NBER WORKING PAPER SERIES

AGGLOMERATION AND THE PRICE OF LAND: EVIDENCE FROM THE PREFECTURES

> Robert Dekle Jonathan Eaton

Working Paper No. 4781

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 June 1994

We thank Aditya Bhattacharjea, Rabindra Bhandari, and Akiko Tamura for excellent research assistance and seminar participants at the Board of Governors of the Federal Reserve System, Tufts University, Tel Aviv University, New York University, Harvard University, Indiana University, and participants at the conference "Asset and Land Prices: Conceptual Issues and the Japanese Experience," Boston University, for comments. We gratefully acknowledge the support of the Japan-U.S. Friendship Commission and the National Science Foundation. This paper is part of NBER's research program in International Trade and Investment. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

NBER Working Paper #4781 June 1994

AGGLOMERATION AND THE PRICE OF LAND: EVIDENCE FROM THE PREFECTURES

ABSTRACT

We use Japanese prefectural wage and land price data to estimate the magnitude of agglomeration effects in manufacturing and finance. We also examine the range of agglomeration effects by estimating the extent to which they diminish with distance, using a specification that encompasses the polar cases of purely local agglomeration economies, on the one hand, and national increasing returns to scale, on the other. We find that agglomeration effects are slightly stronger in financial services than in manufacturing, and that they diminish substantially with distance in either sector. Our estimates indicate that agglomeration effects can explain about 5.6 per cent of the growth in Japanese output per worker in manufacturing and about 8.9 per cent of the growth in output per worker in financial services during 1976-1988. Our estimates imply that, while the average elasticity of productivity with respect to agglomeration is between 10 and 15 per cent, agglomeration economies in the largest prefectures are nearly exhausted.

Robert Dekle Department of Economics and International Relations Boston University 270 Bay State Road Boston, MA 02138 Jonathan Eaton Department of Economics Boston University 270 Bay State Road Boston, MA 02138 and NBER

1. Introduction

A number of explanations of economic growth focus on increasing returns to scale external to the firm as a source of increased productivity.¹ External effects also play a central role in the literature on urban location, where they provide an explanation for the existence of cities.² Indeed, Lucas (1988) notes the similarity of his explanation of economic growth and explanations for cities:

"It seems to me that the 'force' we need to postulate for the central role of cities in economic life is of exactly the same character as the 'external human capital' I have postulated as a force to account for certain features of aggregative development. If so, then land rents should provide an indirect measure of this force,...(p. 39)."

The two literatures differ in two basic respects, however. For one thing, the growth literature has assumed externalities at the aggregate level, while the urban literature treats externalities as local. Second, most models of growth have not incorporated a productive role for land; all factors of production except labor are reproducible. Hence there is no natural limit to the supply of complementary factors available to an individual worker. However, not surprisingly, land plays a central role in the urban literature.~ The competition among factors for scarce land in an

¹See, for example, Arrow (1962), Romer (1986), and Lucas (1988).

²Examples of models that focus on externalities at the urban level are Mills (1967), Arnott (1979), Helpman and Pines (1980), and Henderson (1988). Henderson (1987) surveys this literature.

urban location provides a centrifugal force to offset centripetal agglomeration effects. Congestion effects explain the existence of multiple cities and economic activity in nonurban locations. If agglomeration effects are never offset by competition for scarce land then activity should converge to a single point that would become a "black hole" of economic activity. Presumably the limitations on economic activity implied by finite natural resources act as a constraint on economic growth as well.

Data on urban activity over time and across countries indicate a strong correlation between economic growth and urbanization. This relationship suggests that the benefits of proximity increasingly outweigh the costs of congestion as economies develop.⁸

The relationship between urbanization and growth has been attributed to various interrelated factors.⁴ One is local scale economies, both internal and external to the firm, in industrial activity (as modeled, for instance, by Henderson (1988)). Another explanation is that the increased specialization of labor and differentiation of commodities associated with development make trade at a central location more desirable (as suggested, for example, by Diamond's (1982) models of search). The first argument explains urbanization and city size by the development of particular industries. Sassen (1991), for example, relates the most recent growth of New York, London, and Tokyo to the growth of international finance.⁶ The second suggests that urbanization is

'Jacobs (1969, 1984) is, of course, the basic reference.

^{*}Boone (1989) finds that higher land prices in Japanese prefectures are

-2-

³Kuznets (1966, pp. 272-273) found that the per cent of the population living in urban locations grew substantially between the beginning and the middle of the twentieth century in all of a sample of twelve now industrialized countries. Chenery and Syrquin (1975), applying pooled time-series cross-sectional regression analysis to international data, found that the population of a typical country became more than 50 per cent urban once its per capita income exceeded \$500 (in 1964 US \$), and tapered off at 75 per cent once per capita GNP exceeded \$2000.

likely to be associated with agglomerations of more specialized, and more educated, individuals (as suggested by Glasser et.al. (1991)).

The lack of comprehensive, uniform data on land rents or prices across time and space has impeded serious investigation of the extent and range of agglomeration effects on productivity. An exception to this absence of data is Japan, where the Economic Planning Agency of the Government of Japan has reported commercial and residential property values by prefecture since the early 1970s. Given the enormous range in the intensity of land use across the 46 prefectures of the Japanese archipelago, these data provide an excellent source of information on agglomeration effects. Our purpose here is to exploit these data to measure the intensity and scope of the effects of agglomeration on productivity.

We proceed as follows. In Section 2 we develop a model of industry production with positive production externalities among firms: More production by one firm raises productivity in firms nearby. The effect diminishes across space. The model encompasses the two polar cases that have received the most attention:

In one, agglomeration effects are completely local, with possible positive spillovers between firms within a region but not across regions. The urban economics literature has devoted the most attention to this case. Ciccone and Hall (1993) have recently estimated the extent of spillovers of this type with U.S. county and state data, finding an elasticity with respect to density of .04. A maintained assumption is that spillovers are purely local.

In the other polar case, spillover effects are nationwide, with distance imposing no impediment. The international trade and macroeconomics literature

associated with greater production of financial services.

-3-

has focused on externalities of this type.⁴ Caballero and Lyons (1992) recently estimated the external economies in U.S. manufacturing as a whole at about 20 to 30 per cent.⁷

In Section 3 we describe how we use the model to infer the magnitude and geographical reach of external economies from Japanese prefectural data on land prices, wages, outputs, and regional characteristics. We use annual data for the period 1976 through 1988. Because of spectacular growth in the output of financial services in Japan during this period, and the attention given to it by Sassen (1991) and Boone (1989), we estimate tha extent and range of agglomeration effects in manufacturing and financial services separately.

Section 4 analyses our results. We find elasticities of productivity with respect to local activity between 10 and 15 per cent in manufacturing and between 12 and 20 per cent in finance. Our estimates of the elasticities with respect to nationwide activity are about 2 to 5 per cent higher in each case. For both sectors we find that the impact of agglomeration on productivity diminishes substantially with distance. Activity 10 kilometers away has half or less the impact of activity in the immediate vicinity. The estimated effect of agglomeration on productivity is within two per cent of the theoretical maximum implied by our specification for the largest prefectures, but only about three-fourths of the theoretical maximum in prefectures with the smallest agglomeration effects. Agglomeration influences the comparative advantage of prefectures as financial and manufacturing centers, and we discuss how this comparative advantage has shifted over time. Our estimates imply that increased agglomeration can explain about 5.6 per cent of the

-4-

⁶Helpman (1984) surveys models of international trade with positive production externalities.

⁷We focus on economies of agglomeration across space rather than over time. Henderson (1994) has recently estimated the extent of temporal rather than spatial decay of agglomeration effects.

growth of output per worker in manufacturing and about 8.9 per cent of the growth of output per worker in finance during the period that we examine.

Section 5 discusses some implications of our results.

2. A Model of Prefectural Production and Land Rents

We first discuss the theoretical framework that we use to estimate the extent and range of agglomeration effects in manufacturing and finance. As is standard in much of the literature on externalities, we treat technology at the plant level as linear homogeneous in the plant's inputs, but allow productivity at the plant level to depend on the general level of activity at nearby plants in that industry in the region. Specifically, we measure the agglomeration economies provided by prefecture p in industry i with the index:

$$A_{ip} - \sum_{j=1}^{46} \frac{Y_{ij}}{(1+\delta_i d_{pj})^2},$$
 (1)

where Y_{ij} is a measure of the overall activity of industry i in prefecture j, and d_{pj} is the distance between prefecture p and prefecture j. At one extreme, if $\delta = \infty$ then agglomeration economies are purely local in nature: Increased activity in neighboring prefectures creates no externalities. At the other extreme, if $\delta = 0$ then increased activity in this industry anywhere in the country increases productivity in prefecture p to the same extent: External economies are then nationwide.⁶

We introduce agglomeration effects into the production function as

^{*&}quot;Gravity" models of international trade employ a similar specification to estimate trade intensity between countries: Intensity increases with the product of the trading partners' incomes but diminishes with the distance between them. Deardorff (1984) discusses the model and its origins.

follows: Output y_{fip} of plant f in industry i producing in prefecture p, as a function of its inputs k_{fip} of capital, l_{fip} of labor, and t_{fip} of land, and prefectural agglomeration in that industry, A_{ip} , is:

. .

$$y_{fip} = * \varphi_i(k_{fip}, l_{fip}, t_{fip}) \psi_i(c_p, t) U_{ipt}$$
(2)

where:

$$\varphi_{i}(k,1,t) = k^{1-\beta_{Li}-\beta_{Ti}} 1^{\beta_{Li}} t^{\beta_{Ti}}.$$
 (3)

Here ϕ_1 captures the extent of external economies in industry i and β_{Li} , $\beta_{Ti'}$ and $1 - \beta_{Li} - \beta_{Ti}$ are factor shares for that industry. The function ψ_1 contains time and prefectural characteristics c_p that affect productivity as arguments. The term U_{ipt} is a lognormally distributed error.

We adapt this functional form for the contribution of external economies from Henderson (1987). This specification implies that the elasticity of productivity with respect to total economic activity is large at low levels of activity and diminishes with increased economic activity as the contribution of agglomeration reaches its theoretical maximum of one.⁹ The specification differs, for example, from what is implied by the Dixit-Stiglitz (1977) model of product differentiation, which has been applied to urban analysis by Fujita (1988). Two simple microeconomic models that yield this specification are the following:

^{*}If production is Cobb-Douglas and all factors except land are mobile then the elasticity of production with respect to urban activity must diminish for cities of finite size to emerge. If external effects have a constant elasticity that is lower than the land share then activity will spread out evenly across space, while if the elasticity exceeds the land share it will collapse to a single point. See Henderson's (1987) discussion.

Product Differentiation:

One model captures the same Smithian notion that productivity increases with the division of labor among plants as the Dixit-Stiglitz (1977) framework. Specifically, say that the output y_f of plant f is a function of the number of plants N in its industry from which it buys inputs to produce its own output. In particular, let:

$$y_{f} = \sum_{e} \phi^{-\phi/N} \varphi_{i}(k_{f}, l_{f}, t_{f}).$$

If the minimum efficient plant size in the industry is χ_i , then the number of plants in a prefecture will be proportional to industry output. Say that the output of a plant used as an input elsewhere is tradable at zero cost over a radius r. Also assume that it is so expensive to trade the output over a larger radius that it is not worth using elsewhere. If r has distribution $1-1/(1+\delta r)^2$, then the probability that that a plant will buy from another plant a distance r away is $1/(1+\delta r)^2$. Together these assumptions imply the specification that we use here.

