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Abstract
This paper studies a game of strategic experimentation with two-armed ban-

dits whose risky arm might yield a payoff only after some exponentially dis-
tributed random time. Because of free-riding, there is an inefficiently low level of
experimentation in any equilibrium where the players use stationary Markovian
strategies with posterior beliefs as the state variable. After characterizing the
unique symmetric Markovian equilibrium of the game, which is in mixed strate-
gies, we construct a variety of pure-strategy equilibria. There is no equilibrium
where all players use simple cut-off strategies. Equilibria where players switch
finitely often between the roles of experimenter and free-rider all lead to the same
pattern of information acquisition; the efficiency of these equilibria depends on
the way players share the burden of experimentation among them. In equilibria
where players switch roles infinitely often, they can acquire an approximately
efficient amount of information, but the rate at which it is acquired still remains
inefficient; moreover, the expected payoff of an experimenter exhibits the novel
feature that it rises as players become more pessimistic. Finally, over the range
of beliefs where players use both arms a positive fraction of the time, the sym-
metric equilibrium is dominated by any asymmetric one in terms of aggregate
payoffs.
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Introduction

In this paper we analyse a game of strategic experimentation based upon two-armed
bandits with a safe arm that offers a deterministic flow payoff and a risky arm that
might generate positive payoffs after some exponentially distributed random time. The
players have replica two-armed bandits with all risky arms being of the same type (all
good, or all bad), but with ‘breakthroughs’ occurring independently. Each player
observes each other player’s actions and payoffs, so information about the type of the
risky arm is a public good. Thus, each player can choose to free-ride on the costly
information acquisition of any other player. On the other hand, the information a
player generates may encourage others to acquire more information in the future, which
may counteract the temptation to free-ride.

Such a game of strategic experimentation arises in a variety of economic contexts:
besides consumer search or experimental consumption (of a new drug, for instance),
firms’ research and development activities are a prominent example. Academics pursu-
ing a common research agenda or simply working on a joint paper are also effectively
engaged in strategic experimentation.

With exponential bandits, news arrives only once and then resolves all uncertainty.
Examples would be the occasional breakthrough in research and development, failure
of some equipment or technology whose reliability is being tested, a completed research
paper in a longer-term research agenda, or a crucial proof in a paper. For concreteness,
we focus on a situation where this news is good, so beliefs gradually become less
optimistic as long as no news arrives. This deterministic decay of the level of optimism
entails that players’ value functions are (closed-form) solutions to first-order differential
equations. As a consequence, we are able to provide a relatively simple and tractable
taxonomy of what is possible in our model of strategic experimentation.

Above all, there is of course the fundamental inefficiency of information acquisition
because of free-riding. In the unique symmetric Markovian equilibrium of the game,
which requires players to use time-slicing strategies that allocate a fraction of each
period to either arm, the effect of free-riding is extreme insofar as the critical belief at
which all players change irrevocably to the safe arm is the same as if there where only
one player. This means that the total amount of experimentation with risky arms is
independent of the number of players. In other words, there is no encouragement effect
whereby the presence of other players encourages at least one of them to continue ex-
perimenting at beliefs somewhat more pessimistic than the single-agent cut-off belief.
This effect was first analysed by Bolton and Harris (1999). Its absence in the exponen-
tial bandit framework is easy to explain. In fact, the encouragement effect rests on two
conditions: the additional experimentation by one player must increase the likelihood
that other players will experiment in the future, and this future experimentation must
be valuable to the player who acted as a pioneer. With exponential bandits, however,
the only way for this player to increase the likelihood that others will experiment is to
have a breakthrough on his risky arm – but as such a breakthrough is fully revealing, he
knows everything he needs to know from then on, and the additional ‘experimentation’
by the other players is of no value to him.
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We show, however, that a different sort of encouragement is at work in all pure-
strategy Markov equilibria, with players alternating between the roles of free-rider
(playing safe) and pioneer (playing risky). The players generate the same amount of
information at all pure-strategy Markovian equilibria if their strategies switch actions
only a finite number of times, and this amount is again the same as the single-agent
optimum. This result is driven by backward induction: with finite switching there is a
last agent to engage in experimentation and this agent has no incentive to provide more
information than would be optimal in the single-agent set-up. Although the amount
of information acquired is constant over all pure-strategy Markovian equilibria with
finite switching, the rate at which the information is acquired does vary. The more
equitably the players share the burden of experimentation when it becomes costly (i.e.,
when ceasing to experiment would yield a higher short-term payoff), the longer they
are able to maintain the maximal rate of information acquisition, and the more efficient
is the equilibrium. The extreme equilibria where one player bears most of the costs
of experimentation are the least efficient. We also show that (at least over the range
of beliefs where players use both arms a positive fraction of the time) the symmetric
equilibrium is less efficient than even the worst asymmetric Markovian equilibria.

Casual intuition might lead one to believe that the simplest two-agent pure-strategy
equilibrium had one player ceasing to experiment when the cost of experimentation be-
came significant and free-riding ever after. In fact no such equilibrium exists. In the
simplest pure-strategy equilibrium of the two-player game, one player changes from
experimentation to free-riding when beliefs hit a threshold, leaving her opponent to
continue experimenting. Then, at a more pessimistic belief threshold, the two players
exchange actions – the player who was experimenting free-rides and the player who was
free-riding experiments – until all experimentation ceases at the lowest threshold for
beliefs. Why do we observe such an equilibrium? In Markovian equilibria the players
are not really choosing strategies to affect the amount of information acquired (in ag-
gregate the same amount is always acquired) – but instead they are choosing strategies
to adjust the rate at which information is acquired. The last player to experiment is
obliged to do this at some cost to herself (and benefit to her opponent). Thus she is
not in a hurry to find herself in this role and is willing to delay the time at which this
phase of play arrives. Her opponent benefits from this phase of play and so is prepared
to experiment in order to accelerate its arrival. Prior to this final phase, therefore, the
player who must run the final leg is prepared to defer it by not experimenting herself,
whilst the free-rider on the final leg is happy to carry the burden of the experimentation
before it. Thus, somewhere between the optimistic threshold (where the number of ex-
perimenters drops from two to one) and the pessimistic threshold (where the number
of experimenters drops from one to zero) there must be at least one other threshold
where the players swap roles.

This simplest equilibrium can be elaborated on by many switches between the
role of free-rider and experimenter. We give a complete characterization of when and
how this can happen. As the players share the intermediate phase more equally the
equilibrium becomes more efficient, because there is less of a temptation for either of
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the players to free-ride before the last phase. Further, we indicate how these results
can be generalized to the N -player case.

Our last result is to show that an approximately efficient amount of information can
be acquired if we allow the players to use Markovian strategies that switch actions an
infinite number of times during a finite time interval. If there is never a last period of
experimentation for any player, each individual can be given an incentive to take turns
in providing additional (smaller and smaller) amounts of experimentation. A level of
experimentation which is approximately socially efficient can then be induced; the rate
at which this information is acquired is, however, socially inefficient. In summary, while
the Bolton-Harris encouragement effect is not present here, players still do encourage
each other by taking turns in an incentive-compatible way.

The exponential model is a simple continuous-time analogue of the two-outcome
bandit model in Rothschild (1974), the paper that started the economics literature on
active Bayesian learning. Bergemann and Hege (1998, 2001) study models of financial
contracting that embed an exponential bandit, but the emphasis of their analysis lies
on the contractual relationship between a single experimenter and a financier, not on
strategic experimentation itself. Malueg and Tsutsui (1997) analyze a model of a patent
race with learning where the arrival time of the innovation is exponentially distributed
given the stock of knowledge. This leads to the same structure of belief revisions as
with exponential bandits, yet the nature of firms’ interaction in their model is entirely
different from the situation that we consider.

The paper closest to us is Bolton and Harris (1999). Their model of strategic
experimentation is based upon two-armed bandits where the risky arm yields a flow
payoff with Brownian noise. There, both good and bad news arrives continuously, and
beliefs are continually adjusted up or down by infinitesimally small amounts. Owing to
the technical complexity of the Brownian model, Bolton and Harris restrict themselves
to studying symmetric equilibria. They prove existence and uniqueness, and show
the presence of the encouragement effect described above. Except for this effect, the
symmetric equilibrium of our game confirms all their findings in a mathematically much
simpler framework. What is more, we are able to present pure-strategy asymmetric
equilibria and show that they are more efficient than the symmetric one.1

Our paper is also related to a recent literature on the dynamic provision of public
goods. Recall that an approximately efficient amount of information can be acquired
if we allow the players to switch actions an infinite number of times during a finite
time interval. To put this result in perspective, note that in a situation of strategic
experimentation with observable actions and outcomes, the players are providing each
other with a public good (information). The provision of this public good is irreversible
and ultimately costly if the experiments are unsuccessful. Recent work on the dynamic
provision of public goods has found that efficient provision is possible if the players make

1The construction of such equilibria is made easier by the absence of the encouragement effect.
Bolton and Harris (2000) shut down the encouragement effect in their model by taking it to the
undiscounted limit. Adding background information, they are then able to characterize all equilibria,
both symmetric and asymmetric.
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smaller and smaller contributions over time and there is no one player who is the last to
contribute; see, for example, Admati and Perry (1991), Marx and Matthews (2000), or
Lockwood and Thomas (2002). These models use (non-Markovian) trigger strategies
to achieve efficiency. If a player deviates from the agreed path of contributions at
any point in time, then no other player will make contributions to the public good
in the future. Thus the players choose to continue to contribute to the public good
because their net gain (from others’ future contributions) outweighs their current cost of
provision. Although our model is very different – time is continuous whereas actions are
discrete – the same economic principle applies. Trigger strategies are unnecessary here
because the beliefs encode the punishment. If a player does not perform an appropriate
amount of experimentation, then her opponents’ beliefs will not fall sufficiently for them
to embark on their round of experimentation, and this hurts the deviating player.

The rest of the paper is organized as follows. Section 1 introduces the exponential
bandit model. Section 2 characterizes the optimal strategy for a single player. Section 3
establishes the efficient benchmark where several players cooperate in order to maximize
joint expected payoffs. Section 4 considers the strategic problem and shows that,
because of free-riding, any Markov equilibrium of the game leads to inefficiently low
levels of experimentation. Section 5 presents the unique symmetric Markov perfect
equilibrium, which is in mixed strategies. Section 6 describes pure-strategy, and hence
asymmetric, equilibria. Section 7 contains some concluding remarks. Some of the
proofs are relegated to the appendix.

