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Abstract 
 
 
As mixture regression models increasingly receive attention from both theory and practice, 

the question of selecting the correct number of segments gains urgency. A misspecification 

can lead to an under- or oversegmentation, thus resulting in flawed management decisions on 

customer targeting or product positioning. 

This paper presents the results of an extensive simulation study that examines the 

performance of commonly used information criteria in a mixture regression context with 

normal data. Unlike with previous studies, the performance is evaluated at a broad range of 

sample/segment size combinations being the most critical factors for the effectiveness of the 

criteria from both a theoretical and practical point of view. In order to assess the absolute 

performance of each criterion with respect to chance, the performance is reviewed against so 

called chance criteria, derived from discriminant analysis. 

 

The results induce recommendations on criterion selection when a certain sample size is given 

and help to judge what sample size is needed in order to guarantee an accurate decision based 

on a certain criterion respectively. 
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1.  Introduction 
 

Finite mixture models have been applied in various research fields for more than a century 

now. These research fields include astronomy, biology, genetics, psychology, engineering 

criminology and marketing (MCLACHLAN/PEEL 2000; TITTERINGTON ET AL. 1985). Especially 

in the latter, finite mixture models have recently received increasing attention from both a 

practical and theoretical point of view. In the last years, traditional mixture models have been 

extended by various multivariate statistical methods such as multidimensional scaling, 

exploratory factor analysis (DESARBO ET AL. 2001a) or structural equation models (JEDIDI ET 

AL. 1979; HAHN ET AL. 2002), upon which regression models (WEDEL/KAMAKURA 1999, pp. 

99) for normally distributed data are the most common analysis procedure in marketing 

context, e.g. in terms of conjoint and market response models (ANDREWS ET AL. 2002; 

ANDREWS/CURRIM 2003b, p. 316). Correspondingly, mixture regression models are prevalent 

in marketing literature (BOWMAN ET AL. 2004; DESARBO ET AL. 2001b; SRINIVASAN 2006; 

REINARTZ ET AL. 2005; SJOQUIST ET AL. 2003; WEDEL/DESARBO 2002; YOO 2003 among 

others) and are expected to become more and more common as recent research suggests that 

finite mixture conjoint models produce good parameter estimates, even at an individual level 

(ANDREWS ET AL. 2002b). 

Despite their widespread use and the importance of retaining the true number of segments in 

order to reach meaningful conclusions from any analysis, determining the true number of 

segments is still an unresolved problem (ANDREWS/CURRIM 2003a, p. 235; 

WEDEL/KAMAKURA 1999, p. 91). A misspecification can lead to an under- or 

oversegmentation, thus leading to flawed management decisions on e.g. customer targeting, 

product positioning or the determination of the optimal marketing mix (ANDREWS/CURRIM 

2003a, p. 235). If the number of segments is over-specified, marketers may run the risk of 

treating audience segments separately even though they could be handled together more 

effectively. On the other hand, if a market is under-segmented, marketers may miss out on 

identifying distinct segments that could be addressed separately for more precise satisfaction 

of the customer’s varying wants. DILLON and KUMAR state in this context that “the challenges 

that lie ahead are […] falling squarely on the development of procedures for identifying the 

number of support points needed to characterize the components of the mixture distribution 

under investigation” (DILLON/KUMAR 1994, p. 345). Therefore the objective of this paper is to 

give recommendations on which criterion should be considered at what combination of 

sample/segment size in order to identify the true number of segments in a given data set.  
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Various authors have considered the problem of choosing the number of segments in mixture 

models in different context (see BOZDOGAN 1993; BRAME ET AL. 2006; CELEUX/SOROMENHO 

1996; CUTLER/WINDHAM 1993; MCLACHLAN/NG 2000; NYLUND ET AL. 2006; RUST ET AL. 

1995; SOROMENHO 1993; TOFIGHI/ENDERS 2007; YANG 2006 among others). But as most of 

the available studies appeared in statistics literature, they aim at exemplifying the 

effectiveness of new proposed measures, instead of revealing the performance of measures 

commonly available in statistical packages. Despite its practical importance, this topic has not 

been thoroughly considered for mixture regression models. 

