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1 Introduction

Many governments are currently engaged in a policy debate about savings.
This paper contributes to this discussion by developing and calibrating a
model which explores the role that self-control problems play in eliciting
suboptimal savings levels.

Self-control is an important source of undersaving. Individuals report
overwhelmingly that they save much less than they feel they should given the
private incentives they face (Bernheim, 1994). This kind of undersaving can
not be explained by capital taxation models (Chamley, 1986) or moral hazard
models (Hubbard et al, 1995) since these models assume that individuals
save optimally conditional on the private incentives they face. For example, a
classical economic actor in an economy with inefficiently high capital taxation
rates might reason, “If the government lowered the tax rate on capital [ would
accumulate more capital and I would be better off. But, given the inefficient
tax environment that I face, my capital accumulation plans are optimal.” By
contrast the sophisticated saver in my model would report, “Regardless of
which tax regime the goverment adopts, I expect to experience a large gap
between my actual saving level and my normative saving level.” Analysis
of this self-control problem provides a quantitative framework in which to
discuss both the normative and positive aspects of savings policy.

The centerpiece of my analysis is the hyperbolic discount function. Re-
search on animal and human behavior has led psychologists to conclude (sec
Ainslie (1992) and Loewenstein and Prelec (1992)) that discount functions

are generalized hyperbolas: events 7 periods away are discounted with factor



(1 4+ a7)™/*, with a,5 > 0. Such discount. functions imply a monotoni-
cally falling discount rate. This discount structure sets up a conflict between
today’s preferences and the preferences which will be held in the future,
implying that preferences are dynamically inconsistent. For example, from
today’s perspective, the discount rate between two far off periods, ¢t and ¢+1,
is a long-term low discount rate. However, from the time # perspective, the
discount rate between ¢ and ¢ 4+ 1 is a short-term high discount rate. This
type of preference “change” is reflected in many common experiences. For
example, today I may desire to quit smoking next year, but when next year
actually roles around my taste at that time will be to postpone any sacrifices
another year.

Hyperbolic discount functions generate a preference structure which is a
special case of the general class of dynamically inconsistent preferences: i.e.,
preferences which imply a conflict between the optimal contingent plan from
today’s perspective and the optimal decision from tomorrow’s perspective.
Robert Strotz (1956) was the first economist to study dynamically inconsis-
tent preferences. Pollak (1968), Peleg and Yaari (1973), Goldman (1980),
and Schelling (1988) have extended Strotz’s work, arguing that when pref-
erences are dynamically inconsistent, dynamic decisions should be modelled
as an intre-personal game among different temporal selves (i.e., today’s self
is modelled as a different player from tomorrow’s self).

Despite the availability of this analytic framework, and the substantial
body of evidence supporting hyperbolic discounting, few economists have

studied the implications of hyperbolic discount functions.? Phelps and Pol-

2Some economists have explained self-control problems using multiple-self models which



lak (1968) analyze an inter-generational game in which each generation has
a discount function which I will argue below proves to be approximately
hyperbolic. Zeckhauser and Fels (1968) provide an altrusim-based micro-
foundation for the Phelps and Pollak preferences. Akerlof (1991) analyzes
the behavior of decision-makers who place a special premium on effort made
in the current period. Such a premium can be interpreted as a reflection
of hyperbolic discounting although Alkerlof interprets these preferences as
a salience effect. Akerlof’s analysis is inconsistent with the intra-personal
game approach as his decision-makers act myopically; they fail to foresee
the preference “changes” described above. Loewenstein and Prelec (1992)
also analyze the choices of myopic decision-makers with hyperbolic discount
functions. Finally, George Ainslie, a psychiatrist, has studied the behavior of
sophisticated hyperbolic decision-makers (Ainslie (1992)), although his work
is primarily qualitative. My past work (Laibson 1995) and the analysis be-
low formalizes, quantifies, and extends Ainslie’s analysis. This paper focusses
on the relationship between hyperbolic discount functions, undersaving, and
savings policy.

The paper is divided into six sections, including this introduction. Sec-
tion two lays out the formal model, describing the specific intra-personal
game of interest. Section two presents an approximately hyperbolic discount
function which includes the standard exponential discount structure as a
special case. Section three characterizes the equilibrium path, discusses ob-

servational equivalence with an exponential economy, analyzes the relation-

are not based on hyperbolic discounting --- e.g., Thaler and Shefrin (1981), and Schelling
(1984).



ship between risk aversion and intertemporal substitution, and calibrates the
model for consistency with Bernheim’s (1994) undersaving results. Section
four presents a menu of policies which address the undersaving problem. Sec-
tion five analyzes the welfare benefits of implementing these policies. Section

six concludes.

2 An individual’s consumption problem.

I model an individual as a composite of autonomous temporal selves, follow-
ing Strotz (1956), Pollak (1968), Peleg and Yaari (1972), Goldman (1980),
and Schelling (1984). These selves are indexed by their respective periods of
control, (t = 0,1,2,...,T), over a consumption decision. During its period
of control, self ¢ observes all past consumption levels (g, ¢1, o, ..., ¢;_1), and
the current level of human and financial wealth W;. (The wealth measure,
W,, represents the sum of current financial wealth and the present value of
the stream of labor income.) Self ¢ chooses a consumption level for period #,

which satisfies the restriction,
0< e <W, (1)
Self £+1 then “inherits” wealth equal to,
Wi =R (W - c) (2)

where R is the gross real return on wealth, which is assumed to be fixed.?

The game continues, with self 41 in control. Finally, note that in this game

3An earlier version of this paper allowed R to be chosen endogenously. The results
proved to be qualitatively and quantitatively little different from the results that arise
with a fixed R.



the commitment solution discussed by Strotz (1956) is implicitly ruled out;
i.e., the current self can not commit future selves to a particular consump-
tion path. From the perspective of the time zero self, commitment would
be optimal. However, commitment may not be possible. The capacity to
commit depends on the contracting environment. If contracts are written at
period zero and there exist no opportunities to write new contracts (or spot
markets on which to trade contractual obligations), then commitment is pos-
sible. By contrast, if contracts can be renegotiated or traded in spot markets
commitment will not be possible. Commitments I make today will be rene-
gotiated by future selves who wish to undo those commitments. Moreover,
commitments can be unwound using third parties. For example, if I give all
my assets to bank A and instruct it to make payments to me on an annu-
ity basis, my future selves can use that stream of payments as collateral to
borrow from bank B, thereby undoing my initial commitment. With consid-
erations like this in mind, commitment is effectively impossible, motivating
the absence of commitment in the model.

Now it only remains to specify the payoffs of the “players” of this game.

Player t receives payoff

T—t

U(co, €1,y - - er) = Ey |u(ey) + Z S u(cpys) (3)

i=1
where 6 and /3 are discount parameters, and u(c) is a member of the class of
CRRA utility functions (with relative risk aversion coefficient p € (0, 0c)):
=P -1

I-p

There are two reasons to focus on the preferences in equation 3. The first

u(c) =

motivation is that if u is in the CRRA class and 3 = 1, the model reduces to

6



the familiar case of exponential discounting with time-additive homothetic
preferences. Hence the 3 # 1 case may be thought of as a perturbation to
the “standard” preferences used in macroeconomic models. If we care about
robustness we probably want to know what happens when such perturbed
preferences are considered.