1 Exponential Bandits

The purpose of this section is to introduce continuous-time two-armed bandit problems
where the time at which uncertainty is resolved obeys an exponential distribution. One
arm S is ‘safe’ and yields a known deterministic flow payoff whenever it is played; the
other arm R is ‘risky’ and can be either ‘bad’ or ‘good’. If it is bad, then it always
yields 0. If it is good, then it yields 0 until a ‘breakthrough’ occurs. This happens
once the total time that the arm has been used reaches some random threshold that is
exponentially distributed; once it happens, the arm yields lump-sum payoffs that are
equivalent in expectation to a known positive flow payoff forever.

We assume that the agent strictly prefers R, if it is good, to S, and strictly prefers
S to R, if it is bad, so she has a motive to experiment with the risky action in the hope
of discovering that R is indeed good. The problem she faces, however, is that when she
plays R she cannot immediately tell whether it is good or bad, because in either case
she initially receives no payoff at all. The longer she waits without getting a payoff,
the less optimistic she becomes and there will come a time when it is optimal for her
to cut her losses and change irrevocably to S. Of course, if she does eventually receive
a payoff then she becomes certain that R is good and she will continue with R forever.

More formally, time t ∈ [0,∞[ is continuous, and the discount rate is r > 0. The
flow payoff of the safe arm is s. A good risky arm produces lump-sum payoffs that arrive
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according to a Poisson process with parameter λ. These lump-sums are drawn from
a time-invariant distribution on IR++ with mean h; in expectation, they are therefore
equivalent to a constant flow payoff of g = λh. We assume that 0 < s < g. Note that
the total time that a good risky arm must be used before it generates the first lump-
sum payoff (the ‘breakthrough’) is exponentially distributed with parameter λ > 0,
that is, with mean 1/λ.

If kt indicates the agent’s choice at time t between S (kt = 0) and R (kt = 1), then
her expected flow payoff at that time is (1−kt)s+ktγ with γ ∈ {0, g}. Starting with a
prior belief p0 that the risky arm is good, her overall objective is to choose a strategy
{kt}t≥0 that maximizes

E
[∫ ∞

0
r e−r t [(1− kt)s + ktγ] dt

∣∣∣∣ p0

]
,

which expresses the total payoff in per-period terms. Of course, this choice of strategy
is subject to the constraint that the action taken at any time t be measurable with
respect to the information available at that time.

Let pt denote the subjective probability at time t that the agent assigns to the risky
arm being good, so that gpt is her current expectation of the flow payoff of R. By the
Law of Iterated Expectations, we can rewrite the above payoff as

E
[∫ ∞

0
r e−r t [(1− kt)s + ktgpt] dt

∣∣∣∣ p0

]
.

This highlights the potential for beliefs to serve as a state variable.

Were an agent with current belief pt = p to act myopically, she would weigh the
short-run payoff from playing the safe arm, s, against what she expects from playing
the risky arm, gp. So the belief that makes her indifferent between these choices is pm =
s/g. For p > pm it is myopically optimal to play R; for p < pm it is myopically optimal
to play S. As we shall see below, a forward-looking agent (who values information)
continues to play R for some beliefs p < pm, and is said to experiment.

We shall consider the cases where there is a single agent, where there are N agents
playing cooperatively, and where there are N players who act strategically but use only
Markovian strategies with the state variable being the belief p.

2 The Single-Agent Problem

When S is played over a period of time dt, the belief does not change. When R is
played over a period of time dt, a breakthrough occurs with probability λ dt if the
risky arm is good,2 and the posterior belief jumps to 1; no breakthrough occurs with
probability 1− λ dt if the risky arm is good, and with probability 1 if the risky arm is
bad. If the agent starts with the belief p, plays R over a period of time dt and does

2This is up to terms of the order o(dt), which we can ignore here and in what follows.
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not achieve a breakthrough, then the updated belief at the end of that time period is

p + dp =
p (1− λ dt)

1− p + p (1− λ dt)

by Bayes’ rule. Simplifying, we see that the belief changes by

dp = −λp(1− p) dt .

We now derive the agent’s Bellman equation. By the Principle of Optimality, the
agent’s value function satisfies

u(p) = max
k∈{0,1}

{
r [(1− k)s + kgp] dt + e−r dtE [u(p + dp) | p ]

}

where the first term is the expected current payoff and the second term is the discounted
expected continuation payoff.

As to the expected continuation payoff, with subjective probability pkλ dt a break-
through occurs and the agent expects a flow payoff of g in the future; with proba-
bility p(1 − kλ dt) + (1 − p) = 1 − pkλ dt there is no breakthrough and she expects
u(p) + u′(p)dp = u(p)− kλp(1− p)u′(p) dt.3

Using 1− r dt to approximate e−r dt, we see that her discounted expected continu-
ation payoff is

(1− r dt) {u(p) + kλp[g − u(p)− (1− p)u′(p)] dt}

and so her expected total payoff is

u(p) + r {(1− k)s + kgp + kλp[g − u(p)− (1− p)u′(p)]/r − u(p)} dt .

When this is maximized it equals u(p). Simplifying and rearranging, we thus obtain
the Bellman equation

u(p) = max
k∈{0,1}

{(1− k)s + kgp + kλp[g − u(p)− (1− p)u′(p)]/r} .

Note that the maximand is linear in k, and the equation can be rewritten more suc-
cinctly as

u(p) = s + max
k∈{0,1}

k {b(p, u)− c(p)} ,

where
c(p) = s− gp

and
b(p, u) = λp[g − u(p)− (1− p)u′(p)]/r.

3Note that infinitesimal changes of the belief are always downward, so strictly speaking only the
left-hand derivative of the value function u matters here. While this turns out to be of no relevance to
the single-agent and cooperative cases, we will indeed see equilibria of the strategic experimentation
game where a player’s payoff function is not of class C1.
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Clearly, c(p) is the opportunity cost of playing R; the other term, b(p, u), is the (dis-
counted) expected benefit of playing R, and has two parts: λp[g−u(p)] is the expected
value of the jump to u(1) = g should a breakthrough occur; −λp(1−p)u′(p) is the neg-
ative effect on the overall payoff should no breakthrough occur. The agent is indifferent
between the two options when cost equals expected benefit, each option resulting in
u(p) = s. Thus she is effectively unrestricted by the discrete nature of her choice; as
usual, there is no scope for randomization in this single-agent decision problem.

So, when it is optimal to play S (k∗ = 0), u(p) = s as one would expect; and when
it is optimal to play R (k∗ = 1), u satisfies the first-order ODE

λp(1− p)u′(p) + (r + λp)u(p) = (r + λ)gp, (1)

which has the solution
V1(p) = gp + C (1− p) Ω(p)µ (2)

where
Ω(p) = (1− p)/p and µ = r/λ.

Ω(p) denotes the odds ratio at the belief p, and µ highlights the interplay between the
discount rate and the expected delay before a breakthrough occurs. The first term,
gp, is the expected payoff from committing to the risky arm, while the second term
(the solution to the homogeneous equation) captures the option value of being able to
change to the safe arm. At sufficiently optimistic beliefs, this option value is positive,
implying a positive constant of integration C and a convex solution V1.

Proposition 2.1 (Single-agent optimum) In the single-agent problem, there is a
cut-off belief p∗1 given by

p∗1 =
µs

(µ + 1)(g − s) + µs
< pm (3)

such that below the cut-off it is optimal to play S and above it is optimal to play R.
The value function V ∗

1 for the single-agent is given by

V ∗
1 (p) = gp + (s− gp∗1)

(
1− p

1− p∗1

) (
Ω(p)

Ω(p∗1)

)µ

(4)

when p > p∗1, and V ∗
1 (p) = s otherwise.

Proof: The expression for p∗1 and the constant of integration in (4) are obtained by
imposing V ∗

1 (p∗1) = s (value matching) and (V ∗
1 )′(p∗1) = 0 (smooth pasting). Optimality

follows by standard verification arguments.

The value function for a single agent is illustrated in Figure 1 – it is the lower
of the two curves. (The solid kinked line is the payoff from the myopic strategy; the
upper curve is relevant for the next section.) Note that an individual agent can never
be forced to accept a worse payoff, since any player can always act unilaterally (see
Lemma 4.2).
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Figure 1: Payoffs for a myopic agent, a single agent, and two agents cooperating

This solution exhibits all of the familiar properties which were elegantly described in
Rothschild (1974): the optimal strategy has a cut-off where the experimenter changes
irrevocably from R to S; there are occasions where the experimenter makes a mistake
by changing from R to S although the risky action is actually better (R is good); the
probability of mistakes decreases as the experimenter becomes more patient, and as
the expected reward from the risky action increases.

3 The N-Agent Cooperative Problem

Now suppose that there are N ≥ 2 identical agents (same prior belief, same discount
rate), each with a replica two-armed bandit (same safe payoff, same flow payoff arriving
according to independent and identical exponential distributions), who work coopera-
tively, i.e. want to maximize the average expected payoff. Information is public: the
players can observe each other’s actions and outcomes, so the players hold a common
belief at each moment of time.

If K of them play R over a period of time dt, then, if a breakthrough occurs they all
change to R else their belief decays K-times as fast. Whenever the risky arm is good,
the probability of none of them achieving a breakthrough is (1−λ dt)K = 1−Kλ dt, the
probability of exactly one of them achieving a breakthrough is Kλ dt(1 − λ dt)K−1 =
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Kλ dt, and the probability of more than one of them achieving a breakthrough is
negligible.4

Lemma 3.1 In the N-agent cooperative problem, it is optimal for all players to play
R or for none of them to do so.

Proof: Let u be the value function for the cooperative problem, expressed as av-
erage payoff per player. When the current belief is p and the current choice is for K
agents to play R, the average expected current payoff is r

[
(1− K

N
)s + K

N
gp

]
dt. Paral-

leling the calculation for the single-agent problem, we see that the discounted expected
continuation payoff is

(1− r dt) {u(p) + Kλp[g − u(p)− (1− p)u′(p)] dt}

and so the average expected total payoff is

u(p) + r
{
(1− K

N
)s + K

N
gp + Kλp[g − u(p)− (1− p)u′(p)]/r − u(p)

}
dt .

Thus the value function satisfies the Bellman equation

u(p) = max
K∈{0,1,...,N}

{
(1− K

N
)s + K

N
gp + Kλp[g − u(p)− (1− p)u′(p)]/r

}
,

or equivalently
u(p) = s + max

K∈{0,1,...,N}
K {b(p, u)− c(p)/N} .

