
| X9 | -4.70322 | .299308 | -15.7137 |
| X10 | -4.62284 | .295777 | -15.6295 |
| X11 | .4 .56852 | .290318 | -15.7363 |
| X12 | -4.69478 | .290054 | -16.1859 |
| X13 | -4.66884 | .290905 | -16.0493 |
| BPL1 | .125770 | .012611 | 9.97280 |
| BPL2 | .055831 | .013245 | 4.21534 |
| BPL3 | $.336696 \mathrm{E}-02$ | .010247 | .328569 |
| BPL4 | $.281342 \mathrm{E}-02$ | .010731 | .262186 |
| BPL5 | $.129060 \mathrm{E}-02$ | $.603767 \mathrm{E}-02$ | .213759 |
| BPL6 | $.163238 \mathrm{E}-02$ | $.727669 \mathrm{E}-02$ | .224329 |
| BPL7 | .057835 | .036017 | 1.60578 |
| BPL8 | .112903 | .066859 | 1.68867 |
| BPL9 | .108149 | .028832 | 3.75103 |
| BPL10 | .126111 | .026504 | 4.75820 |
| BPL11 | .125017 | .014803 | 8.44551 |
| BPL12 | .065057 | $.933021 \mathrm{E}-02$ | 6.97273 |
| BPL13 | .075081 | .011122 | 6.75060 |
| BPL14 | $-.198474 \mathrm{E}-03$ | $.388171 \mathrm{E}-02$ | -.051131 |
| BPL1S | $-.532965 \mathrm{E}-03$ | $.426347 \mathrm{E}-02$ | -.125007 |
| BPL16 | $-.383092 \mathrm{E}-03$ | $.402991 \mathrm{E}-02$ | -.095062 |
| BPL17 | $-.279287 \mathrm{E}-03$ | $.391699 \mathrm{E}-02$ | -.071302 |
| BPL18 | $-.448620 \mathrm{E}-03$ | $.411525 \mathrm{E}-02$ | -.109014 |
| BPL19 | $-.291551 \mathrm{E}-03$ | $.393442 \mathrm{E}-02$ | -.074103 |
| BPL20 | $-.300455 \mathrm{E}-03$ | $.397767 \mathrm{E}-02$ | -.075535 |
| BPL21 | $-.282059 \mathrm{E}-03$ | $.394300 \mathrm{E}-02$ | -.071534 |
| BPL22 | $-.501758 \mathrm{E}-03$ | $.418580 \mathrm{E}-02$ | -.119871 |
|  |  |  |  |

12
$22.36461 \quad 3.79250$
@LOGL = 798.70799
DELTA $=0.060000$

FINANCE 3
(value added, With IV's, no Regional Dummies) NUMBER OF OBSERVATIONS = 598