The second motivation is more important. There is a large body of evi-
dence that discount functions are closely approximated by generalized hyper-
bolas: events 7 periods away are discounted with factor (1 + a7)~?/*, with
o,y > 0.* This observation was first made by Chung and Herrnstein (1961)

5 Their conclusions were later

in relation to animal behavior experiments.
shown to apply to human subjects as well (see Ainslie (1992) for a survey).

Hyperbolic discount functions imply discount rates that decline as the
discounted event is moved further away in time (Loewenstein and Prelec,
1992). Events in the near future are discounted at a higher implicit discount
rate then events in the distant future.

Given a discount function, f(7), the instantaneous discount rate at time

7 is defined as,
—f'(r)
flr)

Hence, an exponential discount function, 47 is characterized by a constant

discount rate, log(), while the generalized hyperbolic discount function is

4See Loewenstein and Prelec (1992) for an axiomatic derivation of this discount
function.

5Chung and Herrnstein claimed that the appropriate discount function is an exact
hyperbola: events 7 periods away are discounted with factor % This corresponds to the
limiting case o = v — o0.



characterized by an instantaneous discount rate that falls as 7 rises:

Y
1+ ar

Psychologists and economists -— notably Ainslie (1975, 1986, 1992), Prelec
(1989), and Loewenstein and Prelec (1992) - believe that such declining dis-
count rates play an important role in generating problems of sclf-regulation.

When 0 < # < 1 the discount structure in Equation 3 mimics the
qualitative property of the hyperbolic discount function, while maintaining
most of the analytical tractibility of the exponential discount function. I
call the discount structure in Equation 3 “quasi-hyperbolic.” Note that the
quasi-hyperbolic discount function is a discrete time function with values
{1, 86, 36%, 36*, .. .}. Figure 1 graphs the exponential discount function (as-
suming & = .97,), the generalized hyperbolic discount function (assuming
a = 10% and v = 5-10%), and the quasi-hyperbolic discount function (with
3 = .6 and § = .99). The points of the discrete-time quasi-hyperbolic func-
tion have been connected to generate the smooth curve in Figure 1.

The preferences in Equation 3 were first analyzed by Phelps and Pollak
(1968). However, their choice of this structure was motivated in a different
way. Their game is one of imperfect intergenerational altruism, so the players
are non-overlapping generations of a dynasty. I assume that the different
players are temporally distinct selves of a single person. My set-up also
differs because I assume the horizon is finite. Phelps and Pollak assume an

infinite horizon which admits a continuum of equilibria (Laibson (1994)).
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3 An Euler Equation, Intertemporal Substi-
tution, and Undersaving

3.1 Equilibrium

In this subsection, [ show that there is a unique subgame perfect equilibrium
in the finite-horizon game. I characterize that equilibrium and consider its

limiting properties as the horizon goes to infinity.

Proposition 1: FOR ANY FINITE-HORIZON GAME, THERE EX-
ISTS A UNIQUE SUBGAME-PERFECT EQUILIBRIUM. THIS EQUI-
LIBRIUM IS MARKOV PERFECT AND IS CHARACTERIZED BY
TIME-DEPENDENT CONSUMPTION RULES WHICH ARE LINEAR
IN WEALTH.®

Proposition 1 is proven by applying a backwards induction argument.
(All proofs are consigned to the appendix.) Since the unique subgame perfect
equilibrium is a sequence of Markov strategies, we can write the equilibrium
strategy of self ¢ in a T-horizon game as, ¢;(W,, T). Proposition 1 also implies
that ¢,(W,,T) is differentiable. Using these basic results, it is possible to
derive a generalized Euler equation which applies in the hyperbolic economy.
The following development is heuristic. Formal propositions follow.

The marginal benefit of postponing A = 0 units of consumption generates

a stream of utility perturbations from the perspective of self t. At time £,

A ()

6Markov perfect equilibria have the property that equilibrium strategies depend only on
payoff-relevant state variables. See Fudenberg and Tirole, chpt. 13, for a formal definition.



utils are lost. At time ¢ + 1

6(’r+1

,@(5 aWt+1 "R-A- ((’.H_[)

. - dcpr; - - - .
utils are gained. Note that (9(7":“:—_ is the marginal consumption rate at period
2

t+ j. At time t+2,

0cCty2 dcipy
=== 1- "] -R*A-
B W W,y wl(errs)
utils are gained, etc .... The net effect sums to,

RIAY (¢p4). (4)

act—{—z il aCH_ i
_A 6’ 1- g
o (e) + f z o [H ( o

j=1

Setting this expression equal to zero and dividing by A yields an Euler equa-

Octi ( de t+5 )
5 1—
=7 Z W, [H W,

j=1

tion.

Riul(ct+i)- (5)

Consider the analogous Euler equation for period ¢ + 1 :

T—(t+1)

, ) a i i—1 a )
u'(cp1) = Z (51—ct+l+ [H (l _ G )
j=1

Riv'(¢ppo144)- 6
o Wiy W14 (Ctr144) (6)

Substitution of Equation 6 into Equation 5 yields the generalized Euler equa-

tion in Proposition 2.

Proposition 2: CONSIDER A T-HORIZON GAME. THE FOL-
LOWING EULER EQUATION HOLDS ON THE UNIQUE EQUILIB-
RIUM PATH.

’ _ ’ Jcita (WH—I-: T) iy (I’Vt+1 ) T)
u'(e)) = Réu'(c41) | W + (1 W, (7)

10



This equation reduces to the standard Euler Equation when 4 = 1. When
3 < 1 the RHS of Equation 7 is greater than 6 Ru'(c,y,), as the bracketed
term on the RHS of Equation 7 is a weighted average of 3 < 1 and 1. Hence
the “standard” Euler equation intuition —-- on the equilibrium consumption
path marginal utility today is equal to the gross interest rate multiplied by
discounted marginal utility tomorrow — does not apply when preferences
are dynamically inconsistent. The breakdown of the intuition behind the
“standard” Euler equation occurs because on the equilibrium path self ¢ gets
more marginal utility from incremental consumption in the distant future
than from incremental consumption in the near future. This arises because
the “overconsumption” of self £+ 1 -— from the perspective of self ¢ - lowers

marginal utility at time ¢ + 1 relative to marginal utility in future periods.

Proposition 3: THE EQUILIBRIUM CONSUMPTION RULE IS:
(W, T) = Ar_W,, WHERE THE SEQUENCE {\;}2, IS GIVEN
BY THE RECURSION,

A
[BRI-P(A(8 — 1)+ 1)]7 + A,

, (8)

/\i+1 =

WITH A = 1.

Proposition 4: As T — oo, ¢;(W,T) CONVERGES POINTWISE
TO THE FUNCTION A*W, WHERE A* IS THE UNIQUE SOLUTION
TO THE NON-LINEAR EQUATION:

X =1—(6R"")s M(B—1)+1]7 . 9)

11



Note that A* is also an equilibrium consumption rate in the infinite-
horizon game (Phelps and Pollak (1968)). However, it is not the unique
equilibrium consumption rate in that game (Laibson (1994)).

