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Abstract

We analyze a two-player game of strategic experimentation with two-armed bandits.
Each player has to decide in continuous time whether to use a safe arm with a known
payoff or a risky arm whose likelihood of delivering payoffs is initially unknown. The
quality of the risky arms is perfectly negatively correlated between players. In marked
contrast to the case where both risky arms are of the same type, we find that learn-
ing will be complete in any Markov perfect equilibrium if the stakes exceed a certain
threshold, and that all equilibria are in cutoff strategies. For low stakes, the equilib-
rium is unique, symmetric, and coincides with the planner’s solution. For high stakes,
the equilibrium is unique, symmetric, and tantamount to myopic behavior. For inter-
mediate stakes, there is a continuum of equilibria.

∗We are grateful to Philippe Aghion, Patrick Bolton, Kalyan Chatterjee, Martin Cripps, Matthias De-
watripont, Jan Eeckhout, Florian Englmair, Eduardo Faingold, Philipp Kircher, George Mailath, Timofiy
Mylovanov, Stephen Ryan, Klaus Schmidt, Larry Samuelson, as well as seminar participants at Bonn, Mu-
nich, UPenn, Yale, HEC Paris, the 2007 SFB/TR 15 Summer School in Bronnbach, the 2007 SFB/TR 15
Workshop for Young Researchers in Bonn, the 2008 SFB/TR 15 Meeting in Gummersbach, the 2008 North
American Summer Meetings of the Econometric Society, the 2008 Meeting of the Society for Economic Dy-
namics and the European Summer Symposium in Economic Theory (ESSET) 2008 for helpful comments
and suggestions. We thank the Department of Economics at the University of Bonn, the Business and Public
Policy Group at the Wharton School, the UPenn Economics Department and the Studienzentrum Gerzensee
for their hospitality. Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 and
GRK 801 is gratefully acknowledged.

†Munich Graduate School of Economics, Kaulbachstr. 45, D-80539 Munich, Germany; email:
kleinnic@yahoo.com.

‡Department of Economics, University of Munich, Kaulbachstr. 45, D-80539 Munich, Germany; email:
sven.rady@lrz.uni-muenchen.de.



1 Introduction

Starting with Rothschild (1974), two-armed bandit models have been used extensively in

economics to formalize the trade-off between experimentation and exploitation in dynamic

decision problems with learning; see Bergemann and Välimäki (2008) for a survey of this

literature. The use of the two-armed bandit framework as a canonical model of strategic

experimentation in teams is more recent: Bolton and Harris (1999, 2000) analyze the case

of Brownian motion bandits, while Keller, Rady and Cripps (2005) and Keller and Rady

(2007) analyze bandits where payoffs are governed by Poisson processes. These papers

assume perfect positive correlation across bandits; what is good news to any given player is

assumed to be good news for everybody else.

There are many situations, however, where one man’s boon is the other one’s bane.

Think of a suit at law, for instance: whatever is good news for one party is bad news

for the other. Or consider two firms pursuing research and development under different,

incompatible working hypotheses. One pharmaceutical company, for example, might base

its drug development strategy on the hypothesis that the cause of a particular disease is a

virus, while the other might see a bacterium as the cause. An appropriate model of strategic

experimentation in such a situation must assume perfect negative correlation across bandits.

This we propose to do in the present paper.1

We consider two players, each facing a continuous-time exponential bandit as in Keller,

Rady and Cripps (2005). One arm is safe, generating a known payoff per unit of time. The

other arm is risky, and can be good or bad. If it is good, it generates lump-sum payoffs

after exponentially distributed random times; if it is bad, it never generates any payoff. A

good risky arm dominates the safe one in terms of average payoff per unit of time, whereas

the safe arm dominates a bad risky one. At the start of the game, the players do not know

the type of their risky arm, but it is common knowledge that exactly one risky arm is good.

Each player’s actions and payoffs are perfectly observable to the other player. Starting from

a common prior, the players’ posterior beliefs thus agree at all times.

The dynamics of these beliefs are easy to describe. If both players play safe, no new

information is generated and beliefs stay unchanged. If only one player plays risky and he

has no success, the posterior probability that his risky arm is the good one falls gradually

over time; if he obtains a lump-sum payoff, all uncertainty is resolved and beliefs become

1There is a decision-theoretic literature on correlated bandits which analyzes correlation across different
arms of a bandit operated by a single agent; see e.g. Camargo (2007) for a recent contribution to this
literature, or Pastorino (2005) for economic applications. Our focus here is quite different, though, in that we
are concerned with correlation between different bandits operated by two players who interact strategically.
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degenerate at the true state of the world. If both players play risky, finally, and there is no

success on either arm, this is again uninformative about the state of the world, so beliefs

are constant up to the random time when the first success occurs. It is important to note

that a success on one player’s risky arm is always bad news for the other player, while lack

of success gradually makes the other player more optimistic.

We restrict players to stationary Markov strategies with the common posterior belief

as the state variable. As is well known, this restriction is without loss of generality in the

decision problem of a single agent experimenting in isolation, whose optimal policy is given

by a cutoff strategy, i.e. has him play risky at beliefs more optimistic than some threshold,

and safe otherwise. As the same structure prevails in the optimization problem of a utili-

tarian planner who maximizes the average of the two players’ expected discounted payoffs,

the Markov restriction is without loss of generality there as well. In the non-cooperative

experimentation game, the Markov restriction rules out history-dependent behavior that is

familiar from the analysis of infinitely repeated games in discrete time, yet technically quite

intricate to formalize in continuous time (Simon and Stinchcombe 1989, Bergin 1992, Bergin

and McLeod 1993). Imposing Markov perfection allows us to focus on the experimentation

tradeoff that the players face and makes our results directly comparable to those in the

previous literature on strategic experimentation in bandits.

After solving the planner’s optimization problem, we characterize the Markov perfect

equilibria of the experimentation game. We find that all Markov perfect equilibria are in

cutoff strategies. This is in stark contrast to Keller, Rady and Cripps (2005), who find that

there is no such equilibrium when all risky arms are of the same type.

On account of the symmetry of the situation, it is not surprising that there always

exists a symmetric equilibrium, where both players use the same cutoff. This symmetric

equilibrium is unique. What is more, based upon a characterization of the beliefs at which

best responses can change, we are able to determine the parameter values for which there

is no other equilibrium besides the symmetric one. This uniqueness result is again in sharp

contrast to the multiplicity of equilibria in Keller, Rady and Cripps (2005).

When stakes (as measured by the payoff advantage of a good risky arm over a safe

one) are sufficiently low, players’ respective single-agent cutoffs are such that a higher than

50–50 chance of having the good risky arm is required for a player to play risky. In this

case, the single-agent optimal strategies let at most one player play risky at any given belief

and, in the absence of a success, make this player switch to the safe arm at a point where

the other player’s threshold for playing risky is not yet reached. This means that neither

player ever benefits from any experimentation by the other, and so the single-agent optimal

strategies are mutually best responses. As experimentation on one bandit can only make
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players incrementally more optimistic about the other bandit, the same logic applies to the

planner’s problem, so both players using their single-agent optimal strategies is efficient.

Finally, since any equilibrium must give each player at least his single-agent optimal payoff

and any payoff higher than that would be incompatible with the upper bound given by the

planner’s solution, the Markov perfect equilibrium where both players use their single-agent

optimal cutoffs is unique.

When stakes are sufficiently high, a lower than 50–50 chance is sufficient for a myopic

player, i.e. one who is merely interested in maximizing current payoffs, to play risky. In

this case, equilibrium is again unique, but inefficient, with both players applying the myopic

cutoff strategy. With the stakes high, players are so eager to play risky that there exists

a range of beliefs where both are experimenting. As long as no lump-sum arrives, no new

information is then made available, and the players are effectively freezing the problem in

its current state. This, however, they are only willing to do if the current state is attractive

from a myopic perspective.

