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Abstract

This empirical paper compares the accuracy of 12 time series methods for short-term (day-
ahead) spot price forecasting in auction-type electricity markets. The methods considered in-
clude standard autoregression (AR) models, their extensions – spike preprocessed, threshold
and semiparametric autoregressions (i.e. AR models with nonparametric innovations), as well
as, mean-reverting jump diffusions. The methods are compared using a time series of hourly
spot prices and system-wide loads for California and a series of hourly spot prices and air tem-
peratures for the Nordic market. We find evidence that (i) models with system load as the
exogenous variable generally perform better than pure price models, while this is not necessarily
the case when air temperature is considered as the exogenous variable, and that (ii) semipara-
metric models generally lead to better point and interval forecasts than their competitors, more
importantly, they have the potential to perform well under diverse market conditions.

Key words: Electricity market, Price forecast, Autoregressive model, Nonparametric maximum

likelihood, Interval forecast, Conditional coverage.

1. Introduction

Over the past two decades a number of countries around the world have decided to take
the path of power market liberalization. This process, based upon the idea of separation
of services and infrastructures, has changed the power industry from the centralized and
vertically integrated structure to an open, competitive market environment (Kirschen and
Strbac, 2004, Weron, 2006). Electricity is now a commodity that can be bought and sold
at market rates. However, it is a very specific commodity. Electricity demand is weather
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and business cycle dependent. At the same time it is price inelastic, at least over short time
horizons, as most consumers are unaware of or indifferent to the current price of electricity.
On the other hand, electricity cannot be stored economically while power system stability
requires a constant balance between production and consumption. These factors lead to
extreme price volatility (up to 50% on the daily scale) and to one of the most pronounced
features of electricity markets – the abrupt and generally unanticipated extreme changes in
the spot prices known as spikes, see the top panels in Figures 1 and 2.

Like most other commodities, electricity is traded both on regulated markets (power
exchanges or power pools) and over-the-counter (through so-called bilateral contracts). In
the power exchange, wholesale buyers and sellers take part in a (uniform price) auction
and submit their bids in terms of prices and quantities. The spot price, i.e. the set of
clearing prices for the 24 hours (or 48 half-hour intervals in some markets) of the next day,
is calculated as the intersection between the aggregated supply and demand curves.

This paper is concerned with short-term spot price forecasting (STPF) in the uniform
price auction setting. Predictions of hourly spot prices are made for up to a week ahead,
however, usually the focus is on day-ahead forecasts only. In this empirical study we follow
the ‘standard’ testing scheme: to compute price forecasts for all 24 hours of a given day, the
data available to all procedures includes price and load (or other fundamental variable) his-
torical data up to hour 24 of the previous day plus day-ahead predictions of the fundamental
variable for the 24 hours of that day. An assumption is made that only publicly available
information is used to predict spot prices, i.e. generation constraints, line capacity limits
or other power system variables are not considered. Note, that market practice differs from
this ‘standard’ testing scheme in that it uses historical data only up to a certain morning
hour (9-11 a.m.) of the previous day, and not hour 24, as the bids have to be submitted
around mid-day, not after midnight.

There are many approaches to modeling and forecasting spot electricity prices, but only
some of them are well suited for STPF (for a review we refer to Weron, 2006). Time series
models constitute one of the most important groups. Generally, specifications where each
hour of the day is modeled separately present better forecasting properties than specifica-
tions common for all hours (Cuaresma et al., 2004). However, both approaches are equally
popular. Apart from basic AR and ARMA specifications, a whole range of alternative mod-
els have been proposed. The list includes ARIMA and seasonal ARIMA models (Contreras
et al., 2003, Zhou et al., 2006), autoregressions with heteroskedastic (Garcia et al., 2005)
or heavy-tailed (Weron, 2008) innovations, AR models with exogenous (fundamental) vari-
ables – ‘dynamic regression’ (or ARX) and ‘transfer function’ (or ARMAX) models (Conejo
et al., 2005), vector autoregressions with exogenous effects (Panagiotelis and Smith, 2008),
threshold AR and ARX models (Misiorek et al., 2006), regime-switching regressions with
fundamental variables (Karakatsani and Bunn, 2008) and mean-reverting jump diffusions
(Knittel and Roberts, 2005).

The objective of this paper is to further explore the usefulness of time series models for
STPF in electricity markets. There are two main contributions. First, the paper proposes
a class of semiparametric models that have the potential to generate more accurate point
and interval predictions. This is achieved by allowing for nonparametric innovations in au-
toregressive models, as opposed to Gaussian, heteroskedastic or heavy-tailed innovations
analyzed earlier. The approach is motivated by encouraging, preliminary results obtained
by Weron (2008) for a model of this class. The second contribution, therefore, is to compare
the accuracy of point and interval forecasts under the proposed semiparametric models with
a number of autoregressive approaches studied in the literature, including specifications with



and without exogenous variables. The empirical analysis is conducted for two markets and
under various market conditions.

The paper is structured as follows. In Section 2 we describe the datasets. Next, in Section
3 we introduce the models and calibration details. Section 4 provides point and interval
forecasting results for the studied models. Both, unconditional and conditional coverage of
the actual spot price by the model implied prediction intervals is statistically tested. Finally,
Section 5 concludes.

2. The data

The datasets used in this empirical study include market data from California (1999-2000)
and Nord Pool (1998-1999, 2003-2004). Such a range of data allows for a thorough evaluation
of the models under different conditions. The California market is chosen for two reasons:
it offers freely accessible, high quality data and exhibits variable market behavior with
extreme spikes. The Nordic market, on the other hand, is a less volatile one with majority
of generation coming from hydro production. Consequently, not only the demand but also
the supply is largely weather dependent. The level of the water reservoirs in Scandinavia
translates onto the level and behavior of electricity prices (Weron, 2008). Two periods are
selected for the analysis: one with high water reservoir levels (1998-1999), i.e. above the
13-year median, and one with low levels (2003-2004).

2.1. California (1999-2000)

This dataset includes hourly market clearing prices from the California Power Exchange
(CalPX), hourly system-wide loads in the California power system and their day-ahead fore-
casts published by the California Independent System Operator (CAISO). The time series
were constructed using data downloaded from the UCEI institute (www.ucei.berkeley.edu)
and CAISO (oasis.caiso.com) websites and preprocessed to account for missing values and
changes to/from the daylight saving time; for details see Section 4.3.7 in Weron (2006) and
the MFE Toolbox (www.im.pwr.wroc.pl/̃ rweron/MFE.html).

The time series used in this study are depicted in Figure 1. The day-ahead load forecasts
are indistinguishable from the actual loads at this resolution; only the latter are plotted.
We used the data from the (roughly) 9-month period July 5, 1999 – April 2, 2000 only for
calibration. The next ten weeks (April 3 – June 11, 2000) were used for out-of-sample testing.
For every day in the out-of-sample test period we ran a day-ahead prediction, forecasting the
24 hourly prices. We applied an adaptive scheme, i.e. instead of using a single parameter set
for the whole test sample, for every day (and hour) in the out-of-sample period we calibrated
the models, given their structure, to the available data. At each estimation step the ending
date of the calibration sample (but not the starting date) was shifted by one day:
– to forecast prices for the 24 hours of April 3 we used prices, loads and load forecasts from

the period July 5, 1999 – April 2, 2000,
– to forecast prices for the 24 hours of April 4 we used prices, loads and load forecasts from

the period July 5, 1999 – April 3, 2000, etc.
Note, that the day-ahead load forecasts published by CAISO on day T actually concern the
24 hours of day T + 1.

