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ABSTRACT

The systematic risk of IPO’s in the thinly traded Istanbul Stock Exchange (ISE) are
estimated using Empirical Bayes Estimators (EBE). The sectors that the firms belong to,
provide the priors. Comparisons are made with OLS estimators across different
estimation and forecasting periods. Two benchmark criteria are used; sum of squared
residuals and sum of absolute residuals. The application requires some complicated
manipulation of the theory where some inferiors of the ordinary Bayesian approach are
avoided. Results show that using the EBE procedure, betas can be calculated with
greater precision than OLS. This enables us to evaluate IPO’s on similar intuition with
other stocks, i.e. in a portfolio context rather than in isolation.
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I. INTRODUCTION

The capital-asset-pricing model (CAPM) of Sharpe (1964) and Litner (1965) constitutes
a cornerstone in finance literature. CAPM is still popular among academics as well as
practitioners in estimating expected returns. It has a powerful intuition that centers on
the assumption that investors hold mean-variance efficient portfolios as described by
Markowitz (1959) and the underlying economics is clear-cut. Estimation of expected
returns using CAPM is simple and straightforward.

Almost all textbooks in corporate finance recommend CAPM expected returns
for estimating the cost of capital. Academics in empirical finance typically use CAPM to
estimate benchmark expected returns. Despite the sound theoretical foundations and,
simple estimation procedure, empirical problems remain. Considerable empirical
evidence is reported that the market  alone is not sufficient to describe the expected
returns on individual securities1. Several multi-factor alternatives have been offered the
most prominent of which is the Arbitrage Pricing Theory of Roll and Ross (1984). Also,
it is known that tests of CAPM are sensitive to the proxies used for market portfolio
(Stambaugh, 1982) and the relationship between stock returns and systematic risk
contains non-linearities (Tinic and West, 1986). Still, the market model is widely used
as a benchmark for performance evaluation and for measurement of abnormal returns in
event studies, due to its strong intuition and straightforward estimation.

One way to circumvent the trade-off between empirical problems in describing
expected returns and the practical need for a straightforward measure of systematic risk
is to use alternative estimation procedures. Depending upon the needs of the researchers,
different estimation procedures have been proposed. Fama-MacBeth (1973) two-pass
regressions and Fama-French (1992) three factor model are the most well known.
Karolyi (1992) argues that adjustment techniques based on cross-sectional information
are uninformative and introduces prior information in the form of size and sector based
cross-sectional distributions. Berra and Kannan (1986), suggest a multiple root-linear
model to adjust the betas, assuming that betas are changing over time with a regular
pattern towards the mean value. Vazicek (1973) proposed a Bayesian adjustment
technique where the weighted-average of historical and cross-sectional betas is used.
Dimson (1979) considered the case of infrequent trading and proposed an aggregated
coefficients method for estimating the betas. Siegel (1995) estimates betas from
observed option prices to account for the implicit volatility of the stock. Wittkemper and
Steiner (1996) use neural networks to predict the betas. This way, they account for the
non-linear interdependencies between a number of variables besides the past returns. In
that sense, they actually employ a multi-factor model.

The purpose of this paper is to introduce an alternative estimation procedure,
Empirical Bayes (EB) Estimates, to tackle another problematic case, the initial public
offerings, (IPOs). The available technology for measuring betas is based on regression
analysis of historical data. In the case of an IPO, it is extremely difficult to estimate the
betas due to the limited number of observations on the stock price. However, the
practical need remains to estimate expected returns by using the same intuition applied
to other stocks that the portfolio manager follows. There is little doubt that the portfolio
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manager wants to use the most widely accepted and simple-to-implement criterion to
make inferences about the risky asset under consideration, the IPO.

CAPM is intuitive and simple to employ. The expected return on any security
depends only on the sensitivity of its return to the market return, i.e. its market beta. The
procedure is straightforward then. All you need to do is to choose an index to represent
the market portfolio, and compute the betas against this index. Despite the
overwhelming literature on the skepticism about several stock indices being proper
representations of the market we shall not discuss the issue here. Rather we shall assume
that, in practice, the stock index being readily available at the same frequency as the
stock price data, will be used to represent the market.