Once again, the maximand is linear in K, and the cooperative is indifferent between all
levels of K when c(p)/N , the shared opportunity cost of playing R, equals b(p, u), the
full expected benefit, each of them resulting in u(p) = s. Thus at all beliefs K∗ = N
or K∗ = 0 is optimal.

So, when it is optimal for them all to play S, u(p) = s as usual; and when it is
optimal for them all to play R, u satisfies

Nλp(1− p)u′(p) + (r + Nλp)u(p) = (r + Nλ)gp (5)

which is like equation (1) with λ replaced by Nλ (reflecting an N -times faster rate of
information acquisition). This has the solution

VN(p) = gp + C (1− p) Ω(p)µ/N . (6)

Proposition 3.1 (Cooperative solution) In the N-agent cooperative problem, there
is a cut-off belief p∗N given by

p∗N =
µs

(µ + N)(g − s) + µs
< p∗1 (7)

4Again, we are ignoring terms of order o(dt).
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such that below the cut-off it is optimal for all to play S and above it is optimal for all
to play R. The value function V ∗

N for the N-agent cooperative is given by

V ∗
N(p) = gp + (s− gp∗N)

(
1− p

1− p∗N

) (
Ω(p)

Ω(p∗N)

)µ/N

(8)

when p > p∗N , and V ∗
N(p) = s otherwise.

Proof: As Lemma 3.1 reduces the cooperative problem to a binary choice, the same
arguments as in the proof of Proposition 2.1 apply.

The value function for either member of a two-agent cooperative is illustrated in
Figure 1 – it is the upper of the two curves. The cut-off belief p∗N is increasing in µ
and decreasing in N , and it is straightforward to show that each player’s payoff V ∗

N(p)
increases in N over the range of beliefs where playing the risky arm is optimal.

Note that the average payoff of the players in any N-player problem can never
be higher than V ∗

N(p), since the cooperative can always replicate their strategies (see
Lemma 4.2). In this sense, the above proposition determines the efficient experimen-
tation strategies for N players. More precisely, we can distinguish two aspects of
efficiency here. Given a strategy profile {(k1,t, . . . , kN,t)}t≥0 for the N players, the sum
Kt =

∑N
n=1 kn,t measures how many risky arms are used at a given time t. We will

call this number the intensity of experimentation. On the other hand, the integral∫∞
0 Kt dt measures how much the risky arms are used overall. We will call this number

the amount of experimentation that is performed.

In fact, the amount of experimentation depends only on the initial belief and the
belief at which all experimentation ceases, and is independent of the intensity.

Lemma 3.2 If all experimentation ceases when the common belief decays to pc < p0,
then the amount of experimentation performed is (ln Ω(pc)− ln Ω(p0)) /λ.

Proof: With an intensity of experimentation Kt, the change in the belief is given by
dp = −Ktλp(1− p) dt when no success occurs. Thus

∫ ∞

0
Kt dt = −1

λ

∫ pc

p0

dp

p(1− p)
=

1

λ

[
ln Ω(p)

]pc

p0

.

With this lemma, Proposition 3.1 implies that the efficient amount of experimen-
tation is (ln Ω(p∗N)− ln Ω(p0)) /λ. The efficient intensity of experimentation exhibits
a bang-bang feature, being N when the current belief is above p∗N , and 0 when it is
below. Thus, the efficient intensity is maximal at early stages, and minimal later on.

As we shall see next, Markov equilibria of the N -player strategic problem are never
efficient. Although it is possible to approach the efficient amount of experimentation in
such an equilibrium, the intensity of experimentation will always be inefficient because
of each player’s incentive to free-ride on the efforts of the others.
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4 The N-Player Strategic Problem

We continue to assume that the players have the same prior belief, the same discount
rate, replica two-armed bandits, and that information is public. We consider stationary
Markovian pure strategies with the common belief as the state variable.

Let kn ∈ {0, 1} indicate the current choice of player n between S (kn = 0) and R
(kn = 1); let K =

∑N
n=1 kn and K¬n = K − kn, so that K¬n summarizes the current

choices of the other players. Taking into account the information generated if the other
players play R, we see that player n’s value function satisfies the Bellman equation

un(p) = max
kn∈{0,1}

{(1− kn)s + kngp + (kn + K¬n)λp[g − un(p)− (1− p)u′n(p)]/r} ,

or in terms of opportunity cost and expected benefit

un(p) = s + K¬n b(p, un) + max
kn∈{0,1}

kn {b(p, un)− c(p)} .

Immediately we see that the best response, k∗n(p), is determined by comparing the
opportunity cost of playing R with the expected private benefit:

k∗n(p)





= 0 if c(p) > b(p, un),
∈ {0, 1} if c(p) = b(p, un),
= 1 if c(p) < b(p, un).

(9)

If the best response is to play R (k∗n = 1) then player n’s value function un satisfies

Kλp(1− p)u′(p) + (r + Kλp)u(p) = (r + Kλ)gp (10)

with K = K¬n + 1.5 The solution to (10) is

VK(p) = gp + C (1− p) Ω(p)µ/K . (11)

If the best response is to free-ride by playing S (k∗n = 0) then un satisfies

Kλp(1− p)u′(p) + (r + Kλp)u(p) = rs + Kλgp (12)

with K = K¬n. The solution to (12) is

FK(p) = s +
K(g − s)

µ + K
p + C (1− p) Ω(p)µ/K . (13)

We note for future reference that when everyone is playing pure strategies, the
average payoff satisfies

u(p) = s + Kb(p, u)− K
N

c(p) (14)

5Note that equation (10) for the strategic problem is the same ODE as that for the cooperative
problem with K players; cf. equation (5). This is because the arrival probability of a breakthrough is
the same in both situations.
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whenever K players are experimenting and the remaining N−K players are free-riding.
(This corresponds to exactly K members of an N -player cooperative experimenting,
and so (14) follows directly from the developments in the previous section.) Conse-
quently, u satisfies a convex combination of (10) and (12) with weightings K/N and
(N −K)/N , and the solution is the corresponding combination of (11) and (13).

Finally, using the indifference condition from (9) to substitute c(p) for b(p, un) in
the Bellman equation, we see that for K¬n > 0, player n is indifferent if and only if
un(p) = s + K¬n(s− gp). Note that

DK := {(p, u) ∈ [0, 1]× IR+ : u = s + K (s− gp)}
is a diagonal line in the (p, u)-plane which cuts the safe payoff line u = s at p = pm,
the myopic cut-off. If the graphs of FK¬n and VK¬n+1 meet DK¬n at the same belief
pc then F ′

K¬n
(pc) = V ′

K¬n+1(pc), which is a manifestation of the usual smooth-pasting
property. The role of the diagonals becomes apparent in the following result, which
analyses each player’s best-response correspondence over the relevant range of pairs of
beliefs and continuation payoffs.

Lemma 4.1 Assume that K players play R and N−K−1 play S for all beliefs in an
interval ]p`, pr] with p` < pr. Let the remaining player, n, have a continuation payoff
of un ≥ V ∗

1 (p`) at the belief p`. There is an interval ]p`, p` + ε] ⊆ ]p`, pr] such that
if (p`, un) lies above DK, then player n’s best response on ]p`, p` + ε] is R; whereas if
(p`, un) lies below DK, then player n’s best response on ]p`, p` + ε] is S.

Proof: See the Appendix.

Note that this result holds even for K = 0, D0 being the line u = s. The result
is illustrated for N = 2 in Figure 2 where the solid kinked line is the payoff from the
myopic strategy, and the solid curve the payoff from the single-agent optimal strategy.

We now derive some bounds on the players’ payoffs in any Markov perfect equilib-
rium.

Lemma 4.2 In any Markov perfect equilibrium of the N-player strategic game, the
average payoff can never exceed V ∗

N and no individual payoff can fall below V ∗
1 .

Proof: The upper bound follows immediately from the fact that the cooperative
solution maximizes the average payoff. As to the lower bound, we know that V ∗

1 (p) =
s+max {b(p, V ∗

1 )− c(p), 0} with b(p, V ∗
1 ) > 0, that player n’s payoff satisfies un(p) = s+

K¬n b(p, un) + max {b(p, un)− c(p), 0}, and that in any equilibrium un(1) = V ∗
1 (1) = g

and un(0) = V ∗
1 (0) = s. If un were to fall below V ∗

1 , there would have to be some belief
p′ such that un(p′) < V ∗

1 (p′) and u′n(p′) ≤ (V ∗
1 )′(p′), implying that b(p′, un) > b(p′, V ∗

1 ).
Thus we would obtain the chain of inequalities

max {b(p′, V ∗
1 )− c(p′), 0} > K¬n b(p′, un) + max {b(p′, un)− c(p′), 0}

≥ K¬n b(p′, V ∗
1 ) + max {b(p′, V ∗

1 )− c(p′), 0}
≥ max {b(p′, V ∗

1 )− c(p′), 0} ,

12
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Figure 2: Characterization of best responses in the two-player case

which is a contradiction.

We can use the above results to show the following.

Proposition 4.1 (Inefficiency) All Markov perfect equilibria of the N-player strat-
egic game are inefficient.

Proof: Since the average payoff lies between V ∗
1 and V ∗

N (Lemma 4.2), there must be
some belief greater than p∗N where the payoff of each player is below DN−1 and above
D0, in which case the efficient strategies from Proposition 3.1 are not best responses
(Lemma 4.1).

The intuition for this result is simple. Along the efficient experimentation path,
the benefit of an additional experiment, b(p, V ∗

N), tends to 1/N of its opportunity cost,
c(p)/N , as p approaches p∗N . From the perspective of a self-interested player, therefore,
the benefit of an additional experiment drops below the full opportunity cost, c(p), so
it becomes optimal to deviate from the efficient path by using S instead of R. Thus,
the incentive to free-ride on the experimentation efforts of the other players makes it
impossible to reach efficiency.
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In the following two sections we turn to the question as to what can be achieved in
Markov perfect equilibria. We shall consider symmetric mixed-strategy equilibria and
asymmetric pure-strategy equilibria of the N -player game.

5 Symmetric Equilibrium

Since the efficient strategy profile is symmetric and Markovian with the belief as state
variable, it is natural to ask what outcomes can be achieved in symmetric Markovian
equilibria of the N -player game. We maintain the assumptions of the previous sections.

