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An algorithm is developed to statistically find the best global fit of a nonlinear non-convex
cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing
schedule for ‘‘temperature’’ T decreasing exponentially in annealing-time k, T = T0 exp(−ck1/D).
The introduction of re-annealing also permits adaptation to changing sensitivities in the multi-
dimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing,
where T = T0/k, and much faster than Boltzmann annealing, where T = T0/ ln k. Applications
are being made to fit empirical data to Lagrangians representing nonlinear Gaussian-Markovian
systems.
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I. Introduction
Modeling phenomena is as much a cornerstone of 20th century Science as is collection of

empirical data [1]. Modeling is essential to go beyond current knowledge, to better understand
new or complex phenomena. Many instances arise in essentially all fields of Science when math-
ematical models of the real world become tested by fitting some parameters to empirical data.
Since the real world is often nonlinear and stochastic, it is not surprising that often this process
involves fitting statistical, nonlinear, non-convex functional forms to data. Physical methods of
‘‘simulated annealing’’ hav e been found to be extremely useful tools for this purpose in a wide
variety of examples.

This paper contributes to this methodology by presenting an improvement over previous
algorithms. Sections II and III give a short outline of previous Boltzmann annealing (BA) and
fast Cauchy fast annealing (FA) algorithms. Section IV presents the new very fast algorithm.
Section V enhances this algorithm with a re-annealing modification found to be extremely useful
for multi-dimensional parameter-spaces. This method will be referred to here as very fast re-
annealing (VFR).

Section VI gives an outline of some applications presently using this new algorithm. Sec-
tion VII gives a short discussion.

II. Boltzmann Annealing
Boltzmann annealing was essentially introduced as a Monte Carlo importance-sampling

technique for doing large-dimensional path integrals arising in statistical physics problems [2].
This method was generalized to apply more generally to fitting non-convex cost-functions arising
in a variety of problems, e.g., finding the optimal wiring for a densely wired computer chip [3].

The method of simulated annealing consists of three functional relationships.
1. g(x): Probability density of state-space of D parameters x = { xi; i = 1, D} .
2. h(x): Probability density for acceptance of new cost-function given the just previ-
ous value.
3. T (k): schedule of ‘‘annealing’’ the ‘‘temperature’’ T in annealing-time steps k,
i.e., of changing the volatility or fluctuations of the two previous probability densi-
ties.

Based on functional form derived for many physical systems belonging to the class of
Gaussian-Markovian systems, the algorithm chooses for g,

g(x) = (2πT )−D/2 exp[−∆x2/(2T )] , (1)

where ∆x = x − x0 is the deviation of x from x0 (usually taken to be the just-previously chosen
point to test), and where T is clearly a measure of the fluctuations of the Boltzmann distribution
g in the D-dimensional x-space.

The acceptance probability is based on the chances of obtaining a new state Ek+1 relative to
a previous state Ek,

h(x) =
exp(−Ek+1/T )

exp(−Ek+1/T ) + exp(−Ek/T )
=

1

1 + exp(∆E/T )
, (2)

where ∆E represents the ‘‘energy’’ difference between the present and previous values of the
cost-function appropriate to the physical problem, i.e., ∆E = Ek+1 − Ek. This essentially is the
Boltzmann distribution contributing to the statistical mechanical partition function of the system.

Given g(x), it has been proven [4] that it suffices to obtain a global minimum of E(x) if T
is selected to be not faster than
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T (k) =
T0

ln k
(3)

For the purposes of this paper, a heuristic demonstration follows, to show that Eq. (3) will
suffice to give a global minimum of E(x) [5].

In order to statistically assure, i.e., requiring many trials, that any point in x-space can be
sampled infinitely often in annealing-time (IOT), it suffices to prove that the products of proba-
bilities of not generating a state x IOT for all annealing-times successive to k0 yield zero,

∞

k0

Π (1 − gk) = 0 .  (4)

This is equivalent to
∞

k0

Σ gk = ∞ . (5)

The problem then reduces to finding T (k) to satisfy Eq. (5).

For BA, if T (k) is selected to be Eq. (3), then Eq. (1) gives
∞

k0

Σ gk ≥
∞

k0

Σexp(− ln k) =
∞

k0

Σ1/k = ∞ . (6)

Although there are sound physical principles underlying the choices of Eqs. (1) and (2) [2],
it was noted that this method of finding the global minimum in x-space was not limited to
physics examples requiring bona fide ‘‘temperatures’’ and ‘‘energies.’’ Rather, this methodology
can be readily extended to any problem for which a reasonable probability density h(x) can be
formulated [3].