Proposition 3 implies %%ﬁv%li’ﬂ = Ar—(1+1). Combining this observa-

tion with Proposition 2 implies that the generalized Euler Equation can be

expressed as:

u(er) = RO (cor) [Mr—eny(B = 1) + 1] (10)

Proposition 4 implies that as the horizon gets arbitrarily large (T — o0),

this generalized Euler Equation converges to
u'(¢;) = Réu'(cryr) [N (B — 1) +1]. (11)

3.2 An Observational Equivalence Result

Equation 11 is closely related to the standard Euler equation in exponential
discounting models. Consider an economy populated by consumers with

exponential discount factor §. The Euler equation in this economy is:
u'(c) = RoW (ciy1).

Consider the inference problem of a misinformed econometrician. The
econometrician lives in the hyperbolic world analyzed above. But the ccono-
metrician believes that she is living in the exponential world introduced in

this subsection. The econometrician uses the data available to her to infer 8.

12



She calculates

- u'(ey) 1 (Ct+1>”
§= 12
RU,(CH_l) R Cy ( )

The econometrician will not realize that she is estimating the wrong model,
since the hyperbolic world induces a constant value for ﬁ‘,’((-(%’il—) For exam-
ple, if p = 3, 3 = 6,5 = .99, and R = exp{r} = exp{.04}, (and the
econometrician independently observes the true p and R values), then our
econometrician will estimate
w'(ct)

b= ————
RU’(CH_l)

— SN\ (F—1)+1] = .977

The second equality in the previous equation follows from Equation 11. The
estimated discount factor, § = .977, sharply contrasts with the actual one-
period discount factor of 36 = (.6) - (.99) = .59. The econometrician will
radically misconstrue the preferences of the actors that she is observing.
With the exception of my choice of § -— which is explained in subsection
3.3 — I chose the parameter values listed above on a priori grounds. The
coefficient of relative risk aversion, p is usually estimated to lie between 1
and 5, so I fixed p = 3. Survey respondents are approximately indifferent
between reward dates in the distant future, so I fixed § = .99 (see Barskey et
al 1995). In a Cobb-Douglas economy with capital share .36, capital-income
ratio 3, and depreciation rate .08, the competitive equilibrium interest rate
is log B = .04. These parameter values will be used to generate examples

throughout the paper. I refer to this as the benchmark calibration.

13



| Benchmark Calibration

B3 || discount parameter .6
4 || discount paramteter .99
p || coeflicient of relative risk aversion 3
R || gross interest rate exp{.04}

For readers interested in exploring the implications of choosing other cali-
bration combinations, I have included a series of tables in an appendix. Table
1 presents values of § associated with a range of calibration choices. For all of
these calculations, I assume that the econometrician can independently con-
firm the true value of R and p. The technology variable R is set to exp{.04}.
Calibration values for the preference parameters 3 and ¢ are listed in the
margins of the table. The table has three panels, corresponding to p values
one, three, and five.

The results of this subsection imply that the hyperbolic world with dis-
count parameters § = .6 and § = .99 is “observationally equivalent” to
the exponential world with discount factor § = .977. In this context obser-
vational equivalence means that an econometrician with consumption path
data could not determine whether the hyperbolic or exponential economy
generated that data. The rest of the paper explores some special properties

of the two economies that would enable an economist to tell them apart.

3.3 Risk aversion and intertemporal substitution.

So far I have assumed that the economy under study exhibits no variability
in interest rates, either across time or across agents. Let’s jettison the latter

half of this assumption. We can then estimate the elasticity of intertemporal

14



substitution (EIS) by measuring how the slope of the consumption path varies
as the interest rate r varies. Note that all of this variation is across agents.
Assume, for example, that we have a cross-section of countries with different
capital taxation policies and hence different after-tax rates of return.”

In the standard exponential economy described above, the elasticity of
intertemporal substitution is the inverse of the coefficient of relative risk
aversion. Specifically,

o
EIS = w = 1 (13)
or p
This well-known theoretical relationship is contradicted weakly by the avail-
able empirical evidence (see Hall (1988) and Carroll and Summers (1991)).
Most empirical analysis suggests that the EIS is smaller than the inverse of
the coefficient of relative risk aversion.® The hyperbolic economy is consis-

tent with this empirical regularity. Using Equation 11 to derive the EIS in
the hyperbolic model yields:

dlog (1) 1 1 1 aN*
= ;[ ] (8-1) (14

P MB-1)+1]| or
Note that when 8 = 1 the EIS is equal to é which is the standard casc
described above. However, when 3 < 1 the one-to-one link between the

elasticity of substitution and p is broken.

"The results of this subsection would need to be modified if we identified the EIS off of
intertemporal variation in the interest rate, particularly if that variation were characterized
by high frequency transitory shifts in the level of the interest rate. By contrast, the results
of this subsection would continue to hold if we identified the EIS off of intertemporal
variation characterized by relatively persistent changes in the level of the interest rate.

8This claim is somewhat controversial. If the coefficient of relative risk aversion is
greater than 10, then the data is consistent with the relationship EIS = ,1—) However,

simple thought experiments suggest that risk aversion of that magnitude is problematic
(Mankiw and Zeldes, 1991).
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The first step in evaluating the EIS is to calculate % by totally differ-

entiating Equation 9. Substituting this into Equation 14 yields,

Olos (741) _ 1 1[ U (8- 1). (15)

or  p p-(B-DA-I)—p(A(F-1)+1)
Note that the numerator and the denominator of the bracketed term are

negative if p > 1.

Proposition 5: IN THE HYPERBOLIC MODEL,

EIS < IF p>1.
Proposition 6 provides a limiting result on the EIS.
Proposition 6: IF p > 1, limgz_, EIS = 0.

Hence, if p > 1, EIS can be made arbitrarily close to zero by choosing a low 3
value. By contrast, in the standard exponential model the EIS is insensitive
to changes in the value of the discount function.

Finally, consider the benchmark calibration values introduced in the pre-
vious subsection: p =3, 3 = .6, = .99, and R = exp{r} = exp{.04}. Given
these parameters, EIS = .23 < % = lp. Table 2 (in Appendix) considers a
range of calibration values. Note that Table 2 has two panels, corresponding
to p values three, and five. Other tables in this paper also include a panel
for p = 1. This panel is excluded from Table 2 as p = 1 implies EIS = 1 (see

Equation 15).

16



3.4 Target Savings Rate

Phelps and Pollak (1968) analyze an economy with identical preferences (al-
though the actors in their economy are generations of a dynasty rather than
intra-personal selves). They find that the equilibrium savings rate is Pareto-
dominated by savings rates that are marginally higher. Specifically, all dy-
nastic generations would be made better off if they would all perturb their
savings rates up. Equivalently, a multi-self interpretation of these preferences
would imply that all selves would be made better off if they would all perturb
their savings rates up.

I extend Phelps and Pollak’s analysis by asking how big these upward
perturbations should be. To do this I consider two normative savings rates for
the hyperbolic economy and contrast these savings rates with the equilibrium
savings rate.