Market Information

Another motivation for this specification is the superior knowledge about market conditions provided by greater levels of economic activity. Say, for example, that consumers desire a characteristic of a product θ_{t}^{\star} at time t, and that θ_{t}^{\star} evolves continuously according to the random walk process:

 $d\theta_{+}^{*} = \sigma dz$

where z is a standard normal Wiener process. Consumers value a commodity embodying characteristic θ as equivalent to $e^{-(\theta-\theta+)^2}$ of a product embodying characteristic $\theta+$. Hence producers of a product with characteristic θ will have to price it at a discount of $e^{-(\theta-\theta+)^2}$. Plants can embody any value of θ in their products at equal cost.

Producers form their beliefs about θ by observing the price at which products of different qualities are sold. The most recent observation provides the best estimate of the current value of θ , and will predict the current value with variance σ^2 t, where t is the time that has lapsed since that transaction.

Suppose that the frequency of transactions in a prefecture is proportional to economic activity in the industry there, with a share $1/(1+\delta r)^2$ of transactions observed in a prefecture a distance r away. Under these assumptions, firms in prefecture p will have a forecast error that is proportional to $1/[Y_j/(1+\delta d_{pj})^2]$. The average value of their products will fall as this forecast error rises according to the specification in equation (2).

3. Data and Estimation

Our task is to estimate the parameters ϕ and δ from Japanese prefectural data. We do so not by estimating the production function in equation (2), but by estimating the corresponding cost function. Cost minimization by firms implies that prefectural external economies and prefectural production amenities should exactly offset differences in factor costs across prefectures. Our procedure is to relate prefectural factor cost to external economies and prefectural amenities in order to estimate ϕ and δ . -9-

We use data for the period 1976-1988.¹⁰ Hence we have a panel with 598 observations (46 prefectures over 13 years). All data are in 1980 real yen¹¹.

Sectoral Decomposition

We estimate the parameters ϕ and δ for manufacturing and for financial services separately. Of the remaining sectors listed in Table 1, we remove agriculture and mining from the analysis. Both contribute negligibly to output and employment, and we regard the determination of their location as largely independent of the agglomeration and congestion effects that we address here.¹²

Of the remaining sectors, we treat (1) manufacturing and (2) finance and insurance as producing output that is primarily tradable among prefectures, and subject to the external economies modeled in Section 3. We treat the remaining 6 sectors as producing outputs that are nontradable, selling either to businesses or to households within the prefecture. We assume that these sectors produce at constant returns to scale at both the plant and industry levels, so are not themselves subject to external economies.

¹⁰Prior to 1975 the sectoral decomposition of prefectural value added was not consistent with the decomposition of the prefectural labor force.

¹¹We obtained annual prefectural consumer price indices from various issues of the Jepan Statistical Yearbook.

¹²In 1988 agricultural production was 2.7 per cent and mining was 0.3 per cent of Japanese GDP. Japanese tax policy treats agricultural land that was in agricultural use before 1950 very favorably relative to other land. Agricultural land is taxed at a lower rate than the standard tax and at 1.4 per cent of its assessed value. In most cases, agricultural land is exempt from inheritance taxes. We treat conversion of agricultural land to other uses as exogenous (determined, for example, by government policies) rather as the outcome of market forces. (Nevertheless, the anticipation that policies that protect agricultural land might be removed could have a significant effect on nonagricultural land prices, in particular, tending to depress them in prefectures where agricultural land is more plentiful.)

Local Factor Cost

We treat capital as completely mobile across prefectures, so that plants everywhere face the same cost of capital. Time effects thus pick up the effect of variations in the cost of capital over time. Hence only differences in wages and land rents create variation in local factor costs across prefectures. In order to obtain estimates of the cost of production by prefecture for manufacturing and financial services, then, we need to measure wage and land rents by prefecture, and their local (direct and indirect) shares in production.

Vages

Wages by industry and prefecture for the two traded and six nontraded sectors are calculated as the average labor cost per worker.¹³

Land Rents

The user cost of land is the rent, but we could only obtain comprehensive data on land prices.¹⁴ Denoting the rent during period t as R_t , the price of land in period t as P_t , and the nominal opportunity cost of capital as r_t , the magnitudes are related by:

-10-

¹³We obtained the average labor cost per worker in each prefecture from the Annual Report on Prefectural Accounts. The number of workers in each sector by prefecture is taken from the Japan Statistical Yearbook.

¹⁴We obtain annual prefectural land prices by dividing private land values by the private usable land area of the prefecture. We take private prefectural land values from the Economic Planning Agency's Annual Report on the National Accounts. Prefectural usable land areas are from the Japan Statistical Yearbook.

$$R_t = r_t P_t - P_{t+1}^e - P_t$$

where P_{t+1}^{e} is the price of land in that is expected in period t+1. We use the expected return on the stock market as our cost of capital variable.¹⁵ We infer the expected land rent by estimating the equation:

$$\ln(r_{t} - \frac{P_{pt+1} - P_{pt}}{P_{pt}}) = \mu_{t} D_{t} + \mu_{r} D_{pr} + u_{pt}$$
(E1)

on our prefectural panel. Here $\mu_{\rm pr}$ is the coefficient of the dummy variable $D_{\rm pr}$ that indicates the prefecture's region, $\mu_{\rm t}$ is the coefficient on the time dummy $D_{\rm t}$, and $u_{\rm pt}$ is the error.¹⁶ We use the forecast from this equation as our measure of local factor cost. We estimate this equation simultaneously with our estimation of the cost functions in manufacturing and in financial services.

Factor shares

We weight land and labor costs by their direct and indirect shares in production for each sector, using the 1980 national input-output matrix.¹⁷ We partition this matrix between its two traded and six nontraded components as:

¹⁵We obtained this measure by estimating the total return on equity (dividends plus capital gain) as a first order autoregressive moving average process. We then used the one-period-ahead forecast as the expected return on capital. Data on the total return on equity are from Hamao and Ibbotson (1989).

¹⁶Regional dummies are based on our division of the Japanese archipelago into ten regions: Hokkaido, Tohoku, Hokuriku, Kanto (other than greater Tokyo), Greater Tokyo, Tokai, Kinki, Chugoku, Shikoku, and Kyushu. Table Al shows how we assigned individual prefectures to these regions.

¹[†]The input-output matrix is from the Annual Report on National Accounts.

$$\begin{bmatrix} \mathbf{A}_{\mathrm{TT}} & \mathbf{A}_{\mathrm{TN}} \\ \mathbf{A}_{\mathrm{NT}} & \mathbf{A}_{\mathrm{NN}} \end{bmatrix}$$

The total share of factor m in sector i, then, is $\vec{\beta}_{im}$ given by:

$$\tilde{\beta}_{im} = \lambda_i \beta_{im} + \beta'_{Nm} (I - \Lambda_{NN})^{-1} \Lambda_{Nm},$$

where β_{im} is the direct share of factor m in value added in industry i, λ_i is the share of value added in the output of industry i, β'_{Nm} is a 6xl column vector of the direct shares of factor m in the nontraded sectors, and A_{Nm} is the 6xl vector of the corresponding shares of nontraded sectors in producing the output of sector 1.

We calculate direct factor shares in value added for each of the eight sectors from national income accounts data from 1981 to 1985. The labor share in production for each sector is taken from national accounts data on wage payments by sector. Data on the reproducible capital stock by sector are multiplied by the long-term real interest rate to provide an estimate of the share of reproducible capital.¹⁸ We treat the residual as the land share.

Industry Activity

We employ two different measures of industry activity. One is simply industry value added in the prefecture. The other is the density of industryvalue added, or value added per unit of usable land.¹⁹ Which measure is more

-12-

¹⁴The Economic Planning Agency (1988) provides the national capital stock of the private sector by industry. Long-term real interest rates are from Hamao and Ibbotson (1989).

¹⁹Data on value added by industry are from various issues of the Annual Report on the National Accounts while usable land area by prefecture are from the Japan Statistical Yearbook.

appropriate depends upon the nature of agglomeration effects within and between prefectures. One possibility is that transportation and communications costs within a prefecture are very low relative to those between prefectures. This would be the case, for example, if individual prefectural boundaries tend to correspond to geographical barriers, such as mountain ranges and rivers, or if transportation and communications systems were much thicker within prefectures than between them. In this case total prefectural value added would provide the better measure of prefectural activity. Another possibility is that prefectural boundaries have little bearing on the range of agglomeration effects, in which case the density of activity in the prefecture captures economies of agglomeration better than the total level.

In fact, as we discuss below, the two measures yield similar estimates of the scale of external economies. The total value added measure provides somewhat better explanatory power and allows us to identify the role of distance much more precisely.

Prefectural Amenities

To capture other features that might affect productivity, we include the number of ports (PORTS) and Shinkansen (bullet train) stations in the prefecture.²⁰ Only the number of ports was significant, and results with the number of Shinkansen stations are not reported.

Hence for the two sectors i-M,F we estimated the equation:

-13-

²⁰Data on the number of ports and Shinkansen stations are from Asahi Newspapers (1991).

$$\vec{\beta}_{\text{Ti}}[\ln P_{\text{pt}} + \ln(\mu_{r} D_{\text{pr}} + \mu_{t} D_{t})] + \vec{\beta}_{\text{Li}} \ln W_{\text{pt}} - \omega_{0} + \phi \frac{46}{12} \frac{Y_{\text{ij}}}{(1 + \delta d_{\text{pj}})^{2}} + \kappa \text{ PORTS}_{p} + \omega_{t} D_{t} + \omega_{r} D_{pr} + v_{pt}$$
(E2)

jointly with equation (E1) to determine $\mu_t, \mu_d, \omega_0, \omega_t, \omega_d, \phi, \delta$, and x. We also estimated the equations without the regional dummies in the cost equation.

A potential source of simultaneity bias is that unobserved prefecture characteristics that enhance productivity in the prefecture may simultaneously raise value added in that and in nearby prefectures and raise the cost of labor and land in that prefecture. To correct for possible simultaneity bias we also estimated equations (E1) and (E2) using instrumental variables for the term A_{ipt} . Instruments were the amount of land in the prefecture designated as "capable of development", average temperature, and the average number of days of sunshine per year.²¹ Our instrumental variables appear to have better explanatory power for manufacturing than for finance, and for total value added than for density. Since manufacturing is the larger sector for all of the prefectures we consider, there is also more reason to think that simultaneity bias is greater in this sector. For these reasons we place more weight on the instrumented (IV) equations in the case of manufacturing and on the uninstrumented (non-IV) equations in the case of finance, although we report all sets of results.

We estimated all specifications with the Full-Information Maximum-Likelihood Technique in TSP. Because of the very nonlinear nature of the estimation, we estimated each system of equations for given values of δ between 0 and 1. We report the estimate that maximized the log likelihood function. The reported standard errors for other coefficients, calculated by

²¹Data on average temperature and on the average number of days of sunshine are from Asahi newspapers (1991).

the Berndt-Hall-Hall-Hausman method, are thus conditional on the indicated value of δ being the true value.

When density serves as the industry scale variable, the likelihood function as a function of δ is very flat. The value of δ that maximized the log likelihood was consequently very unstable, and sensitive to the use of instrumental variables. The implied national agglomeration effects at the national level are similar to those we obtain when we use the level of activity. For these reasons our discussion focuses mostly on the results in which total value added rather than its density serves as the measure of prefectural activity.