An exception in this area are the studies by HAWKINS ET AL. (2001), ANDREWS/CURRIM 

(2003b) and OLIVEIRA-BROCHADO/MARTINS (2006), who examine the performance of various 

information criteria against several factors such as measurement level of predictors, number 

of predictors, separation of the segments or error variance. Although sample and segment size 

are critical factors, from both a practical as well as theoretical point of view (will be clarified 

later), their interaction is not thoroughly considered in previous studies. Unlike the mentioned 

articles, this paper aims at filling this gap by determining how the interaction of sample and 

segment size affects the performance of five of the most widely used criteria for assessing the 

number of segments in mixture models in detail. To do so, a Monte Carlo simulation was 

conducted for a two-segment solution where the sample size was varied in a ten-step interval 

of [50;500]. For each sample size, five variations of mixture proportions were evaluated. In 

order to assess the relative performance of each criterion, success rates for choosing the right 

number of segments were computed. 

Another shortcoming of existing studies is their plain focus on the criteria’s relative 

effectiveness, ignoring any a-priori information on the likelihood with which a certain model 

may occur. As a consequence, the success rates of the simulation were compared with an 

outside criterion, so called chance models, derived from discriminant analysis, in order to 

evaluate the criteria’s absolute performance with respect to chance. 

The rest of the article proceeds as follows: 

The next section contains the necessary theoretical background on mixture regression models 

and a short review of model selection criteria. In order to identify commonly used information 

criteria, a meta-study on the utilization of statistical figures for model selection was conducted 

whose results are presented in this section. Then, the design of the simulation study is 

introduced, followed by the results of the study. Finally, the study’s resulty, as well as 

management implications and suggestions for further research are presented. 
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2.  Theoretical Background 

2.1 Mixture Regression Models 
A mixture model based approach to regression assumes that the observations of a data set 

originate from various groups with unknown segment affiliations. This heterogeneity is 

treated in simultaneous equation models by deriving segments that are homogenous in respect 

to predictor values of the model. That is, each observation is taken to be a realization of the 

unconditional density 
 

( ) ∑
=

⋅=
K

i
iniin yfyf

1

)|(| θπφ         (1) 

 

withφ ,  as the dependent variable (n=1,…,N), ( )ii θ,π= ny iπ  as the mixture proportion of 

segment i ( ) and  as the vector of all 

unknown parameters associated with the density function where 

K1,...,i  0  and  1 i
1

=∀≥=∑
=

ππ
K

i
i ( ′′′= KK θθππ ,...,;,..., 11φ )

iθ  is the segment-specific 

parameter vector for the density function. Equation (1) describes a mixture linear regression 

(also latent class regression or cluster-wise regression) if the conditional density function  is 

a normal density with the segment-specific mean 

if

xiβ′  and variance 2

iσ . 

Applications of mixture regression models are typically classified according to the 

distribution of the dependent variable (WEDEL/KAMAKURA 1999, p. 113). The most important 

distributions are normal, gamma or exponential for continuous variables and binomial, 

multinomial or Poisson for discrete variables. As all these distribution types are within the 

exponential family, generalized linear models can be applied, including linear regression, 

logit or probit models. Other models include censored regression models, such as the tobit 

model or survival models, such as the Cox Proportional Hazards Model (COX 1972). 

2.2 Model Selection in Mixture Models 
Assessing the number of segments in a mixture model is a difficult but important problem.  

Whereas it is well known that conventional chi square-based goodness of fit tests and 

likelihood ratio tests are unsuitable for making this determination (AITKIN/RUBIN 1985; 

EVERITT 1981; EVERITT 1988), the decision on what model selection statistic should be used 

still remains unsolved (MCLACHLAN/PEEL 2000, pp. 175; NYLUND ET AL. 2006, pp. 4). A 

modified likelihood ratio test (MCLACHLAN 1987) uses bootstrapping procedures to 

circumnavigate implementation problems of classical chi square tests but requires vast 

computing power (WEDEL/KAMAKURA 1999, p. 91). To date this so called bootstrap 

likelihood ratio test has not commonly been implemented in mixture modelling software and 
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therefore lacks general application. The more recently developed Lo-Mendell-Rubin test (LO 

ET AL. 2001) compares two neighbouring models and provides a p-value to contrast the 

increase in model fit between k-1 and k class models by using an approximate reference 

distribution for the log likelihood difference. However, this method has been criticized by 

JEFFRIES (2003) due to analytic inconsistency, which questions the validity of testing non-

nested models with this method. 