We have also tried using a rolling window, i.e. at each estimation step both the starting
and the ending date of the calibration sample was moved forward by one day. However, this
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Fig. 1. Hourly system prices (top) and hourly system loads (bottom) in California for the period July 5, 1999
– June 11, 2000. The out-of-sample ten week test period (Apr. 3 – June 11, 2000) is marked by a rectangle.

procedure resulted in generally worse forecasts. For instance, for the AR/ARX models (see
Section 3.2) the rolling window scheme led to better predictions (in terms of the WMAE
measure, see Section 4) only for one (#7) out of ten weeks of the out-of-sample period.

Finally, let us mention that the logarithms of loads (or load forecasts) were used as the
exogenous (fundamental) variable in the time series models for the log-prices. This selection
was motivated by the approximately linear dependence between these two variables. In the
studied period the Pearson correlation between log-prices and log-loads is positive (ρ = 0.64)
and significant (p-value ≈ 0; null of no correlation). This relationship is not surprising if
we recall, that as a result of the supply stack structure, load fluctuations translate into
variations in electricity prices, especially on the hourly time scale.

2.2. Nord Pool (1998-1999)

This dataset comprises hourly Nord Pool market clearing prices and hourly temperatures
from the years 1998-1999. The time series were constructed using data published by the
Nordic power exchange Nord Pool (www.nordpool.com) and the Swedish Meteorological
and Hydrological Institute (www.smhi.se). They were preprocessed in a way similar to that
of the California dataset.

Unlike for the California market, we did not have access to historical load data for Scan-
dinavia. The air temperature was chosen as the exogenous (fundamental) variable, since
typically it is the most influential on electricity prices weather variable (Weron, 2006). The
actual temperatures observed on day T + 1 were used as the 24 hourly day-ahead tem-
perature forecasts available on day T . Slightly different (perhaps better) results would be
obtained if day-ahead temperature forecasts were used (but these were not available to us).
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Fig. 2. Hourly system prices (top) and hourly air temperatures (bottom) in Nord Pool area for the period

April 6, 1998 – December 5, 1999. The four out-of-sample five-week test periods are marked by rectangles.
They roughly correspond to calendar months of February (II: Feb. 1 – Mar. 7, 1999), May (V: Apr. 26 –
May 30, 1999), August (VIII: Aug. 2 – Sept. 5, 1999) and November (XI: Nov. 1 – Dec. 5, 1999).

The dependence between log-prices and temperatures is not as strong as the load-price
relationship in California, nevertheless they are moderately anticorrelated, i.e. low tempera-
tures in Scandinavia imply high electricity prices at Nord Pool and vice versa (see Figure 2).
In the studied period the Pearson correlation between log-prices and temperatures is nega-
tive (ρ = −0.47) and significant (p-value ≈ 0; null of no correlation). We have to note also,
that the ‘hourly air temperature’ is in fact a proxy for the air temperature in the whole Nord
Pool region. It is calculated as an arithmetic average of the hourly air temperatures of six
Scandinavian cities/locations (Bergen, Helsinki, Malmö, Stockholm, Oslo and Trondheim).

Like for California, an adaptive scheme and a relatively long calibration sample was used.
It started on April 6, 1998 and ended on the day directly preceding the 24 hours for which
the price was to be predicted. Four five-week periods were selected for model evaluation, see
Figure 2. This choice of the out-of-sample test periods was motivated by a desire to evaluate
the models under different conditions, corresponding to the four seasons of the year.

2.3. Nord Pool (2003-2004)

This dataset was constructed analogously to the Nord Pool (1998-1999) sample. The
Pearson correlation between log-prices and temperatures (ρ = −0.06) is much weaker than
in the 1998-1999 dataset (but still highly significant: p-value ≈ 0; null of no correlation).
This change is mostly due to the fact that in 2003-2004 water reservoir levels in Scandinavia
were low and the spot price was generated more by lack of supply than demand.

Like for the two other datasets, an adaptive scheme and a relatively long calibration
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Fig. 3. Hourly system prices (top) and hourly air temperatures (bottom) in Nord Pool area for the period
April 7, 2003 – December 5, 2004. The four out-of-sample five-week test periods are marked by rectangles.
They roughly correspond to calendar months of February (II: Jan. 26 – Feb. 29, 2004), May (V: Apr. 26 –

May 30, 2004), August (VIII: July 26 – Aug. 29, 2004) and November (XI: Nov. 1 – Dec. 5, 2004).

sample was used. It started on April 7, 2003 and ended on the day directly preceding the 24
hours for which the price was to be predicted. Like for the Nord Pool (1998-1999) dataset,
four five-week periods were selected for model evaluation, see Figure 3.

3. The models

3.1. Preliminaries

The logarithmic transformation was applied to price, pt = log(Pt), and load, zt = log(Zt),
data to attain a more stable variance (but not to temperatures). Furthermore, the mean
price and the median load were removed to center the data around zero. Removing the mean
load resulted in worse forecasts, perhaps, due to the very distinct and regular asymmetric
weekly structure with the five weekday values lying in the high-load region and the two
weekend values – in the low-load region.

Since each hour displays a rather distinct price profile reflecting the daily variation of
demand, costs and operational constraints the modeling was implemented separately across
the hours, leading to 24 sets of parameters (for each day the forecasting exercise was per-
formed). This approach was also inspired by the extensive research on demand forecast-
ing, which has generally favored the multi-model specification for short-term predictions
(Bunn, 2000, Shahidehpour et al., 2002, Weron, 2006).

The weekly seasonal behavior (generally due to variable intensity of business activities
throughout the week) was captured by a combination of (i) the autoregressive structure of



the models and (ii) daily dummy variables. The log-price pt was made dependent on the
log-prices for the same hour on the previous two days, and the previous week, as well as
the minimum of all prices on the previous day. The latter created the desired link between
bidding and price signals from the entire day. Other functions (maximum, mean, median)
have been tried as well, but they have led to worse forecasts.

Furthermore, three dummy variables (for Monday, Saturday and Sunday) were consid-
ered to differentiate between the two weekend days, the first working day of the week and
the remaining business days. This particular choice of the dummies was motivated by the
significance of the dummy coefficients for particular days (we tested the null hypothesis that
a particular coefficient is not significantly different from zero; see also the last paragraph
in Section 3.2). For all three datasets – California and two Nord Pool periods, the Monday
dummy was significant most often (for nearly 70% of the hours the p-values were less than
0.05), followed by Saturday and Sunday.