It is clear from Lemma 4.1 that there is no symmetric equilibrium in pure strategies.
We therefore need to allow agents to use mixed strategies. Following Bolton and Harris
(1999), we actually consider the time-division game in which agent n allocates a fraction
κn of the current period [t, t + dt[ to R, and the remainder to S. In other words, κn

is the derivative with respect to calendar time of the total time player n spends on R.
We shall interpret this as the player using the mixed strategy that places probability
κn on playing R, and the remainder on S.6

So, let κn ∈ [0, 1] indicate the current decision of player n, K =
∑N

n=1 κn, and
K¬n = K−κn. Once again taking into account the information generated by the other
players, we see that player n’s value function satisfies the Bellman equation

un(p) = max
κn∈[0,1]

{(1− κn)s + κngp + (κn + K¬n)λp [g − un(p)− (1− p)u′n(p)] /r} ,

or alternatively

un(p) = s + K¬n b(p, un) + max
κn∈[0,1]

κn {b(p, un)− c(p)} .

Again the best response, κ∗n(p), is determined by comparing the opportunity cost
of experimentation with the expected benefit:

κ∗n(p)





= 0 if c(p) > b(p, un),
∈ [0, 1] if c(p) = b(p, un),
= 1 if c(p) < b(p, un).

In any Markov perfect equilibrium of the time-division game, player n’s value func-
tion will be defined piecewise: when all the time is devoted to S it satisfies equation (12)
with K = K¬n and is of the form FK¬n ; when all the time is devoted to R it satisfies
equation (10) with K = K¬n + 1 and is of the form VK¬n+1; and when the time is
divided strictly between S and R it satisfies

λp(1− p)u′(p) + λpu(p) = (r + λ)gp− rs, (15)

6One can make this interpretation mathematically precise by using a time-alternation approach to
randomization in continuous time; see Harris (1993) or Keller and Rady (2003) for this approach in
stochastic differential games.
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which has the (strictly convex) solution

W (p) = s + (µ + 1)(g − s) + µs(1− p) ln Ω(p) + C (1− p). (16)

Note that, when K¬n > 0, the diagonal DK¬n separates the region where player n uses
the risky arm all the time from the region where he uses both arms a positive fraction
of the time; and if the graphs of the relevant solutions Wn and VK¬n+1 meet DK¬n

at the same belief pc then W ′
n(pc) = V ′

K¬n+1(pc). This implies that in a symmetric
equilibrium, the point where the players change from using the risky arm all the time
to using both arms a positive fraction of the time lies on the diagonal DN−1, and here
we have smooth pasting of the relevant solutions W and VN .

Our next result describes the unique symmetric Markov perfect equilibrium of the
strategic experimentation game.

Proposition 5.1 (Symmetric equilibrium) The N-player time-division game has
a unique symmetric equilibrium in Markovian strategies with the common posterior
belief as the state variable. In this equilibrium, all time is devoted to the safe arm at
beliefs below the single-player cut-off p∗1; all time is devoted to the risky arm at beliefs
above a cut-off p†N > p∗1 solving

(N − 1)

(
1

Ω(pm)
− 1

Ω(p†N)

)
= (µ + 1)

[
1

1− p†N
− 1

1− p∗1
− 1

Ω(p∗1)
ln

(
Ω(p∗1)

Ω(p†N)

)]
;

and a positive fraction of time is devoted to each arm at beliefs strictly between p∗1 and
p†N . The fraction of time that each player allocates to the risky arm at such a belief is

κ†N(p) =
1

N − 1

W †(p)− s

s− gp
(17)

with

W †(p) = s + µs

[
Ω(p∗1)

(
1− 1− p

1− p∗1

)
− (1− p) ln

(
Ω(p∗1)
Ω(p)

)]
, (18)

which is each player’s value function on [p∗1, p
†
N ] and satisfies W †(p∗1) = s, (W †)′(p∗1) =

0. Below p∗1 the value function equals s, and above p†N it is given by VN(p) from
equation (6) with VN(p†N) = W †(p†N).

Proof: Consider a function W that solves (15) below and to the left of DN−1.
Lemma 4.2 implies that for W to be part of a common equilibrium value function, it
cannot reach the level s to the right of p∗1 (else it would fall below V ∗

1 ), and also that
it cannot stay above the level s on [p∗N , p∗1] (else it would lie above V ∗

N in some interval
of beliefs). So in a symmetric equilibrium there must be a belief in [p∗N , p∗1] where the
relevant function W assumes the value s. Let pc be the largest such belief, so that
W ′(pc) ≥ 0. By (15), this implies pc ≥ p∗1, so the only possibility is that the solution
to (15) has pc = p∗1, which implies W ′(pc) = 0.

Using W (p∗1) = s in equation (16) determines the constant of integration C, giving
the expression (18) for the value function over the range where both arms are used
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for a positive fraction of time. Given this function, the expression (17) for the share
of time κ†N allocated to R follows from the Bellman equation; more precisely, we use
the indifference condition to substitute c(p) for b(p, un) and then exploit the fact that
K¬n = (N − 1)κ†N by symmetry. As W † is strictly convex, κ†N is strictly increasing to
+∞ as p ↑ pm. Thus there is a unique cut-off p†N < pm where κ†N(p†N) = 1. Simplifying
W †(p†N)− s = (N − 1)(s− p†Ng) gives the equation satisfied by p†N .

Several points are noteworthy. First, the lower cut-off belief at which all experi-
mentation in the symmetric MPE stops does not depend on the number of players;
by Lemma 3.2, this means that the same amount of experimentation is performed, no
matter how many players participate. This is very strong evidence of the free-rider
effect at work here.

Second, the lower cut-off equals the optimal cut-off from the single-player problem.
While it is clear that experimentation in a symmetric equilibrium cannot stop at a belief
above the single-agent cut-off, it is remarkable that experimentation does not extend
at all to beliefs below that cut-off. As pointed out in the introduction, this means that
we do not have the encouragement effect of Bolton and Harris (1999). In their model,
an agent who on his own would be indifferent between the two actions, strictly prefers
the risky action when other players are present. In fact, his own experimentation may
produce favourable information that will make everybody more optimistic, and thus
encourage the other players to perform some more experimentation themselves from
which the first player will eventually benefit. Note that it is crucial for this argument
that after a favourable experimentation outcome of one’s own, there still be something
to learn from other players’ future outcomes. This is obviously not the case here
because the first breakthrough resolves all uncertainty.

Third, the expected equilibrium payoff that each player obtains at beliefs where
both arms are used a positive fraction of time does not depend on the number of players
either; see equation (18). The reason for this is that the relevant ODE, equation (16), is
just the indifference condition of a single player, and that the boundary condition at the
lower cut-off belief is the same for any number of players. Put differently, the combined
intensity of experimentation by N − 1 players when both arms are used a positive
fraction of time is independent of the total number of players, N ; see equation (17).
Over that range of beliefs, therefore, a player’s best response and payoff do not depend
on N either. What does depend on N is the upper cut-off belief, of course: with more
players, the temptation to free-ride becomes stronger, and p†N increases. Formally, this
is most easily seen from equation (17): given that κ†N(p†N) = 1 and W † is a strictly
increasing function, p†N must increase with N . Informally, the indifference diagonal
DN−1 rotates clockwise as N increases. From this, it is straightforward to show that
each player’s payoff is strictly increasing in N over the range of beliefs where the risky
arm is used all the time.

Fourth, not only is the amount of experimentation inefficiently low (as can be seen
from the lower cut-off being above the cooperative cut-off, and Lemma 3.2) and the
intensity of experimentation inefficiently low (at any belief between p∗N and p†N there is
strictly too little use of risky arms), but the acquisition of information is slowed down
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so severely that the equilibrium amount of experimentation is not even performed in
finite time – as the following result shows, the players never actually stop allocating at
least some of their time to playing the risky arm.7

Corollary 5.1 Starting from a prior belief above the single-agent cut-off p∗1, the play-
ers’ common posterior belief never reaches this cut-off in the symmetric Markov perfect
equilibrium.

Proof: Close to the right of p∗1, the dynamics of the belief p given no breakthrough
are

dp = −λ
N

N − 1

W †(p)− s

s− gp
p (1− p) dt.

(If a breakthrough occurs, the statement of the corollary is trivially true.) As W †(p∗1) =
s, (W †)′(p∗1) = 0 and (W †)′′(p∗1) > 0, we can find a positive constant c such that

λ
N

N − 1

W †(p)− s

s− gp
p (1− p) < c (p− p∗1)

2

in a neighbourhood of p∗1. Starting from an initial belief p0 > p∗1 in this neighbourhood,
consider the dynamics

dp = −c (p− p∗1)
2 dt.

The solution of these dynamics with initial value p0 is

pt = p∗1 +
1

ct + (p0 − p∗1)−1
.

Obviously, this solution does not reach p∗1 in finite time. Since the modified dynamics
have a higher rate of decrease than the original ones, this result carries over to the true
evolution of beliefs.

This is the same result as Bolton and Harris (1999) obtain for the symmetric equi-
librium of their game. In both instances, the amount of time spent experimenting
falls to zero quadratically at the cut-off belief where experimentation stops forever, as
indicated in Figure 3. This is because the equilibrium value function reaches the level
s smoothly at the cut-off belief where all experimentation stops. The following simple
argument shows why there must be smooth pasting at this cut-off. Suppose we had
a symmetric equilibrium where the common payoff function u hits the level s at the
belief p̃ with slope u′(p̃+) > 0. At beliefs immediately to the right of p̃, we would
then have b(p, u) = c(p), implying λp̃[g − s]/r = c(p̃) + λp̃(1 − p̃)u′(p̃+)/r > c(p̃) by
continuity. Immediately to the left of p̃, the fact that u′(p) = 0 would then imply
b(p, u) = λp[g − s]/r > c(p), so there would be an incentive to deviate from S to R.

7To some readers, this phenomenon might be familiar from the production of joint research papers.
Once the initial enthusiasm has waned, each co-author might spend less and less time working on the
paper, without actually withdrawing completely – and the paper might never be put out of its misery.
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Figure 3: Total experimentation in the N -player symmetric equilibrium

6 Asymmetric Equilibria

We now turn to the behaviour that can arise in asymmetric pure-strategy Markov
perfect equilibria. We will present two types of such equilibria. The first type of
MPE consists of strategies where the action of each player switches at finitely many
beliefs. As a consequence, there is a last point in time at which any player is willing
to experiment. As in the symmetric MPE, the belief at which this happens (provided
no breakthrough has occurred) will be the single-player cut-off p∗1. So a similar in-
efficiency arises: both the amount and the intensity of experimentation are too low.
Nevertheless, these equilibria differ in terms of the time taken to reach the belief where
experimentation ceases, and also in terms of aggregate payoffs.