For large T, the equilibrium savings rate in the hyperbolic economy is

R-1)— MR

P |
=T Ro

(16)

Note that income in period ¢ is (R — 1) - W,_;, and consumption in period ¢
is A*- R-W;_,. In this subsection, I compare the savings rate in Equation 16

to two normative definitions of target savings.

Definition I: NORMATIVE SAVINGS RATE | IS THE LIFETIME
SAVINGS RATE TO WHICH SELF 0 WOULD COMMIT ITSELF AND
ALL FUTURE SELVES.

Note that choosing a lifetime savings rate is isomorphic to choosing a

lifetime consumption rate A. Equation 16 implies a one-to-one relationship

17



between savings rates and consumption rates. Let

M = argmax, u(AW) + ﬂi Su(AM1 — N)'R'W), (17)

=1

This implies that A’ solves the following first order condition:

SR!=P(1 — \)l=* B SR'7(1— \)r
LB TR - | 1o [T smea -y =0 18
By definition, normative savings rate I is given by:
; _(R=1)=- )R
S R-1 (19)

Proposition 7: NORMATIVE SAVINGS RATE I (S7) IS GREATER
THAN THE EQUILIBRIUM SAVINGS RATE (S*). THE CONSUMP-
TION PATH IMPLIED BY NORMATIVE SAVINGS RATE I PARETO-
DOMINATES THE EQUILIBRIUM CONSUMPTION PATH.

Proposition 7 is formally proved in the Appendix. However, Proposition 7 is
easy to understand at an intuitive level. The claim, S! > S*, follows from the
fact that hyperbolic discount functions imply that self ¢ is more patient about
tradeoffs between any two future periods t + 7 and £+ 7+ 1 then is self ¢ + 7.
Hence, self t wants to increase self t+7’s savings rate relative to what self {47
would have saved in the no-commitment equilibrium. The Pareto-dominance
result follows from three observations. First, if self ¢ gets to pick a stationary
consumption rate for itself and all future selves, than that consumption rate
must make it at least as well off as the constant consumption rate, A*, which
arises in the unique subgame-perfect equilibrium. Second, future sclves prefer

the stationary consumption rate A’ chosen by self ¢ for the same reason that

18



self t preferred it. The future selves benefit additionally because they inherit
more wealth on the path associated with A’ since A/ < \*.

Below, I consider a second normative savings rate, which turns out to be
close in value to normative savings rate I. Normative savings rate II is more
analytically tractable than normative savings rate I and will be used in the

policy analysis contained in section 4 of the paper.

Definition II: NORMATIVE SAVINGS RATE Il IS THE SAVINGS
RATE TO WHICH SELF 0 WOULD COMMIT ALL FUTURE SELVES.

Let
M = argmax, Y Su(A(1 — )7 RW). (20)

=1
It is straightforward to show that A\// =1 — (JR“”)%. By definition, norma-

tive savings rate II is given by:

(R—1)— MR

nm—
5T = R—-1

(21)

Proposition 8: NORMATIVE SAVINGS RATE II (S'/) Is GREATER
THAN NORMATIVE SAVINGS RATE I (S7). IF g IS SUFFICIENTLY
CLOSE TO ONE, THE CONSUMPTION PATH IMPLIED BY NOR-
MATIVE SAVINGS RATE Il PARETO-DOMINATES THE EQUILIB-
RIUM CONSUMPTION PATH. IF (§ IS SUFFICIENTLY CLOSE TO
ZERO, THE CONSUMPTION PATH IMPLIED BY NORMATIVE SAV-
INGS RATE II DOES NOT PARETO-DOMINATE THE EQUILIBRIUM
CONSUMPTION PATH.

The benchmark calibration values imply S* = .133, S’ = .241, and

S = 246. Hence, the gaps between the normative savings rates and the

19



actual savings rate are S’ — S* = .108 and S" — S* = .113. Proposi-
tion 7 implies that the consumption path associated with normative savings
rate I Pareto-dominates the equilibrium consumption path. Moreover, it
is easy to quantitatively confirm that for the benchmark calibration values
the consumption path associated with normative savings rate II also Pareto-
dominates the equilibrium consumption path. This is not surprising given
the similar values that S’ and S"' take for the benchmark calibration.
Bernheim (1994) finds that the median gap between U.S. baby boomers’
self-reported “target” savings rate and their “actual” savings rate is ten per-
centage points.® This reported savings gap matches approximately the sav-
ings gap predicted to arise in the calibrated hyperbolic economy. The match
resulted from the following procedure. First, I used @ priori arguments to
fix § = .99, p = 3, and R = exp{.04}. Then I chose 3 = .6 to generate the
desired ten percentage point (.10) difference between Sk and the two norma-
tive savings rates. Finally, note that 3 = .6 is consistent with experimental
evidence on one-year discount rates (see Ainslie (1992)). Table 3 numerically
evaluates the three savings rates — S*, S!, and S! -- for a range of other

calibration values.

9The actual questions that Bernheim analyzes are:

What percentage of your annual household income do you think you should save for
retirement? (“Target saving”)

What percentage of your annual household income are you now saving for retirement?
(“Actual saving”)

These questions were posed to 1209 randomly selected individuals between the ages of 29
and 47.

20



4 Public policy

In this section I propose revenue neutral policy measures that implement the
consumption path implied by savings rate S'/. I focus on implementation of
S because of analytical tractibility. Little generality is lost as a result of
this focus, given that S’ and S’ are almost identical in value over the range
of reasonable calibration values.

The consumption path associated with S/ is expressed most naturally in
terms of the associated consumption rate A'’. This consumption rate implies,
¢, = MW and ¢, = MTR(1 — MT)W. Hence, the slope of the consumption
path is given by,

L R(1— A1) (22)

Ct
I seek to implement the consumption path which 1) has slope R - (1 — A7),
and 2) is binding with respect to the economy’s budget constraint. I'll refer

to this as the normative consumption path.

4.1 Delays

The normative consumption path can be implemented by requiring that con-
sumers choose their consumption level one-period before the consumption
actually takes place. Under this scheme, self ¢ would be bound to a con-
sumption level ¢; chosen at period ¢ — 1. However, self ¢ would be frec to
choose any feasible consumption level for period ¢ 4+ 1. This scheme would
work like a bank account that requires advance notification for withdrawals.

Formally, this set-up is another intra-personal game. The only difference

between this game and our original game is that self ¢ chooses consumption
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for period t + 1 instead of choosing consumption for period ¢. T will refer to

this as the Advance Notification Game.

Proposition 9: IN THE ADVANCE NOTIFICATION GAME, THE
(UNIQUE) ASYMPTOTIC EQUILIBRIUM CONSUMPTION RATE IS
pULE

4.2 Interest Subsidies and Penalties

The normative consumption path can also be implemented by a combined
policy that penalizes over-consumption and subsidizes the rate of interest.
Any net costs of this policy are assumed to be financed by a non-distortionary
tax. Consider the following specific scheme. The government penalizes agents
who dissave more than A\W;, where A is set by the government. Assume that
the penalty is equal to p multiplied by the amount of excess dissaving (i.e.,
dissaving in excess of AW;). Also assume that consumers face a subsidized
interest rate R > R. The government chooses A, p, and R, to satisfy the

following three goals:

G1 The equlibrium consumption path coincides with the normative con-

sumption path.