If the stakes are intermediate in size, there is a continuum of equilibria, each of them

characterized by a single belief at which both players change their actions. As the stakes

gradually increase and we move from the low to the intermediate case, at first, given any

initial belief, there still exists an equilibrium that achieves the efficient outcome. As stakes

increase further, there then appears a range of initial beliefs for which no equilibrium achieves

efficiency. As we move from high stakes down to intermediate stakes, there at first always

exists an equilibrium that involves one player behaving myopically. To achieve this, the

other player has to bear the entire load of experimentation by himself when the uncertainty

is greatest. As stakes gradually grow lower, however, the other player will at some point no

longer be willing to bear this burden, and the equilibrium disappears.

Given perfect observability of actions and payoffs, any information that a player garners

via experimentation is a public good.2 In contrast to the case where all risky arms are of the

same type, however, the resulting free-rider problem does not cause learning to cease prema-

turely. In fact, we find complete learning in equilibrium (meaning that beliefs converge to the

truth almost surely) for intermediate and high stakes, which is precisely the parameter range

where the planner’s solution calls for complete learning. The intuition is quite straightfor-

ward. If players hold common beliefs and there is perfect negative correlation between the

types of the risky arms, it can never be the case that both players are simultaneously very

2Murto and Välimäki (2006) and Rosenberg, Solan and Vieille (2007) study strategic experimentation
with two-armed bandits where the players’ actions are publicly observable, but their payoffs are private
information. To simplify the analysis, these authors assume that the decision to stop playing risky is
irreversible. In our model, players can freely switch back and forth between the two arms.
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pessimistic about their respective prospects; with stakes sufficiently high, this implies that

at least one player must be using the risky arm at any time, and so learning never stops.

Thus, whenever society places a lot of emphasis on uncovering the truth, as one may

argue is the case with medical research or the justice system, our analysis would suggest

an adversarial setup was able to achieve this goal. In this respect, our work is related to

Dewatripont and Tirole (1999) who, in a moral hazard setting bearing no resemblance to

ours, pose the question whether it is socially better to adjudicate disputes through a central-

ized system of gathering evidence, which they assimilate to the inquisitorial system of Civil

Law countries, or whether the interests of justice may be better served in a decentralized,

adversarial system, as it is found in the Common Law countries. They show that, in a

centralized system, it is not possible to give adequate incentives to make sure the truth is

uncovered, and conclude that the Common Law system of gathering information was there-

fore superior. Our model provides an alternative framework to ascertain the effectiveness

of information-gathering processes in a strategic setting where the parties’ expected risky

payoffs are perfectly negatively correlated across states of the world.

Chatterjee and Evans (2004) analyze an R&D race with two firms and two projects in

which, like in our setup, there is common knowledge that exactly one of these projects will

bear fruit if pursued long enough, and actions and payoffs are observable. Their discrete-time

model differs from ours in several respects, chief of which is the payoff externality implied

by the firms’ choices. In our model, there is no payoff rivalry between players – strategic

interaction arises out of purely informational concerns. Moreover, Chatterjee and Evans

allow firms to change their projects at any time, so that it is possible for them to explore

the same project. Our analysis, by contrast, presumes that projects of opposite type have

been irrevocably assigned to players at the start of the experimentation game.3

The rest of the paper is structured as follows. Section 2 introduces the model. Section

3 solves the planner’s problem. Section 4 sets up the non-cooperative game. Section 5

discusses long-run properties of learning in equilibrium. Section 6 characterizes the Markov

perfect equilibria of the non-cooperative game. Section 7 concludes. Proofs are provided in

the appendix.

3In the concluding remarks, we briefly report on an extension of our model in which we partially relax this
assumption by giving the players a sequential once-and-for-all choice of bandits prior to the experimentation
game.
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2 The Model

There are two players, 1 and 2, each of whom faces a two-armed bandit problem in continuous

time. Bandits are of the exponential type studied in Keller, Rady and Cripps (2005). One

arm is safe in that it yields a known payoff flow of s; the other arm is risky in that it is

either good or bad. If it is bad, it never yields any payoff; if it is good, it yields a lump-

sum payoff with probability λdt when used over a time of length dt. Let g dt denote the

corresponding expected payoff increment; thus, g is the product of the arrival rate λ and

the average size of a lump-sum payoff. The time-invariant constants λ > 0 and g > 0 are

common knowledge. It is also common knowledge that exactly one bandit’s risky arm is

good. To have an interesting problem, we assume that the expected payoff of a good risky

arm exceeds that of the safe arm, whereas the safe arm is better than a bad risky arm, i.e.,

g > s > 0.

Each player chooses actions {kt}t≥0 such that kt ∈ {0, 1} is measurable with respect

to the information available at time t, with kt = 1 indicating use of the risky arm, and

kt = 0 use of the safe arm. The strategic link between the two players’ actions is provided

by the assumption that players perfectly observe each other’s actions and payoffs. Thus,

as the bandits are perfectly negatively correlated, any information that is garnered about

the quality of the risky arm is a public good. At the outset of the game, players have a

common prior about which of the risky arms is good. Since the results of each player’s

experimentation are public, players share a common posterior at all times. We write pt for

the players’ posterior probability assessment at time t that player 1’s risky arm is good.

The posterior belief jumps to 1 if there has been a breakthrough on player 1’s bandit,

and to 0 if there has been a breakthrough on player 2’s bandit, where in either case it will

remain ever after. If there has been no breakthrough on either bandit by time T given the

players’ actions {k1,t}0≤t≤T and {k2,t}0≤t≤T , Bayes’ rule yields

pT =
p0e

−λ
∫ T
0 k1,t dt

p0e
−λ

∫ T
0 k1,t dt + (1− p0)e

−λ
∫ T
0 k2,t dt

,

and so the posterior belief satisfies

ṗt = −(k1,t − k2,t)λpt(1− pt)

at almost all t up to the first breakthrough on a risky arm.

We restrict players to stationary Markov strategies with the common posterior belief as

the state variable. The precise definition of the space of Markov strategies available to each

player requires some care. Suppose for example that player 1 plays risky at all beliefs p ≥ 1
2
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and safe otherwise, while player 2 plays risky at all beliefs p < 1
2

and safe otherwise. Then

the above expression for the time derivative of the posterior belief translates into ṗt = f(pt)

where

f(p) =

{
λp(1− p) for p < 1

2
,

−λp(1− p) for p ≥ 1
2
.

There is no continuous function t 7→ pt from [0,∞[ to [0, 1] with p0 = 1
2

that is differentiable

almost everywhere and satisfies ṗt = f(pt) at almost all t.4 So the above strategies do not

induce a well-defined law of motion for beliefs, which means that there are histories of the

game after which these strategies do not pin down the players’ actions.5

To avoid this problem, we impose specific one-sided continuity requirements on the

players’ Markov strategies: each player’s action is right-continuous with left limits with

respect to the posterior probability of that player’s risky arm being the good one. More

precisely, we define a Markov strategy for player 1 to be a function k1 : [0, 1] → {0, 1} such

that k1(0) = 0 and k−1
1 (1) is the disjoint union of the singleton {1} and a finite number

of left-closed intervals [p′i, p
′′
i [ . Symmetrically, a Markov strategy for player 2 is a function

k2 : [0, 1] → {0, 1} such that k2(1) = 0 and k−1
2 (1) is the disjoint union of the singleton

{0} and a finite number of right-closed intervals ]p′j, p
′′
i ]. Fixing the players’ actions at the

boundaries of the unit interval is innocuous because we are simply imposing the dominant

actions under subjective certainty. More importantly, our specification of Markov strategies

ensures that for any pair (k1, k2) of such strategies, the differential equation

ṗ = −[k1(p)− k2(p)]λp(1− p)

has a unique global solution for any initial value in the unit interval, which implies that

the law of motion for the posterior belief, the players’ actions kn,t = kn(pt) and their payoff

functions un : [0, 1] → IR are all well-defined. The latter are given by

u1(p) = E

[∫ ∞

0

re−rt
{

k1(pt)ptg + [1− k1(pt)]s
}

dt

∣∣∣∣ p0 = p

]
,

u2(p) = E

[∫ ∞

0

re−rt
{

k2(pt)(1− pt)g + [1− k2(pt)]s
}

dt

∣∣∣∣ p0 = p

]
,

4Similar problems have been encountered in the decision-theoretic literature. To guarantee a well-defined
law of motion, Presman (1990) allows for simultaneous use of both arms, i.e. for experimentation intensities
kt ∈ [0, 1].