4. Results

Appendix A reports the basic estimation results. We discuss four aspects in turn: (1) the effect of distance, or the range of agglomeration effects, (2) the elasticity of productivity with respect to agglomeration at the local and national levels, (3) the magnitude of agglomeration effects across prefectures and industries, and (4) the contribution of increased agglomeration to productivity growth both to individual prefectures and nationally.

Distance

Table 3 reports, in its third column, the coefficient δ on distance in the agglomeration term for the various cases. A value of zero implies that agglomeration effects are nationwide, corresponding to aggregate external economies of scale, while an infinite value means that agglomeration effects are purely local. Except for the case of finance with IV correction, the estimated distance coefficient δ is 0.06 or 0.07 for both manufacturing and finance. The coefficient on distance in finance with IV correction is .03.

Table 4 reports the implications of these estimates for the gradient of the agglomeration effect. In fact, the range of estimates of δ imply a quite similar, and fairly steep, gradient. Noving activity a kilometer away from a location reduces its contribution to productivity at that location by between 87 and 94 per cent of its impact in the immediate vicinity, while moving it away 10 kilometers reduces its impact to between 39 and 57 per cent. Moving activity 100 kilometers away dilutes its impact to only 2 to 6 per cent of its local impact.²²

We conclude, then, that agglomeration effects are substantially local in character. Nevertheless, this range of estimates leaves room for substantial productivity spillovers across prefectures, as we now discuss.

Prefectural and National Agglomeration Elasticities

Since the magnitude of the parameter ϕ depends on units in which value added is measured, we find it more instructive to report the elasticity of the effect of activity on productivity implied by our estimates of ϕ and δ . Our specification implies that this elasticity declines as the overall measure of nearby activity increases, however, so that the effect can vary substantially from prefecture to prefecture. Hence we calculate the elasticities implied by our estimates for each prefecture at the average value of the agglomeration

-16-

²²When density rather than the level of value added served as the activity indicator, our estimate of δ was very sensitive to IV correction. Without correction the estimate was very high, implying virtually no spillovers beyond the immediate vicinity, while with the correction the implied spillovers were national.

variable during the period of estimation. Table 5 reports the calculated elasticities prefecture by prefecture. Note that they vary widely, and are substantially lower in large prefectures. Table 3 reports the simple average of the prefectural elasticities.

We report elasticities of two types. One we call the local elasticity, which is the percentage increase in productivity at a location resulting from a one per cent increase in activity at that location holding activity elsewhere constant. We also calculate the national elasticity for each prefecture, which is the percentage effect on productivity in that prefecture of a one per cent increase in activity in all prefectures.

The presence of regional dummies in the cost equations tends to reduce the size of the elasticities by between 3 to 8 per cent. This reduction is not surprising since the 10 regional dummies eliminate the contribution of cross-regional variability to the estimation.

Instrumental variables correction reduces the estimated elasticities for finance when total value added measures activity, and for both industries when density measures activity. This direction is expected since unobserved prefectural characteristics that raise productivity in a prefecture will also raise factor cost in the prefecture. Surprisingly, IV correction actually raises the estimated elasticities slightly in manufacturing when total value added measures activity.

Without IV correction, both the local and national elasticities in finance exceed those in manufacturing by 3 to 8 percentage points. Since instrumental variables correction reduces the estimated elasticities for finance considerably, and slightly raises those for manufacturing, instrumental variables correction reverses the ordering between the two industries. Since finance is a smaller share of prefectural GDP than is

-17-

manufacturing for all prefectures, there is less scope for simultaneity bias in finance. Moreover, our instruments explain manufacturing GDP more successfully than they explain financial GDP. For this reason we concentrate more on the IV corrected equations in manufacturing and the uncorrected equations in finance.

The elasticities indicate that externalities for both industries are largely local. With total value added measuring activity, estimates of local elasticities range from 9 to 20 per cent, with the national elasticity a quarter to half as much higher.

It is useful to compare our results on the regional scope of externalities with Caballero and Lyons' (1992) finding about their sectoral scope. Their study finds that, within U.S. manufacturing, external effects are small within sectors but substantial across manufacturing as a whole. In contrast, we find strong externalities within regions but less between them. Together, our results suggest that location rather than specialization is a much greater source of external effects.

The Exhaustion of Agglomeration Externalities

Table 6 reports the contribution of total agglomeration economies in each industry in each prefecture, i.e. the value of term $\exp(-\phi/A_{ip})$ where A_{ip} is given in equation 1, at the beginning and at the end of the sample. We report these for the case in which regional dummies are included in (E2), using the IV-corrected measure of manufacturing activity and the non-IV corrected measure of financial activity.

The agglomeration measure $\exp(-\phi/A_{ip})$ has a theoretical maximum of 1. Note that the measure for some prefectures is within one or two percentage

-18-

points of this maximum, indicating that the potential for agglomeration economies is nearly exhausted.

For manufacturing, Tokyo and Aichi (Nagoya) prefectures report the largest agglomeration externalities in 1990, both above .99. At the other extreme, Aomori prefecture in northern Honshu and Nagasaki prefecture in Kyushu have the lowest manufacturing externalities in 1990, at about 75 and 77 per cent of the theoretical maximum, respectively. These figures imply that the low level of manufacturing in and around this second pair of prefectures lowered productivity there to little over three-fourths of what it is in the first pair.

In finance, the largest agglomeration effects appear again for Tokyo now followed by Kanagawa (Yokohama). Miyazaki prefecture in Kyushu, and then Akita prefecture in Northern Honshu, report the lowest level of agglomeration externalities.

Relative agglomeration effects also contribute to the comparative advantage of prefectures between manufacturing and finance. In Chiba and Hokkaido, for example, the contribution of agglomeration to productivity is about the same in manufacturing and finance, but in prefectures like Aichi and Shiga, the contribution of agglomeration to productivity is about 3 per cent higher in manufacturing than it is in finance.

Moreover, the contribution of agglomeration economies to comparative advantage has shifted over time. Over the entire period externalities in finance have grown by about three per cent in Kanagawa and only by one per cent in manufacturing. In Aomori prefecture, however, manufacturing externalities grew by about 9 per cent in manufacturing, but only by about 5 per cent in finance.

Our functional form forces the contribution of agglomeration to

-19-

productivity to diminish with the agglomeration parameter A_p . To test whether or not a diminishing agglomeration effect is implied by the data, we estimated the model using the following variant of the production function (2):

$$y_{fip} = (A_{ip})^{(\alpha_{1}+\alpha_{2})nA_{ip}} \varphi_{i}(k_{fip}, l_{fip}, t_{fip}) \psi_{i}(c_{p}, t) U_{ipt}.$$
 (2')

This specification allows the agglomeration elasticity either to increase $(\alpha_2 > 0)$ or to decrease $(\alpha_2 < 0)$, and encompasses the special case of a constant elasticity of productivity with respect to agglomeration $(\alpha_2 = 0)$ assumed, for example, by Ciccone and Hall (1993). For most values of δ , we obtained significantly positive estimates of α_1 and significantly negative estimates of α_2 . For all values of δ that we considered, the estimated coefficients imply an average agglomeration elasticity for Japan as a whole similar to what we report here, and negative agglomeration elasticities for the largest prefectures.

Agglomeration and Growth

Table 6 also reports the growth in the agglomeration measure during the sample period for each prefecture. The GDP-weighted national average growth in the manufacturing agglomeration measure is .17 per cent while the growth in the finance agglomeration measure is .26 per cent. These measures compare with an overall growth in output per worker of 3.0 per cent in manufacturing and 2.9 per cent in finance. Hence, agglomeration effects can account for a small but nontrivial part of overall growth in per capita output in these sectors.

5. Conclusion

This paper has used data on land prices and wages in the Japanese prefectures to infer the extent and range of agglomeration economies in manufacturing and in financial services. The main implications are that: (1) while the extent of agglomeration economies in both sectors is significant (with agglomeration elasticities of around 10 per cent or more), they are fairly localized geographically. (2) Less conclusively we find agglomeration economies to be larger in finance than in manufacturing. (3) Agglomeration economies appear to be nearly exhausted in the prefectures where they are most pronounced. (4) The lowest observed measures of agglomeration economies imply productivity levels that are about three-quarters of the highest observed agglomeration economies. The exploitation of agglomeration economies can explain about 5.6 per cent of the labor productivity growth in manufacturing and 8.9 per cent of labor productivity growth in finance during the period of our sample.

These results suggest an explanation for the increased concentration of land prices in Japan based on the growth of the financial service sector. If financial services tend to occupy localities with larger land areas, either because of historical accident or because agglomeration effects are more pronounced in these sectors, then an increase in the relative price of these services in terms of manufactures will act to increase relative land prices in larger areas. Of the ten regions in Table Al, the Greater Tokyo region has the largest area of land that could be used for building purposes, followed by the Kinki area.²³ As a consequence of higher land prices in these areas, and

-21-

²³Other regions such as Hokkaido and Hokuriku have higher total land areas, but most of this land is mountainous, forested, or agricultural and hence not available for private development. Within the Tokyo region, even the

of higher wages that workers must therefore be paid to compensate them for the higher cost of living in these areas, manufacturing activity will shift toward smaller areas. The net effect on total prefectural output may be relatively small.

individual prefectures of Chiba, Kanagawa, and Tokyo have more usable land area than any others except Hokkaido and Aichi.

REFERENCES

Arnott, Richard (1979), "Optimum City Size in a Spatial Economy," Journal of Urban Bconomics, 6: 65-89.

Arrow, Kenneth J. (1962), "The Economic Implications of Learning by Doing," Review of Economic Studies, 29: 155-173.

Asahi Newspapers (1991), Minryoku (Tokyo: Asahi Newspapers).

Boone, Peter (1989), "High Land Values in Japan: Is the Archipelago Worth Eleven Trillion Dollars?" Draft, Harvard University.

Caballero, Ricardo J. and Richard K. Lyons (1992), "External Effects in U.S. Procyclical Productivity," Journal of Monetary Economics, 29: 209-226.

Chenery, Hollis B. and Moises Syrquin (1975), Patterns of Development: 1950-1970 (London: Oxford University Press).

Ciccone, Antonio and Robert E. Hall (1993), "Productivity and the Density of Economic Activity," NBER Working Paper No, 4313.

Deardorff, Alan V. (1984), "Testing Trade Theories and Predicting Trade Flows," Handbook of International Economies, Volume I, edited by Ronald W. Jones and Peter B. Kenen (Amsterdam: Elsevier Science Publishers). Dixit, Avinash and Joseph E. Stiglitz (1977), "Monopolistic Competition and Optimum Product Diversity," American Economic Review, 72: 389.

Economic Planning Agency, Government of Japan (1988), Gross Capital Stock of Private Enterprises (Tokyo)

Economic Planning Agency, Government of Japan (Various years), Annual Report on Prefectural Accounts (Tokyo).

Economic Planning Agency, Government of Japan (Various years), Annual Report on National Accounts (Tokyo).

Fujita, Masahisa (1989), Orban Economic Theory: Land Use and City Size (Cambridge: Cambridge University Press).

Glasser, Edward L., Hedi D. Kallal, Jose A. Scheinkman, and Andrei Shleifer (1992), "Growth in Cities," Journal of Political Economy, 100: 1126-1152.

Hamao, Yasushi and Roger Ibbotson (1989), Stocks, Bonds, and Inflation: Japan (Chicago: Ibbotson Associates).