G2 In equilibrium, ¢; = AW, implying that the penalty is never invoked on

the equilibrium path.

G3 It is impossible to lower p without either raising R or violating conditions

one and two.
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Condition two implies,

U R(1- ).

Ct

Combining this with condition one implies,
R(1—X) = R(1 - \").

This equality expresses A as a function of R (and the two known parameters
R and M) To evaluate the triplet {)\, p, R} it is therefore sufficient to
identify the new parameters p and R.

The generalized Euler equation can be used to derive the values of p and
R. In the presence of a penalty and a subsidized interest rate the generalized

Euler equation for period ¢ becomes:

(1= ph'(ed) = ﬂzél O

W R (e, (23)

(- 42)

7=1 8Wt+]

Consider the analogous Euler equation for period ¢ + 1 :
T—(t+1)

(1_ ) c -y Z gi Loriti OCy 14 ﬁ(l 3lt+1+])
t+1 aWt+1—H j= aWH-H-J

1

R (crpi44).

(24)

Substituting the latter equation into the former yields:

(1 - pl(er) = SRl () [ﬂﬁv (-7 (1 _ ;’W)] (25)

Note that ¢; = AW, ¢z = A(1— A\)RW, %i =\ and R(1—X) = R(1-\'7).
Proposition 10 follows by substituting these relationships into Equation 25

and simplifying the resulting expression.
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Proposition 10: G1-G3 ARE SATISFIED IF AND ONLY IF p
AND R ARE CHOSEN TO SATISFY,

R—R=p"Y1-p-pB)RN" (26)

Proposition 10 implies that the interest subsidy is decreasing in /4 and
decreasing in p. As [ rises to unity, the self-control problem is mitigated and
the magnitude of the required interest subsidy falls. As p rises the penalty
alone becomes increasingly sufficient to solve the self-control problem and
the magnitude of the required interest subsidy falls.

Assume that the government chooses a penalty of .10 (the current penalty
which applies to early withdrawals from most retirement accounts in the
U.S.). Then under the benchmark calibration, Proposition 10 implies that
to implement the normative consumption path the government needs to seclect
an interest rate subsidy of R — R = .015.

This combination of penalty and interest subsidy matches the penalty and
interest subsidy associated with existing U.S. retirement savings instruments
like 401K’s, IRA’s, and 403B’s.!? All of these accounts have an explicit 10
percent penalty for early withdrawal, and these accounts generate an implicit
interest subsidy of approximately .0175 for a representative U.S. consumer.

To see this, consider the following intertemporal consumption transformation

10Note however that there are important differences between the mechanism proposed
in this paper and savings instruments like 401K’s. First, the hypothetical savings schemes
proposed in this paper have no contribution caps. Second, while withdrawals from 401K’s
are penalized, failures to deposit an “appropriate” amount into the account in the first
place do not generate a penalty. The need to elicit deposits may explain the popularity of
programs in which employers match the contributions of their employees.
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which uses a tax-deferred retirement account as the investment vehicle. A
consumer at time ¢ cuts consumption by (1 — 7) to fund a 401K investment,
of $1, assuming that 7 is the marginal tax rate.'" At the end of T years, the
consumer withdraws the accrued value of that investment, exp{(r + 7)T'},
where 7 is the inflation rate. The consumer then pays taxes of 7exp{(r +
7)T}, and can therefore consume (1 — 7) exp{(r + m)T}, which has real value

(1 — 7) exp{rT}. Hence, the real rate of intertemporal transformation is:

pon( ) -

By contrast, the real rate of intertemporal transformation when using a non-

tax-advantaged investment vehicle is:
1
T

Hence, the implicit interest subsidy is:

log (exp{(r +m)(1 —7)T —nT})=v(1 —7) — 7T

r—(r(l—71)—n7)=(r+m)7T.

If - = .25, r = .04, and 7 = .03 then the interest subsidy associated with
existing tax-deferred savings instruments like 401K’s is approximately .0175,
close to the optimal subsidy implied by the model, .015.

Of course, other models explain why governments may want to “sub-
sidize” the after-tax return on savings. For example, Chamley (1986) has
shown that in an infinite horizon economy the optimal long-run tax rate on
capital income is zero.'? My analysis provides an additional reason for in-

creasing the after-tax return on capital. In a general model which subsumes

1A $1 investment into a 401K plan generates a tax rebate of 7 dollars. Hence, to fund
a $1 investment, the consumer need only cut consumption by (1 — 7).

12 Ajyagari (1995) argues that in an economy with incomplete markets, Chamley’s results
are weakened.

25



both my arguments and those of Chamley, optimality requires a negative
long-run tax rate on capital income (i.e., a capital income subsidy). This
suggests that 401K’s insufficiently subsidize the return to capital, since they
effectively implement a zero tax rate on capital income.

Proposition 10 has two natural corollaries. First, if the government
chooses to have no interest subsidy (i.e., R = R), then p = 1 — 4. Sec-
ond, if the government chooses to have no penalty (i.e., p = 0), then
R—R=(7"(1—B)RM!. For the benchmark calibration the interest subsidy
(in the absence of a penalty) is R — R = .021. Table 4 evaluates the interest

subsidy in the absence of a penalty for a range of calibration values.

5 Welfare analysis

In the analysis above I have proposed two normative savings rates, and shown
how public policy can (and perhaps partially does in the U.S.) implement
these savings rates. In this section I evaluate the welfare benefits of im-
plementing these policies. In the game-theoretic framework adopted in this

paper, welfare must be evaluated from the perspective of all selves.

5.1 A welfare measure

My thought experiment considers the permanent adoption — starting at
time zero — of one of the revenue-neutral policies described in the previous
section. I will refer to this as the intervention scenario. Recall that all of the
proposed policies implement the M/ savings rate. Because I assume that the
policy begins to take effect at time zero, the equilibrium path which arises

in the intervention scenario is equivalent to the consumption path induced
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by fixing the consumption rate of all selves (including self 0) to A''.

Let U,(Wy|intervention) represent the utility of self ¢ under the interven-
tion scenario, conditional on time zero wealth Wy. Let U;(Wy|nointervention)
represent the utility of self t under the no intervention scenario, conditional
on time zero wealth W,. Note that under the no intervention scenario, I
assume that the schemes discussed in the previous section will not be im-
plemented by private actors. This market failure arises because the schemes
are vulnerable to third party arbitrage: any consumer who is engaged in
one of these schemes will have an incentive to use a third party to unwind
the scheme or arbitrage against the scheme unless the government explicitly
forbids such third party contracting.!? If the legal environment is set up to
prevent such arbitrage, then I will assume that the government is effectively

implementing the scheme. Define «,; such that:
U;(Wg|no intervention) = Uy (Wy - (1 — x;)|intervention) (27)
Hence, &, represents self t's willingness to pay (as a percentage of time zero

wealth) for the intervention policy.

Corollary to Proposition 8: IF [ IS SUFFICIENTLY CLOSE TO
ONE, THEN k; > 0 FOR ALL t.

Proposition 11: THE SEQUENCE {k;}{°, IS MONOTONICALLY
STRICTLY INCREASING AND limy_,o 6, = 1.