5Replacing the differential equation for posterior beliefs by a differential inclusion as in Filippov (1988)
does not help. Following this approach, one replaces the function f by a correspondence F with F (p) =
{f(p)} for p 6= 1

2 and F ( 1
2 ) ⊇ [−λ

4 , λ
4 ], the convex hull of the left and right limits of f at p = 1

2 . A solution
to the differential inclusion ṗt ∈ F (pt) with p0 = 1

2 is then easily found in the constant function pt ≡ 1
2 .

However, this solution is not meaningful in the context of our model since it is not compatible with Bayes’
rule under the given strategies: if pt = 1

2 for all t, the action profile must always be (k1, k2) = (1, 0), in which
case Bayes’ rule would imply a downward trend in beliefs conditional on no success on player 1’s bandit.

6



where r > 0 is the players’ common discount rate and the expectation is taken with respect

to the law of motion of posterior beliefs induced by the strategy pair (k1, k2). By standard

results, our specification of Markov strategies further implies that the Bellman equations

appearing in subsequent sections are necessary and sufficient for optimality.

A profile of Markov strategies (k1, k2) is called symmetric if k1(p) = k2(1 − p) for all

p ∈ [0, 1]. A Markov strategy k1 for player 1 is called a cutoff strategy with cutoff p̂1 if

k−1
1 (1) = [p̂1, 1]. Analogously, a Markov strategy k2 for player 2 is a cutoff strategy with

cutoff p̂2 if k−1
2 (1) = [0, p̂2]. If players were myopic, i.e. merely maximizing current payoffs,

player 1 would use the cutoff pm = s
g

and player 2 the cutoff 1 − pm. If they were forward-

looking but experimenting in isolation, player 1 would optimally use the single-agent cutoff

computed in Keller, Rady and Cripps (2005), p∗ = rs
(r+λ)g−λs

< pm, and player 2 the cutoff

1− p∗. In both cases, the resulting strategy profile would be symmetric.

We will find it useful below to distinguish three cases depending on the size of the stakes

involved, i.e. on the value of information as measured by the ratio g
s
, and on the parameters

λ and r that govern the speed of resolution of uncertainty and the player’s impatience,

respectively. We speak of low stakes if g
s

< 2r+λ
r+λ

; intermediate stakes if 2r+λ
r+λ

≤ g
s

< 2, and

high stakes if g
s
≥ 2. These cases are easily distinguished by the positions of the cutoffs pm

and p∗: stakes are low if and only if p∗ > 1
2
; intermediate if and only if p∗ ≤ 1

2
< pm; and

high if and only if pm ≤ 1
2
.

3 The Planner’s Problem

In this section, we examine a benevolent utilitarian social planner’s behavior in our setup.

Proceeding exactly as Keller, Rady and Cripps (2005), we can write the Bellman equation

for the maximization of the average payoff from the two bandits as

u(p) = s + max
(k1,k2)∈{0,1}2

{
k1

[
B1(p, u)− c1(p)

2

]
+ k2

[
B2(p, u)− c2(p)

2

]}
,

where B1(p, u) = λ
r
p[g+s

2
− u(p) − (1 − p)u′(p)] measures the expected learning benefit of

playing risky arm 1, B2(p, u) = λ
r
(1 − p)[g+s

2
− u(p) + pu′(p)] the expected learning benefit

of playing risky arm 2, c1(p) = s − pg the opportunity cost of playing risky arm 1, and

c2(p) = s − (1 − p)g the opportunity cost of playing risky arm 2. Thus, the planner’s

problem is linear in both k1 and k2, and he is maximizing separately over k1 and k2.

If it is optimal to set k1 = k2 = 0, the value function works out as u(p) = s. If it is

optimal to set k1 = k2 = 1, the Bellman equation reduces to u(p) = λ
r

[
g+s
2
− u(p)

]
+ g

2
, and

so u(p) = u11 = 1
2

(
g + λ

λ+r
s
)
.
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If it is optimal to set k1 = 0 and k2 = 1, the Bellman equation amounts to the first-order

ODE

λp(1− p)u′(p)− [r + λ(1− p)]u(p) = −1
2
{[r + λ(1− p)]s + (r + λ)(1− p)g} .

This has the solution

u(p) = 1
2
[s + (1− p)g] + Cp

r+λ
λ (1− p)−

r
λ ,

where C is some constant of integration.

Finally, if it is optimal to set k1 = 1 and k2 = 0, the Bellman equation is tantamount

to the first-order ODE

λp(1− p)u′1(p) + (r + λp)u1(p) = 1
2
{(r + λp)s + (r + λ)pg} ,

which is solved by

u(p) = 1
2
(s + pg) + C (1− p)

r+λ
λ p−

r
λ .

Note that whenever k1 = k2, the value function is constant as the planner does not

care which arm is good. For the same reason, the problem is symmetric around p = 1
2
. All

the planner cares about is the uncertainty that stands in the way of his realizing the upper

bound on the value function, g+s
2

. Hence, intuitively, the planner’s value function will admit

its global minimum at p = 1
2
, where the uncertainty is starkest.

It is clear that (k1, k2) = (1, 0) will be optimal in a neighborhood of p = 1, and (k1, k2) =

(0, 1) in a neighborhood of p = 0. What is optimal at beliefs around p = 1
2

depends on which

of the two possible plateaus s and u11 is higher. This in turn depends on the size of the

stakes involved. In fact, s > u11 if and only if stakes are low, i.e. g
s

< 2r+λ
r+λ

. This is the case

we consider first.

Proposition 3.1 (Planner’s solution for low stakes) If g
s

< 2r+λ
r+λ

, and hence p∗ > 1
2
,

it is optimal for the planner to apply the single-agent cutoffs p∗ and 1− p∗, respectively, that

is, to set (k1, k2) = (0, 1) on [0, 1− p∗], k1 = k2 = 0 on ]1− p∗, p∗[ , and (k1, k2) = (1, 0) on

[p∗, 1]. The corresponding value function is

u(p) =





1
2

{
s + (1− p)g + (s− p∗g)

(
p

1−p∗

) r+λ
λ

(
1−p
p∗

)− r
λ

}
if p ≤ 1− p∗,

s if 1− p∗ ≤ p ≤ p∗,

1
2

{
s + pg + (s− p∗g)

(
1−p
1−p∗

) r+λ
λ

(
p
p∗

)− r
λ

}
if p ≥ p∗.
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Figure 1 illustrates the result. Thus, when the value of information, as measured by
g
s
, is so low that the single-agent cutoff p∗ exceeds 1

2
, it is optimal for the planner to let

the players behave as though they were single players solving two separate, completely

unconnected, problems.6

s

g+s
2

0 1−p∗ 1
2

p∗ 1

Figure 1: The planner’s value function for g
s

< 2r+λ
r+λ

.

Conditional on there not being a breakthrough, the belief will evolve according to

ṗ =





λp(1− p) if p < 1− p∗,

0 if 1− p∗ ≤ p ≤ p∗,

−λp(1− p) if p > p∗.