| Parameter | Estimate | $\begin{gathered} \text { Standard } \\ \text { Error } \end{gathered}$ | t-statistic |
| :---: | :---: | :---: | :---: |
| PHI | -33.4004 | 13.4185 | -2.48912 |
| PORTS | . 389704 | . 052811 | 7.37919 |
| 22 | . 085628 | . 302521 | . 283049 |
| 23 | -. 011614 | . 308851 | -. 037605 |
| 24 | . 327414 | . 297843 | 1.09928 |
| 25 | . 416246 | . 298255 | 1.39560 |
| 26 | . 284783 | . 297529 | . 957159 |
| 27 | . 383161 | . 300965 | 1.27311 |
| 28 | . 043497 | . 309571 | . 140508 |
| 29 | . 192609 | . 311282 | . 618761 |
| 210 | . 055399 | . 301373 | . 183821 |
| X1 | -4.28150 | . 318891 | -13.4262 |
| X2 | -4.44021 | . 320766 | -13.8425 |
| X3 | -5.80600 | 27.3718 | -. 212116 |
| X4 | -5.78637 | 27.6187 | -. 209509 |
| X 5 | -5.88747 | 27.6107 | -. 213231 |
| X6 | -5.72464 | 27.5949 | -. 207453 |
| X7 | -3.96774 | . 369222 | -10.7462 |
| X8 | -3.73448 | . 363276 | -10.2800 |
| X9 | -3.70590 | . 321785 | -11.5167 |
| X10 | -3.62370 | . 320610 | -11.3025 |
| X11 | -3.56983 | . 315311 | -11.3216 |
| X12 | -3.69708 | . 316237 | -11.6909 |
| X13 | -3.66994 | . 317067 | -11.5747 |
| BPLI | . 125375 | . 013246 | 9.46497 |
| BPL2 | . 055038 | . 013638 | 4.03559 |
| BPL3 | . 128170E-03 | . 012532 | . 010227 |
| BPL4 | .813418E-04 | . $802298 \mathrm{E}-02$ | . 010139 |
| BPLS | .246099E-04 | . 242981 E -02 | . 010128 |
| BPL6 | . 374476 E-04 | . $369324 \mathrm{E}-02$ | . 010139 |
| BPL7 | . 057384 | . 037147 | 1.54477 |
| BPL8 | . 112575 | . 066720 | 1.68729 |
| BPL9 | . 107802 | . 028499 | 3.78261 |
| BPLIO | . 125780 | . 027092 | 4.64263 |
| BPL11 | . 124700 | . 014673 | 8.49865 |
| BPL12 | . 064868 | . 947309E-02 | 6.84759 |
| BPLI 3 | . 074938 | . 011566 | 6.47935 |
| BPL14 | -. $498116 \mathrm{E}-05$ | . $498953 \mathrm{E}-03$ | -.998323E-02 |
| BPL15 | -. 837274E-05 | .831752E-03 | -. 010066 |
| BPL16 | -.604460E-05 | .603047E-03 | -. 010023 |
| BPL17 | -. 3134938.05 | . 320362E-03 | -.978558E-02 |
| BPL18 | -. $774113 \mathrm{E}-05$ | . $769366 \mathrm{E}-03$ | -. 010062 |
| BPL19 | -.4317228-05 | .434741E-03 | -. 993056E-02 |
| BPL20 | -.663467E-05 | .660865E-03 | -. 010039 |
| BPL21 | -. 138670E-04 | .137185E-02 | -. 010108 |
| BPL22 | . . 583887E-05 | .583543E-03 | . . 010006 |


| BIN1 | . 124735E-05 | .234657E.06 | 5.3 |  |
| :---: | :---: | :---: | :---: | :---: |
| BIN2 | -. 684529E-02 | .116072E-02 | -5. |  |
| BIN3 | . 324694E-02 | . 354263 E-03 | 9.1 |  |
| BIN4 | -. 105424 E .04 | . 354461E-05 | -2. |  |
| BIN5 | -. 018886 | . 538620E-02 | -3. |  |
| BIN6 | -. 019041 | . 533295E-02 | -3. |  |
| BIN7 | -. 014269 | . 556383 E -02 | -2. |  |
| BIN8 | -. 013648 | . 562440E-02 | -2. |  |
| BIN9 | -. 721250E-02 | . 554565E-02 | -1. |  |
| BIN10 | . 01010492 | . 555196E-02 | -1. |  |
| BIN11 | -. 020235 | . 544842E-02 | -3. |  |
| BIN12 | -. 020259 | . 540215E-02 | -3.7 |  |
| BIN13 | -. 020165 | . 535782E-02 | -3.7 |  |
| BIN14 | -. 020468 | . 534268E-02 | -3.8 |  |
| BIN15 | -. 020553 | . $538678 \mathrm{E}-02$ | -3.8 |  |
| BIN16 | -. 020768 | . 542715E-02 | -3.8 |  |
| BIN17 | -. 021132 | . $549047 \mathrm{E}-02$ | -3.8 |  |
|  |  |  | 2 | 3 |
| @SSR | 51.95114 3. |  | 606 | 0.033678 |
| @LOGL - 2717.38030 |  |  |  |  |
| DELTA | 030000 |  |  |  |