In the second type of MPE, each player’s strategy has infinitely many switch-points,
and although there is a finite time after which no player ever experiments again, no
single player has a last time for experimentation. That is, somewhat prior to reaching a
certain cut-off belief, the players switch roles after progressively smaller belief revisions,
and infinitely often. We will see that we can take this cut-off belief arbitrarily closely
to the efficient cut-off. Still, the equilibrium is inefficient: although an almost efficient
amount of experimentation is performed, it is performed with an inefficient intensity.
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6.1 Finitely many switches

For ease of exposition, we focus on the two-player case initially and then extend our
results to more than two players. From Figure 2, we can see that a Markov perfect
equilibrium with two players has three phases. When the players are optimistic, both
play R; when they are pessimistic, both play S; in between, one of them free-rides
by playing S while the other is playing R. We shall see that this mid-range of beliefs
further splits into two regions: the roles of free-rider and pioneer are assigned for the
whole of the upper region; in the lower region, players can swap roles.

The next proposition first describes the ‘simplest’ such equilibrium, in which one
particular player experiments and the other free-rides throughout the lower region, and
then characterizes all pure-strategy MPE where players’ actions switch at finitely many
beliefs.

Proposition 6.1 (Pure strategies, finite number of switches) In the two-player
strategic experimentation problem, there is a pure-strategy Markov perfect equilibrium
where the players’ actions depend as follows on the common posterior belief. There
are two cut-offs, p∗1 and p̂2, and one switch-point, p̂s, with p∗1 < p̂s < p̂2 such that:
on ]p̂2, 1], both players play R; on ]p̂s, p̂2], player 1 plays R and player 2 plays S; on
]p∗1, p̂s], player 1 plays S and player 2 plays R; on [0, p∗1], they both play S. The low
cut-off, p∗1, is given in Proposition 2.1; the switch-point and other cut-off are given by
the solution to (

Ω(p̂s)
Ω(p∗1)

)µ+1

+ (µ + 1)
[

Ω(p̂s)
Ω(pm)

− 1
]
− 1 = 0

and the solution to
{

(µ + 1)(2µ + 1)
µ

Ω(p̂s)
Ω(pm)

− µ2 + (µ + 1)(µ + 2)
µ

} (
Ω(p̂2)
Ω(p̂s)

)µ+1

+(µ+1)
[

Ω(p̂2)
Ω(pm)

− 1
]
−1 = 0.

Moreover, in any pure-strategy MPE with finitely many switch-points there are two
cut-offs, p∗1 and p̄2, and one switch-point, p̄s, with p∗1 < p̄s ≤ p̄2, and with p̂s ≤ p̄s and
p̄2 ≤ p̂2, such that: on ]p̄2, 1], both players play R; throughout ]p̄s, p̄2], one player plays
R and the other plays S; on ]p∗1, p̄s], the players share the burden of experimentation
by taking turns; on [0, p∗1], they both play S.

Proof: Here we just sketch the proof; for details, see the Appendix.

We first note that there must be a last player to experiment since the level u = s
can only be reached via the part of the (p, u)-plane where R and S are mutual best
responses. This player, say player 2, will necessarily stop experimenting at the single-
agent cut-off belief p∗1.

We can now work backwards (in time) from (p∗1, s). On an interval to the right
of p∗1, player 2 plays R and his continuation value (as a function of the belief) is a
slowly rising convex function. On this interval, player 1 free-rides by playing S and her
continuation value is a steeply rising concave function. Thus, at some belief, player 1’s
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value meets D1 while player 2’s value is still below it – this defines p̂s. On an interval to
the right of p̂s, player 1 is content to be a pioneer and play R, while player 2 responds
by free-riding with S. At some belief, player 2’s value meets D1 while player 1’s value
is yet further above it – this defines p̂2. On the interval to the right of p̂2, both players
optimally play R.

As to other equilibria of this sort, we again work backwards from (p∗1, s). If the
players swap roles (at least once) before the value of either of them has met D1, then
the one with the higher value will be below that of player 1 in the ‘simplest’ equilibrium
sketched above, and the one with the lower value will be above that of player 2. At
some belief, the value of one of the players meets D1 while the other’s value is still
(weakly) below it – this defines p̄s > p̂s. The one with the higher value plays R to the
right of p̄s, while the other one free-rides until the value meets D1 – this defines p̄2 < p̂2

– and then joins in by playing R.

The value functions of the two players in the ‘simplest’ equilibrium (with cut-offs p∗1
and p̂2, and switch-point p̂s) are illustrated in Figure 4, the faint straight line being D1.
Observe that the higher payoff meets this line at p̂s while the lower payoff meets it at
p̂2. Note also that a player’s payoff function is concave where the player is a free-rider,
and convex otherwise.
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Figure 4: Payoffs in the simplest two-player asymmetric equilibrium
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Before moving on to the N -player case, we note that it is not very difficult to
construct equilibria in which the players take pure actions in some intervals of beliefs,
and use both arms a positive fraction of the time in others. As these do not seem to
lead to further insights, we do not pursue this issue further.

The N-player case

With N players, the equilibrium strategies will depend on where the players are in the
(p, u)-plane, specifically where they are in terms of the diagonals D0, D1, . . . , DN−1. If
they are all weakly below D0 (i.e. u = s), then S is the dominant strategy, and if they
are all above DN−1, then R is the dominant strategy; elsewhere we will look for mutual
best responses involving some players taking the risky action and some playing safe.

If we define N +1 “bins” as the areas between DK−1 and DK (K = 1, . . . , N−1),
with bin 0 being D0 and bin N being the area above DN−1, then mutual best responses
will depend on how many players are in which bins. The size of this combinatorial task
is reduced by first noting that we are seeking a relatively small number of cases: when
it is the case that just one player is playing R, when two, and so on; then grouping the
combinations of players-in-bins so that each grouping corresponds to a certain number
playing R and the rest playing S; and finally allocating those actions to the various
players.

Define areas of the plane as follows:

AK := {(p, u) ∈ [0, 1]× IR+ : u > s + K(s− gp)}
BK := {(p, u) ∈ [0, 1]× IR+ : u ≤ s + K(s− gp)}

so that AK is the area above DK , and BK is the area below it. The various cases are
then given by:

(0) all players in B0;

(1) at least 1 player in A0, at least N−1 players in B1;

(2) at least 2 players in A1, at least N−2 players in B2;

...

(K) at least K players in AK−1, at least N−K players in BK ;

...

(N−1) at least N−1 players in AN−2, at least 1 player in BN−1;

(N) all players in AN−1.

To see that these cases exhaust all the possible combinations, observe that if we are
not in case (0), then at least 1 player is in A0; if at least N−1 players are in B1, then
we have case (1), else at least 2 players are in A1; if at least N−2 players are in B2,
then we have case (2), else at least 3 players are in A2; and so on.
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Lemma 6.1 In case (K), the mutual best responses are such that K players in AK−1

play R, and N−K players in BK play S. Moreover, when all players are playing mutual
best responses any player in AK plays R, any player in BK−1 plays S, and the players
(if any) between DK−1 and DK are assigned actions arbitrarily so that the experimental
intensity is as prescribed.

Proof: Consider case (K).

Assume that K−1 players in AK−1 play R, and N−K players in BK play S. Then
the best response of the remaining player in AK−1 is to play R, since he is above DK−1

(see Lemma 4.1).

Assume that K players in AK−1 play R, and N−K−1 players in BK play S. Then
the best response of the remaining player in BK is to play S, since she is below DK

(see Lemma 4.1).

Since all the safe players are in BK , it follows that any player in AK plays risky;
similarly, since all the risky players are in AK−1, it follows that any player in BK−1

plays safe; any unassigned player must be between DK−1 and DK , and who plays which
action is arbitrary as long as there are K risky players and N−K safe players.

Generalizing the two-player situation, we work backwards (in time) from case (0),
i.e., from (p∗1, s). On an interval to the right of p∗1, we are in case (1), where one player
experiments while the rest free-ride. At some point, the value function of (at least)
one player meets D1; that player then plays R while any player who is still below D1

indulges in a free-ride until two players have met D1. Now we are in case (2), where two
players are above D1 and playing R while the rest are still below D2 and free-riding.
We continue the construction in the obvious way, with more and more experimenters
and fewer and fewer free-riders, until everyone is above DN−1 and playing R.

Again, there emerges a ‘simplest’ equilibrium. Number the players 1 through N .
Whenever we enter case (K), look at each player in turn, starting with the lowest
numbered, and assign him the risky action provided he is in the appropriate bin, else
let him free-ride; continue until K players are assigned to R, and let the rest free-ride.
(When any player crosses a diagonal, thereby moving into a different bin, we might
have to reassign actions.) The beliefs at which we move from one case to an adjacent
case are then as high as possible in equilibrium.

These actions are illustrated for the ‘simplest’ three-player equilibrium in Figure 5
(at the end of the paper), the faint dotted line showing the efficient outcome. To the
right of p∗1, in case (1), player 1 experiments while the other two free-ride until, at p̄2,
we enter case (2), which has four regions. Now, player 1 free-rides on the experiments
of the others as long as he is below D1; when he crosses into a different bin, actions are
reassigned so that players 1 and 2 are the experimenters as long as the third player is
below D2. When she crosses that diagonal, actions are again reassigned so that players
1 and 3 are the experimenters until player 2 also hits D2. Actions are reassigned
for a third time, R now being dominant for both players 2 and 3, so player 1 has

22



another free-ride as long as he is below D2. At p̄3 we enter case (3) and all players are
experimenting.

Welfare results

Note that with finitely many beliefs at which players change actions, the average payoff
is determined by a decreasing sequence of cut-off beliefs p̄N , p̄N−1, . . . , p̄K , . . . , p̄1 at
which the intensity of experimentation drops from N to N − 1, from N − 1 to N − 2,
and so on.8 The cut-off belief at which all experimentation stops, p̄1, is again that of
a single agent, namely p∗1; in particular, it is the same for all equilibria of this type
(and thus they all exhibit the same amount of experimentation – see Lemma 3.2),
whereas the higher cut-off beliefs are determined endogenously by how the burden
of experimentation is shared at beliefs to the right of p∗1 (and hence the intensity of
experimentation will vary across these equilibria). Only for beliefs in a neighbourhood
of p∗1 – specifically when fewer than two players are experimenting – is the average
payoff the same across all these equilibria (see the note regarding equation (14)).

The ‘simplest’ equilibria described above are also the ‘worst’ from an efficiency
perspective. This is because the cut-off beliefs at which the intensity of experimentation
drops from K to K−1 are as high as they can be in equilibrium. The ‘simplest’ equilibria
therefore exhibit the slowest experimentation – in equilibria where the cut-off beliefs
are lower, greater intensities of experimentation are maintained for a wider range of
beliefs, so the same overall amount of information is acquired faster. As the following
proposition shows, such equilibria are more efficient.