Let us suppose risky arm 1 is good. If the initial belief p0 < 1 − p∗, then the posterior

belief will converge to 1− p∗ with probability 1 as there cannot be a breakthrough on risky

arm 2. If 1 − p∗ ≤ p0 ≤ p∗, the belief will remain unchanged at p0. If p0 > p∗, the belief

will converge either to 1 or to p∗. If t∗ is the length of time needed for the belief to reach

p∗ conditional on there not being a breakthrough on risky arm 1, the probability that the

belief will converge to p∗ is e−λt∗ . By Bayes’ rule, we have 1−pt

pt
= 1−p0

p0e−λt in the absence

of a breakthrough, and so e−λt∗ = 1−p0

p0

p∗
1−p∗ . The belief will therefore converge to p∗ (and

learning will remain incomplete) with probability 1−p0

p0

p∗
1−p∗ , and to 1 (and hence the truth)

with the counter-probability. Analogous results hold when risky arm 2 is good.

6This would be different if playing the risky arm could also lead to “bad news events” that triggered
downward jumps in beliefs. If, starting from p∗, such a jump were large enough to take the belief below
1 − p∗, then letting player 1 play risky at beliefs somewhat below p∗ would raise average payoffs if the
opportunity cost of doing so were offset by informational gains arising from subsequent experimentation by
player 2.
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Next, we turn to the case where u11 ≥ s, which is obtained for intermediate and high

stakes.

Proposition 3.2 (Planner’s solution for intermediate and high stakes) If g
s
≥ 2r+λ

r+λ
,

and hence p∗ ≤ 1
2
, it is optimal for the planner to apply the cutoffs p̄ = (r+λ)s

(r+λ)g+λs
∈ [p∗, 1

2
]

and 1 − p̄, respectively, that is, to set (k1, k2) = (0, 1) on [0, p̄[ , k1 = k2 = 1 on [p̄, 1 − p̄],

and (k1, k2) = (1, 0) on ]1− p̄, 1]. The corresponding value function is

u(p) =





1
2

{
s + (1− p)g +

[
p̄g − r

r+λ
s
] (

p
p̄

) r+λ
λ

(
1−p
1−p̄

)− r
λ

}
if p ≤ p̄,

1
2

(
g + λ

r+λ
s
)

if p̄ ≤ p ≤ 1− p̄,

1
2

{
s + pg +

[
p̄g − r

r+λ
s
] (

1−p
p̄

) r+λ
λ

(
p

1−p̄

)− r
λ

}
if p ≥ 1− p̄.

Figure 2 illustrates this result for g
s

> 2r+λ
r+λ

, which is tantamount to u11 > s and easily

seen to imply p∗ < p̄ < 1
2
. To understand why the planner has each player use the risky

arm on a smaller interval of beliefs than in the respective single-agent optimum, consider

the effect of player 1’s action on the average payoff when player 2 is playing risky. If the

planner is indifferent between player 1’s actions at the belief p̄, it must be the case that

B1(p̄, u) = c1(p̄)
2

. By value matching at the level u11 and smooth pasting, this reduces to
λ
r
p̄[g + s − 2u11] = c1(p̄); thus, the possibility of a jump in the sum of the two players’

payoffs from 2u11 to g + s exactly compensates for the opportunity cost of player 1 using

the risky arm. For a player 1 experimenting in isolation, the corresponding equation reads
λ
r
p∗[g− s] = c1(p

∗); at the single-agent optimal cutoff, the possibility of a jump in the payoff

from s to g exactly compensates for the opportunity cost of player 1 using the risky arm.

When u11 > s, the jump from s to g is larger than the one from 2u11 to g + s, and so

we cannot have p̄ = p∗. That p̄ must be greater than p∗ follows from the fact that the

opportunity cost of using player 1’s risky arm is decreasing in p.

The dynamics of beliefs conditional on there not being a breakthrough are now given

by

ṗ =





λp(1− p) if p < p̄,

0 if p̄ ≤ p ≤ 1− p̄,

−λp(1− p) if p > 1− p̄.

Whenever the stakes are intermediate or high, therefore, the planner shuts down incremental

learning on [p̄, 1− p̄]. Yet he still learns the truth with probability 1 in the long run because

this interval is absorbing for the posterior belief process in the absence of a breakthrough,

and once it is reached, the planner uses both risky arms until all uncertainty is resolved.
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s

u11

g+s
2

0 p∗ p̄ 1
2

1−p̄ 1−p∗ 1

Figure 2: The planner’s value function for g
s

> 2r+λ
r+λ

.

In summary, when stakes are intermediate or high, efficiency calls for complete learning,

i.e., almost sure convergence of the posterior belief pt to the truth. When stakes are low,

however, efficient learning can be incomplete.

4 The Strategic Problem

Our solution concept is Markov perfect equilibrium, with the players’ strategies as defined

in Section 2 above.

Again proceeding as in Keller, Rady and Cripps (2005), we see that the following Bell-

man equation characterizes player 1’s best responses against his opponent’s strategy k2:

u1(p) = s + k2(p)β1(p, u1) + max
k1∈{0,1}

k1[b1(p, u1)− c1(p)],

where c1(p) = s − pg is the opportunity cost player 1 has to bear when he plays risky,

b1(p, u1) = λ
r
p[g − u1(p)− (1− p)u′1(p)] is the learning benefit accruing to player 1 when he

plays risky, and β1(p, u1) = λ
r
(1 − p)[s − u1(p) + pu′1(p)] is his learning benefit from player

2’s playing risky.7

7By standard results, player 1’s payoff function from playing a best response against k2 is once continu-
ously differentiable on any open interval of beliefs where player 2’s action is constant. At a belief where k2

is discontinuous, u′1(p) must be understood as the one-sided derivative of u1 in the direction implied by the
law of motion of beliefs.
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Analogously, the Bellman equation for player 2 is

u2(p) = s + k1(p)β2(p, u2) + max
k2∈{0,1}

k2[b2(p, u2)− c2(p)],

where c2(p) = s− (1− p)g is the opportunity cost player 2 has to bear when he plays risky,

b2(p, u2) = λ
r
(1− p)[g − u2(p) + pu′2(p)] is the learning benefit accruing to player 2 when he

plays risky, and β2(p, u2) = λ
r
p[s − u2(p) − (1 − p)u′2(p)] is his learning benefit from player

1’s playing risky.

It is straightforward to obtain closed-form solutions for the payoff functions. If k1(p) =

k2(p) = 0, the players’ payoffs are u1(p) = u2(p) = s. If k1(p) = k2(p) = 1, the Bellman

equations yield u1(p) = pg + λ
λ+r

(1 − p)s and u2(p) = u1(1 − p). On any interval where

k1(p) = 1 and k2(p) = 0, u1 and u2 satisfy the ODEs

λp(1− p)u′1(p) + (r + λp)u1(p) = (r + λ)pg,

λp(1− p)u′2(p) + (r + λp)u2(p) = (r + λp)s,

which have the solutions u1(p) = pg+C1(1−p)
r+λ

λ p−
r
λ and u2(p) = s+C2(1−p)

r+λ
λ p−

r
λ with

constants of integration C1 and C2, respectively. Finally, on any interval where k1(p) = 0

and k2(p) = 1, u1 and u2 solve

λp(1− p)u′1(p)− [r + λ(1− p)]u1(p) = −[r + λ(1− p)]s,

λp(1− p)u′2(p)− [r + λ(1− p)]u2(p) = −(r + λ)(1− p)g,

which implies u1(p) = s + C1p
r+λ

λ (1− p)−
r
λ and u2(p) = (1− p)g + C2p

r+λ
λ (1− p)−

r
λ .

Note that each of the above closed-form solutions is the sum of one term that expresses

the expected payoff from committing to a particular action and another term that captures

the option value of being able to switch to the other action.

5 Complete Learning

In this section, we shall show that whenever the planner’s solution leads to complete learning,

so will any Markov perfect equilibrium of the experimentation game. To this end, we first

establish a lower bound on equilibrium payoffs.

From Keller, Rady and Cripps (2005), the optimal payoffs of player 1 and 2, if they

were experimenting in isolation and hence applying the cutoffs p∗ and 1 − p∗, respectively,

would be

u∗1(p) =





s if p ≤ p∗,

pg + (s− p∗g)
(

1−p
1−p∗

) r+λ
λ

(
p
p∗

)− r
λ

if p ≥ p∗

12



and u∗2(p) = u∗1(1− p). Since each player in the experimentation game always has the option

to act as though he were a single player by just ignoring the additional signal he gets from

the other player, it is quite intuitive that he cannot possibly do worse with the other player

around than if he were by himself. The following lemma confirms this intuition.