Finally, recall that all models were estimated using an adaptive scheme. Instead of using
a single model for the whole test sample, for every day (and hour) in the test period we
reestimated the model coefficients (given its structure; see below) to the previous values of
prices (and exogenous variables) and obtained a predicted value for that day (and hour).
The model structures remained the same throughout the forecasting exercise (they were the
same for all three datasets), only the coefficients were recalibrated every day (and hour).

3.2. Basic autoregressive models

In our models we used only one exogenous variable. For California it was (the logarithm
of) the hourly system-wide load. At lag 0 the CAISO day-ahead load forecast for a given
hour was used, while for larger lags the actual system load was used. Interestingly, the best
models turned out to be the ones with only lag 0 dependence. Using the actual load at lag 0,
in general, did not improve the forecasts either. This phenomenon can be explained by the
fact that the prices are an outcome of the bids, which in turn are placed with the knowledge
of load forecasts but not actual future loads. For the Nord Pool datasets the hourly air
temperature was the only exogenous variable. At lag 0 the actual temperatures observed on
that day were used (day-ahead hourly temperature forecasts were not available to us).

The basic autoregressive model structure used in this study is given by the following
formula (denoted later in the text as ARX):

pt = φ1pt−24 + φ2pt−48 + φ3pt−168 + φ4mpt +

+ψ1zt + d1DMon + d2DSat + d3DSun + εt. (1)

The lagged log-prices pt−24, pt−48 and pt−168 account for the autoregressive effects of the
previous days (the same hour yesterday, two days ago and one week ago), while mpt creates
the link between bidding and price signals from the entire previous day (it is the minimum
of the previous day’s 24 hourly log-prices). The variable zt refers to the log-load forecast (for
the California power market) or actual temperature (for Nord Pool). The three dummy vari-
ables – DMon, DSat and DSun (for Monday, Saturday and Sunday, respectively) – account
for the weekly seasonality. Finally, the εt’s are assumed to be independent and identically
distributed (i.i.d.) with zero mean and finite variance (e.g. Gaussian white noise). Restrict-
ing the parameter ψ1 = 0 yields the AR model. Model parameters can be estimated by
minimizing the Final Prediction Error (FPE) criterion (Ljung, 1999, Weron, 2006).



This particular choice of model variables (pt−24, pt−48, pt−168,mpt, zt,DMon,DSat and
DSun) was motivated by the significance of their coefficients. For the first weeks of all nine
out-of-sample test periods (one for California and four for each of the Nord Pool datasets;
see Figures 1-3) we tested the null hypothesis that a particular coefficient is not significantly
different from zero. The tested variables included: pt−24·i for i = 1, ..., 6, pt−168·j for j =
1, ..., 4, mpt = (max,min,mean,median), zt−24·k for k = 0, 1, ..., 7, and Dxxx with xxx =
(Mon, Tue, Wed, Thu, Fri, Sat, Sun). The significance varied across the datasets and across
time, but overall the above eight were the most influential variables. Hypothetically, the
significance of the variables could be tested for each day and each hour of the test period.
However, this procedure would be burdensome and we decided not to execute this option.
Instead we used one common and on average optimal model structure for all datasets.

3.3. Spike preprocessed models

In the system identification context, infrequent and extreme observations pose a serious
problem. A single outlier is capable of considerably changing the coefficients of a time series
model. In our case, price spikes play the role of outliers. Unfortunately, defining an outlier
(or a price spike) is subjective, and the decisions concerning how to identify them must
be made on an individual basis. Also the decisions how to treat them. One solution could
be to use a model which admits such extreme observations, another – to exclude them
from the calibration sample. We will return to the former solution in Sections 3.4 and 3.5.
Now let us concentrate on data preprocessing, with the objective of modifying the original
observations in such a way as to make them more likely to come from a mean-reverting
(autoregressive) spikeless process. We have to note, that this is quite a popular approach in
the electrical engineering price forecasting literature (see e.g. Conejo et al., 2005, Contreras
et al., 2003, Shahidehpour et al., 2002).

In time series modeling we cannot simply remove an observation, as this would change
the temporal dependence structure. Instead we can substitute it with another, ‘less unusual’
value. This could be done in a number of ways. Weron (2006) tested three approaches and
found a technique he called the ‘damping scheme’ to perform the best. In this scheme an
upper limit T was set on the price (equal to the mean plus three standard deviations of the
price in the calibration period). Then all prices Pt > T were set to Pt = T + T log10(Pt/T ).

Although we don’t believe that forecasters should ignore the unusual, extreme spiky prices,
we have decided to compare the performance of this relatively popular approach to that of
other time series specifications. The spike preprocessed models, denoted in the text as p-

ARX and p-AR, also utilize formula (1), with the only difference that the data used for
calibration is spike preprocessed using the damping scheme.

3.4. Regime switching models

Regime switching models come in handy whenever the assumption of a non-linear mech-
anism switching between normal and excited states or regimes of the process is reasonable.
In the context of this study, electricity price spikes can be very naturally interpreted as
changes to the excited (spike) regime of the price process.

Here we utilize the Threshold AutoRegressive (TAR) models of Tong and Lim (1980). In
such models the regime switching between two (or more, in general) autoregressive processes
is governed by the value of an observable threshold variable vt relative to a chosen threshold



level T . The TARX specification used in this study is a natural generalization of the ARX
model defined by (1):

pt = φ1,ipt−24 + φ2,ipt−48 + φ3,ipt−168 + φ4,impt +

+ψ1,izt + d1,iDMon + d2,iDSat + d3,iDSun + εt,i. (2)

where the subscript i can be 1 (for the base regime when vt ≤ T ) or 2 (for the spike regime
when vt > T ). Setting the coefficients ψ1,i = 0 gives rise to the TAR model. Building on
the simulation results of Weron (2006) we set T = 0 and vt equal to the difference in mean
prices for yesterday and eight days ago. Like for AR/ARX models, the parameters can be
estimated by minimizing the FPE criterion.

3.5. Mean-reverting jump diffusions

Mean-reverting jump diffusion (MRJD) processes have provided the basic building block
for electricity spot price dynamics since the very first modeling attempts in the 1990s
(Johnson and Barz, 1999, Kaminski, 1997). Their popularity stems from the fact that they
address the basic characteristics of electricity prices (mean reversion and spikes) and at the
same time are tractable enough to allow for computing analytical pricing formulas for elec-
tricity derivatives. MRJD models have been also used for forecasting hourly electricity spot
prices (Cuaresma et al., 2004, Knittel and Roberts, 2005) and volatility (Chan et al., 2008),
though with moderate success.

A mean-reverting jump diffusion model is defined by a (continuous-time) stochastic dif-
ferential equation that governs the dynamics of the price process:

dpt = (α− βpt)dt+ σdWt + Jdqt. (3)

The Brownian motion Wt is responsible for small (proportional to σ) fluctuations around
the long-term mean α

β , while an independent compound Poisson (jump) process qt produces

infrequent (with intensity λ) but large jumps of size J (here: Gaussian with mean µ and
variance γ2). In this study it is reasonable to allow the intercept α to be a deterministic
function of time to account for the seasonality prevailing in electricity spot prices.