I3Tf a consumer faces a penalty for early withdrawal from a retirement account, the
consumer may borrow from a third party to facilitate immediate consumption thereby
escaping the penalty. Likewise, if a consumer has access to a subsidized interest rate, the
consumer may borrow from a third party to exploit the subsidy.
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Recall that k; is a measure of self t’s welfare gains from intervention.
Proposition 11 implies that the welfare gains to self 0 are smaller than the
welfare gains to all future selves. Hence, whatever weighting function the
social planner uses, the welfare gains from the perspective of the social plan-
ner are bounded below by the welfare gains to self 0. The remainder of this

section focuses on this lower bound.

5.2 Evaluating the lower bound.

Assume that an individual consumes at rate A and begins life with wealth
stock W. Then the utility of self 0 is given by
w(AW) + 83" S u(A(1 — AV R'W). (28)
i=1

Substituting for u(-) and simplifying yields,

(AW)i=p SR=P(1 — \)l=r
711 2
1—p 61 —6R=P(1 — A)l-r (29)
This implies that kg is equal to:
)\II T;Lp 1
50:1—( *) —. (30)
A M+ (1 — N1

Dividing ko - W by (R — 1) - W standardizes the consumer’s willingness
to pay by representing it as a fraction of current income. For the benchmark
case this normalized willingness to pay is quite large: .90. This implies that
consumers are willing to forego 19—0 of a year’s worth of income to induce the
government to undertake the proposed revenue-neutral intervention. Table

5 evaluates -2 for a range of parameter values.
R-1
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6 Conclusion

Recall the benchmark calibration values: p = 3, § = .6, 4 = 99, and
R = exp{.04}. This paper considered several attributes of this “hyperbolic”

economy. A few of these are reviewed here.

1) The slope of the consumption path of this economy is equal to the slope
of the consumption path in a parallel economy with identical technology and
identical coefficient of relative risk aversion, but with exponential discounting
with discount factor .977. Hence a naive econometrician might mistake the
hyperbolic economy for an exponential economy in which consumers have

relatively low rate of time preference: 1-.977=.023.

2) The EIS in the hyperbolic economy is .233 < % = :—7 Hence, the hyperbolic
economy is consistent with the finding that the EIS is less than the inverse

of the coefficient of relative risk aversion.

3) The savings rate in the hyperbolic economy (S*) is .133 which is approx-
imately 11 percentage points below the target savings rate (S'') which is
.246. Hence, the hyperbolic economy is roughly consistent with Bernheim’s
(1994) survey results, which find that there is a ten percentage point gap

between actual savings rates and target savings rates.

4) A benevolent government could implement the target consumption path
by creating a system which penalized excess consumption and subsidized the

return on capital. Specifically, if the penalty were p = .10 of the amount of
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excess consumption, then the interest subsidy would need to be R—R =015

(assumed to be financed with non-distortionary taxes).

5) A benevolent government could implement the target consumption path
by ignoring the penalty altogether, and creating just an interest subsidy:

R — R = .021 (assumed to be financed with non-distortionary taxes).

6) All selves would be willing to pay 1% of one year’s income (above and be-
yond the non-distortionary taxes mentioned above) to induce the government

to implement one of the proposed savings schemes.
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Appendix: Proofs and Tables

Before presenting the proofs, it is useful to establish some notation. Let
H, be the set of feasible histories of the consumption game at time #. An
h, € H, history is a t + 1-element vector, (W, co, ¢1,¢a,...,¢—1) € RE Let
H[ represent the set of feasible histories at time . Let H' be the set of all
feasible histories. Let W : H" — [0,00) be the map from feasible histories
to asset stocks, such that W(Wy, co,e1,¢0,...,¢01) = RIWy — Yl) R ey
Hence, W (h,) is wealth available to self ¢ after history h,. Represent the pure

strategy space of self ¢ as,
S, ={s,|s: Hf —[0,00), and 0 < s(h) <W(h;) Yh, € H'}. (31)

Define the joint strategy space S = [12,S;. Let S? represent the set of
subgame-perfect equilibria of the consumption game. Finally, let v(s,t, h;)
represent the continuation payoff of self ¢, after history h;, when strategy s

is played from time ¢ forward.

Proof of Proposition 1: Let s be a point in the strategy space of self ¢
in a game with horizon T. So s : HF — [0, 00). Suppose that the T-horizon
game has a unique perfect equilibrium. Also suppose that this equilibrium
has strategies of the form: s! (h;) = Ap_,W,, for all selves ¢t € {0,1,...,T}.
Finally, assume 0 < Ay_; < 1 forallt € {0,1,2,...,T—1}. Let V(A, T+1) =
34 Z;F:O St u(Ar_W,), where Wy = A, and the rest of the W, sequence is built
up recursively: Wi, = R(1—Ar_;)W,. It is easy to show V4(A4,T+1) > 0 and
Vaa(A4,T+1) <0V A € (0,00), and lim4_,9 Va(A, T+1) = co. Now consider
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the behavior of self 0 in a game with horizon T + 1. Since there is a unique
subgame perfect equilibrium in the subgame that arises after self (’s choice,
self 0 chooses a consumption level to maximize, u(co) +V(R(Wy—¢o), T+ 1),
subject to the restriction 0 < ¢y < Wy. The properties of u(-) and V(-, 7+ 1)
imply that this problem has a unique interior solution. It is easy to show that
the chosen consumption level is proportional to, but less than, Wy. Hence,
there exists a number A, 0 < A < 1 such that ¢g = AWy VW,. Set Apyy = A
The proof proceeds by induction. To start the induction, simply observe that

/\ozl.D

Proof of Proposition 2: Continuing the argument from the proof of Propo-

sition 2, note that in equilibrium the following condition holds for all ¢ :
U’(Ct) = RVA(VVH_I,T—t).

Note that V(W;,,,T—t) can be reexpressed, V(W;,,,T—t) =

Béu(crs1(Wit1, T)) + SV(R(Wepr — et (Wit 1)), T—(t + 1))

Taking a partial derivative, yields, V(W 1, T—t) =

, d
B0 (Cop1) oL 4 SRVA(R(Wia1 — cen1), T— (2 + 1)) l1 -

dciy }
6Wt+1 -

Wi

Finally substitute u'(c;y1) for RVa(Wy4, T—(t+1)) to get the required result.
O

Proof of Propositions 3 and 4: Recall that the proof of Proposition 1

shows that in a game with horizon T', the unique perfect equilibrium strategy
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of self t is to consume at rate Ap_;. Given this observation, it is possible to
use Proposition 2 to characterize the consumption of self £ in a T+1-horizon
game.

Note that Proposition 2 implies that the following equation holds on the
unique equilibrium path of any finite horizon subgame:

act(Wta T)

v (1) = Réu'(¢y) ET%
t

(F—-1)+1

Assume that the game has horizon T'. Substitute in for u(-), replace ¢, with

Mr_:W;, and replace the partial derivative with Ay_,. Solving for ¢, | yields,
Ct—1 = )\Tf(tfl)VVt—la

where

_ Ar_y
BR-P(Ar_y(B — 1) + 1)]7 + Ay

This implies that in a finite horizon game it is possible to calculate the equi-

AMr—(t-1) (32)

librium consumption rate of today’s self from the equilibrium consumption
rate of tomorrow’s self. Another way of thinking about this is to say that it
is possible to calculate self t’s equilibrium strategy in the T'+1-horizon game
if we know self t’s equilibrium strategy in the 7T-horizon game.