The other main approach for deciding on the number of segments is based on a penalized 

form of the likelihood, yielding to the so called information criteria. Information criteria for 

model selection simultaneously take into account the goodness-of-fit (likelihood) of a model 

and the number of parameters used to achieve that fit. They therefore correspond to a 

penalized likelihood function, that is, the negative likelihood plus a penalty term, which 

increases with the number of parameters and/or the number of observations. Various model 

selection criteria which take the form  
 

[ ] ),()()()( maxln2 nkbkmnakL ++−        (2) 
 

have been developed in recent years. Here, n is the sample size, max L(k) denotes the 

maximum of the likelihood over the parameters, and m(k) is the number of independent 

parameters in a model with k segments. For a given criterion, a(n) is the cost of fitting an 

additional segment and b(k,n) is an auxiliary term depending upon the criterion. According to 

these criteria, among a set of competing models the model minimizing the value in equation 

(2) should be chosen.  

 

The simulation study focuses on four of the most representative and widely applied models 

selection criteria. In a recent study by OLIVEIRA-BROCHADO and MARTINS (2006), the authors 

report that in 37 published studies, AIC was used 15 times, CAIC was used 13 times and BIC 

was used 11 times (multiple selections possible). Since it remains unclear in which 

publications the studies appeared, an own meta-study was initiated in order to identify the 

most commonly used information criteria in the field of marketing. For this purpose, all 

marketing journals rated A or A+ in both rankings, developed on behalf of the Vienna 

University of Economics and Business Administration in 2001 and the Association of 

University Professors of Management in German speaking countries (VHB) in 2003 (for a 

complete list, cp. HARZING 2006) were considered. 

In order to make the data construction as transparent as possible, an easily accessible but 

universal research database was used. In November 2006, EBSCO was searched for any 
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reference to “finite mixture”, “mixture regression” and “latent regression”. EBSCO is the 

most comprehensive full text database for peer-reviewed research papers.  

The EBSCO search led to a great number of references of which a large fraction covered an 

entirely different topic. The empirical papers were examined whether they actually used any 

type of mixture regression analysis. Eventually, the desired results could be gained from 33 

articles that appeared between January 2000 and November 2006. 

One paper was discarded from the analysis due to missing specifications on the model 

selection statistic used. In the remaining 32 articles, the problem of model selection and the 

decision for an appropriate statistical figure is only addressed four times: 

DANAHER/MAWHINNEY (2001), DANAHER (2002) and WU/RANGASWAMY (2003) refer to a 

contribution by BUCKLIN/GUPTA (1992) who apply multiple-segment choice models to 

capture customer heterogeneity in brand choice. In this study, the authors briefly discuss the 

advantageousness of likelihood ratio tests, the Akaike’s Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) from a theoretical point of view without referring to 

any simulation study results. Only ANDREWS ET AL. (2002a) give detailed reasons for their 

selection of the model selection criteria. This decision is based on the, at that time 

unpublished, study “A Comparison of Segment Retention Criteria for Finite Mixture Logit 

Models” (ANDREWS/CURRIM 2003a). In the remaining 28 studies, no rationale whatsoever is 

given for the model selection statistics chosen. In none of the studies did the authors draw 

back on test statistics to decide on the number of segments in the mixture. In fact, all authors 

refer to information criteria to make that decision. In the studies, BIC was used 25 times, AIC 

was used eight times and Consistent Akaike’s Information Criterion (CAIC) as well as 

Modified AIC with factor three (MAIC3) was used two times (multiple selections possible). 

In six cases more than one information criterion was applied. 

In four cases, the log-marginal density (LMD), which is computed as the logarithm of the 

harmonic means of the likelihood values is used as an in-sample fit criterion. Because the 

likelihood values are obtained using the estimated parameter samples drawn by Gibbs 

sampling which is not applicable in this context, the LMD criterion is not considered in this 

study. For a summary of the meta-study, see the Appendix. 