Lemma 5.1 The value function of the respective single-agent problem constitutes a lower

bound on each player’s equilibrium value function in any Markov perfect equilibrium.

Now, if g
s

> 2r+λ
r+λ

, then p∗ < 1
2

< 1− p∗, so at any belief p, Lemma 5.1 implies u∗1(p) > s

or u∗2(p) > s or both. Thus, there cannot exist a p such that k1(p) = k2(p) = 0 be mutually

best responses as this would mean u1(p) = u2(p) = s. This proves the following proposition:

Proposition 5.2 (Complete learning) If g
s

> 2r+λ
r+λ

, learning will be complete in any

Markov perfect equilibrium.

Proposition 6.5 below will show that in the knife-edge case where g
s

= 2r+λ
r+λ

, the unique

Markov perfect equilibrium also entails complete learning. Whenever efficiency calls for

complete learning, therefore, learning will be complete in equilibrium. This result is in

stark contrast to the benchmark problem of perfect positive correlation in Bolton and Harris

(1999) and Keller, Rady and Cripps (2005), where any MPE entails an inefficiently large

probability of incomplete learning.

6 Markov Perfect Equilibria

Our next aim is to the characterize the Markov perfect equilibria of the experimentation

game.

The profile of actions (k1, k2) must be (0, 0), (0, 1), (1, 0) or (1, 1) at any belief. For
g
s

< 2r+λ
r+λ

, the profile (1, 1) cannot occur in equilibrium since it would imply an average

payoff of u11 < s at the relevant belief, giving at least one player a payoff below s, and hence

below his single-agent optimum. For g
s

> 2r+λ
r+λ

, on the other hand, the profile (0, 0) cannot

occur since it would imply incomplete learning.

We say that the transition (k−1 , k−2 )—(k+
1 , k−2 )—(k+

1 , k+
2 ) occurs at the belief p̂ ∈ ]0, 1[

if limp↑p̂ k1(p) = k−1 , (k1(p̂), k2(p̂)) = (k+
1 , k−2 ), limp↓p̂ k2(p) = k+

2 , and at least one of the sets

{k−1 , k+
1 } and {k−2 , k+

2 } contains more than one element. Given our definition of strategies,

each equilibrium has a finite number of transitions.

13



We first consider transitions where one player’s action stays fixed. Invoking the standard

principles of value matching and smooth pasting, we obtain the following result.

Lemma 6.1 In any Markov perfect equilibrium, a transition (k−1 , 0)—(k+
1 , 0)—(k+

1 , 0) can

only occur at the belief p∗, (0, k−2 )—(0, k−2 )—(0, k+
2 ) only at 1− p∗, (k−1 , 1)—(k+

1 , 1)—(k+
1 , 1)

only at pm, and (1, k−2 )—(1, k−2 )—(1, k+
2 ) only at 1− pm.

While it is intuitive that a player would apply the single-agent cutoff rule against an

opponent who plays safe and thus provides no information, it is surprising that the myopic

cutoff determines equilibrium behavior against an opponent who plays risky. Technically,

this result is due to the fact that along player 1’s payoff function for k1 = k2 = 1, his learning

benefit from playing risky vanishes:

b1(p, u1) =
λ

r
p

[
g −

(
pg +

λ

λ + r
(1− p)s

)
− (1− p)

(
g − λ

λ + r
s

)]
= 0,

and so k1 = 1 is optimal against k2 = 1 if and only if c1(p) ≤ 0, that is, p ≥ pm. This is best

understood by recalling the law of motion of beliefs in the absence of a success on either

arm, ṗ = −(k1− k2)λp(1− p), which tells us that if both players are playing risky, the state

variable does not budge until the first success occurs and all uncertainty is resolved. In other

words, all a player does by chiming in in his opponent’s experimentation is to keep the belief,

his action and his continuation value constant and wait for the resolution of uncertainty. But

this can only be optimal if he reaps maximal current payoffs while waiting. So his playing

the risky arm must be myopically optimal.

In the following lemma, we consider the transitions where both players change action.

Lemma 6.2 The following statements hold for all Markov perfect equilibria. (i) The tran-

sition (1, 0)—(0, 0)—(0, 1) can only occur if g
s
≤ 2r+λ

r+λ
and only at beliefs in [1− p∗, p∗]. (ii)

The transition (0, 1)—(1, 1)—(1, 0) can only occur if 2r+λ
r+λ

≤ g
s
≤ 2 and only at beliefs in

[1− pm, pm].

The structure of Markov perfect equilibria depends on the relative position of the pos-

sible transition points, which in turn depends on the stakes involved, i.e. on the ratio g
s
. For

expositional reasons, we shall first analyze the cases of low and high stakes.

6.1 Low Stakes

Recall that the low-stakes case is defined by the inequality g
s

< 2r+λ
r+λ

. In this case, 1− pm <

1− p∗ < 1
2

< p∗ < pm.
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Proposition 6.3 (Markov perfect equilibrium for low stakes) When g
s

< 2r+λ
r+λ

, the

unique Markov perfect equilibrium is symmetric and coincides with the planner’s solution.

That is, player 1 plays risky on [p∗, 1] and safe on [0, p∗[ , while player 2 plays risky on

[0, 1− p∗] and safe on ]1− p∗, 1]. The pertaining value functions are those of the respective

single-agent problems, u∗1 and u∗2.

Figure 3 illustrates this result.8 The players’ average payoff function coincides with the

planner’s value function as stated in Proposition 3.1.

s
0

g+s
2

g

1−p∗ 1
2

p∗ 1

u2 u1

Figure 3: The equilibrium value functions for g
s

< 2r+λ
r+λ

.

Why we should have efficiency in this case is intuitively quite clear, as the planner lets

players behave as though they were single players. As p∗ > 1
2
, there is no spillover from a

player behaving like a single agent on the other player’s optimization problem. Hence the

latter’s best response calls for behaving like a single player as well. Thus, there is no conflict

between social and private incentives.9

The law of motion for the belief and the probability of the players’ eventually finding

out the true state of the world are thus the same as in the planner’s solution for low stakes.

8In this and all subsequent figures, the thick solid line depicts the value function of player 1, the thin
solid line that of player 2, and the dotted line the players’ average payoff function.

9As already discussed in the introduction, the uniqueness part of Proposition 6.3 is obvious given the
lower bound on equilibrium payoffs in Lemma 5.1 and the planner’s solution in Proposition 3.1. The proof of
uniqueness that we give in the appendix does not rely on knowledge of the planner’s solution. This method
of proof has the advantage that it carries over to intermediate and high stakes.
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6.2 High Stakes

The high-stakes case is defined by the inequality g
s
≥ 2. In this case, p∗ < pm ≤ 1

2
≤ 1−pm <

1− p∗.

Proposition 6.4 (Markov perfect equilibrium for high stakes) When g
s
≥ 2, the

unique Markov perfect equilibrium is symmetric and has both players behave myopically.

That is, player 1 plays risky on [pm, 1] and safe on [0, pm[ , while player 2 plays risky on

[0, 1− pm] and safe on ]1− pm, 1]. The pertaining value functions are

u1(p) =





s + λ
λ+r

(1− pm)s
(

p
pm

) r+λ
λ

(
1−p

1−pm

)− r
λ

if p ≤ pm,

pg + λ
λ+r

(1− p)s if pm ≤ p ≤ 1− pm,

pg + λ
λ+r

pms
(

1−p
pm

) r+λ
λ

(
p

1−pm

)− r
λ

if p ≥ 1− pm

and u2(p) = u1(1− p).