FINANCE
(value added, vith IV's, vith regional dummies) NUMBER OF OBSERVATIONS - 598

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| Parameter | Estimate | Standard |  |
| PHI | -30.7597 | 11.1182 | t-gtatistic |
| PORTS | .383088 | .044957 | -2.76661 |
| Z2 | .088440 | .335452 | .263644 |
| Z3 | -.012383 | .343512 | -.036048 |
| Z4 | .328298 | .334559 | .981285 |
| Z5 | .446467 | .347626 | 1.28433 |
| Z6 | .285490 | .334885 | .852501 |
| Z7 | .390760 | .336113 | 1.16259 |
| Z8 | .046030 | .342440 | .134419 |
| Z9 | .192109 | .339392 | .566039 |
| Z10 | .056346 | .340294 | .165581 |
| X1 | -4.29362 | .340187 | -12.6214 |
| X2 | -4.44935 | .345129 | -12.8919 |
| X3 | -5.86326 | 23.3949 | -.250621 |
| X4 | -5.96285 | 23.4660 | -.254105 |
| X5 | -6.04382 | 23.4489 | -.257744 |
| X6 | -5.87962 | 23.4338 | -.250903 |
| X7 | -3.97408 | .401569 | -9.89637 |
| X8 | -3.74302 | .382662 | -9.78154 |
| X9 | -3.71456 | .347730 | -10.6823 |
| X10 | -3.63191 | .347059 | -10.4648 |
| X11 | -3.57792 | .342344 | -10.4513 |
| X12 | -3.70427 | .344461 | -10.7538 |
| X13 | .3 .67614 | .343720 | -10.6951 |
| BPL1 | .125384 | .013698 | 9.15332 |
| BPL2 | .055082 | .014412 | 3.82189 |
| BPL3 | $.149746 \mathrm{E}-03$ | .012504 | .011976 |
| BPL4 | $.556646 \mathrm{E}-04$ | $.466253 \mathrm{E}-02$ | .011939 |
| BPL5 | $.254578 \mathrm{E}-04$ | $.213232 \mathrm{E}-02$ | .011939 |
| BPL6 | $.330701 \mathrm{E}-04$ | $.2767774 \mathrm{E}-02$ | .011948 |
| BPL7 | .057545 | .040303 | 1.42780 |
| BPL8 | .112589 | .067771 | 1.66131 |
| BPL9 | .107802 | .029124 | 3.70154 |
| BPL10 | .125792 | .027611 | 4.55592 |
| BPL11 | .124679 | .017570 | 7.09608 |
| BPL12 | .064824 | .011776 | 5.50468 |
| BPL13 | .074926 | .010856 | 6.90168 |
| BPL14 | $-.426332 \mathrm{E}-05$ | $.361114 \mathrm{E}-03$ | -.011806 |
| BPL15 | $-.892753 \mathrm{E}-05$ | $.750275 \mathrm{E}-03$ | -.011899 |
| BPL16 | $-.559083 \mathrm{E}-05$ | $.471813 \mathrm{E}-03$ | -.011850 |
| BPL17 | $-.196379 \mathrm{E}-05$ | $.171785 \mathrm{E}-03$ | -.011432 |
| BPL18 | $-.748722 \mathrm{E}-05$ | $.629893 \mathrm{E}-03$ | -.011887 |
| BPL19 | $-.358302 \mathrm{E}-05$ | $.305062 \mathrm{E}-03$ | -.011745 |
| BPL20 | $-.592044 \mathrm{E}-05$ | $.499157 \mathrm{E}-03$ | -.011861 |
| BPL21 | $-.398945 \mathrm{E}-05$ | $.338235 \mathrm{E}-03$ | -.011795 |
| BPL22 | $-.636464 \mathrm{E}-05$ | $.536823 \mathrm{E}-03$ | -.011856 |
|  |  |  |  |