 

With regard to application statistical computing software, one can observe that the criteria 

mentioned are also implemented into widely used software alternatives for estimating mixture 

models such as FlexMix (LEISCH 2004; GRÜN/LEISCH 2006a; GRÜN/LEISCH 2006b: AIC, 
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BIC), Latent Gold (VERMUNT/MAGIDSON 2005: AIC, BIC, MAIC3, CAIC) or Mplus 

(MUTHÉN/MUTHÉN 2006: AIC, BIC, ABIC). 

As a consequence, the following criteria were considered: Akaike’s Information Criterion 

(AIC), Bayesian Information Criterion (BIC), Consistent Akaike’s Information Criterion 

(CAIC), Sample-size adjusted BIC (ABIC), Modified AIC with factor 3 (MAIC3).  

 

In the course of a number of papers, AKAIKE (1973, among others) developed a criterion as an 

estimate of the expected entropy, later introduced in a mixture context by BOZDOGAN and 

SCLOVE (1984), which takes the following form: 
 

)(2ln2 kmLAIC ⋅+⋅−=          (3) 
 

The AIC penalizes the log likelihood by the total number of parameters required for model 

estimation by adding two times the number of degrees of freedom. In addition to the often 

observed inconsistency (BOZDOGAN 1987; KOEHLER/MURPHEE 1988; WOODROOFE 1982), 

numerous authors noticed that the AIC tends to overestimate the true number of segments in 

mixture models (ANDREWS/CURRIM 2003b; SOROMENHO 1993; CELEUX/SOROMENHO 1996; 

MCLACHLAN/NG 2000). Despite the problems associated with the application of this criterion, 

it still constitutes the standard in model selection criteria (OLIVEIRA-BROCHADO/MARTINS 

2006, p. 2). 

Subsequent research took critical remarks on the features of the AIC into account by 

increasing the penalty term. BOZDOGAN (1994) proposed a penalty term with a(n)=3, 

consecutively referred to as MAIC3. Furthermore BOZDOGAN (1987) provided the CAIC 

which is defined as 
 

]1[ln)(ln2 +⋅+⋅−= nkmLCAIC .        (4) 
 

The criterion imposes a larger penalty term than the AIC that grows with increasing sample 

size. This makes the CAIC asymptotically consistent, and overparametrization is penalized 

more stringently (BOZDOGAN 1987, pp. 357). Therefore, compared to AIC, the CAIC prefers 

models with fewer segments (WEDEL/KAMAKURA 1999, pp. 92). 

 

As an alternative to the AIC, SCHWARZ (1978) developed the BIC, which is derived within a 

Bayesian framework for model selection and is computed as 
 

)(lnln2 kmnLBIC ⋅+⋅−= .         (5) 
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Like the CAIC, the BIC penalizes the log likelihood by considering the total number of 

parameters required for model fit and the total sample size by adding the natural log of the 

sample size n times the number of degrees of freedom. Just like CAIC, the BIC points to the 

right model with probability of unity as the sample size increases. MCLACHLAN and PEEL 

(2000, pp. 209) point out that for ln n > 2 and n > 8, the penalty term penalizes models 

stronger than the AIC, reducing the AIC’s tendency to overparametrize models (LEROUX 

1992, pp. 1350). However, CUTLER and WINDHAM (1993) show in their simulation study that 

the extension of the penalty term can indeed result in an underparametrization, i.e. 

underestimation of the true number of segments. 

In Mplus, one of the most widely used software packages for estimating mixture models, 

MUTHÉN and MUTHÉN (2006) included the sample-size adjusted BIC, originally derived by 

RISSANEN (1978) and suggested by SCLOVE (1987) to work well in mixture models.  