The problem of calibrating jump diffusion models is related to a more general one of
estimating the parameters of continuous-time jump processes from discretely sampled data
(for reviews and possible solutions see Cont and Tankov, 2003, Weron, 2006). Here we
follow the approach of Ball and Torous (1983) and approximate the model with a mixture
of normals. In this setting the price dynamics is discretized (dt → ∆t; for simplicity we
let ∆t = 1) and λ is assumed to be small, so that the arrival rate for two jumps within
one period is negligible. Then the Poisson process is well approximated by a simple binary
probability λ∆t = λ of a jump (and (1− λ)∆t = (1− λ) of no jump) and the MRJD model
(3) can be written as an AR(1) process with the mean and variance of the (Gaussian) noise
term being conditional on the arrival of a jump in a given time interval. More explicitly, the
MRJDX specification used in this study is given by the following formula:

pt = φ1pt−24 + ψ1zt + d1DMon + d2DSat + d3DSun + εt,i, (4)

where the subscript i can be 1 (if no jump occurred in this time period) or 2 (if there was a
jump), εt,1 ∼ N(0, σ2) and εt,2 ∼ N(µ, σ2 + γ2). Setting the coefficient ψ1 = 0 gives rise to
the MRJD model. The model can be estimated by maximum likelihood with the likelihood
function being a product of densities of a mixture of two normals.



3.6. Semiparametric extensions

The motivation for using semiparametric models stems from the fact that a nonparametric
kernel density estimator will generally yield a better fit to empirical data than any parametric
distribution. If this is true then, perhaps, time series models would lead to more accurate
predictions if no specific form for the distribution of innovations was assumed. To test
this conjecture we evaluate four semiparametric models – with and without the exogenous
variable and using two different estimation schemes.

Under the assumption of normality the least squares (LS) and maximum likelihood (ML)
estimators coincide and both methods can be used to efficiently calibrate autoregressive-type
models. If the error distribution is not normal but is assumed to be known (up to a finite
number of parameters), ML methods are still applicable, but generally involve numerical
maximization of the likelihood function. If we do not assume a parametric form for the
error distribution we have to extend the ML principle to a nonparametric framework, where
the error density will be estimated by a kernel density estimator. The key idea behind this
principle is not new. It has been used in a regression setting by Hsieh and Manski (1987)
and for ARMA models by Kreiss (1987); see also Härdle et al. (1997).

In the present study we will use two nonparametric estimators for autoregressive models
analyzed by Cao et al. (2003): the iterated Hsieh-Manski estimator (IHM) and the smoothed
nonparametric ML estimator (SN). The IHM estimator is an iterated version of an adaptive
ML estimator for ordinary regression (Hsieh and Manski, 1987). It is computed as follows.

First, an initial vector of parameters φ̂0 is obtained using any standard estimator (LS, ML).

Then, the model residuals ε̂(φ̂0) = {ε̂t(φ̂0)}n
t=1, i.e. the differences between actual values

and model forecasts, are used to compute the Parzen-Rosenblatt kernel estimator of the
error density:

f̂h(x, ε̂(φ̂0)) =
1

nh

n∑

t=1

K

(
x− ε̂t(φ̂0)

h

)
, (5)

where K is the kernel, h is the bandwidth and n is the sample size. The nonparametric
Hsieh-Manski estimator is then computed by (numerically) maximizing the likelihood:

φ̂HM = arg max
φ

L̂h(φ, φ̂0) = arg max
φ

n∏

t=1

f̂h(ε̂t(φ), ε̂(φ̂0)). (6)

The iterated version of the estimator is obtained by repeating the above steps with the
Hsieh-Manski estimator φ̂HM as the initial estimator:

φ̂IHM = arg max
φ

L̂h(φ, φ̂HM ). (7)

Cao et al. (2003) suggest that this iteration should be beneficial when the true distribution
is far from normal. The ARX and AR models (see formula (1)) calibrated with the iterated
Hsieh-Manski estimator are denoted in the text as IHMARX and IHMAR, respectively.

There are many possible choices for the kernel K and the bandwidth h used in for-
mula (5), see e.g. Härdle et al. (2004) and Silverman (1986). For the sake of simplicity we
will use the Gaussian kernel (which is identical to the standard normal probability density
function) as it allows to arrive at an explicit, applicable formula for bandwidth selection:
h = 1.06 min{σ̂, R̂/1.34}n−1/5. Here σ̂ is an estimator of the standard deviation and R̂ is the
interquartile range (i.e. the 75% quantile minus the 25% quantile) of the error density. The
above formula is a more robust to outliers version of the so-called ‘rule of thumb’ bandwidth



h = 1.06σ̂n−1/5; for more optimal bandwidth choices consult Cao et al. (1993) or Jones et
al. (1996). It will give a bandwidth not too far from the optimum if the error distribution
is not too different from the normal distribution, i.e. if it is unimodal, fairly symmetric and
does not have very heavy tails.

The smoothed nonparametric ML estimator (SN) is constructed analogously to the Hsieh-
Manski estimator with the only difference that the kernel estimator of the error density (5)
is computed for the residuals implied by the current estimate of φ instead of those implied
by some preliminary estimator φ̂0:

φ̂SN = arg max
φ

L̂h(φ, φ) = arg max
φ

n∏

t=1

f̂h(ε̂t(φ), ε̂(φ)). (8)

The ARX and AR models, see formula (1), calibrated with the smoothed nonparametric
ML estimator are denoted in the text as SNARX and SNAR, respectively.

Note, that unlike for the IMH estimator no preliminary estimator of φ is needed in this
case. On the other hand, one is tempted with choosing a different bandwidth h for each value
of φ at which the likelihood is evaluated. For the sake of parsimony, we have not executed
this option. Readers interested in this possibility and the effect it may have on the results
are referred to the simulation study of Cao et al. (2003).

To our best knowledge, there have been no attempts to apply these nonparametric tech-
niques in short-term electricity price forecasting to date. Only Weron (2008) obtained some
preliminary, though encouraging, results for an ARX model calibrated using the smoothed
nonparametric ML estimator (8). It is exactly the aim of this study to evaluate such methods
and compare their forecasting performance to that of other time series models.

4. Forecasting performance

The forecast accuracy was checked afterwards, once the true market prices were available.
Originally we used both a linear and a quadratic error measure, but since the results were
qualitatively very much alike we have decided to present the results only for the linear
measure. The Weekly-weighted Mean Absolute Error (WMAE, also known as the Mean
Weekly Error or MWE) was computed as:

WMAE =
1

P̄168

MAE =
1

168 · P̄168

∑168

h=1

∣∣∣Ph − P̂h

∣∣∣, (9)

where Ph was the actual price for hour h, P̂h was the predicted price for that hour (taken as

the expectation of the model predicted log-price p̂h) and P̄168 = 1
168

∑168
h=1 Ph was the mean

price for a given week. If we write the term 1/P̄168 under the sum in (9), then WMAE can
be treated as a variant of the Mean Absolute Percentage Error (MAPE) with Ph replaced
by P̄168. This replacement allows to avoid the adverse effect of prices close to zero.