FINANCE 5
(densities, no IV's, with regional dummies) NUMBER OF OBSERVATIONS - 598

| Standard |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter | Estlmate | Error | t-statistic |
| PHI | -. 015284 | .1754828-02 | -8.70991 |
| PORTS | . 366980 | . 031057 | 11.8162 |
| 22 | -. 354812 | . 133622 | -2.65534 |
| 23 | -. 619017 | . 148725 | -4.16217 |
| 24 | -. 210880 | . 148052 | -1.42436 |
| 25 | - . 221311 | . 155590 | -1.42240 |
| 26 | -. 339298 | . 154584 | -2.19491 |
| 27 | -. 253552 | . 156654 | -1.61855 |
| 28 | -. 609460 | . 161163 | -3.78163 |
| 29 | -. 481826 | . 154617 | -3.11626 |
| 210 | -. 550922 | . 143749 | -3.83253 |
| X1 | -4.54926 | . 167798 | -27.1116 |
| X2 | -4.71502 | . 176511 | -26.7124 |
| X3 | -5.39218 | . 758519 | -7.10882 |
| X4 | -5.35480 | . 942585 | -5.68097 |
| X5 | -5.51346 | . 989367 | -5.57271 |
| X6 | -5.32826 | 1.01695 | -5.23944 |
| X7 | -4.26935 | . 242377 | -17.6145 |
| X8 | -4.03993 | . 238101 | -16.9673 |
| X9 | -4.00833 | . 180440 | -22.2142 |
| X10 | -3.93386 | . 176566 | -22.2798 |
| X11 | -3.87939 | . 167578 | -23.1497 |
| X12 | -4.00295 | . 165891 | -24.1300 |
| X13 | -3.98271 | . 167970 | -23.7109 |
| BPLI | . 125513 | . 012187 | 10.2986 |
| BPL2 | . 055588 | . 012987 | 4.28021 |
| BPL 3 | . $351068 \mathrm{E}-02$ | . $945335 \mathrm{E}-02$ | . 371369 |
| BPI4 | .288730E-02 | . $966478 \mathrm{E}-02$ | . 298745 |
| BPLS | . $105397 \mathrm{E}-02$ | . $404565 \mathrm{E}-02$ | . 260518 |
| BPL6 | .145757E-02 | . 546609E-02 | . 266658 |
| BPL7 | . 057545 | . 035866 | 1.60441 |
| BPL8 | . 112627 | . 066847 | 1.68484 |
| BPL9 | . 107887 | . 028365 | 3.80352 |
| BPLIO | . 125823 | . 026253 | 4.79263 |
| BPLII | . 124744 | . 014423 | 8.64874 |
| BPLI2 | . 064773 | . 873039E-02 | 7.41922 |
| BPL13 | . 074774 | . 010727 | 6.97090 |
| BPL14 | . 353902E-04 | .173389E-02 | . 020411 |
| BPL15 | -. 262938 E -03 | . $194797 \mathrm{E}-02$ | -. 134981 |
| BPL16 | -. $124951 \mathrm{E}-03$ | . 177190E-02 | -. 070518 |
| BPL17 | . $464199 \mathrm{E}-05$ | .171236E-02 | .271087E-02 |
| BPLI8 | -. 166426E-03 | . 180722E-02 | -. 092090 |
| BPL19 | -. 329287E-05 | . 172964E-02 | -. 190378E-02 |
| BPL20 | . 452554 E -05 | .188107E-02 | .240583E-02 |
| BPL21 | -. 544736E-05 | .178618E-02 | -. 304973E-02 |
| BPL22 | -. 210135E-03 | . $186414 \mathrm{E}-02$ | -. 112725 . |
|  |  |  |  |
| @SSR | 21.1 | 558 3 | 9347 |