The ABIC is described by 
 

)(
24

2lnln2 kmnLABIC ⋅
+

+⋅−= .        (6) 

 

Recent developments impose a penalty on the likelihood that is related to other factors. The 

Information Complexity Criterion (ICOMP), for example, is based on the properties of the 

(estimated) Fisher information matrix (BOZDOGAN 1990; BOZDOGAN 1993) and shows a 

compared to the more traditional criteria AIC and BIC advantageous performance, depending 

on the context of usage (CUTLER/WINDHAM 1993; ANDREWS/CURRIM 2003a). Other criteria 

include the Consistent Akaike’s Information Criterion with Fisher Information (CAICF) 

(BOZDOGAN 1987, pp. 359), the Efron Information Criterion (EIC) (ISHIGURO ET AL. 1997), 

the Integrated Completed Likelihood Criterion (ICL) (BIERNACKI ET AL. 2000) or the recently 

developed New Covariance Ination Criterion (New CIC) by RODRÍGUEZ (2005).1

However, these criteria have not found their way into the widely used software programs 

described above. 

 

Despite the importance of regression models in marketing context, only two studies so far 

observe the performance of information criteria in mixture regression models. The study by 

ANDREWS and CURRIM (2003b) examines the performance of AIC, MAIC3, CAIC, BIC, 

ICOMP, the validation sample log likelihood (LOGLV) and the Normed Entropy Criterion 

(NEC) (CELEUX/SOROMENHO 1996) by counting the success rates of each criterion under 

                                                 
1 For a review of most available criteria, compare OLIVEIRA-BROCHADO/MARTINS (2005). 



           11 

consideration of the Root Mean Square Error between the true and estimated parameters of 

the chosen model. The examination is carried out based on simulated data sets with eight 

factors, which according to literature potentially affect the criteria performance. In every 

experimental condition, MAIC3 shows the best overall performance, followed by LOGLV 

and BIC, the latter of which dominates CAIC. At last, AIC showed high overfitting rates and 

ICOMP low overall success rates. The authors conclude that MAIC3 is the best criterion to 

use with regression models for normally distributed data. Whereas the study provides good 

insight into the criteria’s overall performance, it remains unclear in which factor level 

combination each criterion operates favourably or not. In a simulation study HAWKINS ET AL. 

(2001) consider similar information criteria to those used in the study by ANDREWS and 

CURRIM (2003b) and evaluate the influence of segment separation and mixing proportions. 

From the criteria mentioned above, ICOMP performed best, followed by MAIC3. But the 

authors themselves state that the simulation results are limited since the effects of small 

sample sizes were not explored. 

In a more recent study, OLIVEIRA-BROCHADO and MARTINS (2006) examine model selection 

criteria performance in recovering small niche segments as well as the impact of distributional 

misspecification of the error term. The experimental design comprised of data sets with six 

predictors, an alternating number of segments and mean separations between segment 

coefficients. In the niche segment case, AIC and AIC with a penalty term of a(n)=3 and 

a(n)=4 showed the best performance, whereas BIC and CAIC, just like most of the other 

criteria not presented in this paper showed rather poor performance. Furthermore, it turned out 

that segment retention criteria did not loose performance with distributional misspecification 

of the error term which followed a uniform distribution. 

Despite the broad scope of questions covered in these studies, they do not profoundly 

investigate the criteria’s performance against the one factor best influenceable by the 

marketing analyst, namely the sample size.2 From an application-oriented point of view, it is 

desirable to know which sample size is necessary in order to guarantee validity when 

choosing a model with a certain criterion. Furthermore, the disregard of sample size not only 

proves problematic from a practical but also theoretical point of view. As indicated above, the 

sample size is a key differentiator between the criteria, because -2ln[max L(k)] from equation 

(2) remains the same for all criteria, described in equations (3) through (6). Consequently, the 

sample size must have a large effect on the criteria’s effectiveness, taking into account that 

                                                 
2 Whereas HAWKINS ET AL. (2001) use a sample size of n=500, OLIVEIRA-BROCHADO and MARTINS (2006) 
consider a sample size of n=300 and ANDREWS and CURRIM (2003b) allow two levels of sample sizes (n=100 
and n=300). 
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available studies yield different conclusions about the advantageousness of their performance. 

Therefore, the first objective of this study is to determine how well the information criteria 

perform in mixture regression of normal data, with alternating sample sizes.  

Another factor that is closely related to this problem concerns segment size ratio. Even though 

a specific sample size might prove beneficial in order to guarantee a satisfactory performance 

of the information criteria in general, the presence of niche segments might lead to a reduced 

heterogeneity and thus to a wrong decision in choosing the number of segments. That is why 

the second objective is to measure the information criteria’s performance in order to be able to 

assess the validity of the criteria chosen when specific segment and sample sizes are present. 