Proposition 6.2 (Welfare ranking) In terms of aggregate payoffs, the pure-strategy
Markov perfect equilibria with finitely many switches can be partially ordered as follows:
consider two equilibria characterized by cut-offs {p̄K}N

K=1 and {p̄′K}N
K=1, respectively; if

p̄K ≤ p̄′K for all K with at least one inequality being strict, then the equilibrium with
the lower cut-off(s) yields a higher aggregate payoff.

Proof: Consider a pure-strategy MPE with cut-offs {p̄K}N
K=1. For K = 1, . . . , N

let uN,K denote the solution to the ODE (14) whenever we are in case (K), with
uN,1(p̄1) = s and uN,K(p̄K) = uN,K−1(p̄K) for K = 2, . . . , N .

The players’ average payoff function is uN,K−1 just to the left of p̄K ; to the right
of p̄K it is uN,K . It is straightforward to verify that u′N,K(p) > u′N,J(p) whenever
uN,K(p) = uN,J(p) > s and K > J , which in turn implies that if we increase p̄K to
p̄′K < p̄K+1, then the average payoff on [p̄K , p̄′K ] is now only uN,K−1 whereas it was
uN,K , and to the right of p̄′K it is still of the form uN,K but now lower since its value
at p̄′K has decreased. To the left of p̄K , if the cut-offs are unchanged then so is the
average payoff.

8For convenience, we shall also write p̄N+1 = 1.
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The way to achieve a more efficient equilibrium is to move the payoff functions
towards each other by sharing the burden of experimentation more equally, that is, by
switching roles more often. The least upper bound on aggregate payoffs is then given
by a situation of payoff symmetry where each player obtains exactly 1/N of the payoff
of the cooperative strategy that has all N players experiment above DN−1 and K < N
players experiment between the diagonals DK and DK−1.

9 This is the same payoff as
if each player allocated exactly K/N of his time to the risky arm on the entire region
between DK and DK−1 (and so the players cross successive diagonals together), and
hence clearly different from the payoff in the symmetric mixed-strategy equilibrium
where the fraction of time allocated to the risky arm falls gradually from 1 to 0 over
the region below DN−1.

In particular, there is a region of beliefs close to the single-agent cut-off where
the intensity of experimentation in the symmetric equilibrium is lower than even in
the ‘worst’ asymmetric one. By the logic of the last proposition, this ought to mean
that welfare in the symmetric equilibrium should be lower at those beliefs than in any
asymmetric equilibrium. The following proposition confirms this.

Proposition 6.3 (Welfare comparison with symmetric MPE) For beliefs in the
interval ]p∗1, p

†
N ] the average payoff in any pure-strategy Markov perfect equilibrium

with finitely many switches is strictly greater than the common payoff in the symmetric
mixed-strategy equilibrium.

Proof: See the Appendix.

The intuition for this result is that, at each belief in the stated range, players face
a coordination problem. If this coordination problem is solved by mixing (i.e., using
both arms a positive fraction of the time), there is a positive probability for players to
mis-coordinate, and they do worse in aggregate.10

6.2 Infinitely many switches

Propositions 6.2 and 6.3 show that alternating between the roles of free-rider and
pioneer as the belief changes is an effective (and incentive-compatible) way of increasing
players’ aggregate payoff. Players can do even better if we allow them to switch between
actions at infinitely many beliefs. In that case, they can take turns experimenting in

9This least upper bound on the players’ average payoff function is easy to calculate. Let pN,1 = p∗1,
and let ūN,1 solve (14) with ūN,1(pN,1) = s; the cut-off pN,2 is determined by the intersection of ūN,1

with D1. Now let ūN,2 solve (14) with ūN,2(pN,2) = ūN,1(pN,2), and so on, until we have determined
pN,N by the intersection of ūN,N−1 with DN−1. Finally, let ūN,N solve (14) with value-matching at
pN,N ; the bound is the continuous function thus constructed.

10Note that if p†N < p̄N then the symmetric equilibrium would exhibit a higher intensity of experi-
mentation than the asymmetric ones at beliefs close to the rightmost cut-off p̄N , and so the symmetric
mixed-strategy equilibrium could be more efficient at beliefs above p†N . Numerically, however, we find
that the asymmetric equilibria are more efficient on the entire interval ]p∗1, 1[ .
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such a way that no player ever has a last time (or lowest belief) at which he is supposed
to use the risky arm. Surprisingly, it is then possible to reach cut-off beliefs below p∗1
in equilibrium – in fact, it is possible to (almost) attain the efficient cut-off p∗N , but it
is still reached too slowly.

The intuition for these equilibria is that for all beliefs above the cooperative cut-off
there is a Pareto gain from performing more experiments, so provided any player’s
immediate contributions are sufficiently small relative to the long-run Pareto gain,
performing experiments in turn can be sustained as an equilibrium.

The description of mutual best responses in Lemma 6.1 implies that at beliefs close
to the cooperative cut-off, any MPE must have exactly one player experimenting. The
equilibria constructed below specify a sequence of intervals of beliefs where each player
assumes the role of pioneer on every Nth interval. Moreover, the intervals are such that
a player’s expected payoff when embarking on a round of single-handed experimentation
equals s. While pinning down payoffs this way simplifies the construction, other choices
would work as well.

Proposition 6.4 (Pure strategies, infinite number of switches) For each belief
p‡∞ with p∗N < p‡∞ < p∗1, the N-player strategic experimentation game admits a pure-
strategy Markov perfect equilibrium with infinitely many switches where at least one
player experiments as long as the current belief is above p‡∞. More precisely, there
exists a strictly decreasing sequence of beliefs {p‡i}∞i=1 with p‡1 ≤ p∗1 and limi→∞ p‡i = p‡∞
such that the equilibrium strategies at beliefs below p‡1 can be specified as follows: player
n = 1, . . . , N plays R at beliefs in the intervals ]p‡n+jN+1, p

‡
n+jN ] (j = 0, 1, . . .) and S

at all other beliefs below p‡1.

Proof: See the Appendix.

The payoffs in a two-player equilibrium with an infinite number of switches are
illustrated in Figure 6. (For clarity, we focus on beliefs between p∗2 and p‡1.) Coming
from the right, a player’s value function resembles a decaying saw-tooth, with rapidly
falling concave sections (for a free-rider) alternating with slowly rising convex sections
(for a pioneer).

Note that if no breakthrough occurs, the limit belief p‡∞ is reached in finite time as
the overall intensity of experimentation is bounded away from zero at beliefs above p‡∞.
Note also that as we take p‡∞ closer to the efficient cut-off p∗N , the amount of experimen-
tation performed in equilibrium approaches the efficient amount; see Lemma 3.2. The
intensity of experimentation, however, remains inefficient; it is 1 at beliefs in ]p‡∞, p‡1],
for instance, and therefore too low relative to the efficient benchmark.
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Figure 6: Payoffs in a two-player equilibrium with an infinite number of switches

7 Concluding Remarks

There are some generalizations of our results that follow with no or relatively little
additional work. First, all our results apply to bandit problems where the known arm
generates a stationary non-deterministic stream of payoffs – we can simply reinterpret
s as the expected flow payoff. A second point is that the payoff g of an unknown arm
that proves to be good has a more general interpretation as the flow-equivalent of the
value of the continuation game that is reached after the first breakthrough. Further,
the model can be extended to a multi-armed bandit with several risky arms – the
best arm to use at any time is given by the familiar Gittins index rule. However, this
requires more effort, as even the single-agent optimum involves a time-slicing strategy.

One extension that we are actively researching is where a single breakthrough is not
fully revealing. In such a model, we would expect the encouragement effect identified
by Bolton and Harris (1999) to reappear, because at least one of a group of players
would have an incentive to continue experimenting at beliefs below the single-agent
cut-off. Such a model could also be easily adapted to situations where an event is bad
news: a ‘breakdown’ rather than a ‘breakthrough’.

A second extension that we intend to pursue is the introduction of asymmetries
between players, for example regarding the discount rate or the ability to generate
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information from their experimentation effort. This may reduce the multiplicity of
asymmetric equilibria that we have found for symmetric players. It may also allow us
to investigate the question as to with whom a given agent would choose to play the
strategic experimentation game.

More generally, we hope that exponential bandits will prove useful as building
blocks for models with a richer structure. Interesting extensions in this direction could
include rewards that depend on action profiles, unobservable outcomes, or costly com-
munication.
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Appendix

Proof of Lemma 4.1

First note that each player’s value function is continuous as a function of p and takes the value
g at p = 1 and s at p = 0; moreover it is differentiable wherever he/she chooses optimally to
change (from playing R to playing S, or vice versa) and the other players do not change – if
the right derivative is smaller, the player should change at a larger p; if the right derivative
is larger, the player should change at a smaller p.

Assume that K players play R and N−K−1 play S for all beliefs in an interval ]p`, pr]
with p` < pr. Let the remaining player, n, have a continuation payoff of un ≥ V ∗

1 (p`) at the
belief p`. Consider the response of player n on ]p`, p` + ε] ⊆ ]p`, pr].

• K > 0: If his response is R then his value function on ]p`, p` + ε] is given by VK+1 from
equation (11) with VK+1(p`) = un; if his response is S then his value function on ]p`, p` + ε]
is given by FK from equation (13) with FK(p`) = un. Now, if VK+1(p) = FK(p) = u, say,
then V ′

K+1(p) > F ′
K(p) if (p, u) lies above DK , and V ′

K+1(p) < F ′
K(p) if (p, u) lies below DK .

Thus, if (p`, un) lies on or above DK , then his best response is to “join in” by playing R;
whereas if (p`, un) lies below DK , then his best response is to free-ride by playing S, and he
can only change optimally at a belief pc ∈ ]p`, pr] where (pc, FK(pc)) is on DK .

• K = 0: If his response is S then his value function on ]p`, p` + ε] is simply s, so it must
be the case that un = s. If his response is R then his value function on ]p`, p` + ε] is given
by V1 from equation (2) with V1(p`) = un; if it is also the case that un = s and p` < p∗1 then
V ′

1(p`) < 0 and his payoff on ]p`, p` + ε] would be less than s, but if un > s or p` ≥ p∗1 then
(although maybe V ′

1(p`) < 0) his payoff on ]p`, p` + ε] is greater than s. Thus, if (p`, un) lies
above D0 (the line u = s) or if (p`, un) = (p∗1, s), then his best response is to “go it alone” by
playing R; otherwise, his best response is to acquiesce by playing S, and he can only change
optimally at a belief pc ∈ ]p`, pr] where pc = p∗1.