Helpman, Elhanan (1984), "Increasing Returns, Imperfect Markets, and Trade Theory," Handbook of International Economies, Volume I, edited by Ronald W. Jones and Peter B. Kenen (Amsterdam: Elsevier Science Publishers). Helpman, Elhanan and David Pines (1980), "Optimal Public Investment and Dispersion Policy in a System of Open Cities," American Economic Review, 70: 507-514.

Henderson, J. Vernon (1987), "General Equilibrium Modeling of a System of Cities," Bandbook of Regional and Urban Economies, Volume II, edited by E.S. Mills (Amsterdam: Elsevier Science Publishers).

Henderson, J. Vernon (1988), Urban Development: Theory, Fact, and Illusion (New York: Oxford University Press).

Henderson, J. Vernon (1994), "Externalities and Industrial Development," NBER Working Paper No.4730

Jacobs, Jane (1969), The Economy of Cities. (New York: Random House).

Jacobs, Jane (1984), Cities and the Wealth of Nations. (New York: Random House).

Kuznets, Simon (1966), Nodern Economic Growth: Rate, Structure, and Spread (New Haven: Yale University Press).

Lucas, Robert E. (1988), "On the Mechanics of Economic Development," *Journal* of Nonetary Economics, 21: 3-42.

Mills, Edwin S. (1967), "An Aggregative Model of Resource Allocation in a Metropolitan Area," American Economic Review, 57: 197-210.

Rauch, James E. (1993), "Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cities," *Journal of Urban Economics*, 34: 380-400.

Romer, Paul (1986), "Increasing Returns and Long-Run Growth," Journal of Political Economy, 94: 1002-1037.

Sassen, Saskia (1991), The Global City. (Princeton: Princeton University Press).

Table 1

Gross Prefectural Product: Private Sector Industries

"Traded" Goods and Services: Manufactures Finance and Insurance

"Nontraded" Goods and Services:

Construction Electricity, Gas, and Water Wholesale and Retail Real Estate Transportation and Communication Other Services

Primary Goods and Services:

Agriculture and Forestry Mining

Table 2

Parameter Estimates

₿ _{lm}	Direct and	indirect	labor share in manufacturing value added	.72
₿ _{FL}	Direct and	indirect	labor share in financial service value added	.70
[₿] th	Direct and	indirect	land share in manufacturing value added	. 12
₿ _{TF}	Direct and	Indirect	land share in financial services value added	.28

Valuations are in billions of 1980 yen, distances are measured in kilometers and areas in square kilometers.

-27-

TOTAL VALUE ADDED	LOCAL ELASTICITY	NATIONAL ELASTICITY	DELTA
SINGLE EQUATION			
WITHOUT REGIONAL DUMMIES	0.133	0.159	0.07
WITH REGIONAL DUMMIES	0.1	0.12	0.06
INSTRUMENTAL VARIABLES			
WITHOUT REGIONAL DUMMIES	0.152	0.177	0.07
WITH REGIONAL DOMMIES	0.101	0.12	0.07
		FINANCE	
SINGLE EQUATION			
WITHOUT REGIONAL DUMMIES	0.199	0.244	0.06
WITH REGIONAL DUMMIES	0.136	0.167	0.06
INSTRUMENTAL VARIABLES			
WITHOUT REGIONAL DUMMIES	0.12	0.2	
WITH REGIONAL DUMMIES	0.12	0.2	0.03
····· · ···· · ·······················	•.•••	0.145	0.00
DENSITY OF VALUE ADDED			
		MANUFACTURING	
SINGLE FOUATION	0.15	0.15	0.5
INSTRUMENTAL VARIABLES	0.13	0.15	0.0
	0.02	0.10	0.005
		FINANCE	
SINCLE FOUNTION	0.95	A 47	o
INSTRUMENTAL VARIABLES	0.25	0.25	0.45
	0.01	U. 14	0.001

TABLE 3: AVERAGE ELASTICITIES AND DISTANCE COEFFICIENTS

TABLE 4: AGGLOMERATION GRADIENTS

DELTA	DISTANCE	GRADIENT
0.03	1	0.94
0,03	10	0.59
0.03	100	0.06
0.06	1	0.89
0,06	10	0.39
0.06	100	0.02
0.07	1	0.87
0.07	10	0.35
0.07	100	0.02

TABLE 5: AGGLOMERATION ELASTICITIES

---- -

......

Prefecture	Number	Loc Man Flas	Nel Man Eles		Not Ele Ele
Hokkaido	1	0.071	0 071		Nat Fin Elas
homoA	2	0.329	0.071	0.000	0.065
Iwate	3	0.202	0.00	. 0.233	0.241
Miyaqi	4	0.098	0.108	0.205	0.283
Akita	5	0 236	0.100	0.131	0.144
Yamagata	Ĝ	0.143	0.207	0.279	0.307
Fukushima		0.082	0.100	0.100	0.234
Nilgata	8	0.07	0.001	0.142	0.102
Ibaragi	. Ó	0.038	0.043	0.123	0.131
Tochigi	10	0.039	0.045	0.007	0.119
Gunma	11	0.045	0.053	0.004	0.129
Saltama	12	0.011	0.018	0.01	0.109
Chiba	13	0.018	0.027	0.021	0.041
Tokyo	14	0.007	0.008	0.008	0.007
Kanagawa	15	0.011	0.013	0.018	0.029
Yamanashi	16	0.081	0.127	0.109	0.2
Nagano	17	0.059	0.064	0.097	0.109
Shizuoka	18	0.029	0.03	0.066	0.072
Toyama	19	0.091	0.103	0.168	0.199
tshikawa	20	0.114	0,142	0.169	0,198
Gifu	21	0.03	0.048	0.068	0,108
Aicht	22	0.013	0.013	0.034	0.035
Mie	23	0.045	0.059	0.103	0.141
Fukui	24	0.116	0.159	0.188	0.239
Shiga	25	0.025	0.044	0.032	0,102
Kyoto	26	0.023	0.036	0.042	0.062
Osaka	27	0.012	0.013	0.015	0.016
Hyogo	28	0.018	0.021	0.032	0.042
Nara	29	0.029	0.072	0.041	0.113
vvakayama	30	0.058	0.089	0.09	0.17
	31	0.176	0.273	0.257	0.374
Shimane	32	0.237	0.304	0.334	0.404
Ukayama	33	0.051	0.057	0.107	0.129
Hiroshima	34	0.053	0.055	0.091	0.093
Yamaguchi	35	0.091	0.094	0.178	0.193
Toxushima	36	0.09	0.155	0.139	0.226
Kagawa	37	0.065	0,112	0.114	0.168
Enime	38	0.108	0.118	0.184	0.199
Kochi	39	0.318	0.377	0.261	0.304
FUKUOKA	40	0.046	0.047	0.069	0.069
Saga	41	0.156	0.215	0.224	0.301
Nagasaki	42	0.228	0.256	0.254	0.267
Ote	43	0.158	0.164	0.207	0.224
Uitä Misasati	44	0.164	0.166	0.259	0.277
Kapachima	4J 40	0.305	0.323	0.37	0.392
rvagosninitä	-	V.230	0.244	0.212	0.212
Averages		0.101	0.12	0.136	0.167

TABLE 6: AGGLOMERATION COEFFICIENTS AND GROWTH

Prefecture	Number	1990 Man Agglom	1977-1990 Growth	1990 Fin Agglom	1977-1990 Growth
Hokkaido	1	0.939	0.096	0.948	0.17
Аотогі	2	0.759	1.23	0.81	0.688
lwate	3	0.843	0.782	0.799	1.28
Miyagi	4	0.919	0.432	0.888	0.404
Akita	5	0.83	1.13	0.777	1.02
Yamagata	6	0.888	0.734	0.837	0.877
Fukushima	7	0.938	0.433	0.879	0.618
Niigata	8	0.939	0.18	0.901	0.439
Ibaragi	9	0.968	0.204	0.928	0.676
Tochigl	10	0.972	0.24	0.922	0.7
Gunma	11	0.962	0.304	0.929	0.494
Saitama	12	0.985	0.071	0.985	0.187
Chiba	13	0.979	0.085	0.978	0.255
Tokyo	14	0.993	0.022	0.997	0.043
Kanagawa	15	0.989	0.033	0.983	0.159
Yamanashi	18	0.912	0.731	0.877	1.02
Nagano	17	0.95	0.26	0,918	0.405
Shizuoka	18	0,977	0.141	0.948	0.278
Toyama	19	0.923	0.393	0.851	0.8
Ishikawa	20	0.889	0.404	0.852	0.639
Gifu	21	0.963	0.179	0,921	0.402
Aichi	22	0.99	0.054	0.975	0,131
Mie	23	0.953	0.203	0.902	0.644
Fukui	24	0.872	0.39	0.832	0.882
Shiga	25	0.967	0.214	0,925	0.364
Kyoto	26	0.97	0.128	0.952	0.204
Osaka	27	0.989	0.02	0.987	0.032
Hyogo	28	0.981	0.032	0.967	0.104
Nara	29	0.939	0.25	0,908	0.286
Wakayama	30	0.913	0.077	0.888	0.424
Tottori	31	0.811	1.06	0.725	0.948
Shimane	32	0.785	1.2	0.718	1.5
Okayama	33	0.957	0.224	0.909	0.467
Hiroshima	34	0.957	0.119	0.928	0.247
Yamaguchi	35	0.934	0.332	0.849	0.48
Tokushima	38	0.873	0.42	0.827	0.655
Kagawa	37	0.905	0.287	0.871	0.478
Ehime	38	0,899	0.077	0.846	0.546
Kochi	39	0.897	2.49	0.764	0,904
Fukuoka	40	0.962	0.13	0.948	0.244
Saga	41	0.834	0.692	0.788	1.17
Nagasaki	42	0,769	0.022	0.819	1.04
Kumamoto	43	0.888	0.954	0.839	0.91
Oita	44	0.889	1.32	0.792	0.813
Miyazaki	45	0.769	1.41	0.722	1.33
Kagoshima	48	0.82	0.919	0.848	0.924

TABLE A1: REGIONAL ASSIGNMENTS OF THE PREFECTURES

1 HOKKAIDO Hokkaido 2 TOHOKU Aomori Iwate Miyagi Akita Yamagata Fukushima **3 HOKURIKU** Niigata Toyama Ishikawa Fukui **4** KANTO Ibaragi Tochigi Gunma Yamanashi Nagano 5 TOKYO Chiba Tokyo Kanagawa Sailama 6 TOKAL Shizuoka Gifu Aichi Mie

.

7 KINKI Shiga Kyoto Osaka Hyogo Nara Wakayama 8 CHUGOKU Tottori Shimane Okayama Hiroshima Yamaguchi 9 SHIKOKU Tukushima Kagawa Ehime Kochl 10 KYUSHU Fukuoka Saga Nagasaki Kumamoto Oita Miyazaki Kagashima

APPENDIX A

ESTIMATION RESULTS

Variable Definitions

Equation 1: Unit Cost of Production (E2) Parameter Coefficient PHI Inverse Agglomeration Measure PORTS Number of Ports Dummies for Regions 2-10 (See Table Al) Z2-Z10 X1-X13 Dummies for years 1976-1988 Equation 2: User Cost of Land (E1) Parameter Coefficient BPL1-BPL13 Dummies for Years 1976-1988 BPL14-BPL22 Dummies for Regions 2-10 (See Table A1) Equation 3: Instrumental Variable Equation Parameter Coefficient BIN1 Amount of Land Capable of Development BIN2 Number of Ports Average Annual Temperature BIN3 BIN4 Average number of days of sunshine per year BINS-BIN17 Dummies for years 1976-1988 BIN18-BIN26 Dummies for Regions 2-10 (See Table Al)

All specifications were estimated by the Full-Information Maximum-Likelihood routine in TSP. Reported equations are for the value of distance deflator delta that maximizes the log likelihood function. Standard errors are calculated by the Berndt-Hall-Hall-Hausman method, and are conditional on the reported estimate of delta being the true value.