4.1. Point forecasts

The WMAE errors for the ten weeks of the California test period (April 3 – June 11, 2000)
are displayed in Table 1. The summary statistics are presented in the bottom rows; separately
for all models, pure price models and models with the exogenous variable. The summary
statistics include the mean WMAE over all weeks, the number of times a given model was
best and the mean deviation from the best model in each week (m.d.f.b.). The latter measure



Table 1
The WMAE errors in percentage for all weeks of the California (1999-2000) test period. Best results in
each row are emphasized in bold. Measures of fit are summarized in the bottom rows. They include the
mean WMAE over all weeks (WMAE), the number of times a given model was best (# best) and the mean

deviation from the best model in each week (m.d.f.b.). Notice that the results for the AR, ARX, TAR and
TARX methods in this table were originally reported in Misiorek et al. (2006), while the results for the
p-ARX model were originally reported in Weron (2006). They are re-produced here for comparison purpose.

Week AR ARX p-AR p-ARX TAR TARX MRJD MRJDX IHMAR IHMARX SNAR SNARX

1 3.37 3.03 3.34 2.98 3.21 3.09 5.72 5.26 3.74 3.16 3.97 3.52

2 5.29 4.71 5.36 4.66 5.37 5.04 7.43 6.87 6.11 5.51 6.47 6.04

3 8.41 8.37 8.45 8.31 8.79 8.52 11.78 11.21 8.88 8.56 9.35 9.12

4 13.99 13.51 13.96 13.52 13.90 13.56 14.16 13.93 13.31 12.82 13.09 12.43

5 18.26 17.82 18.33 17.81 18.09 18.45 19.13 18.66 18.23 17.88 17.94 17.60

6 8.40 8.04 8.38 8.07 9.24 8.69 9.23 8.59 8.53 8.05 8.76 8.34

7 10.32 9.43 10.20 9.31 11.23 10.07 10.15 9.93 10.56 9.61 10.97 9.99

8 50.35 48.15 45.35 44.78 47.95 44.77 53.62 50.82 49.58 47.53 46.11 43.34

9 13.44 13.11 13.02 12.41 13.87 13.12 13.87 13.27 13.26 12.91 14.01 13.74

10 7.81 7.39 7.97 7.74 8.27 7.77 8.78 8.17 7.94 7.65 8.07 7.62

Summary statistics for all models

WMAE 13.96 13.36 13.44 12.96 13.99 13.31 15.39 14.67 14.01 13.37 13.87 13.17

# best 0 2 0 5 0 0 0 0 0 0 0 3

m.d.f.b. 1.32 0.71 0.79 0.31 1.34 0.66 2.74 2.02 1.37 0.72 1.23 0.53

Pure price models

# best 3 – 3 – 1 – 1 – 0 – 2 –

m.d.f.b. 0.70 – 0.17 – 0.73 – 2.12 – 0.75 – 0.61 –

Models with the exogenous variable

# best – 2 – 5 – 0 – 0 – 0 – 3

m.d.f.b. – 0.71 – 0.31 – 0.66 – 2.02 – 0.72 – 0.53

gives indication which approach is the closest to the ‘optimal model’ composed of the best
performing model in each week. It is defined as

m.d.f.b. =
1

T

T∑

t=1

(Ei,t − Ebest model,t), (10)

where i ranges over all evaluated models (i.e. i = 12 or i = 6), T is the number of weeks in
the sample (10 for California, 20 for Nord Pool) and E is the WMAE error measure.

The presented results lead to two conclusions. First, models with the day-ahead load
forecast as the exogenous variable (ARX, p-ARX, TARX, MRJDX, IHMARX, SNARX)
generally outperform their simpler counterparts (AR, p-AR, TAR, MRJD, IHMAR, SNAR).
Second, there is no unanimous winner. The spike preprocessed p-ARX model (or p-AR in
the class of pure price models) beats its competitors in the first three very calm weeks,
but later when the (log-)prices become more volatile – the volatility of log-prices is highest
(> 50%) in the 4th, 5th and 8th weeks – the semiparametric SNARX model (or SNAR in the
class of pure price models) is better. The simpler ARX and AR models behave more stable.
They trail closely behind the spike preprocessed models in the calm weeks but are more
accurate when price spikes appear. The results of the regime switching threshold models
and the semiparametric IHMAR/IMARX models place them somewhere in the middle of
the pack – they are not the best, but their predictions are not very bad either. Finally, the
mean-reverting jump diffusions could be considered as the uniformly worst models, though
they improve a little in the volatile weeks. Globally for the whole test period, the p-ARX
model is the best, followed by SNARX. In the pure price models category, the order is
preserved.



Table 2
The WMAE errors in percentage for all weeks of the Nord Pool (1998-1999) test period. Best results in each
row are emphasized in bold. Like in Table 1, measures of fit are summarized in the bottom rows.