Finitely many switches

Before proving Proposition 6.1 we have two preliminary lemmas.
Let v and f satisfy equation (2) (pioneer) and equation (13) (free-rider, with K = 1)

respectively, with v(p∗1) = f(p∗1) = s. Let p̄v be the belief where v meets D1, and let p̄f be
the belief where f meets D1. In Lemma A.1 we show first that there is a region of the (p, u)-
plane that is bounded below by v between p∗1 and p̄v, bounded above by f between p∗1 and
p̄f , and bounded on the right by D1. Next, we show that any solution to either equation (2)
(pioneer) or equation (13) (free-rider, with K =1) that starts somewhere in that region can
exit only through D1. Then in Lemma A.2 we show that any solution to equation (6) (both
experimenting, N =2) that starts on D1 at a belief between p̄f and p̄v never hits D1 again.
(Note that in each case, what is claimed and proved is a little stronger than necessary.)

Lemma A.1 On ]p∗1, pm], v < f , v is strictly convex, f is strictly concave, and both are
strictly increasing.

Further, any function uv which satisfies equation (2) (pioneer) on [p`, pr] ⊆ [p∗1, pm] with
v(p`) < uv(p`) ≤ f(p`) is strictly convex and strictly increasing, with v(p) < uv(p) < f(p) for
p` < p ≤ pr; and any function uf which satisfies equation (13) (free-rider, with K = 1) on
[p`, pr] ⊆ [p∗1, pm] with v(p`) ≤ uf (p`) < f(p`) is strictly concave and strictly increasing, with
v(p) < uf (p) < f(p) for p` < p ≤ pr.
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Proof: Whenever v(p) = f(p), v′(p) < f ′(p) if p < pm, and v′(p) > f ′(p) if p > pm, so v
and f can cross at most twice, once on either side of pm, and, in between, v < f .

A calculation shows that the second derivative of the functions v and f has the same sign
as the constant of integration. The boundary condition v(p∗1) = s implies a positive constant
and therefore strict convexity of v, whereas the boundary condition f(p∗1) = s implies a
negative constant and therefore strict concavity of f .

Evaluating, v′(p∗1) = 0 and so v is strictly increasing on [p∗1, pm].
To show that f is strictly increasing, we first define

Zv(p) =
(r + λ)gp

r + λp
, Zf (p) =

rs + λgp

r + λp
, and L(p) = s +

g − s

1− p∗1
(p− p∗1).

Zv has the property that if uv satisfies equation (2) (pioneer), then whenever uv(p) = Zv(p)
we have u′v(p) = 0 (for p 6= 1), and whenever uv(p) < Zv(p) we have u′v(p) > 0. Similarly,
Zf has the property that if uf satisfies equation (13) (free-rider, with K =1), then whenever
uf (p) = Zf (p) we have u′f (p) = 0 (for p 6= 1), and whenever uf (p) < Zf (p) we have u′f (p) > 0.
Finally, L is the linearization of f at (p∗1, s), i.e. L(p∗1) = f(p∗1) = s, and L′(p∗1) = f ′(p∗1) =
g−s
1−p∗1

, so L(p) > f(p) for p 6= p∗1.
Zf (p) > Zv(p) whenever p < pm. Zv is strictly concave, with Zv(p∗1) = s and Zv(1) = g,

so Zv and L coincide at (p∗1, s) and (1, g), and since L is linear we have Zv(p) > L(p) on
]p∗1, 1[. Thus we have the string of inequalities:

Zf (p) > Zv(p) > L(p) > f(p)

whenever p∗1 < p < pm, showing that f is strictly increasing there.

Since uv and v both satisfy equation (2) (pioneer) on [p`, pr] with v(p`) < uv(p`), the constant
of integration for v is strictly less than that for uv; it follows from the strict convexity of v
that both constants are positive and hence that uv is strictly convex. Also, uv and v cannot
cross, so uv remains above v. If uv(p`) < f(p`), then uv remains below f on [p`, pr] since
it can only cross from below to the right of pm; if uv(p`) = f(p`), then uv falls below f
immediately to the right of p`. Consequently, uv < f on ]p`, pr], and since f < Zv there, it
follows that uv is strictly increasing.

Similarly, since uf and f both satisfy equation (13) (free-rider, with K = 1) on [p`, pr]
with f(p`) > uf (p`), the constant of integration for f is strictly greater than that for uf ; it
follows from the strict concavity of f that both constants are negative and hence that uf is
strictly concave. Also, uf and f cannot cross, so uf remains below f . Moreover, since f < Zf

on ]p∗1, pm[, it follows that uf is strictly increasing. If uf (p`) > v(p`), then uf remains above
v on [p`, pr] since it can only cross from above to the right of pm; if uf (p`) = v(p`), then uf

rises above v immediately to the right of p`. Consequently, uf > v on ]p`, pr].

Let u satisfy equation (6) (both experimenting, N =2) on [p̄, 1] for p∗1 ≤ p̄ ≤ pm and with
v(p̄) ≤ u(p̄) ≤ f(p̄).

Lemma A.2 u is strictly convex and strictly increasing.

Proof: Let uv satisfy equation (2) (pioneer) on [p̄, pm] with uv(p̄) = u(p̄). Inspection
of equations (2) (pioneer) and (6) (both experimenting, N = 2) shows that the constant of
integration for u has the same sign as that for uv, namely it is positive (by the previous
lemma). As above, the second derivative of the function u has the same sign as the constant
of integration, hence u is strictly convex.
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Since (p̄, u(p̄)) is above and to the left of the myopic payoff we have u′(p̄) > u′v(p̄), and
also u′v(p̄) ≥ 0 (by the previous lemma), hence u is strictly increasing.

Thus, we have the following result.
Fix some p̄ between p̄f and p̄v. Let U be the continuous function on [p∗1, 1] with U(p∗1) = s

that satisfies equation (13) (free-rider, with K =1) on some finite subpartition of [p∗1, p̄] and
equation (2) (pioneer) on its finite complement, such that U meets D1 at p̄; further, U satisfies
equation (6) (both experimenting, N =2) on [p̄, 1]. Then U lies between v and f below and to
the left of D1 and is strictly concave where it satisfies equation (13) (free-rider, with K =1),
strictly convex elsewhere, and strictly increasing.

Proof of Proposition 6.1

Let p̄2 denote the smallest belief where each player’s continuation payoff is (weakly) above
D1, and let p̄s denote the largest belief where each player’s continuation payoff is (weakly)
below D1; by Lemma A.1, p∗1 < p̄s ≤ p̄2 < pm.

For a belief in a neighbourhood of 1, specifically p ∈ ]p̄2, 1], R is the dominant strategy;
and for a belief in a neighbourhood of 0, specifically p ∈ [0, p∗1], S is the dominant strategy.
(We know that un(0) = s, and so S is a dominant response on any interval [0, pc] ⊆ [0, p∗1]).
For beliefs p ∈ ]p∗1, p̄s], the best response to S is to play R (act unilaterally), and the best
response to R is to play S (free-ride). Now consider beliefs p ∈ ]p̄s, p̄2]; let A be the player
whose continuation payoff crosses D1 at p̄s and let B be the player whose continuation payoff
crosses D1 at p̄2. If B plays S, then A’s best response is to play R (“go it alone”), and if B
plays R, then A’s best response is to play R (“join in”); thus R is the dominant response for
A. So, given A plays R, B’s best response is to play S (free-ride). To summarize:

Belief p 0 p∗1 p̄s p̄2 1
A’s strategy S S/R R R
B’s strategy S R/S S R
A’s continuation payoff s F1,A/V1,A V1,A V2,A

B’s continuation payoff s V1,B/F1,B F1,B V2,B

and the strategies on ]p∗1, p̄s] determine p̄s endogenously, which player plays R and which
player plays S on ]p̄s, p̄2], and p̄2 endogenously. If the players have the above continuation
payoffs, then the above strategies are best responses to each other; and if the players are
using the above strategies, then the continuation payoffs are indeed those given above. Thus
the above strategies constitute an equilibrium with the equilibrium value functions given by
the continuation payoffs.

The ‘simplest’ equilibrium is where one player, say player 1, plays S on ]p∗1, p̂s], and the
other player, player 2, plays R on this interval.11 Then player 1’s value function F1 satisfies
equation (13) and player 2’s value function V1 satisfies equation (2), with F1(p∗1) = V1(p∗1) = s.
Lemma A.1 shows that F1 meets D1 at a smaller belief than does V1, and that F1 > V1 on
]p∗1, p̂s]; that is, player 1 must be A and switch from playing R on ]p̂s, p̂2], and player 2 must

11p̂s is the same belief as p̄f used in Lemma A.1.
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be B and switch from playing S on ]p̂s, p̂2]. This equilibrium is thus given by:

Belief p 0 p∗1 p̂s p̂2 1
A’s strategy S S R R
B’s strategy S R S R
A’s value function s F1,A V1,A V2,A

B’s value function s V1,B F1,B V2,B

and the components of the value functions, plus the switch-point and cut-off, are determined
as follows:

(1) C in F1,A from F1,A(p∗1) = s

(2) C in V1,B from V1,B(p∗1) = s

(3) p̂s from F1,A(p̂s) = 2s− gp̂s

(4) C in V1,A from V1,A(p̂s) = F1,A(p̂s) = 2s− gp̂s

(5) C in F1,B from F1,B(p̂s) = V1,B(p̂s)

(6) p̂2 from F1,B(p̂2) = 2s− gp̂2

(7) C in V2,A from V2,A(p̂2) = V1,A(p̂2)

(8) C in V2,B from V2,B(p̂2) = F1,B(p̂2) = 2s− gp̂2

Note that the boundary condition at p = 1 is automatically satisfied because V2,A(1) =
V2,B(1) = g regardless of the constants of integration.

Noting that when V2(p) = V1(p) = u, say, V ′
2(p) > V ′

1(p) iff u > gp (the payoff from
always playing R), we see that

• 0 < F ′
1,A(p∗1), F ′

1,A(p̂s) > V ′
1,A(p̂s), V ′

1,A(p̂2) < V ′
2,A(p̂2);

• 0 = V ′
1,B(p∗1), V ′

1,B(p̂s) < F ′
1,B(p̂s), F ′

1,B(p̂2) = V ′
2,B(p̂2).

Thus, as the common belief decays, B changes smoothly from R to S against R at p̂2 (where
A has a kink), A and B switch actions at p̂s (each with a kink), and B changes smoothly
again from R to S against S at p∗1 (where A again has a kink).