When the stakes are high, the unique equilibrium calls for both players’ behaving my-

opically. This is best understood by recalling from our discussion above that individual

optimality calls for myopic behavior whenever one’s opponent is playing risky. When the

stakes are high, players’ myopic cutoff beliefs are more pessimistic than p = 1
2
, so the relevant

intervals overlap.

Figure 4 illustrates this result. Player 1’s value function has a kink at 1 − pm, where

player 2 changes action. Symmetrically, player 2’s value function has a kink at pm, where

player 1 changes action. As a consequence, the average payoff function has a kink both at

pm and at 1 − pm. That it dips below the level u11 close to these kinks is evidence of the

inefficiency of equilibrium. We will return to this point in Section 6.4 below.

Arguing exactly as after Proposition 3.2, it is straightforward to see that learning will

be complete, as predicted by Proposition 5.2.

6.3 Intermediate Stakes

This case is defined by the condition that 2r+λ
r+λ

≤ g
s

< 2. In this case, p∗ ≤ 1
2

< pm.

When the stakes are intermediate in size, equilibrium is not unique; rather there is a

continuum of equilibria, as the following proposition shows.
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Figure 4: The equilibrium value functions for g
s

> 2.

Proposition 6.5 (Markov perfect equilibria for intermediate stakes) When 2r+λ
r+λ

≤
g
s

< 2, there is a continuum of Markov perfect equilibria. Each of them is characterized by

a unique belief p̂ ∈ [max{1 − pm, p∗}, min{pm, 1 − p∗}] such that player 1 plays risky if and

only if p ≥ p̂, and player 2 if and only if p ≤ p̂. The pertaining value functions are given by

u1(p) =





s +
[
p̂g + λ

λ+r
(1− p̂)s− s

] (
p
p̂

) r+λ
λ

(
1−p
1−p̂

)− r
λ

if p ≤ p̂

pg + λ
λ+r

(1− p̂)s
(

1−p
1−p̂

) r+λ
λ

(
p
p̂

)− r
λ

if p ≥ p̂

for player 1, and

u2(p) =





(1− p)g + λ
λ+r

p̂s
(

p
p̂

) r+λ
λ

(
1−p
1−p̂

)− r
λ

if p ≤ p̂

s +
[
(1− p̂)g + λ

λ+r
p̂s− s

] (
1−p
1−p̂

) r+λ
λ

(
p
p̂

)− r
λ

if p ≥ p̂

for player 2.

Amongst the continuum of equilibria characterized in Proposition 6.5, there is a unique

symmetric one, given by p̂ = 1
2
. Figure 5 illustrates this equilibrium. Both players’ value

functions and their average are kinked at p = 1
2
, where both players change action. At any

belief except p = 1
2
, the average payoff function is below the planner’s solution; if the initial

belief is p0 = 1
2
, however, the efficient average payoff u11 is achieved.
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Figure 5: The value functions in the unique symmetric equilibrium for 2r+λ
r+λ

< g
s

< 2.

For arbitrary p̂, the dynamics of beliefs in the absence of a breakthrough are given by

ṗ =





λp(1− p) if p < p̂,

0 if p = p̂,

−λp(1− p) if p > p̂.

As predicted by Proposition 5.2, learning is complete in all these equilibria.

6.4 Efficiency vs. Myopia

As we have pointed out already, when the stakes are low, players do not interfere with each

other’s optimization problem and behave as though they were all by themselves. We have

seen that this kind of behavior is also efficient.

If stakes are high, however, we have seen that players behave myopically. This implies

that in the unique MPE, experimentation is at efficient levels except on [p̄, pm]∪ [1− pm, 1−
p̄], the union of two non-empty and non-degenerate intervals, where experimentation is

inefficiently low. Put differently, there is a region of beliefs where one player free-rides on

the other player’s experimentation, which is inefficient from a social point of view.

In the case of intermediate stakes, equilibrium behavior changes gradually from efficiency

to myopia. Indeed, as is easily verified, if 2r+λ
r+λ

< g
s
≤ 2r+λ

2(r+λ)
+

√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then the lower

bound on the equilibrium cutoff p̂ satisfies max{p∗, 1− pm} ≤ p̄. Now, if the players’ initial

belief is p0 < p̄, the equilibrium with p̂ = p̄ achieves efficiency as the only beliefs that
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are reached with positive probability under the equilibrium strategies are given by the set

{0, 1} ∪ [p0, p̄], and the equilibrium strategies prescribe the efficient actions at all of these

beliefs. Similarly, for p0 > 1 − p̄, efficiency is achieved by the equilibrium with p̂ = 1 − p̄.

Finally, if p̄ ≤ p0 ≤ 1 − p̄, efficiency is achieved by the equilibrium with p̂ = p0, since this

ensures that only beliefs in {0, p0, 1} are reached with positive probability.

If 2r+λ
2(r+λ)

+
√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
< g

s
< 2, then p∗ < p̄ < 1−pm. Now, suppose p̄ ≤ p0 < 1−pm.

Equilibrium uniquely calls for (k1, k2)(p) = (0, 1) for all p ≤ 1−pm, whereas efficiency would

require (k1, k2)(p) = (1, 1) whenever p̄ < p ≤ 1 − p̄. Thus, equilibrium implies inefficient

play on the interval ]p̄, 1 − pm[ which is reached with positive probability given the initial

belief p0.

Combined with our results for low and high stakes, these arguments establish the fol-

lowing proposition.

Proposition 6.6 (Efficiency) If g
s
≤ 2r+λ

2(r+λ)
+

√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then for each initial belief,

there exists a Markov perfect equilibrium that achieves the efficient outcome. If g
s

> 2r+λ
2(r+λ)

+√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
, there are initial beliefs under which the efficient outcome cannot be reached

in equilibrium.

If 1 +
√

r
r+λ

≤ g
s

< 2, then pm ≤ 1− p∗. In this situation, setting p̂ = pm (p̂ = 1− pm)

yields an equilibrium where only player 1 (player 2) behaves myopically, while the other

player bears the entire burden of experimentation by himself, something he is only willing

to do provided the stakes involved exceed the threshold of 1+
√

r
r+λ

. In view of our findings

for low and high stakes, this establishes the following result.

Proposition 6.7 (Myopic behavior) If g
s
≥ 1 +

√
r

r+λ
, there exists a Markov perfect

equilibrium where at least one of the players behaves myopically. If g
s

< 1+
√

r
r+λ

, no player

behaves myopically in equilibrium.

Note that for certain parameter values, namely if 1+
√

r
r+λ

≤ g
s
≤ 2r+λ

2(r+λ)
+

√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
,

equilibria where one player behaves myopically co-exist with equilibria that achieve efficiency

given the initial belief.

7 Concluding Remarks

We have analyzed a game of strategic experimentation in continuous time where players’

expected risky payoffs are perfectly negatively correlated across states of the world. We have
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found that, in sharp contrast to the case of perfectly positive correlation, all the equilibria

are of the cutoff type, and that for a large subset of parameters, equilibrium is unique. When

the stakes are low, equilibrium behavior is efficient, whereas for high stakes players behave

myopically.

In order to ensure a well-defined state variable for all initial values, we have restricted

players’ strategies to be continuous in the direction of more optimistic beliefs. Although this

restriction rules out more transitions than would be necessary to guarantee a well-defined

solution to the law of motion for every initial belief, it turns out to be innocuous in the

sense that no further equilibria emerge when we rule out only those transitions that are

incompatible with a well-defined law of motion.10

Furthermore, we have restricted attention to what in the literature have been termed

“pure strategy equilibria” (by Bolton and Harris, 1999 and 2000) or “‘simple equilibria” (by

Keller, Rady and Cripps, 2005, and Keller and Rady, 2007). Our results on efficiency and

complete learning are robust to an extension of the strategy space where players are allowed

to choose experimentation intensities from the entire unit interval.

Our results on efficiency and complete learning would not change either if, as in Keller

and Rady (2007), a bad risky arm also had a non-zero arrival rate of lump-sum payoffs, so

that the first success on a risky arm no longer revealed the true state of the world.