III. Fast Annealing
It was also noted that this methodology can be readily extended to use any reasonable gen-

erating function g(x), without relying on the principles underlying the ergodic nature of statisti-
cal physics. Specifically, it was noted that the Cauchy distribution has some definite advantages
over the Boltzmann form [5]. The Cauchy distribution,

g(x) =
T

(∆x2 + T 2)(D+1)/2
, (7)

has a ‘‘fatter’’ tail than the Gaussian form of the Boltzmann distribution, permitting easier access
to test local minima in the search for the desired global minimum.

It is instructive to note the similar corresponding heuristic demonstration, that the Cauchy
g(x) statistically finds a global minimum. If Eq. (3) is replaced by

T (k) =
T0

k
, (8)

then
∞

k0

Σ gk ≈
T0

∆xD+1

∞

k0

Σ 1

k
= ∞ . (9)

Note that the ‘‘normalization’’ of g has introduced the annealing-time index k.

The method of FA is thus statistically seen to have an annealing schedule exponentially
faster than the method of BA. This method has been tested in a variety of problems [5].
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IV. Very Fast Annealing
In a variety of physical problems, e.g., as outlined in Sec. VI below, we hav e a D-dimen-

sional parameter-space. Different parameters have different finite ranges, fixed by physical con-
siderations, and different annealing-time-dependent sensitivities, measured by the curvature of
the cost-function at local minima. BA and FA hav e g distributions which sample infinite ranges,
and there is no provision for considering differences in each parameter-dimension, e.g., different
sensitivities might require different annealing schedules. Also, there is no quick algorithm for
calculating a D-dimensional Cauchy random generator.

For example, one might choose a D-product of one-dimensional Cauchy distributions,
because the one-dimensional Cauchy has a few quick algorithms. This would also permit differ-
ent T0’s to account different sensitivities.

gik =
Ti0

∆xi2 + T 2
. (10)

But then we would require an annealing schedule going as

Ti(k) = T0/k1/D , (11)

which, although faster than BA, is still quite slow. E.g., consider D = 6 and assume a final tem-
perature T f = 10−4T0 is desired.

The above problems provide motivation for the development of a new algorithm. Consider
a parameter α i

k in dimension i generated at annealing-time k with the range

α i
k ∈ [Ai, Bi] ,  (12)

calculated with the random variable yi,

α i
k+1 = α i

k + yi(Bi − Ai) ,

yi ∈ [−1, 1] . (13)

Define the generating function

gT (y) =
D

i=1
Π 1

2(|yi | + Ti) ln(1 + 1/Ti)
≡

D

i=1
Π gi

T (yi) .  (14)

Its cumulative probability distribution is

GT (y) =
y1

−1
∫ . . .

yD

−1
∫ dy′1 . . . dy′D gT (y′) ≡

D

i=1
Π Gi

T (yi) ,

Gi
T (yi) =

1

2
+

sgn(yi)

2

ln(1 + |yi |/Ti)

ln(1 + 1/Ti)
. (15)

yi is generated from a ui from the uniform distribution

ui ∈ U[0, 1] ,

yi = sgn(u −
1

2
)Ti[(1 + 1/Ti)

|2ui−1| − 1] . (16)

It is straightforward to calculate that for an annealing schedule for Ti

Ti(k) = T0i exp(−cik
1/D) ,  (17)
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a global minima statistically can be obtained. I.e.,

∞

k0

Σ gk ≈
∞

k0

Σ [
D

i=1
Π 1

2|yi |ci
]

1

k
= ∞ . (18)

It seems sensible to choose control over ci, such that

T fi = T0i exp(−mi) when k f = exp ni ,

ci = mi exp(−ni/D) .  (19)

The cost-functions L we are exploring are of the form

h(M ; α ) = exp(−L/T ) ,

L = L∆t +
1

2
ln(2π∆tg2

t ) ,  (20)

where L is a Lagrangian with dynamic variables M(t), and parameter-coefficients α to be fit to
data. gt is the determinant of the metric, defined below. It has proven fruitful to use the same
annealing schedule for this acceptance function h as used for the generating function g, i.e., Eqs.
(17) and (19).

New parameters α i
k+1 are generated from old parameters α i

k from

α i
k+1 = α i

k + yi(Bi − Ai) ,  (21)

constrained by

α i
k+1 ∈ [Ai, Bi] .  (22)

I.e., yi’s are generated until a set of D are obtained satisfying these constraints.

V. Re-Annealing
Whenever doing a multi-dimensional search in the course of a real-world nonlinear physi-

cal problem, inevitably one must deal with different changing sensitivities of the α i in the search.
At any giv en annealing-time, it seems sensible to attempt to ‘‘stretch out’’ the range over which
the relatively insensitive parameters are being searched, relative to the ranges of the more sensi-
tive parameters.