So far I've noted the following properties. First ¢,(W,,T) = Ay_, W, both
on and off the equilibrium path. Second, the sequence of consumption rates
{Ar}22,, follows the recursion,

A\
BRI-P(A(8 = 1) + D] + A,

’\r+1 = f(’\r)

Hence, to prove the Theorem it is sufficient to show that A\, — A*.
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In the argument which follows I'll use the following properties of f(-),

which are straightforward to confirm.

f(0) = 0.
e f(-) differentiable on [0, 1].

e f'(0) > 1 (using technology assumption 6 R~ < 1).
e f'(z)>0on[0,1]
o f(1)<L

Let A =sup{A | A € [0,1], A = f(A\)}. There is at least one fixed point at
zero, so A exists. In fact, it is possible to show that X is strictly greater than
zero. This follows from the properties f(0) = 0, f'(0) > 1, f(-) continuous,
f(1) < 1, and by application of the Intermediate Value Theorem. Finally,
Ar = Asince f'(z) > 0on [0,1], f(1) < 1, and Xy = 1.

It only remains to show that A = A*. Recall that A = f(X). Both sides
of this equation can be divided by A since it has been shown that A > 0.

Transforming the resulting equality it is easy to show that

=

X=1-(6R"™)» [X(B—1) +1]

This equation has a unique solution. O
Proof of Proposition 5: See text.
Proof of Proposition 6: If p > 1, then

HmA* =1 — (6R'?)77 < 1.
-0
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This result follows from Equation 9. Now, recall Equation 15.

- —(B-DL=A) = pA(B-1)+1)

dlog (=) 1 1 l (1 - p)(1 = X*)
—_ " L = _+_
or p P

} (8- 1),
Since limg_,o(1 — A*) = (6R1_”)ﬂ1_1, the numerator and the denominator of

the bracketed term in Equation 15 both have finite, non-zero limits. Hence,

Olog (%) 1 1
#-0 or p P

el D2 ;] (1),
(6R1-#)7T — p(§R1 )7

which simplifies to the required result. O.

Proof of Proposition 7: Let
FO) =u(d) + 8 6u(A1 - M'RY),
i=1

and let
g(\) =u(A\) + Z Su(A(1 — N)'RY).

Since, u(z) = IIIT_;, f()) can be represented,
FO) =u(X) + BORTA(1 = X)) Pg(N).

The first step in the proof of Proposition 7 is to show ¢'(A) < 0 for all A
such that \* < X < X where A = sup{\|g()) > —oo}. To sign this derivative
over this domain it is helpful to note the following properties of g(-). First,
g(-) has a unique local (and hence global) maximum at A = 1 — ((SR"”)#
Second, since g(-) is differentiable, ¢'(A) < 0if 1 — (0 R’ "’)i < A < A Third,
1- (6R1_”)% < A*. (This third point is shown by noting: (a) the partial
derivative of the RHS of Equation 9 with respect to A is less than one; (b)
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evaluating the RHS of Equation 9 at A =1 — (6R1_”)% yields a value which
is greater than 1 — (JRI‘P)i.) Combining observations yields, ¢'(A) < 0 if
M <A<

The next step in the proof of Proposition 7 is to show
u'(A) — (1= p)BSR'P(1 = A)"Pg()) <0

if A* < XA < A. First, note that v'(A) — (1 —p)B6R' 7(1—-X)"7g(A\) =0iff A =
A*. (This first point is shown by noting: (a) A* is the unique linear symmetric
Markov equilibrium in the infinite-horizon game (Phelps and Pollak (1968));
(b) u"(A) — p(1 — p)B6R' (1 — A)~""'g(x) < 0, for all A, z; (c) the concavity
property stated in b) implies, u'(A) — (1 — p)BGR'~"(1 — A) Pg(A) = 0 iff A
supports a linear symmetric Markov equilibrium.) Second, note that u'(A) —
(1—p)FSR' (1 — A\)~?g(X) < 0if A* < XA < A. (This second point is shown
by noting lim, ,5u'(A) — (1 —p)BdR' (1 — A)~?¢g(A) < 0. Application of the
Intermediate Value Theorem implies that «'(\) — (1 —p)BoR' ?(1 —X) 7g(A)
can take on a positive value somewhere in the interval (A%, X) only if u'()) —
(1—p)38R'=?(1— A)Pg(\) = 0 at some point in that interval. But, this has
already been ruled out.)

Combining results yields,
FO) = w0 = (1= p)BSR#(1 = N)*g(A) + BER'P(1 = 1) ~"g'() < 0

if A* < XA < X. This demonstrates A/ < A\*. Pareto-dominance follows from
the fact that all future selves are made better off in two ways. First they
prefer the sequence of low A values that applies to their current and fu-
ture consumption choices, and second they prefer inheriting greater levels of

wealth as implied by the sequence of previous low A values. O
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Proof of Proposition 8: Using the implicit function theorem it is possible
to show that equation 18 implies,

oA
— < 0.

J
Also note that when = 1 equation 18 implies,

A=1—(5R'"")7.

This is sufficient to show that normative savings rate I is less than normative
savings rate II.

To show the Pareto-dominance result, I introduce the following notation.
Let U()\) represent the utility of self 0, given that all selves (including self 0)
consume at rate A. I seek to show f(8) = U(MT) — U(X*(0)) > 0 when 3 is
close to unity. This notation is used to emphasize that U(A*(3)) depends on
J in two ways. First, # is a discount rate, so changes in 3 affect the value of
future consumption. Second, A is in the implicit equation which determines
A*. Note that 3 only influences U(A!?) through the former mechanism as \'!
does not depend on /.

The body of this proof characterizes the value of f(-) in a neighborhood
of # = 1. First, f(1) = 0 since \*(1) = X'/, To evaluate f(-) at 3 values just
below unity, I consider f'(1) and f”(1).