Our analysis naturally raises the question under what circumstances players would

choose to play a strategic experimentation game with perfectly negatively, rather than pos-

itively, correlated bandits. To analyze this question, we can extend our model by letting

players first decide sequentially whether they want to experiment with risky arm 1, whose

prior probability of being good is p0, or with risky arm 2, whose corresponding probability

is 1−p0. They then play the strategic experimentation game with either perfectly positively

or negatively correlated bandits, as the case might be. Using the fact that in any equi-

librium of the experimentation game, no player can obtain a payoff higher than twice the

planner’s solution minus the single-agent solution, it is straightforward to derive a condition

on the model parameters under which equilibrium of the extended game uniquely predicts

that players choose different risky arms for all priors p0 in a neighborhood of 1
2
.11 It is easy

to find parameter combinations that satisfy this condition; for instance, r
λ

= 2 and g
s

= 3

will do. Given r and λ, moreover, the condition will always be fulfilled if the stakes g
s

are

10We have chosen the a priori more restrictive course because using the alternative method would have
entailed the undesirable feature that a player’s strategy space depended on his opponent’s strategy. The
treatment of this case, which, as noted, leads to the exact same set of equilibria, is available from the authors
upon request.

11Details are available from the authors upon request.
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large enough. This shows that for high uncertainty (p0 close to 1
2
) and sufficiently high

stakes, players prefer going their own separate ways on mutually exclusive hypotheses over

investigating the same hypothesis together – even when, as we assume here, there are perfect

spillovers and no risk of preemption.

While this extension of our model merely allows for one irreversible project selection,

we plan to explore repeated selection in a variant of our setup where, akin to Chatterjee and

Evans (2004), each player has access to both risky arms and can choose between them at

will. This requires each player to solve a three-armed bandit problem with a safe arm and

two risky arms that are known to be of opposite types.

Finally, we plan to explore the strategic experimentation problem with imperfect cor-

relation between bandit types, which necessarily involves a state space with more than two

elements and beliefs that evolve in a simplex of dimension higher than one.
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Appendix

Proof of Proposition 3.1

The policy (k1, k2) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗ and 1 − p∗, hence is of class C1. It is strictly
decreasing on [0, 1− p∗] and strictly increasing on [p∗, 1]. Moreover, u = s + B2 − c2

2 on [0, 1− p∗],
u = s on [1− p∗, p∗], and u = s + B1 − c1

2 on [p∗, 1] (we drop the arguments for simplicity), which
shows that u is indeed the planner’s payoff function from (k1, k2).

To show that u and this policy (k1, k2) solve the planner’s Bellman equation, and hence that
(k1, k2) is optimal, it is enough to establish that B1 < c1

2 and B2 > c2
2 on ]0, 1 − p∗[ , B1 < c1

2

and B2 < c2
2 on ]1 − p∗, p∗[ , and B1 > c1

2 and B2 < c2
2 on ]p∗, 1[ . Consider this last interval.

There, u = s + B1 − c1
2 and u > s (by monotonicity of u) immediately imply B1 > c1

2 . Next,
B2 = λ

r [g+s
2 −u]−B1 = λ

r [g+s
2 −u]−u+ s− c1

2 ; this is smaller than c2
2 if and only if u > u11, which

holds here since u > s and s > u11. The other two intervals are treated in a similar way.

Proof of Proposition 3.2

It is straightforward to check that p∗ ≤ p̄ ≤ 1
2 if g

s ≥ 2r+λ
r+λ . The rest of the proof proceeds along

the same lines as the previous one and is therefore omitted.

Definitions and an Auxiliary Result

For p ∈ [0, 1], we define

w1(p) = pg +
λ

r + λ
(1− p)s and w2(p) = (1− p)g +

λ

r + λ
ps = w1(1− p).

We recall from Section 4 that these are the players’ payoff functions when both are playing risky.
Furthermore, we define the players’ expected full-information payoffs:

u1(p) = pg + (1− p)s and u2(p) = (1− p)g + ps = u1(1− p).

The following lemma will be useful in the proofs of Lemma 6.2 and Propositions 6.4–6.5.

Lemma A.1 At any belief where the payoff function of player n satisfies un(p) = s + βn(p, un),
the sign of bn(p, un)− cn(p) coincides with the sign of wn(p)− un(p).

Proof: We first note that bn(p, un) = λ
r [un(p)− un(p)]−βn(p, un). As βn(p, un) = un(p)−s, this

implies bn(p, un)− cn(p) = λ
r [un(p)− un(p)]− un(p) + s− cn(p) = r+λ

r [wn(p)− un(p)].

Proof of Lemma 5.1

Let u1 be player 1’s equilibrium value function in some MPE with equilibrium strategies (k1, k2).
Write b∗1(p) = b1(p, u∗1), and β∗1(p) = β1(p, u∗1). Henceforth, we shall suppress arguments whenever
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this is convenient. Since p∗ is the single-agent cutoff belief for player 1, we have u∗1 = s for p ≤ p∗

and u∗1 = s + b∗1− c1 = pg + b∗1 for p > p∗. Thus, if p ≤ p∗, the claim obviously holds as s is a lower
bound on u1.

Now, let p > p∗. Then, noting that b∗1 = u∗1 − pg, we have β∗1 = λ
r [u1 − u∗1] − (u∗1 − gp).

Thus, β∗1 > 0 if and only if u∗1 < pg + λ
r+λ(1 − p)s = w1. Noting that w1(p∗) = u∗1(p

∗) = s,
w1(1) = u∗1(1) = g, and that w1 is linear whereas u∗1 is strictly convex in p, we conclude that
u∗1 < w1 and hence β∗1 > 0 on ]p∗, 1[ . As a consequence, we have u∗1 = pg + b∗1 ≤ gp + k2β

∗
1 + b∗1 on

[p∗, 1].
Now, suppose u1 < u∗1 at some belief. Since s is a lower bound on u1, this implies existence of a

belief strictly greater than p∗ where u1 < u∗1 and u′1 ≤ (u∗1)
′. This immediately yields b1 > b∗1 > c1,

so that we must have k1 = 1 and u1 = pg + k2β1 + b1 at the belief in question. But now,

u1 − u∗1 ≥ pg + k2β1 + b1 − (pg + k2β
∗
1 + b∗1) = (1− k2)(b1 − b∗1) + k2

[
λ

r
(u∗1 − u1)

]
> 0,

a contradiction.
An analogous argument applies for player 2’s equilibrium value function u2.

Proof of Lemma 6.1

At each of these transitions, we must have value matching and smooth pasting for the player who
changes his action. For example, suppose that there is a transition (0, 0)—(1, 0)—(1, 0) at the belief
p̂. Then the value function of player 1 must satisfy u1(p̂) = s, u′1(p̂) = 0 and λp̂(1− p̂)u′1(p̂) + (r +
λp̂)u1(p̂) = (r+λ)p̂g by the ODE for (k1, k2) = (1, 0). Substituting for u1(p̂) and u′1(p̂) and solving
yields p̂ = rs

(r+λ)g−λs = p∗. The other transitions are dealt with in the same way.

Proof of Lemma 6.2

Suppose the transition (1, 0)—(0, 0)—(0, 1) occurs at belief p̂. This implies u1(p̂) = u2(p̂) = s.
Now, player 2’s value function solves the ODE for k1 = 0 and k2 = 1 to the right of p̂, which, by
continuity of u2, implies λp̂(1 − p̂)u′2(p̂+) = [r + λ(1 − p̂)]s − (r + λ)(1 − p̂)g, where u′2(p̂+) :=
limp↓p̂ u′2(p), and so we find u′2(p̂+) < 0 whenever p̂ < 1 − p∗. So we must have p̂ ≥ 1 − p∗. Now,
player 1’s value function solves the ODE for k1 = 1 and k2 = 0 to the left of p̂, which implies
λp̂(1 − p̂)u′1(p̂−) = (r + λ)p̂g − (r + λp̂)s, where u′1(p̂−) = limp↑p̂ u′1(p); so we have u′1(p̂−) > 0
whenever p̂ > p∗. Thus, we must have p̂ ∈ [1 − p∗, p∗], which requires g

s ≤ 2r+λ
r+λ . This proves

statement (i).
Suppose now that the transition (0, 1)—(1, 1)—(1, 0) occurs at belief p̂. This implies u1(p̂) =

w1(p̂) and u2(p̂) = w2(p̂). To the right of p̂, player 2’ value function solves the ODE for k1 = 1 and
k2 = 0, which implies

u′2(p̂+) =
r + λp̂

λp̂(1− p̂)

[
r + λ(1− p̂)

r + λ
s− (1− p̂)g

]
.