It has proven fruitful to accomplish this by periodically rescaling the annealing-time k,
essentially re-annealing, every hundred or so acceptance-events, in terms of the sensitivities si
calculated at the most current minimum value of L,

si = (Ai − Bi)∂L/∂α i . (23)

In terms of the largest si = smax, it has proven fruitful to re-anneal by using a linear rescaling,

k′ i = (((ln[(Ti0/Tik)(smax/si)])/ci))
D . (24)

Ti0 is set to unity to begin the search, which is ample to span each parameter dimension.

The acceptance temperature is similarly rescaled. In addition, since the initial acceptance
temperature is set equal to a trial value of L, this is typically very large relative to the global min-
imum. Therefore, when this rescaling is performed, the initial acceptance temperature is reset to
the most current minimum of L, and the annealing-time associated with this temperature is set to
give a new temperature equal to the lowest value of the cost-function encountered to annealing-
date.
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A few other twists can be added, and such searches undoubtedly will never be strictly by
rote. Physical systems are so different, some experience with each one is required to develop a
truly efficient algorithm.

The above two Sections define this method of very fast re-annealing (VFR).

VI. Applications
Some explanation of the problems we are solving using VFR contribute a better under-

standing of its value.

Many large-scale nonlinear stochastic systems can be described within the framework of
Gaussian-Markovian systems. For example, (deceptively) simple Langevin rate equations
describe the evolution of a set of variables MG . The Einstein summation convention is used,
whereby repeated indices in a term are to be summed over. In the midpoint Stratonovich
representation [6],

Ṁ
G = dMG/dt = f G + ĝG

i η i ,

< η i′
t ′η

i
t >η = δ (t − t ′)δii′ ,

i = 1, . . . , Ξ ,

G = 1, . . . , Θ . (25)

Expanded sets of equations can represent a field MG(r, t), and the discussion below generalizes
as well [7].

Another mathematically equivalent representation is given by the Fokker-Planck equation,
in terms of the ‘‘drifts’’ gG and ‘‘diffusions’’ gGG′ ,

∂P

∂t
= VP +

∂(−gG P)

∂MG
+

1

2

∂2(gGG′ P)

∂MG∂MG′ ,

gG = f G +
1

2
ĝG′

i

∂ĝG
i

∂MG′ ,

gGG′ = ĝG
i ĝG′

i , (26)

where the ‘‘potential’’ V might arise directly from the physics or by simulating the boundary
conditions.

In many problems of interest, the drifts and diffusions are also parametrized. For example,
these parameters can enter as expansion coefficients of polynomials describing accepted models
of particular systems, e.g., modeling economic markets [8], or combat scenarios [9,10]. In com-
bat systems, such equations appear as

ṙ = xr
bb + yr

br br + zrη r ,

ḃ = xb
r r + yb

rbrb + zbη b , (27)

where the MG are Red (r) and Blue (b) force levels, and where { x, y, z} are parameters to be fit
to data. Such modeling is essential to compare computer models to field data, or to qualify com-
puter models to augment training, or to feed information from battalion-level computer scenarios
into corps- and theater-level computer scenarios which must rely on highly aggregated models to
run in real-time.
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To perform fits to data, it is most useful to consider yet another mathematically equivalent
representation to Eqs. (25) and (26), a Lagrangian (L) representation in a path-integral
context [6]. (This reference contains many references to other published works.) The long-time
probability distribution P at time t f = u∆t + t0, evolving from time t0, in terms of the discrete
index s, is giv en by

P = ∫ . . . ∫ DM exp(−
u

s=0
Σ ∆tLs) ,

DM = g1/2
0+

(2π∆t)−1/2
u

s=1
Π g1/2

s+

Θ

G=1
Π (2π∆t)−1/2dMG

s ,

L =
1

2
(Ṁ

G − hG)gGG′(Ṁ
G′ − hG′) +

1

2
hG

;G + R/6 − V ,

[. . .],G =
∂[. . .]

∂MG
,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

gGG′ = (gGG′)−1 ,

gs[MG(t s), t s] = det(gGG′)s , gs+
= gs[MG

s+1, t s] ,

MG(t s) =
1

2
(MG

s+1 + MG
s ) , Ṁ

G
(t s) = (MG

s+1 − MG
s )/∆t ,

t s = ts + ∆t/2 ,

hG
;G = hG

,G + ΓF
GF hG = g−1/2(g1/2hG),G ,

ΓF
JK ≡ gLF [JK , L] = gLF (gJL,K + gKL,J − gJK ,L) ,

R = gJL RJL = gJL gJK RFJKL ,

RFJKL =
1

2
(gFK ,JL − gJK ,FL − gFL,JK + gJL,FK )

+gMN (ΓM
FK ΓN

JL − ΓM
FLΓN

JK ) ,  (28)

Such a path-integral representation may be derived directly for many systems, ranging
from nuclear physics [11], to neuroscience [12-15]. (These references for both systems contain
many references to other published papers.) In nuclear physics, the parameters include coupling
constants and masses of mesons. In neuroscience, the parameters include chemical and electrical
synaptic parameters, obtained by averaging over millions of synapses within minicolumnar struc-
tures of hundreds of neurons.