(value added, no IV's, no Regional Dummies) NUMBER OF OBSERVATIONS - 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	-124.197	6.47492	-19.1812
PORTS	. 203389	.021130	9.62565
X1	-4.51051	.029520	-152,796
X2	-4.57924	.040385	-113.391
X3	-4.66484	.050076	-93.1550
X4	4.59954	.054460	-84.4575
X5	-4.51357	.056534	-79.8378
X6	-4.44328	.053083	-83,7038
X7	-4.22626	.065272	-64.7486
X8	-4.09467	.053654	-76.3163
X9	-4.06904	.038302	-106.235
X10	-4.01311	.038260	-104.890
X11	-3.97258	. 035457	-112,041
X12	-4.03143	.038590	-104,468
X13	-3.95837	.033546	-118.000
BPL1	.126496	.034018	3.71854
BPL2	.050971	.034003	1.49900
BPL3	.021273	.032248	.659686
BPL4	.020859	.032255	.646689
BPL5	.020500	.032261	.635464
BPL6	.020502	.032237	.635983
BPL7	.051284	.039544	1.29690
BPL8	.113081	.061138	1.84960
BPL9	.108012	.041405	2.60868
BPL10	.126672	.040799	3.10479
BPL11	.125637	.035046	3.58494
BPL12	.060582	.032628	1.85674
BPL13	. 070645	.033718	2.09514
BPL14	.014801	.033129	.446756
BPL15	.024372	.034068	.715393
BPL16	983557E-02	.032344	304088
BPL17	017687	.032087	551211
BPL18	893958E-03	.032529	027482
BPL19	013207	.032017	412503
BPL20	746828E-02	.032462	230060
BPL21	443974E-02	.032241	137705
BPL22	908986E-02	.031986	284185

	1	2
@SSR	12.43811	3,90043

@LOGL - 967.256 DELTA - 0.070000

.

(value added, no IV's, with Regional Dummies) NUMBER OF OBSERVATIONS - 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHÍ	-100.613	10.0620	•9.99933
PORTS	. 272563	.023646	11.5268
Z 2	102467	.247915	413315
23	115460	.246898	467643
Z4	.139461	.247525	.563422
25	. 250999	.245839	1.02099
Z6	.040343	.247057	.163293
27	.126269	.246727	.511776
Z8	.6407 8 4E-02	.247716	.025868
29	.117302E-02	.248121	.472760E-02
Z10	.023091	.246686	.093603
X1	-4.64925	.248263	-18.7271
X2	-4.69623	.248520	-18.8968
X3	-4.97856	.459455	-10.8358
X4	-4.93616	.491446	-10.0442
X5	-4.90391	.483200	-10.1488
X6	-4.81818	.491975	-9.79356
X7	-4.33684	.257092	-16.8688
X8	-4.22331	.256266	-16.4802
X9	-4.19566	.250849	-16.7258
X10	-4.14043	. 249750	-16.5783
X11	-4.09999	.248429	-16.5037
X12	-4.14281	.248490	-16.6719
X13	-4.06841	.247482	-16.4392
BPL1	.124812	.011899	10.4890
BPL2	.054724	.013014	4.20501
BPL3	.235463E-02	.895073E-02	.263065
BPL4	.168306E-02	.715157E-02	.235342
BPLS	.769055E-03	.397977E-02	.193241
BPL6	.101614E-02	.483033E-02	.210366
BPL7	.057230	.036633	1.56225
BPL8	.112076	.067051	1.67151
BPL9	.107277	.028262	3.79583
BPL10	.125291	.026851	4.66608
BPL11	.124212	.014049	8.84114
BPL12	.064509	.897403E-02	7.18842
BPL13	.074044	.010790	6,86222
BPL14	.324046E-03	.315601E-02	.102676
BPL15	.750149E-03	.388756E-02	.192962
BPL16	.861460E-03	.413594E-02	.208286
BPL17	.402926E-03	.321804E-02	.125208
BPL18	.756407E-03	.391346E-02	.193283
BPL19	.378464E-03	.321350E-02	.117773
BPL20	.296778E-03	.315885E-02	.093951
BPL21	.599839E-03	.360296E-02	.166485
BPL22	.399089E-03	.321795E-02	.124020

1 2 10.06253 3.79**33**0

@LOCL - 1037.94119 DELTA - 0.060000

(value added, with IV's, no Regional Dummies) NUMBER OF OBSERVATIONS - 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	-139.890	40.1049	-3.48810
POR TS	.213857	.037567	5.69273
X1	-4.49424	.051698	-86,9331
X2	-4.56385	.053290	-85.6411
X3	-4.66045	.062713	-74.3144
X 4	4.59592	.065430	-70.2422
X5	-4.51003	.068001	-66.3231
X6	-4.43867	.065471	-67.7964
X7	-4.21173	.076465	-55.0806
X8	-4.08318	.062647	-65.1779
X9	-4.05833	.047823	-84.8608
X10	-4.00280	.047387	-84.4705
X11	-3.96221	.044916	-88.2146
X12	-4,01980	.045648	-88,0616
X13	-3.94964	.038274	-103.194
BPL1	.129060	.037018	3.48637
BPL2	.053846	.036454	1.47709
BPL3	.022447	.034727	.646390
BPL4	.022073	.034729	.635574
BPL5	.021689	.034725	.624607
BPL6	.021701	.034700	.625398
BPL7	.054318	.043144	1.25900
BPL8	.115753	.064261	1.80131
BPL9	.110739	.044223	2.50408
BPL10	.129342	.044144	2.92998
BPL11	.128314	.038257	3.35401
BPL12	.064221	.035503	1.80888
BPL13	.074272	.036182	2.05275
BPL14	.954924E-02	.037117	.257274
BPL15	.021377	.036727	. 582043
BPL16	011714	.034793	336671
BPL17	018988	.034511	-,550188
BPL18	246110E-02	.034646	071036
BPL19	- 014720	.034424	427619
BPL20	987922E-02	.034719	284550
BPL21	761267E-02	.034436	221065
BPL22	010970	.034109	321619

Instrumental Variable Equation

.

BIN1	107082E-06	.414517E-07	-2.58329
BIN2	.996451E-03	.411794E-03	2.41978
BIN3	149639E-03	.452713E-04	-3.30537
BIN4	.237044E-06	.461968E-06	. 5131 17
BIN5	.270284E-02	.642480E-03	4.20689
BIN6	.255305E-02	.638663E-03	3.99749
BIN7	.246789E-02	.644902E-03	3.82677
BIN8	.240897E-02	.653398E-03	3.68684
BIN9	.245121E-02	.654170E-03	3.74705
BIN10	.250518E-02	.649871E-03	3.85489
BIN11	.247243E-02	.645981E-03	3.82740
BIN12	.238829E-02	.651813E-03	3.66407
BIN13	.233437E-02	.660507E-03	3.53421
BIN14	.231689E-02	.661964E-03	3,50003
BIN15	.232041E-02	.663377E-03	3.49788
BIN16	.223909E-02	.674112E-03	3.32154
BIN17	.208692E-02	.667406E-03	3.12692

.

0	1	2	3
essr	12.62479	3.88510	0.00028590

@LOGL = 4256.51651 DELTA = 0.070000

.

(value added, with IV's, with regional dummies) NUMBER OF OBSERVATIONS - 598

		Standard	
Parameter	Estímate	Error	t-statistic
PHI	-96.2981	14.8514	-6.48412
PORTS	. 270093	.028620	9.43713
Z2	098902	. 270244	365974
Z3	108989	.271872	- 400882
Z4	.143995	. 273818	525879
Z5	.257305	.269786	.953735
Z6	.045314	.271444	.166935
Z7	.133869	270228	. 495392
Z8	.015537	.271099	.057312
29	011721	.271654	043148
z10	027080	271879	099605
X1	-4 65137	272539	-17 0668
x2	-4 69858	272246	-17 2586
Y1	-5 24009	10 8905	- / 2116/
¥/.	5 25787	10.7580	401104
~~ V5	- 5. 25767	10.7571	400077
XJ VC	5 11600	10.7575	403094
	-J.11099	10,7373	4/2008
λ/ νο	-4.33910	.201017	-15,4410
79	-4,22578	.282184	-14.9752
X9	-4,19819	.274323	-15.3038
X10	-4,14296	.274166	-15.1112
X11	-4.10254	.272362	-15.0628
X12	-4.14530	. 272482	-15.2131
X13	-4.07152	.272007	-14.9685
BPL1	,125305	.012504	10.0212
BPL2	.055202	.015262	3.61693
BPL3	.125067E-03	.011340	.011029
BPL4	.279231E-04	.250222E-02	.011159
BPLS	.206157E-04	.184852E-02	.011153
BPL6	.263598E-04	.236224E-02	.011159
BPL7	.057720	.037064	1,55730
BPL8	.112566	.067695	1.66284
BPL9	.107764	.028401	3.79435
BPL10	.125785	.027614	4.55508
BPL11	.124708	.013382	9.31927
BPL12	.065089	.921915E-02	7.06019
BPL13	.074659	.010560	7.06979
BPL14	.598769E-05	.532990E-03	.011234
BPL15	.155009E-04	.138294E-02	.011209
BPL16	.182672E-04	.163039E-02	011204
BPL17	131623E-04	.117384E-02	.011213
BPL18	.166329E-04	.148423E-02	.011206
BPL19	.853700E-05	760323E-03	.011228
BPL20	.470610E-05	418575E-03	011243
BPL21	856244E-05	763009E-03	011222
BPL22	.106495E-04	.948986E-03	.011222

Instrumental Variable Equation

BIN1	.116084E-04	.109399E-05	10.6111
BIN2	014987	.322964E-02	-4.64046
BIN3	.011256	.117057E-02	9.61558
BIN4	-,774294E-04	.738653E-05	-10.4825
BIN5	183145	.029263 🏾 🎽	-6.25860
BIN6	183107	.029249	-6.26036
BIN7	179399	.029101	-6.16467
BIN8	179062	.029012	-6.17211
BIN9	174639	.028829	-6.05775
BIN10	176477	.028904	-6.10554
BIN11	183282	.029353	-6.24403
BIN12	183474	.029345	-6.25221
BIN13	183528	.029371	-6.24859
BIN14	183552	. 029356	-6. 25 253
BIN15	183537	.029 361	-6.25109
BIN16	183683	.029365	-6.25521
BIN17	184088	.029341	-6.27417
BIN18	.159675	.021755	7.33966
BIN19	.141469	.022313	6.34029
BIN20	.165408	. 022065	7.49642
BIN21	.160859	.022136	7.26674
BIN22	. 153100	.022680	6.75038
BIN23	. 153702	.023092	6.65602
BIN24	.152045	.023091	6.58457
BIN25	.162392	.023970	6.77493
BIN26	.144142	.022650	6.36402

	1	2	3
@SSR	14.75826	3.78608	0.086170

.

@LOGL - 2754.78006 DELTA - 0.070000

.. .

.

.