@LOGL - 814.83726
DELTA $=0.45000$

FINANCE
(densities, with IV'a, with regional dumies) NUMBER OF OBSERVATIONS = 598

| Parameter | Estimate | Standard Error | t-atatistic |
| :---: | :---: | :---: | :---: |
| PHI | -. 490420 | . 913730 | -. 536723 |
| PORTS | . 391767 | . 054759 | 7.15434 |
| 22 | -. 146759 | . 360662 | -. 406914 |
| 23 | -. 239045 | . 412487 | -. 579521 |
| 24 | . 155062 | . 397757 | . 389842 |
| 25 | $\cdots .316741$ | . 348565 | . 908698 |
| 26 | . 122644 | . 398698 | . 307612 |
| 27 | . 243257 | . 363360 | . 669465 |
| 28 | -. 189862 | . 380395 | -. 499119 |
| 29 | -. 040995 | . 418138 | -. 098042 |
| 210 | -. 149534 | . 304110 | -. 491710 |
| X1 | -4.09645 | . 590895 | -6.93262 |
| X2 | -4.25048 | . 586675 | -7.24504 |
| X3 | -5.74843 | 37.7723 | -. 152186 |
| X4 | -5.97758 | 38.3872 | -. 155718 |
| X5 | -6.00979 | 38.3774 | -. 156597 |
| X6 | -5.84026 | 38.3611 | -. 152244 |
| X7 | -3.77559 | . 580456 | -6.50452 |
| X 8 | -3.54650 | . 560365 | -6.32892 |
| X9 | -3.52132 | . 534815 | -6.58419 |
| X10 | -3.43930 | . 518859 | -6.62859 |
| X11 | -3.39124 | . 500242 | -6.77921 |
| X12 | -3.52557 | . 484904 | -7.27066 |
| X13 | -3.50076 | . 465924 | -7.51358 |
| BPLI | . 125371 | . 013803 | 9.08267 |
| BPL2 | . 055063 | . 014048 | 3.91967 |
| BPL3 | . 910529E-04 | . 012273 | .741897E-02 |
| BPL4 | .164411E-04 | . 225264E-02 | .729860E-02 |
| BPLS | .686989E-05 | . 941170E-03 | .729931E-02 |
| BPL6 | . 102946 E.04 | . $140965 \mathrm{E}-02$ | .730296E-02 |
| BPL7 | . 057574 | . 039609 | 1.45357 |
| BPL8 | . 112592 | . 067353 | 1.67168 |
| BPL9 | . 107800 | . 028750 | 3.74957 |
| BPLIO | . 125795 | . 028376 | 4.43315 |
| BPL11 | . 124676 | . 019937 | 6.25352 |
| BPL12 | . 064834 | . 011569 | 5.60406 |
| BPL13 | . 074927 | . 011192 | 6.69495 |
| BPL14 | -. 152322E.06 | . 229387E-04 | -.664038E-02 |
| BPL15 | -.821201E-06 | . $113439 \mathrm{E}-03$ | -. 723912E-02 |
| BPL16 | . 124508E-06 | .188370E-04 | .660975E-02 |
| BPL17 | . 144456E-05 | .197479E-03 | .731499E-02 |
| BPL18 | -.655681E-06 | . 906192E-04 | -. 723556E-02 |
| BPL19 | . 274883E-06 | . $381284 \mathrm{E}-04$ | . 720941E-02 |
| BPL20 | -. 419860E-06 | .587153E-04 | -.715078E-02 |
| BPL21 | -. 103778E.05 | .142697E-03 | -.727261E-02 |
| BPL22 | -.582611E-07 | . 124886E-04 | $\cdot .466515 \mathrm{E}-02$ |




[^0]:    ${ }^{2}$ Kuznets (1966, pp. 272-273) found that the per cent of the population living in urban locations grew substantially between the beginning and the middle of the twentieth century in all of a sample of twelve now industrialized countries. Chenery and Syrquin (1975), applying pooled time-series cross-aectional regression analysis to international data, found that the population of a typical country became more than 50 per cent urban once its per capita income exceeded $\$ 500$ ( in 1964 US $\$$ ), and tapered off at 75 per cent once per capita GNP exceeded $\$ 2000$.
    -Jacobs (1969, 1984) is, of course, the basic reference.
    ${ }^{s}$ Boone (1989) finds that higher land prices in Japanese prefectures are

[^1]:    ${ }^{4}$ Helpman (1984) surveys models of international trade with positive production externalities.
    The focus on economies of agglomeration across space rather than over time. Henderson (1994) has recently estimated the extent of temporal rather than apatial decay of agglomeration effects.