Week AR ARX p-AR p-ARX TAR TARX MRJD MRJDX IHMAR IHMARX SNAR SNARX

II.1 4.88 4.63 4.81 4.58 6.23 5.88 3.57 3.81 4.25 4.17 3.72 3.65

II.2 3.26 3.59 3.26 3.59 3.39 3.75 4.46 4.49 3.27 3.31 3.49 3.41

II.3 3.28 3.65 3.31 3.67 4.37 4.56 2.73 2.81 2.80 3.24 2.44 2.64

II.4 3.87 4.85 3.87 4.83 4.24 4.89 3.03 3.58 3.65 4.41 3.25 3.83

II.5 4.94 5.63 4.92 5.60 5.47 5.79 2.87 2.87 4.58 5.10 3.65 4.07

V.1 4.77 4.59 4.75 4.57 5.25 4.93 5.17 5.17 4.72 4.55 4.06 4.00

V.2 6.06 5.84 6.08 5.87 6.20 6.05 8.76 8.72 6.14 6.00 7.10 6.99

V.3 8.15 8.04 8.16 8.05 8.18 7.92 11.66 11.56 8.49 8.34 9.75 9.60

V.4 6.81 5.97 6.78 5.94 6.91 6.07 9.59 9.48 6.84 6.21 6.94 6.49

V.5 5.29 5.11 5.30 5.13 5.04 4.74 6.92 6.92 5.24 5.03 5.75 5.54

VIII.1 3.28 4.64 3.33 4.70 2.95 3.67 3.74 4.92 3.23 4.29 3.23 3.74

VIII.2 4.93 5.89 4.93 5.89 4.30 5.24 5.86 5.86 4.70 5.44 4.37 4.89

VIII.3 4.01 5.82 4.01 5.80 3.24 5.06 4.58 5.52 3.67 5.13 2.86 3.76

VIII.4 4.27 5.81 4.26 5.78 3.64 5.07 4.18 5.26 3.89 5.10 3.57 4.15

VIII.5 2.60 3.66 2.59 3.63 3.04 4.15 3.39 3.95 2.43 3.15 2.46 2.70

XI.1 3.18 2.94 3.20 2.96 3.81 3.44 2.72 2.48 3.01 2.80 2.83 2.70

XI.2 4.00 3.91 4.00 3.91 3.75 3.61 3.69 3.64 3.70 3.65 3.47 3.38

XI.3 2.89 2.77 2.88 2.76 2.48 2.37 3.51 3.41 2.73 2.66 2.53 2.59

XI.4 2.29 2.33 2.30 2.34 2.70 2.75 2.23 2.10 2.14 2.16 2.30 2.29

XI.5 3.88 3.47 3.86 3.46 3.40 2.98 3.71 3.30 3.56 3.30 3.01 2.82

Summary statistics for all models

WMAE 4.33 4.66 4.33 4.65 4.43 4.65 4.88 4.99 4.15 4.40 4.04 4.16

# best 1 1 0 1 2 3 3 2 1 0 3 3

m.d.f.b. 0.69 1.01 0.69 1.01 0.79 1.00 1.24 1.35 0.51 0.76 0.40 0.52

Pure price models

# best 3 – 1 – 4 – 4 – 2 – 6 –

m.d.f.b. 0.57 – 0.57 – 0.67 – 1.12 – 0.39 – 0.28 –

Models with the exogenous variable

# best – 1 – 1 – 4 – 4 – 1 – 9

m.d.f.b. – 0.82 – 0.81 – 0.81 – 1.15 – 0.56 – 0.32

Note, that the quadratic error measure (Root Mean Square Error for weekly samples)
leads to slightly different conclusions for this dataset. The AR/ARX and IHMAR/IHMARX
models perform very well on average (m.d.f.b. values) but rarely beat all the other com-
petitors, the SNARX/SNAR models come in next. The spike preprocessed models still have
the highest number of best forecasts, but on average fail badly due to the extremely poor
performance in the 8th week. SNARX/SNAR are the only models that behave relatively
well with regard to both error measures.

The WMAE errors for the four five-week test periods of the Nord Pool (1998-1999) dataset
are displayed in Table 2. They lead to two conclusions. First, models without the exogenous
variable (this time – actual air temperature) generally outperform their more complex coun-
terparts. Evidently the log-price–log-load relationship utilized for the California dataset is
much stronger than the log-price–temperature dependence used here. Note, however, that
the pure price models are not always better. They fail to beat the ‘X’ models in May and
November, or more generally in Spring and Fall, when the price-temperature relationship is
more evident. In the Summer, the spot prices are less temperature dependent, as then the
changes in temperature do not influence electricity consumption that much. In the Winter,
on the other hand, the cold spells lead to price spikes but the warmer temperatures do not
necessarily lead to price drops, see Figure 2.

Second, there is no unanimous winner, but there is a very strong leader. The semipara-



Table 3
The WMAE errors in percentage for all weeks of the Nord Pool (2003-2004) test period. Best results in each
row are emphasized in bold. Like in Tables 1 and 2, measures of fit are summarized in the bottom rows.

Week AR ARX p-AR p-ARX TAR TARX MRJD MRJDX IHMAR IHMARX SNAR SNARX

II.1 1.79 1.87 1.78 1.87 2.70 3.08 3.01 3.01 1.71 1.70 1.67 1.69

II.2 3.08 3.11 3.08 3.10 3.62 3.63 4.07 4.07 3.01 2.94 2.89 2.90

II.3 3.17 3.11 3.17 3.11 3.34 3.22 4.72 4.71 3.15 3.14 3.25 3.26

II.4 2.09 2.09 2.09 2.09 2.78 3.09 2.82 2.82 1.94 1.87 1.85 1.80

II.5 1.89 1.84 1.89 1.84 1.94 1.88 2.07 2.07 1.66 1.61 1.65 1.59

V.1 5.95 5.95 5.95 5.95 5.49 5.47 7.83 7.83 6.05 6.08 6.30 6.25

V.2 10.87 10.73 10.88 10.74 10.01 10.03 13.78 13.78 11.14 11.02 11.34 11.22

V.3 7.67 7.45 7.68 7.46 5.56 5.43 7.17 7.17 7.45 7.39 7.49 7.42

V.4 4.05 4.04 4.05 4.04 4.04 4.13 3.97 3.97 3.83 3.84 3.78 3.81

V.5 2.30 2.35 2.30 2.35 1.54 1.52 2.32 2.32 2.06 2.01 1.75 1.72

VIII.1 2.78 3.04 2.78 3.05 2.79 2.79 3.18 3.18 2.69 2.74 2.63 2.65

VIII.2 2.96 3.20 2.96 3.20 3.02 3.27 2.79 2.81 2.88 2.89 2.79 2.90

VIII.3 2.09 2.50 2.09 2.50 1.64 1.56 3.04 3.13 2.06 2.01 1.82 1.71

VIII.4 1.78 2.02 1.78 2.02 2.42 2.80 2.73 2.75 1.69 1.76 1.58 1.60

VIII.5 2.33 2.47 2.33 2.47 2.34 2.61 3.52 3.55 2.28 2.29 2.18 2.20

XI.1 1.95 1.94 1.94 1.94 2.32 2.24 2.09 2.09 1.79 1.79 1.79 1.80

XI.2 2.59 2.59 2.59 2.59 2.56 2.49 3.00 3.00 2.48 2.43 2.56 2.52

XI.3 2.71 2.62 2.71 2.62 2.53 2.57 2.42 2.42 2.54 2.60 2.46 2.47

XI.4 2.14 2.16 2.13 2.16 2.37 2.29 2.59 2.59 2.13 2.11 2.24 2.24

XI.5 2.31 2.37 2.30 2.35 2.10 2.37 3.85 3.85 2.37 2.29 2.35 2.32

Summary statistics for WMAE

WMAE 3.33 3.37 3.32 3.37 3.26 3.32 4.05 4.06 3.25 3.23 3.22 3.20

# best 0 1 0 0 2 4 1 1 0 3 6 2

m.d.f.b. 0.38 0.43 0.38 0.43 0.31 0.38 1.11 1.11 0.30 0.28 0.28 0.26

Pure price models

# best 0 – 0 – 6 – 2 – 3 – 9 –

m.d.f.b. 0.36 – 0.36 – 0.29 – 1.08 0.28 – 0.25 –

Models with the exogenous variable

# best – 1 – 0 – 5 – 2 – 4 – 8

m.d.f.b. – 0.41 – 0.41 – 0.36 – 1.10 – 0.27 – 0.24

metric SNAR model (or SNARX in the class of models with temperature) is the best as
far as the summary statistics are concerned. Of course, there are weeks when other models
yield better forecasts. This happens mostly in May and August, when the prices are lower
but more volatile. In these periods the regime switching models lead the pack. Interest-
ingly, the TAR/TARX models have a relatively large number of best forecasts, but their
m.d.f.b. values are (nearly) the worst, indicating that when they are wrong they miss the
actual spot price by a large amount. Finally, the mean-reverting jump diffusions behave as
extreme versions of the threshold models – they also have a relatively large number of best
forecasts, but their m.d.f.b. values are even higher. This poor forecasting behavior may be
due to the simpler autoregressive structure of the MRJD/MRDJX models. It may also be
explained by the models’ similarity to Markov regime switching processes with both regimes
being driven by AR(1) dynamics (with the same coefficients but different noise terms) and
the switching (jump) mechanism being governed by a latent random variable. Despite the
fact that Markov regime switching models fit electricity prices pretty well (Bierbrauer et
al., 2007, Huisman and Mahieu, 2003), they have been reported to perform poorly in provid-
ing point forecasts of hourly electricity prices (Misiorek et al., 2006) and of financial asset
prices in general (Bessec and Bouabdallah, 2005).