- -

(densities, no IV's, with regional dummies) NUMBER OF OBSERVATIONS = 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	046404	.381427E-02	-12.1660
PORTS	.273610	.022758	12.0226
Z 2	637416	.116874	-5.45390
Z3	775445	.124612	-6.22287
Z4	500388	.126975	-3.94086
Z5	393336	.125317	-3.13874
Z6	606263	. 127472	-4.75603
27	537543	.126706	-4.24245
Z8	689191	.124148	-5.55137
Z9	699545	.124452	-5.62100
X1	-3,98788	.132287	-30.1457
X2	-4,03592	.132767	-30.3986
X3	-4.38427	.813469	-5.38960
X4	-4.36798	.768018	-5.68734
X5	-4.35622	.769250	-5.66294
X6	-4.20014	.776257	-5.41076
X7	-3.67949	, 149538	-24.6058
X8	-3,56816	.149034	-23.9420
X9	-3.54116	.133974	-26.4318
Z10	620508	.119533	-5.19109
X10	-3,48577	.134158	-25.9825
X11	-3.44629	.131132	-26.2811
X12	-3.49110	.131446	-26.5591
X13	-3.41789	.128328	-26.6341
BPL1	.125576	.011898	10.5542
BPL2	.055520	.013369	4.15288
BPL3	.172693E-02	.011470	.150557
BPL4	.112654E-02	.731849E-02	.153930
BPLS	.652289E-03	.454506E-02	.143516
BPL6	.115401E-02	.750189E-02	.153829
BPL7	.058000	.036902	1.57175
BPL8	.112825	.066847	1.68781
BPL9	.108024	.028198	3.83087
BPL10	.126057	.026763	4.71020
BPL11	.124968	.013199	9.46812
BPL12	.065249	.892956E-02	7.30709
BPL13	.074948	.010706	7.00048
BPL14	349116E-03	.303069E-02	115194
BPL15	162270E-03	.239413E-02	067778
BPL16	127827E-03	.232183E-02	055054
BPL1/	248853E-03	.263566E-02	094418
BPL18	157113E-03	.238558E-02	065859
BPL19	426359E-03	.337755E-02	126233
BPL20	326370E-03	.293596E-02	111163
BPL21	205046E-03	.251108E-02	081656
BPL22	254856E-03	.266156E-02	095754
	1	:	2

@SSR 10.13026 3.78874

@LOGL = 1036.05867 DELTA = 0.50000

(densities, with IV's, with regional dummies) NUMBER OF OBSERVATIONS - 598

•

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	-,726994	1.75116	415151
PORTS	.289515	.028304	10.2288
Z2	683598	1.15603	591331
Z3	756849	1.48987	507 99 6
Z4	482273	1.58796	303705
Z5	367197	1.65784	221491
Z6	571878	1.60895	355436
Z7	505618	1.63760	308757
Z8	-,644747	1.42548	452301
Z9	-,701534	1.47069	477011
Z10	476003	.956378	497715
X1	-3.99796	1,88841	-2.11710
X2	-4.04888	1.84550	-2.19393
X3	-4.42834	1,99900	-2.21527
X4	-4.41127	2.00451	-2.20068
X5	-4.36031	2.01988	-2,15870
X6	-4.28055	2.03998	-2.09832
X7	-3,69502	1.81565	-2,03509
X8	-3.58360	1.79112	-2.00076
X9	-3.55618	1.77896	-1.99902
X10	-3.50340	1.76988	-1.97946
X11	-3.46098	1.77558	-1.94921
X12	-3.50646	1.75253	-2,00080
X13	-3.43187	1.71870	-1.99678
BPL1	.125100	.012140	10,3045
BPL2	.054867	.013251	4.14071
BPL3	.967579E-03	.819219E-02	.118110
BPLA	.480453E-03	.411166E-02	.116851
BPL5	.257365E-03	.233010E-02	.110452
BPL6	.301210E-03	.276041E-02	.109118
BPL7	. 057393	.037803	1.51821
BPL8	.112356	.067509	1.66431
BPL9	.107542	.028745	3,74123
BPL10	.125560	.027356	4.58990
BPL11	.124483	.013654	9,11705
BPL12	.064835	.870407E-02	7.44879
BPL13	.074711	.011128	6.71362
BPL14	.186629E-03	.187510E-02	.099530
BPL15	.287749E-03	.253408E-02	.113552
BPL16	.350200E-03	.297153E-02	.117852
BPL17	.189576E-03	.188225E-02	.100718
BPL18	.297442E-03	.260130E-02	.114343
BPL19	.155047E-03	.168574E-02	.091976
BPL20	.162322E-03	.172364E-02	.094174
BPL21	.275595E-03	.251169E-02	.109725
BPL22	.181084E-03	.183395E-02	.098740

Instrumental Variable Equation

BIN1	.523507E-05	.117057E-04	.447225
BIN2	.743785E-03	.051920	.014325
BIN3	671814E-03	.648847E-02	103540
BIN4	257871E-04	.614906E-04	419367
BIN5	1.00613	. 273087	3.68429
BIN6	.982102	.273534	3.59042
BIN7	.962883	.273132	3.52534
BIN8	.954838	.273201	3.49500
BIN9	.962702	.273132	3.52467
BIN10	.971731	.273016	3.55925
BIN11	~.963852	.273157	3.52856
BIN12	. 9 49057	. 273034	3.47596
BIN13	.941717	. 273196	3.44704
BIN14	.935968	.273170	3.42632
BIN15	.939189	.273309	3.43636
BIN16	.925078	.273329	3.38449
BIN17	.905282	.273408	3.31110
BIN18	-,542689	.237773	-2.28238
BIN19	728995	.249342	-2.92367
BIN20	784601	.263617	-2.97629
BIN21	822427	.267471	-3.07483
BIN22	792753	.265320	-2.98791
BIN23	808511	.274524	-2.94513
BIN24	684071	.267566	-2.55664
BIN25	703303	.272968	-2.57650
BIN26	399443	.265256	-1.50588

1	2	3
12.23521	3.78827	3,78523

@LOGL - 1647.97457 DELTA - 0.0050000

@ssr

(value added, no IV's, no Regional Dummies) NUMBER OF OBSERVATIONS = 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	-40.1214	3.65660	-10.9723
PORTS	.279225	.029767	9.38042
X1	-4.87729	.049483	-98,5647
X2	-5.06639	.086344	-58,6770
X3 ·	5.28433	.124461	-42,4578
X4	-5.19470	.140378	-37.0051
X5	-5.10734	.161935	-31,5395
X6	-5.00218	.149709	-33.4127
X7	-4.63234	.174987	-26.4724
X8	-4.36703	.137500	-31,7601
X9	-4.33638	.084796	-51.1392
X10	-4.25813	.080467	-52,9177
X11	-4.20577	.060455	- 69 . 5 6 9 0
X12	-4.35660	.062503	-69,7021
X13	-4.33800	.064839	-66,9047
BPL1	.160986	.035808	4.49576
BPL2	.087798	.036652	2.39546
BPL3	.057343	.035228	1.62775
BPL4	.056823	,035158	1.61623
BPL5	.055861	.035129	1.59017
BPL6	.055988	.035065	1,59670
BPL7	.087270	.047508	1.83696
BPL8	.147452	.066147	2.22916
BPL9	.142634	.045253	3.15193
BPL10	.161389	.043944	3.67263
BPL11	.160089	.037859	4.22852
BPL12	.095830	.035 27 7	2.71651
BPL13	.104688	.035976	2.90992
BPL14	+.033200	.034608	959331
BPL15	023571	.035008	673289
BPL16	044150	.034338	-1,28576
BPL17	045766	.034301	-1.33426
BPL18	042957	.034231	-1.25492
BPL19	046447	.034329	-1.35300
BP1.20	033568	.03477 9	-,965185
BPL21	043140	.034512	-1.25000
BPL22	032171	.034680	927657
		1	2
ØSSR		25.09544	- 3.91988