_ U B oU (\*) ~ QU (X*) dX*

]
f) = B s ot dp
Note that f'(1) = 0, as a—[%?gizﬁ:l = a_Ua([;\_*ziﬂzl, and, 2000, | = WO, |~

0. Tedious algebraic manipulations reveal that

(1) = %(A”)-ﬂ(l — M) (1 = 2AT"),
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which is positive by (recall that A/ =1 — (§R'?)!/?). Given that f(1) =0,
f'(1) =0, and f"(1) > 0, there exists an interval (,1) such that f(3) > 0
V 8 € (8,1). Hence, for sufficiently large 8 < 1, f(8) is positive. This shows
that self 0 is made better off by switching to the A/’ path. Pareto-dominance
follows from the fact that all future selves are made better off in two ways.
First they prefer the sequence of A/ values that applies to their current and
future consumption choices, and second they prefer inheriting greater levels

of wealth as implied by the sequence of past A/! values. O

Proof of Proposition 9: Apply analogous arguments to the arguments
used to prove Propositions 1-4. First, let s be a point in the strategy space
of self ¢ in a game with horizon T. So s] : Hl\, — [0,00). Suppose that
the T-horizon game has a unique perfect equilibrium. Also suppose that
this equilibrium has strategies of the form: si(h;) = M (y1yWipy, for all
selves t € {0,1,...,T — 1}. Finally, assume 0 < Ap_qy1) < 1 for all ¢ €
{0,1,2,..., T —2}. Let V(A, T+ 1) = 86 =, 8u(Ap_W,), where W, = A,
and the rest of the W, sequence is built up recursively: W, | = R(1-Ap_)W,.
It is easy to show V4(A, T+ 1) > 0 and Vas(A, T +1) <0V A € (0,00),
and lim4_,o Va(A,T + 1) = oo. Now consider the behavior of self 0 in a game
with horizon T' + 1. Since there is a unique subgame perfect equilibrium in
the subgame that arises after self 0’s choice, self 0 chooses a consumption
level to maximize, Féu(c,) + V(R(W, —¢1), T + 1), subject to the restriction
0 < ¢; £ Wy. The properties of u(-) and V(-,T + 1) imply that this problem
has a unique interior solution. It is easy to show that the chosen consumption

level is proportional to, but less than, W;. Hence, there exists a number X,
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0 < A < 1 such that ¢; = AW, VW, Set A = A. The proof proceeds by
induction. To start the induction, simply observe that Aq = 1. O Note that

in equilibrium the following condition holds for all t :
Gou'(¢;) = RVa(Wyyy, T —t).
Note that V(W 1, T—t) can be reexpressed, V (W, T —t) =
p8%u(cer1(Wir1, T)) + OV(R(Wigr — o1 (Werr, 1)), T—(t + 1))

Taking a partial derivative, yields, V (W, 1,7 —t) =

: e ,
,8(5211, (Ct+1) Crit + 5R‘/A (R(WH_l - Ct+1), T—(t + 1)) [1 —

e 6Ct+1 ]
oW1 '

aVVt-H
Finally substitute 8éu'(c,y1) for RVa(W, 2, T—(t + 1)) to find:

U’(Ct) = (SRU’(CH_I) .

Substitute in for u(-), replace ¢; with Ar_;W,;, and replace the partial deriva-
tive with Ar_;. Solving for ¢;_; yields,
ci—1 = dr—-yWi-,
where
AT_t
1

[OR'=P]? + Ap_,
Using the same types of arguments introduced in the proof of Propositious

3-4, it can be shown that limy_,o Ar_; =1 — (JRl‘f’)i. O

AT—(t-1) = (33)

Proof of Proposition 10: See text.
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Proof of Proposition 11: By Equation 29, U;(Wy|no intervention) =

(AWp(1 — A*)RY)L-»
1-p

ll pp SR 1) ] :

1—0R"P(1— A)l-r
and U, (Wy(1 — &;)|intervention) =

(/\Wo(l — Ht)(]_ — )\”)th)l—p
1—p

SR'=P(1 — N 1)l=r
1+4 ( )
1 —0R!=P(1 — A1)1=p
To solve for k; set
U;(Wy|no intervention) = U;(Wy(1 — &) |intervention).
To solve for x4 set

Uiy (Ws|no intervention) = Uy (Wp(1 — k44 )|intervention).

Dividing this last equation by the previous one, yields,

(1 - /\*) _ (1 - "'ft)
(1 — Af) (1— K1)

Since, A* < AT (Proposition 8), k; < kyy;. O
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Table 1: Values of ¢

Panel A: p=1.

I [B=25]4=50]p=75]4=1.00]
6=095] .826 905 934 950
§=97] .890 942 960 970
6=.99] .961 .980 987 990

Panel B: p = 3.

[ [8=25[B=50]4=.75]3=1.00]
§=95] .910 926 939 950
§=97] .935 949 960 970
§=99 .961 973 982 990

Panel C: p = 5.

| [6=25]3=50]8=.75]3=1.00]

6=95] .916 928 940 950
=97 .938 950 960 970
§=99] .961 972 981 990
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Table 2: Elasticity of Intertemporal Substitution

Panel A: p=3.

[B=25]p=50]B=75[8=100]

§=.95] .116 204 275 333
§=97] .115 204 275 333
§=99] 114 203 274 333
Panel B: p=5.
| [B=25[p=.50]p3=.75][3=1.00]
6=.95] .061 114 159 200
6=.97[ .061 113 159 200
6=.99] .061 113 159 200
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Table 3: SE, S[, S”.

Panel A: p=1

i I B=2 | p=350 | pA=7 | B=100 ]
6 =.95[ -3.44,-.46, -.28 | -1.43,-.34, -.28 [ -.67, -.30, -.28 [ -.28, -.28, -.28
6=.97] -1.81,.17, 23 | -49, 21,.23 [ -.01,.23, .23 | .23,.23,.23

5=99 .0L,.74, 74 50, 74, 74 | 66, 74, 74 | .74, 74, 74
Panel B: p=3
I [ A=2 [ A=50 [ =75 [ B=100 ]

5= 95| -.44, -.13,-.09 | -.30, -.11, -.09 | -.19. -.10, -.09 | -.09, -.09, -.09
5= 97| -22, .05 .08 | -.10, .07, .08 | -.00, 07, .08 | .08, .08, .08
5 =99 .00,.23, 25 | .10,.24, .25 | .18, .24, 25 | .25, .25, .25

Panel C: p=5

I | B=25 | pB=s50 | p=7 | =100 ]
d=.95] -.24,-.08,-.06 | -.17, -.06, -.06 | -.11, -.06, -.06 | -.06, -.06, -.06
6=.97] -12,.03,.05 | -.06,.04,05 | -.00,.04,.05 | .05,.05,.05
6=.99] .00,.13,.15 | .06 .14,.15 [ .10,.15,.15 | .15, .15, .15
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Table 4: R — R.

Panel A: p=1

| B=25][p=50]8=.75]5=1.00]

6=.95] .156 052 017 0
6=.97] .094 031 010 0
6§=.99| .031 010 003 0
Panel B: p=3
[ [B=25]p=50]B=.75][5=1.00]
d=.95] .134 045 015 0
6=97] 113 038 013 0
6=.99] .092 031 010 0
Panel C: p=5
[ [ B=25]p=50]0=.75][=1.00]
6=.95] .129 043 014 0
=97 .117 039 013 0
d=199] .104 035 012 0
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Table 5: o

Panel A: p=1

[6=25]p=50]p=.75]3=1.00]

d=.95 6.45 2.88 0.70 0
= .97 7.10 3.12 0.75 0
d=.99 7.78 3.36 0.80 0
Panel B: p =3
[ [B=25]=50]8=.75]5=1.00]
d=.95 4.78 1.51 0.32 0
§=.97 4.89 1.54 0.31 0
=.99 4.99 1.57 0.27 0
Panel C: p=5
[ [B=25]B=50]p3=.75]3=1.00]
d=.95 2.80 0.87 0.15 0
6 =.97 2.81 0.87 0.15 0
d=.99 2.86 0.93 0.21 0
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