In Table 3 the WMAE errors for the four five-week test periods of the Nord Pool (2003-
2004) dataset are collected. Like before, the summary statistics are presented in the bottom



rows. The results closely coincide with those for the Nord Pool (1998-1999) dataset. There
is no unanimous winner, but the semiparametric SNAR/SNARX models are strong leaders.
Again, there are weeks when other models yield better forecasts. This happens mostly in
May, when the prices drop significantly due to a warm spell, see Figure 3. Like before, in
this period the TAR/TARX models lead the pack. They have a relatively large number of
best forecasts and, contrary to the 1998-1999 dataset, their m.d.f.b. values are not that bad
(only worse than those of the semiparametric models).

4.2. Interval forecasts

We further investigated the ability of the models to provide interval forecasts. In some
applications, like risk management or bidding with a safety margin, one is more inter-
ested in predicting the variability of future price movements than simply point estimates.
While there is a variety of empirical studies on forecasting electricity spot prices, density
or interval forecasts have not been investigated that extensively to date. More importantly,
most authors looked only at their unconditional coverage (Bierbrauer et al., 2007, Misiorek
et al., 2006), and some even limited the analysis to only one confidence level (Nogales and
Conejo, 2006, Zhang et al., 2003). To our best knowledge, only Chan and Gray (2006) tested
conditional coverage in the context of electricity spot prices. However, this was done in a
Value-at-Risk setting and the focus was on one-sided prediction intervals for returns of daily
aggregated electricity spot prices (point estimates and hourly prices were not considered).

For all models two sets of interval forecasts were determined: distribution-based and
empirical. The method of calculating empirical prediction intervals resembles estimating
Value-at-Risk via historical simulation. It is a model independent approach, which consists
of computing sample quantiles of the empirical distribution of the one step ahead predic-
tion errors (Weron, 2006). If the forecasts were needed for more than one step ahead then
bootstrap methods could be used (for a review see Cao, 1999).

For the models driven by Gaussian noise (AR/ARX, p-AR/p-ARX, TAR/TARX, and
MRJD/MRJDX) the intervals can be also computed analytically as quantiles of the Gaussian
law approximating the error density (Hamilton, 1994, Ljung, 1999, Misiorek et al., 2006).
The semiparametric models, on the other hand, assume a nonparametric distribution of
the innovations. In their case, the ‘distribution-based’ interval forecasts can be taken as
quantiles of the kernel estimator of the error density (5).

First, we evaluated the quality of the interval forecasts by comparing the nominal coverage
of the models to the true coverage. Thus, for each of the models and each of the datasets
we calculated prediction intervals (PI) and determined the actual percentage of coverage
of the 50%, 90% and 99% two sided day-ahead PI by the actual spot price. If the model
implied interval forecasts were accurate then the percentage of coverage should match the
nominal values. For each test sample, 168 ×W , where W is the number of weeks in the
sample, hourly values were determined and compared to the actual spot price. Note, that
the ‘monthly’ Nord Pool data test periods were grouped in each year into 20 week samples.

The unconditional coverage is summarized in Table 4. The overall picture is not as clear
as in the case of point forecasts. However, some interesting conclusions can be drawn. First,
the Gaussian PI are generally significantly worse than the kernel density or empirical PI.
Especially the 50% intervals are notoriously too wide. Second, for the semiparametric models
the kernel density and empirical PI are pretty much alike. This could be attributed to the
fact that the kernel estimator of the error density is a smooth version of the error density



Table 4
Unconditional coverage of the 50%, 90% and 99% two-sided day-ahead prediction intervals (PI) by the actual
spot price for all 12 models and the three datasets. The best results in each row are emphasized in bold, the
worst are underlined.

PI AR ARX p-AR p-ARX TAR TARX MRJD MRJDX IHMAR IHMARX SNAR SNARX

California (1999-2000)

Gaussian / Kernel density intervals

50% 57.38 58.04 54.82 56.37 60.83 62.74 56.85 56.31 41.43 44.40 40.36 42.32

90% 85.95 86.07 85.60 84.88 88.57 88.75 88.33 88.04 86.13 86.07 86.37 86.19

99% 93.99 94.40 94.23 94.46 94.88 95.42 94.64 94.58 96.37 96.13 96.61 96.49

Empirical intervals

50% 39.11 40.89 39.17 41.01 50.42 54.17 43.04 42.86 36.96 39.70 36.43 37.56

90% 84.94 84.35 85.24 84.46 87.50 88.15 87.92 87.32 85.36 85.18 85.54 85.36

99% 95.83 95.65 96.43 96.13 96.13 96.19 96.43 96.49 95.89 95.71 96.19 95.95

Nord Pool (1998-1999)

Gaussian / Kernel density intervals

50% 82.65 80.30 81.52 79.02 90.80 90.48 86.19 85.77 58.87 53.33 61.67 56.93

90% 98.63 98.57 98.48 98.42 99.70 99.79 98.57 98.60 97.26 97.17 97.11 96.99

99% 99.94 99.94 99.88 99.88 100.00 100.00 99.91 99.91 100.00 100.00 100.00 100.00

Empirical intervals

50% 55.54 48.63 55.36 48.51 76.73 75.89 61.10 59.67 54.49 49.29 54.08 51.46

90% 97.17 96.64 97.17 96.64 99.08 99.20 97.23 97.17 96.99 96.90 96.88 96.79

99% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Nord Pool (2003-2004)

Gaussian / Kernel density intervals

50% 80.63 80.42 80.71 80.42 89.38 88.66 80.30 80.30 61.25 61.10 61.79 62.05

90% 96.43 96.40 96.43 96.37 97.44 97.56 95.95 95.95 94.82 94.85 94.49 94.40

99% 97.89 97.95 97.89 97.95 99.08 99.08 97.80 97.80 98.57 98.66 98.60 98.57

Empirical intervals

50% 57.08 55.68 57.14 55.80 77.50 77.29 61.99 61.40 57.41 57.47 58.21 58.15

90% 94.26 94.35 94.26 94.32 96.01 96.25 94.61 94.61 94.49 94.52 94.23 94.23

99% 98.48 98.45 98.48 98.48 99.35 99.43 98.78 98.78 98.48 98.39 98.45 98.42

itself and resembles it much more than any parametric distribution. Third, models with and
without the exogenous variable (within the same class, e.g. AR and ARX) yield similar PI.