In the combat models, even relatively simple functional drifts and diffusions give rise to
Lagrangians nonlinear in their underlying parameters. Even extremely simple Lagrangians can
present subtle nonlinearities [16]. In the nuclear physics and neuroscience systems, the drifts and
diffusions are quite nonlinear in their underlying variables (MG), as well as being nonlinear in
their underlying parameters. (For the nuclear physics quantum-mechanical problem, cost-



Very Fast Re-Annealing -8- Lester Ingber

functions are typically constucted as a mean-square difference between scattering data and the
theoretical calculation derived from L.)

As written in Eq. (28), L possesses a variational principle. The path-integral representa-
tion for the short-time probability distribution over the variable-space, also presents a natural
cost-function over the parameter-space. Then, a maximum likelihood fit is achieved by taking a
product of this ‘‘probability distribution,’’ a form similar to the acceptance function h above, over
many replications of empirical data for the MG’s, and searching over the parameter-space for the
largest value of P, essentially the smallest value of L.

It should be pointed out that, when performing the parameter-fits, we take advantage of the
Riemannian invariance of Eq. (28) under nonlinear point transformations, and utilize the prepoint
Itô discretization. This permits the fitting of P using a much simpler Lagrangian, albeit one that
does not possess the variational principle over its variable-space [6].

L =
1

2
(Ṁ

G − gG)gGG′(Ṁ
G′ − gG′) − V ,

MG(t s) = MG
s , Ṁ

G
(t s) = (MG

s+1 − MG
s )/∆t . (29)

Note that the measure of the volatility, i.e., the scale of the covariance matrix gGG′ , can be fit
using VFR because it enters nonlinearly in Eq. (20).

In all the above systems, the parameters have finite ranges, constrained by reasonable
physical considerations. We are presently fitting combat systems to exercise data [10], and plan
to soon fit human EEG data to a Lagrangian [15] derived from mesoscopic neocortical
interactions [17], and macroscopic considerations [18].

The path-integral representation for the long-time probability distribution over the vari-
able-space also affords another luxury. Many empirical systems currently present data which is
quite noisy and incomplete, yet still require modeling efforts. In such systems, it is often possi-
ble to find approximately equal minimum values for different algebraic cost-functions, obtained
by fitting Lagrangians of the short-time probability distributions over the parameter-space.

In these cases offering alternative models (Lagrangians), a calculation of the long-time
path integral provides a sensitive separation of these models as they evolve in time, i.e., provid-
ing a measure of the importance of long-time correlations in the comparison of empirical data to
models developed by short-time fits. This also provides an internal check on whether is it rea-
sonable to even begin modeling a given physical system as a nonlinear multivariate Gaussian-
Markovian system. Standard Monte Carlo techniques typically fail for highly nonlinear prob-
lems. Only recently has it been possible to accurately calculate the evolution of a nonlinear path
integral with complex boundary conditions [19]. We are currently extending these algorithms to
two dimensions, and hope to extend them even further.

Thus, the cost-function L in the form in Eq. (20) is statistically fit to data by inserting a
simulated temperature T ≠ 1 into the short-time probability distribution with Lagrangian L given
in Eq. (29). The lowering of T with the appropriate annealing schedule makes L more sensitive
to the depths and breadths of its minima than it might otherwise be, permitting an efficient fitting
algorithm. Then the true path integral, with T ≡ 1, is calculated using Eq. (28) or (29), depend-
ing on the numerical algorithm used, to find the long-time evolution of the system. Details of the
above parameter-fits of Lagrangians to empirical data will be published at a later date [20].

VII. Discussion
An algorithm of very fast simulated re-annealing has been developed to fit a empirical data

to a theoretical cost-function over a D-dimensional parameter-space. The annealing schedule for
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the temperatures Ti decrease exponentially in annealing-time k, i.e., Ti = Ti0 exp(−cik
1/D). Of

course, the fatter the tail of the generating function, the smaller the ratio of acceptance to gener-
ated points in the fit. However, in practice, it is found that for a given generating function, this
ratio is approximately constant as the fit finds a global minimum. Therefore, for a large parame-
ter space, the efficiency of the fit is determined by the annealing schedule of the generating func-
tion.

No rigorous proofs have been given. It is expected that the obvious utility of this algo-
rithm will motivate such proofs. However, actual fits to data are a finite process, and often even
only heuristic guides to algorithms that obviously fit many classes of data are important. Heuris-
tic arguments have been given here that this algorithm is faster than the fast Cauchy annealing,
where Ti = T0/k, and much faster than Boltzmann annealing, where Ti = T0/ ln k.
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