Following steps (1) and (3) determines the equation for p̂s given in the statement of
the proposition; following steps (2), (5) and (6) determines the equation for p̂2 given in the
statement of the proposition; the remaining steps are for completeness only.12

Other equilibria for the two-player strategic problem

Any finite partition of the interval to the right of p∗1 can be used to construct a pure-strategy
equilibrium of the two-player strategic problem.

Take any finite (measurable) partition of ]p∗1, pm] and divide this into two subsets In,
n = 1, 2. Build the continuous functions Xn on [p∗1, pm] as follows: Xn(p∗1) = s, Xn satisfies
equation (13) on In (free-rider), Xn satisfies equation (2) on I¬n (pioneer).

Define p̄s = min {p ∈ [p∗1, pm] : X1(p) ∨X2(p) = 2s− gp}. If Xn(p̄s) ≥ X¬n(p̄s) then
A = n, else A = ¬n; B = ¬A.

12Details are available from the authors on request.
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Let uf satisfy equation (13) (free-rider) with uf (p̄s) = XB(p̄s), and define p̄2 by uf (p̄2) =
2s− gp̄2, so p̄2 ≥ p̄s.

Now take the partition J1 ∪ J2 of ]p∗1, p̄s], where Jn = {p ≤ p̄s : p ∈ In}, i.e. Jn and In agree
on ]p∗1, p̄s].

Let A’s strategy be as follows:
play S on [0, p∗1]; play S on JA and R on JB; play R on ]p̄s, p̄2]; play R on ]p̄2, 1].

Let B’s strategy be as follows:
play S on [0, p∗1]; play R on JA and S on JB; play S on ]p̄s, p̄2]; play R on ]p̄2, 1].

Build the continuous functions Yn on [0, 1] as follows:
YA(p) = s on [0, p∗1]; YA satisfies equation (13) on JA (free-rider) and satisfies equation (2)

on JB (pioneer); YA satisfies equation (2) on ]p̄s, p̄2] (pioneer); YA satisfies equation (6) on
]p̄2, 1] (both experimenting).

YB(p) = s on [0, p∗1]; YB satisfies equation (2) on JA (pioneer) and satisfies equation (13)
on JB (free-rider); YB satisfies equation (13) on ]p̄s, p̄2] (free-rider); YB satisfies equation (6)
on ]p̄2, 1] (both experimenting).

If the continuation payoffs are given by Yn, then the above strategies are best responses to
each other; and if the players are using the above strategies, then the continuation payoffs are
indeed given by Yn. Thus the above strategies constitute an equilibrium with the equilibrium
value functions given by Yn.

Lemmas A.1 and A.2 show that YA and YB lie between F1,A and V1,B ∪ F1,B below and
to the left of D1. Thus p̂s ≤ p̄s ≤ p̄2 ≤ p̂2 (at least one inequality being strict), and so the
‘simplest’ equilibrium exhibits the slowest experimentation.

Proof of Proposition 6.3

Consider a pure-strategy MPE with cut-offs {p̄K}N
K=1. Let uN,K denote the solution to the

ODE (14) whenever we are in case (K), with uN,1(p̄1) = s and uN,K(p̄K) = uN,K−1(p̄K) for
K = 2, . . . , N . The continuous function thus constructed is the average payoff.

Define a related function uN |1 which equals uN,1 to the left of p̄2, but carries on as uN,1 to
the right, i.e. uN |1 is continuous and solves (14) on [p̄1, 1], not just on [p̄1, p̄2]. Since u′N,K(p) >
u′N,J(p) whenever uN,K(p) = uN,J(p) > s and K > J , it is the case that uN |1 < uN,K to the
right of p̄2. Thus if we can show that even uN |1 does better than the common payoff in the
symmetric mixed-strategy MPE, we are done.

To simplify notation we shall use a normalized odds ratio given by R(p) = (Ω(p)/Ω(p∗1))
µ,

which is decreasing in p and less than 1 for p > p∗1.
Using a combination of equations (11) and (13), uN |1 satisfies

N
uN |1(p)− s

s(1− p)
=

µ(µ + N)
(µ + 1)2

R(p)−1/µ +
1− (N − 2)µ

(µ + 1)2
R(p)− 1

where we have used the fact that Ω(pm)/Ω(p∗1) = µ/(µ + 1).
The common payoff in the symmetric mixed-strategy equilibrium is given by the function

W † on [p∗1, p
†
N ]. Using equation (18), this function satisfies

W †(p)− s

s(1− p)
= µR(p)−1/µ + ln R(p)− µ.
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A simple calculation now gives

N
uN |1 −W †

s(1− p)
= −µ2(Nµ + 2N − 1)

(µ + 1)2
R−1/µ +

1− (N − 2)µ
(µ + 1)2)

R−N ln R + Nµ− 1,

where we have suppressed the dependence of uN |1, W † and R on p. We want to show that
the right-hand side is positive on the interval ]p∗1, pm]. To this end, we consider the right-
hand side as a function h(R; N) on the interval [R(pm), 1]. As h(1;N) = 0, h′(1;N) =
−(N − 1)/(µ + 1) < 0 and h′′(R; N) = R−2{N − [(Nµ + 2N − 1)/(µ + 1)]R−1/µ} < 0 on this
interval, it suffices to show that h(R(pm);N) > 0. Now R(pm) = [µ/(µ + 1)]µ, so

h(R(pm);N) = −Nµ + 1
µ + 1

+
1− (N − 2)µ

(µ + 1)2

(
µ

µ + 1

)µ

−Nµ ln
µ

µ + 1
.

As a function of µ on the positive half-axis, this is quasi-concave with a limit of zero as µ
tends to 0 or +∞ for any N > 1, hence positive throughout.

For p ∈ ]p∗1, p
†
N ], therefore, the average payoff in the pure-strategy equilibrium lies strictly

above the common payoff in the symmetric mixed-strategy equilibrium.

Proof of Proposition 6.4

Given p‡∞ with p∗N < p‡∞ < p∗1, consider an arbitrary strictly decreasing sequence {p‡i}∞i=1

with p‡1 ≤ p∗1 and limi→∞ p‡i = p‡∞. Let player n = 1, . . . , N play R at beliefs in the intervals
]p‡n+jN+1, p

‡
n+jN ] (j = 0, 1, . . .) and S at all other beliefs below p‡1.

For arbitrary i, consider the player who who embarks on her round of single-handed
experimentation at p‡i , that is, who plays R on ]p‡i+1, p

‡
i ] and S on ]p‡i+N , p‡i+1]. Her payoff

function u satisfies equation (2) (pioneer) on the former interval, and equation (13) (free-
rider, with K = 1) on the latter. Imposing the conditions u(p‡i ) = u(p‡i+N ) = s, we can solve
for the respective constants of integration. This yields two equations for u(p‡i+1):

u(p‡i+1) = gp‡i+1 + (s− gp‡i )
1− p‡i+1

1− p‡i

(
Ω(p‡i+1)

Ω(p‡i )

)µ

,

u(p‡i+1) = s +
g − s

µ + 1
p‡i+1 −

g − s

µ + 1
p‡i+N

1− p‡i+1

1− p‡i+N

(
Ω(p‡i+1)

Ω(p‡i+N )

)µ

.

After eliminating u(p‡i+1) from these equations, we change variables to

xi =
Ω(p‡i )
Ω(pm)

,

noting that Ω(pm) = (g − s)/s and

s− gp‡i
(1− p‡i )s

= 1− 1
xi

.

This leads to the N -th order difference equation

1
µ + 1

x−µ−1
i+N =

[
1− µ

µ + 1
1

xi+1

]
x−µ

i+1 −
[
1− 1

xi

]
x−µ

i .
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Introducing the variables

yi,n =
xi+n − xi+n−1

xi+n−1
(n = 1, . . . , N − 1),

we obtain the N -dimensional first-order system

xi+1 = xi (1 + yi,1),
yi+1,1 = yi,2,

...
yi+1,N−2 = yi,N−1,

yi+1,N−1 =

(
N−1∏

n=2

(1 + yi,n)

)−1[
(µ + 1)xi(1 + yi,1)− (µ + 1)(xi − 1)(1 + yi,1)µ+1 − µ

]− 1
µ+1 − 1.

Writing

x∞ =
Ω(p‡∞)
Ω(pm)

,

we clearly have a steady state of this system at (x∞, 0, . . . , 0).
The linearization of the system around this steady state is




xi+1 − x∞
yi+1,1

yi+1,2

yi+1,3
...

yi+1,N−3

yi+1,N−2

yi+1,N−1




=




1 x∞ 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0
0 0 0 1 . . . 0 0 0
0 0 0 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 0 1
0 ξ −1 −1 . . . −1 −1 −1







xi − x∞
yi,1

yi,2

yi,3
...

yi,N−3

yi,N−2

yi,N−1




,

where
ξ = µx∞ − µ− 1.

Since the characteristic polynomial is (−1)N−1(1−η)h(η) with h(η) = ηN−1+ηN−2+. . .+η2+
η−ξ, the eigenvalues are 1 and the zeroes of h. As p∗N < p‡∞ < p∗1, we have (µ+1)/µ < x∞ <
(µ + N)/µ and so 0 < ξ < N − 1. Thus, h(0) = −ξ < 0 and h(1) = N − 1− ξ > 0, implying
the existence of an eigenvalue η∗ strictly between 0 and 1. A corresponding eigenvector is




−x∞/(1− η∗)
1
η∗
η2∗
...

ηN−2∗




.

This shows that under the linearized dynamics, (x∞, 0, . . . , 0) can be approached in such a
way that the sequence {xi} is strictly increasing. By standard results from the theory of
dynamical systems, the same is possible under the original nonlinear dynamics if we start
from a suitable initial point in a neighbourhood of the steady state; see for example Wiggins
(1990, Section 1.1C).
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Starting appropriately close to the steady state, we can ensure in particular that the
strategies we obtain for the corresponding sequence of beliefs {p‡i}∞i=1 are mutual best re-
sponses at all beliefs below p‡1 (all we need for this is that (p‡1, uN ) be below D1, where uN is
the continuation payoff of player N when the common belief is p‡1 – see Lemma 6.1). To com-
plete the construction of the equilibrium, we now only have to move back from p‡1 to higher
beliefs and assign actions to the players in the way we did for the pure-strategy equilibria
with a finite number of switches (see the outline after Lemma 6.1).
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Figure 5: Action profiles in the simplest three-player asymmetric equilibrium
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