These factors are evaluated for a two-segment solution. 

 

3.  Simulation design 
 

The strategy for this simulation consists of initially drawing observations derived from an 

ordinary least squares regression and applying these to the FlexMix algorithm (LEISCH 2004; 

GRÜN/LEISCH 2006a; GRÜN/LEISCH 2006b) on a previously generated data set. FlexMix is a 

general framework for finite mixtures of regression models using the EM algorithm which is 

available as an extension package for the statistical computing software R (R DEVELOPMENT 

CORE TEAM 2006). 

In this simulation study, models with alternating observations  and three continuous 

predictors were considered for the OLS regression. First, 

in

XβY ′=  was computed for each 

observation, where X was drawn from a normal distribution. Subsequently an error term 

derived form a standard normal distribution was added to the true values. Each simulation set 

up was run with 1.000 iterations. 

 

The main parameters controlling the simulation were:  

 The number of segments: K=2 

 The regression coefficients in each segment which were specified under the premise of 

setting the mean separation between segment coefficients at 1: 

- Segment 1:     ( )′= 2.5 1.5, 1, ,11β  

- Segment 2:     ( )′= 4 1.5, 2.5, ,12β  

 Sample sizes which were varied in a ten-step interval of [50;500]  
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For each sample size, the simulation was run for the following five mixture 

proportions: ( );8.0,2.0( );9.0,1.0 2

2

2

1

1

2

1

1 ==== ππππ );7.0,3.0( 3

2

3

1 == ππ  

)}5.0,5.0();6.0,4.0( 5

2

5

1

4

2

4

1 ==== ππππ  

 Each simulation run was carried out five times for k=1,…,5 segments.  
 

The likelihood was maximized using the EM algorithm (DEMPSTER ET AL. 1977). As a 

limitation of the algorithm is its convergence to local maxima (WEDEL/KAMAKURA 1999, p. 

88), it is run repeatedly with 10 replications, totalling in 50 runs per iteration. For each 

number of segments, the best solution was picked. 

 

4.  Results summary 
As indicated above, previous studies only observe the criteria’s relative performance, ignoring 

the question whether the criteria perform any better than chance. To gain a deeper 

understanding of the criteria’s absolute performance one has to compare the success rates with 

an ex ante specified chance model. In order to verify whether the criteria are adequate, the 

predictive accuracy of each criterion with respect to chance is measured using the following 

chance models derived from discriminant analysis (MORRISON 1969) and represented in the 

following graphics: Random chance, proportional chance and maximum chance criterion. 

In order to be able to apply these criteria, the researcher has to have prior knowledge or make 

presumptions concerning the underlying model: 

For a given data set, let  be a model with  segments from a consideration set with C 

competing models 

jM jK

{ CMM ,...,1 }=Κ  and jρ  be the prior probability to observe  (j=1,…,C 

and ∑ ). The random chance criterion is  

jM

=

=
C

j
j

1

1ρ

 

ρ==
C

CM ran

1         (7) 

 

which indicates that each of the competing models has an equal prior probability. 

The proportional chance criterion is 
 

∑
=

=
C

j
jpropCM

1

2ρ          (8) 
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which has been used mainly as a point of reference for subjective evaluation (MORRISON 

1969), rather than the basis of a statistical test to determine if the expected proportion differs 

from the observed proportion of models that is correctly classified. 

The maximum chance criterion is 
 

( )CCM ρρ ,...,max 1max =         (9) 
 

which defines the maximum prior probability to observe model j in a given consideration set 

as being the benchmark for a criterion’s success rate. Since maxCMCMCM propran << ,  

denotes the strictest of the three chance model criteria. If a criterion cannot do better than 

, one might disregard the model selection statistics and choose  where 

maxCM

maxC jM ( )jρmax . But 

as model selection criteria may defy the odds by pointing at a model i where ( )ji ρρ max≤ , in 

most situations  should be used. propC

 

Relating to the focus of this article, an information criterion is adequate for a certain factor 

level combination when the success rate is greater than the value of a given chance model 

criterion. 