Now, if p̂ < 1− pm, then u′2(p̂+) < w′2(p̂) and so u2 < w2 to the immediate right of p̂, implying by
Lemma A.1 that k2 = 0 is not a best response to k1 = 1 there – a contradiction. Thus, we must
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have p̂ ≥ 1− pm. To the left of p̂, player 1’s value function solves the ODE for k1 = 0 and k2 = 1,
which implies

u′1(p̂−) =
r + λ(1− p̂)
λp̂(1− p̂)

[
p̂g − r + λp̂

r + λ
s

]
.

If p̂ > pm, then u′1(p̂−) > w′1(p̂) and so u1 < w1 to the immediate left of p̂ – another contradiction
by Lemma A.1. So we must have p̂ ∈ [1 − pm, pm], which requires g

s ≤ 2. Furthermore, we note
that the existence of a belief p̂ such that k1(p̂) = k2(p̂) = 1 requires u11 ≥ s and hence g

s ≥ 2r+λ
r+λ .

This proves statement (ii).

Proof of Proposition 6.3

The functions u1 and u2 are of class C1 with u2 strictly decreasing on [0, 1 − p∗] and u1 strictly
increasing on [p∗, 1]. As u2 = s + b2 − c2 on [0, 1− p∗] and u1 = s + b1 − c1 on [p∗, 1] (we drop the
arguments for simplicity), u1 and u2 are indeed the players’ payoff functions for (k1, k2).

To show that u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy
k2, and hence that k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, p∗[
and b1 > c1 on ]p∗, 1[ . On this last interval, u = s + b1 − c1 and u1 > s (by monotonicity
of u1) immediately imply b1 > c1. On ]0, p∗[ , we have u1 = s and u′1 = 0, hence b1 − c1 =
λ
r p(g−s)− (s−pg) = (r+λ)g−λs

r p−s < 0. As u2(p) = u1(1−p) and k2(p) = k1(1−p), the previous
steps also imply b2 > c2 on ]0, 1 − p∗[ and b2 < c2 on ]1 − p∗, 1[ , which completes the proof that
(k1, k2) constitutes an equilibrium.

For uniqueness, recall that, as u11 < s, the action profile (k1, k2) = (1, 1) cannot be part of
an MPE since this would involve a payoff strictly below s for at least one player at some belief.
Of the transitions considered in Lemma 6.2, only (1, 0)—(0, 0)—(0, 1) could happen in this case,
and it could only occur at some belief p̂ ∈ [1− p∗, p∗]. It thus follows from Lemma 6.1 that in any
MPE, players can only transition out of (0, 1) = (k1(0), k2(0)) at belief 1 − p∗, and have to move
into (0, 0) to the immediate right of 1 − p∗. As (k1(1), k2(1)) = (1, 0), players cannot transition
back into (0, 1) to the right of 1− p∗.

Proof of Proposition 6.4

The functions u1 and u2 are of class C1 except at 1 − pm and pm, respectively, where their first
derivative jumps downward; u1 is strictly increasing, u2 strictly decreasing. Moreover, u1 = s + β1

and u2 = s + b2 − c2 on [0, pm], u1 = s + β1 + b1 − c1 and u2 = s + β2 + b2 − c2 on [pm, 1 − pm],
and u1 = s + b1 − c1 and u2 = s + β2 on [1 − pm, 1]. So u1 and u2 are indeed the players’ payoff
functions for (k1, k2).

To show that u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy
k2, and hence that k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, pm[ and
b1 > c1 on ]pm, 1[ . On ]1−pm, 1[ , u1 = s+b1−c1 and u1 > s (by monotonicity of u1) immediately
imply b1 > c1. On ]pm, 1− pm[ , we have b1 = 0 > c1. On ]0, pm[ , it is easily verified that u1 > w1,
so Lemma A.1 implies b1 < c1. As u2(p) = u1(1− p) and k2(p) = k1(1− p), the previous steps also
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imply b2 > c2 on ]0, 1 − pm[ and b2 < c2 on ]1 − pm, 1[ , which completes the proof that (k1, k2)
constitutes an equilibrium.

For uniqueness, we recall that the action profile (k1, k2) = (0, 0) cannot be part of an MPE
since it would imply incomplete learning. It thus follows immediately from Lemmas 6.1 and 6.2
that the only way for players to transition out of (0, 1) = (k1(0), k2(0)) is for them to switch to
(1, 1) at pm. Thus, players cannot transition back into (0, 1) to the right of pm. Therefore, again
using Lemma 6.1, the only way to transition out of (1, 1) is to switch to (1, 0) at 1 − pm. Hence,
players cannot transition back to (1, 1) or (0, 1) to the right of 1− pm.

Proof of Proposition 6.5

The functions u1 and u2 are of class C1 except at p̂, where their first derivatives jump; u1 is strictly
increasing, u2 strictly decreasing. Moreover, u1 = s + β1 and u2 = s + b2 − c2 on [0, p̂[ , u1 and u2

coincide with w1 and w2, respectively, at p̂, and u1 = s + b1 − c1 and u2 = s + β2 on ]p̂, 1]. So u1

and u2 are indeed the players’ payoff functions for (k1, k2).
As u1 > w1 and u2 > s on [0, p̂[ , we have b1 < c1 (by Lemma A.1) and b2 > c2 on this

interval. Similarly, as u1 > s and u2 > w2 on ]p̂, 1], we have b1 > c1 and b2 < c2 there. The
players’ respective actions at p̂ are fixed by the continuity requirements imposed by our definition
of strategies.

To see that there are no other equilibria, note that, by Lemmas 6.1 and 6.2, there might
potentially be two ways of transitioning out of (0, 1) = (k1(0), k2(0)), namely either via (0, 1)—
(1, 1)—(1, 0), which can only happen at points in the interval [1 − pm, pm], or via (0, 1)—(1, 1)—
(1, 1), which can only happen at pm. Now, suppose that there exists an MPE where players
transition from (0, 1) into (1, 1) at pm. To the right of pm, players cannot transition back into (0, 1)
as, to the right of pm, there is no way for them to transition out of (0, 1) again. Moreover, they can
only transition from (1, 1) to (1, 0) via (1, 1)—(1, 1)—(1, 0), which can only happen at 1−pm < pm.
Thus, in such an MPE, we must have (k1(1), k2(1)) = (1, 1) – a contradiction.

Therefore, in any MPE, there exists a belief p̂ ∈ [1− pm, pm] at which a transition of the form
(0, 1)—(1, 1)—(1, 0) occurs. Now, there is no way for the players to transition out of (1, 0) again
to the right of p̂, as, by Lemma 6.1, (1, 0)—(1, 0)—(1, 1) can only occur at 1− pm, which already
implies the uniqueness of p̂.

Thus, we have shown that there is exactly one transition in any MPE, occurring at a belief
p̂ ∈ [1 − pm, pm]. For the case where pm > 1 − p∗, we shall now show that in fact p̂ ∈ [p∗, 1 − p∗].
Indeed, suppose that p̂ < p∗. Then, p̂g + λ

r+λ(1− p̂)s < s and, by the explicit expression for player
1’s value function, u1 < s on ]0, p̂[ , which is incompatible with player 1 playing a best response.
By an analogous argument, we can rule out p̂ > 1− p∗.
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