[^2]:    " Gravity" models of international trade employ a similar specification to estimate trade intensity between countries: Intensity increases with the product of the trading partners' incomes but diminishes with the distance between them. Deardorff (1984) discusses the model and its origins.

[^3]:    ${ }^{2}$ If production is Cobb-Douglas and all factors except land are mobile then the elasticity of production with respect to urban activity must diminish for cities of finite size to emerge. If external effects have a constant elasticity that is lower than the land share then activity will spread out evenly across apace, while if the elagticity exceeds the land share it will collapse to a single point. See Henderson's (1987) discussion.

[^4]:    ${ }^{10}$ Prior to 1975 the sectoral decomposition of prefectural value added was not consistent with the decomposition of the prefectural labor force.
    ${ }^{11 W e}$ obtained annual prefectural consumer price indices from various issues of the Japan Statiatical Iearbook.
    ${ }^{12}$ In 1988 agricultural production was 2.7 per cent and mining was 0.3 per cent of Japanese GDP. Japanese tax policy treats agricultural land that was in agricultural use before 1950 very favorably relative to other land.
    Agricultural land in taxed at a lower rate than the atandard tax and at 1.4 per cent of ita assessed value. In most cases, agricultural land is exempt from inheritance taxes. We treat conversion of agricultural land to other uses as exogenous (determined, for example, by government policies) rather as the outcome of market forces. (Nevertheless, the anticipation that policies that protect agricultural land might be removed could have a significant effect on nonagricultural land pricas. in particular, tending to depress them in prefectures where agricultural land is more plentiful.)

[^5]:    13We obtained the average labor cost per worker in each prefecture from the Annual Report on Prefectural dccounta. The number of workers in each sector by prefecture is taken from the Japan statistical Yearbook.
    14 We obtain annual prefectural land prices by dividing private land values by the private usable land area of the prefecture. We take private prefectural land values from the Economic Planning Agency's Annual Report on the National Accounta. Prefectural usable land areas are from the Japan statigtical Yearbook.

[^6]:    ${ }^{18}$ We obtained this measure by estimating the total return on equity (dividends plus capital gain) as airst order autoregressive moving average process. We then used the one-period-ahead forecast as the expected return on capital. Data on the total return on equity are from Hamao and Ibbotson (1989).
    ${ }^{16}$ Regional dummies are based on our division of the Japanese archipelago into ten ragions: Hokkaido, Tohoku, Hokuriku, Kanto (other than greater Tokyo), Greater Tokyo, Tokai, Kinki, Chugoku, Shikoku, and Kyushu. Table Al shows how we asaigned individual prefectures to these regions.
    ${ }^{19}$ The input-output matrix is from the Annual Report on National Accounts.

[^7]:    ${ }^{14}$ The Economic Planning Agency (1988) provides the national capital stock of the private sector by industry. Long-tera raal interest rates are from Hamso and Ibbotson (1989).
    ${ }^{10}$ Data on value added by industry are fron various issues of the Annual Report on the National Accounts while usable land area by prefecture are from the Japan Statistical Yearbook.

[^8]:    $2^{\circ}$ Data on the number of ports and Shinkansen stations are from Asahi Nevspapers (1991).

[^9]:    ${ }^{21}$ Data on average temperature and on the average number of days of sunshine are from Asahi newspapers (1991).

[^10]:    2 When density rather than the level of value added served as the activity indicator, our estimate of $\delta$ was very sensitive to IV correction. Without correction the estimate was very high, implying virtually no spillovers beyond the imediate vicinity, while with the correction the implied spillovers were national.

[^11]:    $2^{39}$ Other regions such as Hokkaido and Hokuriku have higher total land areas, but most of this land is mountainous, forested, or agricultural and hence not available for private development. Within the Tokyo region, even the