To make use of the idea of chance models, one can define a consideration set 

 where  denotes a model with { }321 ,, MMM=Κ 1M 2=K  segments,  a model with 2M 3=K  

segments (low over fitting) and  a model with 3M 4≥K  segments (high over fitting), thus 

leading to the random chance criterion 33,0
3
1
≈=ranCM . 

Suppose a researcher has the following prior probabilities to observe one of the models, 

2,0 and 3,0 ,5,0 321 === ρρρ , the proportional chance criterion for each factor level 

combination is 38,02,03,05,0 222 =++=propCM  and the maximum chance criterion is 

.  0,50,2) 0,3; ;5,0max(max ==CM

The following figures illustrate the findings of the simulation run. 3d-scatterplots are used to 

show the success rates for all sample/segment size combinations. Line charts demonstrate the 

distribution of success rates for )9.0,1.0( 1

2

1

1 == ππ , )7.0,3.0( 3

2

3

1 == ππ  and 

)5.0,5.0( 5

2

5

1 == ππ .Vertical dotted lines illustrate the boundaries of the previously mentioned 

chance models with { }321 ,, MMM=Κ : 33,0
3
1
≈=ranCM  (lower dotted line), 38,0=propCM  

(medial dotted line) and  (upper dotted line). 0,5max =CM
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As can be seen in figures 1 and 2, the AIC only behaves favourably in recovering the true 

number of segments, under the condition of one of the two segments being rather small. As 

the distribution of segment size approaches a uniform distribution, success rates decrease 

gradually. With respect to absolute performance, the AIC produces adequate solutions for 

 when the random chance criterion is considered. 370≥n

The performance of the BIC (figures 3 and 4) seems to be widely independent from the 

variation of the mixture proportions, showing slight advantageous performance in the 

presence of niche segments. As sample size increases, success rates grow up to the maximum 

of 100% for all mixture proportions. The criteria’s absolute performance is already favourable 

for sample sizes as low as n=100 against the background of the chance models.  

 

 
Fig. 1: Comparison of AIC success rates for different sample/segment size combinations (1) 
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Fig. 2: Comparison of AIC success rates for different sample/segment size combinations (2) 
 
 

 
Fig. 3: Comparison of BIC success rates for different sample/segment size combinations (1) 
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Fig. 4: Comparison of BIC success rates for different sample/segment size combinations (2) 
 

The following figures show that, regardless of mixture proportions, CAIC successfully 

identifies the correct number of segments and outperforms BIC in most cases. Independent 

from the existing mixture proportion, the maximum chance criterion is met for sample sizes as 

low as n = 100. Compared to BIC, the performance of CAIC is more consistent in terms of the 

development of the success rate across sample sizes. Despite its satisfying performance, the 

simulation results indicate that MAIC3 performs better in the presence of niche segments for 

sample sizes of n ≥ 290. In this range of sample sizes, ABIC3 and MAIC3 perform equally 

successful whereas the improvement in performance is more pronounced with MAIC3. 

Furthermore, it can be observed that for smaller sample sizes, only MAIC3 meets chance 

criterion standards if 1,01

1 =π  and 9,01

2 =π . 
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Fig. 5: Comparison of CAIC success rates for different sample/segment size combinations (1) 
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Fig. 6: Comparison of CAIC success rates for different sample/segment size combinations (1) 
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Fig. 7: Comparison of ABIC success rates for different sample/segment size combinations (1) 
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Fig. 8: Comparison of ABIC success rates for different sample/segment size combinations (2) 
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Fig. 9: Comparison of MAIC3 success rates for different sample/segment size combinations (1) 
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Fig. 10: Comparison of MAIC3 success rates for different sample/segment size combinations (2) 
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5. Key Contributions and Future Research Directions 
 

The findings presented in this paper are relevant to a large number of researchers building 

models using mixture regression analysis. This study extends previous studies by evaluating 

how the interaction of sample and segment size affects the performance of five of the most 

widely used information criteria for assessing the true number of segments in mixture 

regression models. For the first time the quality of these criteria was evaluated for a wide 

spectrum of possible constellations. Furthermore relative and absolute performances against 

outside criteria were analyzed. The results induce recommendations on criterion selection 

when a certain sample size is given and help to judge what sample size is needed in order to 

guarantee an accurate decision based on a certain criterion respectively. The results also show 

that in the presence of certain sample/segment size combinations, decisions grounded on a 

specific criterion might prove problematic. 