Fourth, the results for both Nord Pool test samples are similar, despite the fact that the
price behavior was different. At the same time they are different from the results for the
California sample. For California, the threshold models exhibit a very good performance –
their empirical, as well as, 90% Gaussian intervals have the best or nearly the best coverage.
The semiparametric models are next in line, failing mainly in the 50% empirical PI category.
The simple linear models are overall the worst. For the Nord Pool test samples the situation
is different. Here the semiparametric models provide the best or nearly the best PI, while
the TAR/TARX models are the worst (except for the 99% intervals in 2004). Finally, the
mean-reverting jump diffusions yield relatively good (unconditional) coverage of the 99%
PI and their results resemble those of the threshold models much more than those of the
simple linear models. The latter fact can be attributed to the similar, non-linear structure
of both models.

After having summarized the unconditional coverage of the model implied PI, we apply
Christoffersen’s (1998) approach to test the conditional coverage. This model independent
approach is designed to overcome the clustering effect. The tests are carried out in the
likelihood ratio (LR) framework. Three LR statistics are calculated: for the unconditional
coverage, independence and conditional coverage. The former two are distributed asymp-



totically as χ2(1) and the latter as χ2(2). Moreover, if we condition on the first observation,
then the conditional coverage LR test statistics is the sum of the other two.

The conditional coverage LR statistics for the ‘X’ models are plotted in Figures 4-6 (mod-
els without the exogenous variable yield similar PI and, hence, similar LR statistics). They
were computed for the 24 hourly time series separately. It would not make sense to compute
the statistics jointly for all hours, since, by construction, the forecasts for consecutive hours
are correlated – predictions for all 24 hours of the next day are made at the same time using
the same information set.

None of the tested models is perfect. There are always hours during which the uncon-
ditional coverage is poor and/or the independence of predictions for consecutive days is
violated leading to high values of the conditional coverage LR statistics. For the California
dataset this happens mainly during late night and early morning hours, see Figure 4. Taking
a global look at all hours, we can observe that the semiparametric models yield the best
conditional coverage (with the kernel density PI being slightly better than the empirical
ones). The TARX specification performs particularly bad in terms of its 50% Gaussian PI;
on the other hand, its empirical PI have a better coverage than all models except IHMARX
and SNARX. The MRJDX model behaves comparably to the simple linear models, except
for a slightly better coverage of the Gaussian PI.

For the Nord Pool (1998-1999) dataset only the kernel density PI of the semiparametric
models yield acceptable conditional coverage, though, most of the test statistics for the 99%
PI exceed the 1% significance level, see Figure 5. All empirical and nearly all Gaussian
intervals (except the 90% PI for ARX and p-ARX models) fail the LR test miserably. The
worst performing model is TARX, which is in line with the results presented in Table 4. Note,
that many of the test values (especially for the 99% and 90% PI) could not be computed
due to lack of observations exceeding the corresponding PI, these values were set to 20 to
allow visualization in the figures.

Test results for the Nord Pool (2003-2004) dataset resemble more those of the California
sample – the PI exhibit a significantly better coverage than in 1999, see Figure 6. This time
the troublesome hours are the morning ones (in terms of independence) and mid-day and
evening hours (in terms of unconditional coverage). Like for the two other datasets, the
semiparametric models have the lowest test statistics. Only this time the empirical PI yield
better conditional coverage than the kernel density intervals. The better performance of the
empirical PI is even more visible for the Gaussian models. This extremely good coverage is
in sharp contrast to the results for the Nord Pool (1998-1999) dataset.

5. Conclusions

We have investigated the short-term forecasting power of 12 time series models for electric-
ity spot prices, in two markets and under various market conditions. The point forecasting
results allow us to conclude that models with system load as the exogenous variable generally
perform better than pure price models, at least for the California market. As the analysis
of the two Nord Pool datasets shows, this is not necessarily the case when air temperature
is considered as the exogenous variable. Although air temperature is the most influential
of all weather variables it is not such a strong driver of electricity prices as the load. The
dependence also varies from season to season and from year to year. In particular, when the
level of water reservoirs is low (as in 2003-2004) the prices are less influenced by the tem-
perature, and possibly by the load itself. These relations could be studied more thoroughly
if appropriate datasets were available.
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Fig. 4. The conditional coverage LR statistics for the Gaussian/kernel density (left panels) and empirical
(right panels) PI for the California (1999-2000) dataset. The solid (dashed) horizontal lines represent the
5% (1%) significance level of the appropriate χ

2 distribution. All test values exceeding 20 are set to 20.



1 6 12 18 24
0

5

10

15

20
Gaussian/KD PI

ARX

1 6 12 18 24
0

5

10

15

20
Empirical PI

1 6 12 18 24
0

5

10

15

20

p−ARX

1 6 12 18 24
0

5

10

15

20

1 6 12 18 24
0

5

10

15

20

TARX

1 6 12 18 24
0

5

10

15

20

1 6 12 18 24
0

5

10

15

20

MRJDX

1 6 12 18 24
0

5

10

15

20

1 6 12 18 24
0

5

10

15

20

IHMARX

1 6 12 18 24
0

5

10

15

20

1 6 12 18 24
0

5

10

15

20

SNARX

Hour

1 6 12 18 24
0

5

10

15

20

Hour50% PI 90% PI 99% PI

Fig. 5. The conditional coverage LR statistics for the Gaussian/kernel density (left panels) and empirical
(right panels) PI for the Nord Pool (1998-1999) dataset. The solid (dashed) horizontal lines represent the
5% (1%) significance level of the appropriate χ

2 distribution. All test values exceeding 20 are set to 20.
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Fig. 6. The conditional coverage LR statistics for the Gaussian/kernel density (left panels) and empirical
(right panels) PI for the Nord Pool (2003-2004) dataset. The solid (dashed) horizontal lines represent the
5% (1%) significance level of the appropriate χ

2 distribution. All test values exceeding 20 are set to 20.



Furthermore, taking into account all datasets, we can conclude that the semiparametric
models (IHMAR/IHMARX and SNAR/SNARX) usually lead to better point forecasts than
their Gaussian competitors. More importantly, they have the potential to perform well un-
der different market conditions, unlike the spike-preprocessed linear models or the threshold
regime switching specifications. Only for the California test period and only in the calm
weeks the SNAR/SNARX models are dominated by the p-AR/p-ARX models. Their per-
formance is much better for the Nord Pool datasets, they are the best in terms of all three
summary statistics. The IHMAR/IHMARX models follow closely.

Regarding interval forecasts, the two semiparametric model classes are better (on aver-
age) than the other models both in terms of unconditional and conditional coverage. In
particular, only the kernel density PI of the semiparametric models yield acceptable values
of Christoffersen’s test statistics for all hours and all three datasets. The Nord Pool (1998-
1999) sample is particularly discriminatory in this respect and shows that empirical PI may
be very misleading.

There is no clear outperformance of one semiparametric model by the other in terms of
interval forecasts. Yet, the slightly better point predictions of the smoothed nonparametric
approach allow us to conclude that the SNAR/SNARX models are an interesting tool for
short-term forecasting of hourly electricity prices.
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