@LOGL - 754.65579 DELTA - 0.060000

(value added, no IV's, with Regional Dummies) NUMBER OF OBSERVATIONS = 598

Parameter Estimate Error t-statistic PHI -26.8632 5.73063 -4.68766 PORTS .369011 .028765 12.8286 22 .120955 .290286 .416674 23 .033419 .292451 .114271 24 .367025 .286958 1.27902 25 .429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 .12739			Standard	
PHI -26.8632 5.73063 -4.68766 PORTS .369011 .028765 12.8286 22 .120955 .290286 .416674 23 .033419 .292451 .114271 24 .367025 .286958 1.27902 25 429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.7125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 .12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 <td>Parameter</td> <td>Estimate</td> <td>Error</td> <td>t-statistic</td>	Parameter	Estimate	Error	t-statistic
FORTS .369011 .028765 12.8286 22 .120955 .290286 .416674 23 .033419 .292451 .114271 24 .367025 .286958 .27902 25 429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 .08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.6284 .29077 <t< td=""><td>PHI</td><td>-26.8632</td><td>5.73063</td><td>-4.68766</td></t<>	PHI	-26.8632	5.73063	-4.68766
22 .120955 .290286 .416674 23 .033419 .292451 .114271 24 .367025 .286958 1.27902 25 429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 <td>PORTS</td> <td>.369011</td> <td>.028765</td> <td>12.8286</td>	PORTS	.369011	.028765	12.8286
23 .033419 .292451 .114271 24 .367025 .286958 1.27902 25 .429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 .109185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.62284 .299705 -16.0493 SP11 .125770 .012611 9.97280 BPL1 .257831 .013245 4.21534 <td>Z2</td> <td>.120955</td> <td>.290286</td> <td>.416674</td>	Z2	.120955	.290286	.416674
24.367025.2869581.27902 25 .429971.2857051.50494 26 .306420.2865511.06934 27 .413994.2874591.44018 28 .106248.293422.362102 29 .248903.291184.854797 210 .084588.290185.291498 $X1$ -5.27125.290651-18.1360 $X2$.5.43008.294422-18.4432 $X3$ -6.12737.867284-7.06500 $X4$ -6.086611.08879-5.59024 $X5$ -6.219011.09185-5.69584 $X6$ -6.046901.12739-5.36364 $X7$ -4.96524.339737-14.6149 $X8$ -4.73289.329855-14.3484 $X9$ -4.70322.299308-15.7137 $X10$ -4.62284.290777-15.6295 $X11$ -4.56852.290318-15.7363 $X12$ -4.69478.290054-16.1859 $X13$ -4.66884.290905-16.0493 $BPL1$.125770.0126119.97280 $BPL4$.281342E-02.010731.262186 $BPL5$.129060E-02.603767E-02.213759 $BPL6$.163238E-02.727669E-02.224329 $BPL7$.057835.0360171.60578 $BPL8$.112903.0668591.68867 $BPL9$.08149.0288323.75103 $BPL10$.126111.0265044.75820 B	Z3	.033419	.292451	114271
25 429971 .285705 1.50494 26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290455 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .290777 -15.6295 X11 -4.66882 .290054 -16.1859 X12 -4.69478 .290054 -16.0493 BPL2 .055831 .012454 -21534	Z4	.367025	.286958	1.27902
26 .306420 .286551 1.06934 27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 .456852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL3 .336696E-02 .010247 .328569	25		.285705	1.50494
27 .413994 .287459 1.44018 28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 9.97280 BPL2 .055831 .013245 4.21534 BPL3 .336696E-02 .010731 .262186 BPL4 .281342E-02 .01731 .26	Z6	.306420	.286551	1.06934
28 .106248 .293422 .362102 29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 -4.56852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 .97280 BPL3 .336696E-02 .010247 .328569 BPL4 .281342E-02 .010731 <td< td=""><td>Z7</td><td>.413994</td><td>. 287459</td><td>1.44018</td></td<>	Z 7	.413994	. 287459	1.44018
29 .248903 .291184 .854797 210 .084588 .290185 .291498 X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 -4.56852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 9.97280 BPL3 .336696E-02 .010247 .328569 BPL4 .281342E-02 .010731 .262186 BPL5 .129060E-02 .603767E-02 .213759 BPL6 .163238E-02 .727669	Z8	.106248	.293422	.362102
210.084588.290185.291498X1-5.27125.290651-18.1360X2-5.43008.294422-18.4432X3-6.12737.867284-7.06500X4-6.086611.08879-5.59024X5-6.219011.09185-5.69584X6-6.046901.12739-5.36364X7-4.96524.339737-14.6149X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11-4.66884.290054-16.1859X12-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.224329BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-02.051131BPL13.075081.011226.75060BPL14.198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16.38	Z9	.248903	.291184	.854797
X1 -5.27125 .290651 -18.1360 X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 .4.56852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 9.97280 BPL2 .055831 .013245 4.21534 BPL3 .336696E-02 .010247 .328569 BPL4 .281342E-02 .010731 .262186 BPL5 .129060E-02 .603767E-02 .224329 BPL4 .12903 .066859 </td <td>Z10</td> <td>.084588</td> <td>.290185</td> <td>.291498</td>	Z10	.084588	.290185	.291498
X2 -5.43008 .294422 -18.4432 X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .29777 -15.6295 X11 -4.56852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 9.97280 BPL2 .055831 .013245 4.21534 BPL3 .336696E-02 .010731 .262186 BPL4 .281342E-02 .010731 .262186 BPL5 .129060E-02 .603767E-02 .224329 BPL6 .163238E-02 .727669E-02 .224329 BPL11 .125017	X1	-5.27125	.290651	-18.1360
X3 -6.12737 .867284 -7.06500 X4 -6.08661 1.08879 -5.59024 X5 -6.21901 1.09185 -5.69584 X6 -6.04690 1.12739 -5.36364 X7 -4.96524 .339737 -14.6149 X8 -4.73289 .329855 -14.3484 X9 -4.70322 .299308 -15.7137 X10 -4.62284 .295777 -15.6295 X11 .4.56852 .290318 -15.7363 X12 -4.69478 .290054 -16.1859 X13 -4.66884 .290905 -16.0493 BPL1 .125770 .012611 9.97280 BPL2 .055831 .013245 4.21534 BPL3 .336696E-02 .010247 .328569 BPL4 .281342E-02 .010731 .262186 BPL5 .129060E-02 .603767E-02 .224329 BPL4 .163238E-02 .727669E-02 .224329 BPL5 .12903 .066859 1.68867 BPL9 .005131 .	X2	-5.43008	.294422	-18.4432
X4-6.086611.08879-5.59024X5-6.219011.09185-5.69584X6-6.046901.12739-5.36364X7-4.96524.339737-14.6149X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.224329BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.41525E-02.109014 </td <td>X3</td> <td>-6.12737</td> <td>.867284</td> <td>-7.06500</td>	X3	-6.12737	.867284	-7.06500
X5-6.219011.09185-5.69584X6-6.046901.12739-5.36364X7-4.96524.339737-14.6149X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.224329BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-02.095062BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02051131BPL15.532965E-03.426347E-0205507BPL16.383092E-03.402991E-02071302BPL18.448620E-03.41525E-0209014BPL19.291551E-03.397467E-0207535BPL20.300455E-03.39767E-02075	X4	-6,08661	1.08879	-5.59024
X6-6.046901.12739-5.36364X7-4.96524.339737-14.6149X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.224329BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.071302BPL18.448620E-03.41525E-02.109014BPL19.291551E-03.394300E-02.07535BPL20.300455E-03.397767E-02.07535BPL21.282059E-03.394300E-02 <td< td=""><td>XS</td><td>-6.21901</td><td>1.09185</td><td>-5.69584</td></td<>	XS	-6.21901	1.09185	-5.69584
X7-4.96524.339737-14.6149X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-02.051131BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.3934300E-02.071534BPL20.300455E-03.397767E-02.075335BPL21.282059E-03.39430	X6	-6.04690	1.12739	-5.36364
X8-4.73289.329855-14.3484X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-02.051131BPL13.075081.0111226.75060BPL14.198474E-03.38171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.3934300E-02.075335BPL20.300455E-03.397767E-02.075334BPL22.501758E-03.418580E-02.119871	X7	-4,96524	.339737	-14.6149
X9-4.70322.299308-15.7137X10-4.62284.295777-15.6295X11.4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02074103BPL20.300455E-03.397767E-02075535BPL21.282059E-03.394300E-02071534BPL22.501758E-03.418580E-02119871	X8	-4,73289	. 329855	-14.3484
X10-4.62284.295777-15.6295X11-4.56852.290318-15.7363X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02074103BPL20.300455E-03.397767E-02075535BPL21.282059E-03.394300E-02071534BPL22.501758E-03.418580E-02119871	X9	-4.70322	. 299308	-15.7137
X11.4.56852.290318.15.7363X12.4.69478.290054.16.1859X13.4.66884.290905.16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	X10	-4.62284	.295777	-15.6295
X12-4.69478.290054-16.1859X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	X11	.4.56852	.290318	-15.7363
X13-4.66884.290905-16.0493BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	X12	-4.69478	. 290054	-16.1859
BPL1.125770.0126119.97280BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	X13	-4.66884	. 290905	-16.0493
BPL2.055831.0132454.21534BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL1	.125770	.012611	9.97280
BPL3.336696E-02.010247.328569BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL2	.055831	.013245	4.21534
BPL4.281342E-02.010731.262186BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL3	.336696E-02	.010247	.328569
BPL5.129060E-02.603767E-02.213759BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15.532965E-03.426347E-02125007BPL16383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL4	.281342E-02	.010731	.262186
BPL6.163238E-02.727669E-02.224329BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17.279287E-03.391699E-02071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02074103BPL20.300455E-03.397767E-02075535BPL21.282059E-03.394300E-02071534BPL22.501758E-03.418580E-02119871	BPL5	.129060E-02	.603767E-02	.213759
BPL7.057835.0360171.60578BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17.279287E-03.391699E-02071302BPL18448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02074103BPL20.300455E-03.397767E-02075535BPL21.282059E-03.394300E-02071534BPL22.501758E-03.418580E-02119871	BPL6	.163238E-02	.727669E-02	.224329
BPL8.112903.0668591.68867BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17.279287E-03.391699E-02071302BPL18448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02074103BPL20.300455E-03.397767E-02075535BPL21.282059E-03.394300E-02071534BPL22.501758E-03.418580E-02119871	BPL7	.057835	.036017	1.60578
BPL9.108149.0288323.75103BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17279287E-03.391699E-02071302BPL18448620E-03.411525E-02.109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL8	.112903	.066859	1.68867
BPL10.126111.0265044.75820BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17279287E-03.391699E-02071302BPL18448620E-03.411525E-02109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL9	.108149	.028832	3.75103
BPL11.125017.0148038.44551BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL10	.126111	.026504	4.75820
BPL12.065057.933021E-026.97273BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL11	.125017	.014803	8.44551
BPL13.075081.0111226.75060BPL14.198474E-03.388171E-02.051131BPL15.532965E-03.426347E-02.125007BPL16.383092E-03.402991E-02.095062BPL17.279287E-03.391699E-02.071302BPL18.448620E-03.411525E-02.109014BPL19.291551E-03.393442E-02.074103BPL20.300455E-03.397767E-02.075535BPL21.282059E-03.394300E-02.071534BPL22.501758E-03.418580E-02.119871	BPL12	.065057	.933021E-02	6.97273
BFL14198474E-03.388171E-02051131BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17279287E-03.391699E-02071302BPL18448620E-03.411525E-02109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL13	.075081	.011122	6.75060
BPL15532965E-03.426347E-02125007BPL16383092E-03.402991E-02095062BPL17279287E-03.391699E-02071302BPL18448620E-03.411525E-02109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL14	198474E-03	.388171E-02	051131
BPL16383092E-03.402991E-02095062BPL17279287E-03.391699E-02071302BPL18448620E-03.411525E-02109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL15	532965E-03	.426347E-02	125007
BFL17279287E-03.391699E-02071302BFL18448620E-03.411525E-02109014BFL19291551E-03.393442E-02074103BFL20300455E-03.397767E-02075535BFL21282059E-03.394300E-02071534BFL22501758E-03.418580E-02119871	BPL16	383092E-03	.402991E-02	095062
BPL18448620E-03.411525E-02109014BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL17	279287E-03	.391699E-02	071302
BPL19291551E-03.393442E-02074103BPL20300455E-03.397767E-02075535BPL21282059E-03.394300E-02071534BPL22501758E-03.418580E-02119871	BPL18	448620E-03	.411525E-02	109014
BPL20 300455E-03 .397767E-02 075535 BPL21 282059E-03 .394300E-02 071534 BPL22 501758E-03 .418580E-02 119871	BPL19	291551E-03	.393442E-02	074103
BPL21 282059E-03 .394300E-02 071534 BPL22 501758E-03 .418580E-02 119871	BPL20	300455E-03	.397767E-02	075535
BPL22501758E-03 .418580E-02119871	BPL21	282059E-03	.394300E-02	071534
	BPL22	501758E-03	.418580E-02	119871

@SSR

1 2 22.36461 3.79250

@LOGL = 798.70799 DELTA = 0.060000

(value added, with IV's, no Regional Dummies) NUMBER OF OBSERVATIONS = 598

.

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	-33,4004	13.4185	-2.48912
PORTS	389704	.052811	7.37919
z2	085628	. 302521	283049
z3	011614	. 308851	037605
 Z4	. 327414	. 297843	1.09928
z.5	. 416246	. 298255	1.39560
Z6	.284783	. 297529	.957159
z7	383161	.300965	1.27311
Z 8	.043497	.309571	.140508
Z9	.192609	.311282	.618761
z10	.055399	.301373	.183821
X1	-4.28150	.318891	-13.4262
X2	-4.44021	. 320766	-13.8425
X3	-5.80600	27.3718	212116
X4	-5.78637	27.6187	209509
X5	-5.88747	27.6107	213231
X6	-5.72464	27 5949	- 207453
¥7	-3 96774	369222	-10 7462
YR	-3 7344R	363276	-10 2800
XQ	-3 70590	321785	-11 5167
x10	-3 62370	320610	-11 3025
X11	-3 56983	315311	-11 3216
x12	-3 69708	316237	-11 6909
x13	-3.66994	. 317067	-11.5747
BPL1	.125375	.013246	9.46497
BPL2	.055038	.013638	4.03559
BPL3	.128170E-03	.012532	.010227
BPL4	.813418E-04	.802298E-02	.010139
BPL5	.246099E-04	.242981E-02	.010128
BPL6	.374476E-04	. 369324E-02	.010139
BPL7	.057384	.037147	1.54477
BPL8	.112575	.066720	1.68729
BPL9	.107802	.028499	3.78261
BPL10	.125780	.027092	4.64263
BPL11	.124700	.014673	8.49865
BPL12	.064868	.947309E-02	6.84759
BPL13	.074938	.011566	6.47935
BPL14	498116E-05	.498953E-03	-,998323E-02
BPL15	837274E-05	.831752E-03	010066
BPL16	604460E-05	.603047E-03	010023
BPL17	313493E-05	.320362E-03	978558E-02
BPL18	774113E-05	.769366E-03	010062
BPL19	431722E-05	.434741E-03	- 993056E-02
BPL20	663467E-05	.660865E-03	010039
BPL21	138670E-04	.137185E-02	010108
BPL22	583887E-05	.583543E-03	010006