 

AIC demonstrates an extremely poor performance across all simulation situations. From an 

application-oriented point of view, this proves to be problematic, taking into account the high 

percentage of studies relying on this criterion to assess the number of segments in the model, 

making the appropriateness of these studies highly questionable. With regard to AIC, the 

results contrast the findings by OLIVEIRA-BROCHADO and MARTINS (2006) who certified this 

criterion to perform well in a simulation design with equal segment sizes. In addition, AIC 

performs much worse in this study than in ANDREWS and CURRIM (2003b). 

CAIC performs favourably, showing slight weaknesses in determining the true number of 

segments for high sample sizes in the presence of niche segments. In the latter situation, 

MAIC3 performs well, quickly achieving success rates of over 90%, hence meeting random 

chance, proportional chance and maximum chance boundaries. In contrast to previous 

findings by ANDREWS and CURRIM (2003b), CAIC outperforms BIC across all 

sample/segment size combinations, whereupon the deviation is marginal when the segments 

of the mixture are not well separated ( 1,01

1 =π  and 2,02

1 =π ). ABIC and MAIC3 all show a 

relative and absolute positive performance for high sample sizes, which haven’t yet been 

considered in previous studies. 

Interestingly most criteria perform better in the presence of niche segments, which is an 

unexpected finding, since one might expect that the existence of a small segment adds 

complexity to the retention problem. Perhaps, this finding is attributed to the design of the 
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second (niche) segment with regard to the sizable mean separation between the regression 

coefficients of both segments. 

 

The study at hand surely is not the final word on the advantageousness of model selection 

criteria in a mixture regression context. Further research is necessary assessing the interaction 

of sample or segment size and other factors such as number or measurement level of 

predictors on a larger scale. This topic should be addressed for other model types such as 

multinomial or zero-inflated regression models. The continued research on the performance of 

model selection criteria is needed in order to provide practical guidelines for disclosing the 

true number of segments in a mixture and to guarantee accurate conclusions for marketing 

practice. 

However, considering the great number of research projects, one generally has to be critical 

with the idea of finding a unique measure that can be considered optimal in every simulation 

design or even practical applications, as indicated in other studies. Model selection decisions 

should rather be based on various evidences, not only derived from the data at hand but also 

from theoretical considerations. This requires additional elaborations of possibilities to 

include a-priori information or expected costs of under- or oversegmentation directly into the 

design of model selection criteria to merge data- and theory-driven assessment of marketing 

problems. The integration of a-priori information might enhance plausibility of the results and 

support the diffusion of this very promising technique in marketing practice. 
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Appendix 
 

Year Author(s) Criterion/Criteria
2000 Bell/Lattin BIC
2000 Heilman et al. BIC
2000 Shachar/Emerson AIC, BIC, CAIC
2000 Mazumdar/Papatla BIC
2001 Thomas AIC
2001 Erdem et al. BIC
2001 Danaher/Mawhinney BIC
2001 Gönül et al. AIC, BIC
2002 Wedel/DeSarbo CAIC
2002a Andrews et al. BIC
2002a Hofstede et al. LMD
2002b Andrews et al. BIC, LMD
2002b Hofstede et al. LMD
2002 Danaher BIC
2002 Papatla/Bhatnagar BIC
2003 Agarwal BIC
2003 Danaher et al. BIC
2003 Ho/Chong n.s.
2003 Wu/Rangaswamy AIC, BIC, MAIC3
2003 Chung/Rao LMD
2004 Bowman et al. AIC, BIC
2004 Lewis BIC
2004 Anand/Shachar BIC
2004 Varki/Chintagunta BIC
2004 Zhang/Krishnamurthi BIC
2005 Reinartz et al. AIC
2005 Lewis BIC
2005 Thomas/Sullivan AIC
2005 Rust/Verhoef AIC, BIC, MAIC3
2005 Jedidi/Kohli BIC
2006 Srinivasan BIC
2006 Kivetz et al. BIC
2006 Mantrala et al. BIC  

Tab. 1: Results of the meta-study 
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