Instrumental Variable Equation

BIN1	.124735E-05	.234657E-0	06 5.31562	
BIN2	684529E-02	.116072E-0	02 -5.8974	3
BIN3	.324694E-02	.354263E-0	9,16534	
BIN4	105424E.04	.354461E-(-2.97420)
BINS	018886	.538620E-0	2 -3.50631	
BIN6	019041	.533295E-0	-3.57039	
BIN7	014269	.556383E-0	-2.56463	
BINS	013648	.562440E-0	2 -2.42660	,)
BIN9	721250E-02	.554565E-0	1.30057	
BIN10	010492	.555196E-C	2 -1.88971	
BIN11	~020235	.544842E-0	2 -3.71384	
BIN12	020259	.540215E-0	2 -3.75019	
BIN13	020165	.535782E-0	2 -3.76365	
BIN14	020468	.534268E-0	2 -3.83100	1
BIN15	020553	.538678E-0	2 -3.81552	
BIN16	020768	.542715E-C	2 -3.82675	
BIN17	021132	.549047E-0	2 -3.84888	
	1		2	3
ØSSR	51.9	5114	3.78606	0.033678

,

r

@LOGL - 2717.38030 DELTA - 0.030000

(value added, with IV's, with regional dummies) NUMBER OF OBSERVATIONS = 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHT	- 30 . 7597	11,1182	-2.76661
PORTS	383088	.044957	8 52113
72	088440	335452	263644
73	- 012383	343512	- 036048
74	328298	334559	981285
24 75	446467	347696	1 28433
76	285490	33/885	852501
20	390760	334113	1 16250
27	0/ 6030	349440	126610
20	102100	330302	.134417
23	.192109	3333372	1/5501
210	.036346	, 3402,94	.10001
XI	-4.29362	.340187	-12.0214
X2	-4.44935	.345129	-12.8919
X3	-5.86326	23.3949	250621
X4	-5.96285	23.4660	- 254105
X5	-6.04382	23.4489	257744
X6	-5.87962	23.4338	250903
X7	-3.97408	.401569	-9.89637
X8	-3.74302	, 382662	-9.78154
X9	-3.71456	. 347730	-10.6823
X10	-3.63191	.347059	-10.4648
X11	-3.57792	. 342344	-10.4513
X12	-3.70427	.344461	-10.7538
X13	·3.67614	.343720	-10.6951
BPL1	.125384	.013698	9.15332
BPL2	.055082	.014412	3.82189
BPL3	.149746E-03	.012504	.011976
BPL4	.556646E-04	.466253E-02	.011939
BPL5	.254578E-04	.213232E-02	.011939
BPL6	.330701E-04	276774E-02	.011948
BPL7	.057545	.040303	1.42780
RPL8	112589	.067771	1.66131
RPI.9	107802	029124	3.70154
RPI 10	125792	027611	4 55592
BDT 11	19/479	017570	7 09608
Bruil BDT 12	.124073	011776	5 50468
DFLL2 PDT17	034024	010856	6 90168
DPLI3	.U/4720 /0/3308 AF	.UIU0J0	- 011804
BPL14	4263326-03	.3611146-03	•.011000
BPL15	892/53E-05	./502/52-03	011099
BPL16	559083E-05	.4/1813E-03	011650
BPL17	196379E-05	,1/1/85E-03	+.011432
BPL18	748722E-05	.629893E-03	01188/
BPL19	358302E-05	.305062E-03	011/45
BPL20	592044E-05	499157E-03	011861
BPL21	398945E-05	.338235E-03	011795
BPL22	-,636464E-05	.536823E-03	011856

Instrumental Variable Equation

BIN1	.591437E-04	.979830E-05	6.03612
BIN2	073443	.026564	-2.76470
BIN3	.046126	.014340	3.21668
BIN4	.553052E-04	.884803E-04	.625056
BIN5	-1.72526	.251799	-6.85173
BIN6	-1.72463	.250897	-6.87385
BIN7	-1.64180	.250886	-6.54399
BIN8	-1.61989	.250482	-6.46707
BIN9	-1.52079	.249317	-6.09980
BIN10	-1.56958	.249444	-6.29232
BIN11	~-1.72684	.254267	-6.79145
BIN12	-1.72748	.253614	-6.81145
BIN13	-1.72722	.251906	-6.85661
BIN14	-1.72783	.251964	·6.85744
BIN15	-1.72863	.252733	-6.83975
BIN16	-1.73376	.254408	-6.81488
BIN17	-1.73174	. 252042	-6.87084
BIN18	.972389	.198238	4.90515
BIN19	.923518	.210551	4.38619
BIN20	.899862	.213192	4.22090
BIN21	1.15131	.221671	5.19376
BIN22	.832651	.223450	3.72635
BIN23	.979981	. 227237	4.31259
BIN24	.864774	. 224078	3.85926
BIN25	.793807	. 235664	3.36839
BIN26	.810222	. 230375	3.51696

	1	2	3
@SSR	37.55479	3,78603	11.64644

@LOGL - 1040.13569 DELTA - 0.030000

(densities, no IV's, with regional dummies) NUMBER OF OBSERVATIONS - 598

.

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	015284	175482E-02	-8.70991
PORTS	.366980	.031057	11.8162
z2	- 354812	133622	-2.65534
z3	- 619017	148725	-4.16217
Z4	210880	.148052	-1.42436
Z.5	- 221311	.155590	-1.42240
Z.6	339298	,154584	-2.19491
27	-,253552	.156654	-1.61855
Z.8	609460	.161163	-3.78163
z9	481826	.154617	-3.11626
z10	550922	.143749	-3.83253
X1	-4.54926	.167798	-27,1116
X2	-4.71502	.176511	-26.7124
X3	-5.39218	.758519	-7.10882
X4	-5.35480	.942585	-5.68097
X5	-5.51346	. 989367	-5.57271
X6	~5.32826	1.01695	-5.23944
X7	-4.26935	.242377	-17.6145
X8	-4.03993	.238101	-16.9673
X9	-4.00833	.180440	-22.2142
X10	-3.93386	.176566	-22.2798
X11	-3.87939	.167578	-23.1497
X12	-4.00295	.165891	-24.1300
X13	-3.98271	.167970	-23.7109
BPL1	.125513	.012187	10.2986
BPL2	.055588	.012987	4.28021
BPL3	.351068E-02	.945335E-02	.371369
BPL4	.288730E-02	.966478E-02	.298745
BPL5	.105397E-02	.404565E-02	.260518
BPL6	.145757E-02	.546609E-02	.266658
BPL7	.057545	.035866	1.60441
BPL8	.112627	.066847	1.68484
BPL9	.107887	.028365	3.80352
BPL10	.125823	.026253	4.79263
BPL11	.124744	.014423	8.64874
BPL12	.064773	.873039E-02	7.41922
BPL13	.074774	.010727	6.97090
BPL14	.353902E-04	.173389E-02	.020411
BPL15	262938E-03	.194797E-02	134981
BPL16	- 124951E-03	.177190E-02	070518
BPL17	.464199E-05	.171236E-02	.271087E-02
BPL18	166426E-03	.180722E-02	•.092090
BPL19	3292872-05	.172964E-02	190378E-02
BPLZO	.452554E-05	.188107E-02	.2405838-02
BPLZ1	544736E-05	.178618E-02	-,304973E-02
BPL22	210135E-03	.186414E-U2	-,112/25
	٦	2	
ASSA	21 1	<u>د</u> ۹۲۶۵ ع	79347
6324	61.1		

@LOGL = 814.83726 DELTA = 0.45000

(densities, with IV's, with regional dummies) NUMBER OF OBSERVATIONS = 598

		Standard	
Parameter	Estimate	Error	t-statistic
PHI	490420	.913730	536723
PORTS	.391767	. 054759	7.15434
Z2	146759	. 360662	406914
Z3	239045	.412487	579521
Z4	,155062	. 397757	.389842
25	, 316741	.348565	.908698
Z6	,122644	. 398698	.307612
27	,243257	.363360	.669465
28	189862	.380395	499119
29	040995	.418138	098042
Z10	149534	.304110	491710
X1	-4.09645	, 590895	-6.93262
X2	-4.25048	.586675	-7.24504
X3	-5.74843	37.7723	152186
X4	-5.97758	38.3872	155718
X5	-6.00979	38.3774	156597
X6	-5.84026	38.3611	152244
X7	-3.77559	.580456	-6.50452
X8	-3.54650	.560365	-6.32892
X9	-3.52132	.534815	-6.58419
x10	-3.43930	.518859	-6.62859
x11	-3.39124	.500242	-6.77921
X12	-3.52557	.484904	-7.27066
x13	-3.50076	.465924	-7.51358
BPL1	.125371	.013803	9.08267
BPL2	055063	.014048	3.91967
BPL3	.910529E-04	.012273	.741897E-02
BPL4	.164411E-04	.225264E-02	.729860E-02
BPLS	.686989E-05	.941170E-03	.729931E-02
BPL6	102946E-04	.140965E-02	.730296E-02
BPL7	.057574	.039609	1,45357
BPLS	.112592	.067353	1.67168
BPL9	.107800	.028750	3.74957
BPL10	.125795	.028376	4.43315
BPL11	124676	.019937	6.25352
BPL12	064834	.011569	5.60406
BPL13	.074927	.011192	6.69495
BPL14	152322E-06	.229387E-04	664038E-02
BPL15	821201E-06	113439E-03	723912E-02
BPL16	124508E-06	.188370E-04	.660975E-02
BPL17	144456E-05	.197479E-03	731499E-02
BPL18	655681E-06	906192E-04	723556E-02
BPL19	.274883E-06	381284E-04	.720941E-02
BPL20	419860E-06	.587153E-04	715078E-02
BPL21	103778E-05	.142697E-03	727261E-02
BPL22	-,582611E-07	.124886E-04	-,466515E-02

.

-

Instrumental Variable Equation

@SSR	1 52.	07647	2 3.78594	3 8,98681
BIN26	099505	.200446	-,496418	
BIN25	377194	.208073	-1.81279	
BIN24	281678	.199289	-1.41341	
BIN23	240600	.201282	-1,19534	
BIN22	344637	.196669	-1.75237	
BIN21	091618	.194252	471645	
BIN20	323006	.193601	-1.66841	
BIN19	275376	.194692	-1.41442	
BIN18	193829	.178693	-1.08 470	
BIN17	.104913	,236747	.443146	
BIN16	.135084	. 235929	.572561	
BIN15	,154902	.234232	.661319	
BIN14	.174109	. 233198	.746616	
BIN13	.191698	.233768	.820036	
BIN12	.194414	234418	. 829348	
BINIO	. 209303	235021	.890572	
D107	380006	231246	1.64329	
BING	.333373	231608	1.78945	
BIN/	,323407	231108	1.45203	
BING	.270104	231192	1.40752	
BINS	.2/8944	232373	1 16346	
BIN4	.131/305-03	21207302004	1 19732	
BINS	.2333716-02	7567908-04	2 00491	
BINZ	,49/9235-03	.022413	194409	
BINI	-,9/30098-00	.7324005-03	022207	
T T 111	0735008-06	9524868-05	• 102207	

@LOGL - 1033.47250 DELTA - 0.00100000

.