In the case of IPO’s the main problem is that historical data are extremely
limited, a couple of days in fact. Therefore, this paper introduces the Empirical Bayes
Estimates that will deal with the estimation problem. We use prices of other stocks in
the same sector as priors, and calculate betas accordingly.

We show that the price forecasts improve considerably, when instead of Ordinary
Least Squares (OLS), Empirical Bayes estimates are used with sector information as the
prior. The basic difference between our Empirical Bayes method and the ordinary
Bayesian method is that in the Empirical Bayes method we refer to the data set itself to
assign the priors, which alleviates the problem of prior determination. Indeed, the EBE
estimates use the OLS estimators but have some extra advantages over them. They also
utilize the additional information provided by the data set itself. We refer to this issue in
detail while we present the relevant formulas for OLS and EB estimators in the
methodology section.

Stambaugh (1997) uses Bayesian predictive distributions of future returns
successfully in constructing minimum variance portfolios for emerging markets. In that
case, the need for the Bayesian approach arises due to the fact that the length of
available histories differ across the assets traded on separate exchanges and he does not
want to discard returns to truncate some markets. Other successful applications include
Pastor and Stambaugh (1999) whereby cost of equity for individual firms is estimated in
a Bayesian framework using several factor-based pricing models. They show that in the
absence of mispricing uncertainty, uncertainty about betas become nearly as important
as uncertainty about factor premiums.

Using sector information as the prior has a number of practical and theoretical
advantages. The intuition behind CAPM and the simplicity of application remain. We
employ a single-factor rather than a multi-factor alternative. The expected returns on
securities are calculated considering their sensitivity to the market return. The stock
index is still used as a representation of the market. However, adjustments are made
giving as prior information the prices of the securities in the same industry as the IPO
under investigation. Our results show that, using this Empirical Bayes procedure, betas
can be calculated for the IPO’s with great precision. This enables us to evaluate IPO’s
on similar intuition with other stocks, i.e. in a portfolio context, rather than in isolation.

The rest of the paper is organized as follows: Section 2 gives the empirical
framework and section 3 the details of the data set. Measures used to compare OLS and
EBE are presented in section 4. Empirical results are given in section 5, and section 6
concludes.
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II. EMPIRICAL FRAMEWORK

The CAPM is a one factor model which basically states that the expected return [E(Rit)]
on any security i (i=1,2,…,N)2 at time t (t=1,2,…,T) depends only on the sensitivity of
its return (R) to the market return (M), i.e. its market beta (1):

 tMt10R t (1)

where

)M(Var

)MR(Covˆ

t

t,t
1  (2)

Market risk is measured by 1, that represents the volatility of security returns
relative to the market, and is calculated as the ratio of the covariance between the stock
and the market, [Cov(Rt, Mt)], to the variance, i.e. the total risk in the market,
[Var(Mt)].

When we use OLS to estimate equation (1) the error terms have the following
dimension, and variance terms:

),...,,( T21  (3)

Hence, using OLS, beta estimate will be based on:

  ),0(N| 22  (4)

where OLS estimates of beta coefficients are:
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Here X=[1 M], where 1 is a T  1column vector of ones and  = (0 ,1)’ is a 2  1
vector of regression coefficients for equation 1. The OLS estimates the common
variances of the disturbance terms as:
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where u terms are the OLS residuals.
Note that the OLS approach to estimate Equations 1 through 4 assumes that

parameter estimates for one stock tells us nothing about the likely true parameter values
for any other stock. While this is a standard conservative assumption, it is quite
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restrictive for estimating betas in the case of IPO’s. Indeed, there is some more
information embedded in the data, which is ignored by OLS. The information we utilize
in this paper is the likely coordinated action of the stocks within the same sector. The
idea leading to the extra information employed by Empirical Bayes is that the stocks
within the same sector are affected from the exogenous shocks to that sector together,
therefore their behaviors are similar. This piece of information is used in our second
approach, Empirical Bayes, which assumes that the true parameter values for the
individual stocks are interrelated. In particular, the Empirical Bayes model is obtained
by assuming that  has a normal prior distribution of the form:

  ),(N~),(|  (8)

The standard Bayesian approach now tries to specify the hyperparameters θ (for
the mean of ) and Λ (for the variance-covariance matrix of ) and use Bayes' rule for
estimation. This leads to the Bayesian estimator:

)ˆ)X'X((Dˆ 1OLS21Bayes
  (9)

where

  12 )X'X(D (10)

This estimator is a weighted average of the OLS estimate and the assumed prior
mean where the weights are the estimated variances of the OLS estimate and the
assumed prior variance. Note that the expression in the parenthesis above is the OLS
estimate of β pre-multiplied by the inverse of the OLS covariance estimate, σ2(X'X)-1.
The ordinary Bayesian approach has some difficulties in suggesting priors. That is why
we prefer the Empirical Bayes approach in which we refer to the data in order to set the
priors. So we estimate θ and Λ directly from the interstock distribution of the OLS
parameters. In particular an initial estimate for θ is;
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which is essentially a weighted average of the stock-specific OLS estimates where the
weights are inversely related to the parameter's estimated variance.

Here we assume all off-diagonal entries of Λ are zero. This means we do not let
any prior covariance across the coefficients, and this is called the D-Prior method of
Empirical Bayes, D standing for the diagonal. With this assumption and our initial
estimate of θ we form an initial estimate of Λ via:
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where i indexes stocks and j indexes regressors so that, for example, (Mi’Mi)j refers to
the jth diagonal element of (Mi’Mi). In essence, each estimate for λj is an estimate of the
interstock variance of parameter j, corrected for sampling error. We then reestimate βi's
and also reestimate each element of θ with:
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Note that the calculation of θ, Λ and β’s in the above equations require the solutions for
each other, that is why we solve them iteratively. A GAUSS program3 is coded to find
these values as soon as some convergence criteria hold. The program is around 200
lines including the comments. We required the values obtained for these parameters to
be stable, iteration after iteration. With solutions to these parameters in hand, the
estimated variance of the posterior distribution of the βi's is computed as:

  111
ii

2
i

1EB

i
))X'X(ˆˆ()ˆ(Var 

 (15)

Note that the estimated variance of the Empirical Bayes estimator is smaller than
the variance of the OLS estimator by construction. The increased precision is a result of
the increased information introduced into the model.

III. THE DATA SET

The data set consists of the daily closing prices of all stocks traded at Istanbul Stock
Exchange (ISE) from January 1st 1988 through July 11th 2001.4 We have started with an
initial sample of 276 firms. For each IPO, we require that the sector have at least three
firms with continuous price data, so that we can calculate the priors. The resulting
sample consists of 248 such firms. ISE’s sector groupings are followed and a total of
248 firms are grouped into 19 sectors with 6 to 28 firms in each sector5. The ISE-
composite, which is a value-weighted index and is available on a continuous basis
during trading, is used to represent the market. The returns on individual stocks and the
index are calculated as log differences, to ensure continuously compounded returns.

In order to compare the performance of the OLS and Empirical Bayes methods,
the time series data for each stock are split into two sets of different lengths; namely the
estimation and the forecast periods. We pretend as follows: the time series data for
stocks during the estimation period are assumed to be known by the investor. The time
series data for the same stocks during the forecast period are assumed to be unknown to
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the estimator. The actual (realized) values of stock prices in the forecast period are then
used to compare the performance of two beta estimation methods; the OLS and the
Empirical Bayes.

Several estimation and forecast periods are employed assuming different
investment strategies. Since the purpose of the paper is to calculate betas for IPO’s we
start with very short estimation and forecast periods. Then we extend them to longer
intervals. We estimate betas for the first five days (a week) after an IPO has been
introduced and forecast the expected price for next week, which is the next five trading
days. Finally, we estimate the betas using a 120-day (six months) estimation period and
20 day (one month) forecast period, which is consistent with the estimation, and
portfolio adjustment periods employed by market practitioners as well as many
researchers. Table 1 below displays the ten estimation and forecast periods that we used
in this study.

Table 1
Estimation and forecast periods of different investment strategies

We assume that the investor uses the following ten estimation and forecast periods for different
investment strategies based on them. The investment strategies are labeled A through J. For
example, investment strategy J has a 120-day estimation period and a 20 day forecast period.

We compare the performances of OLS and Empirical Bayes estimates for each
investment strategy, i.e. each estimation and forecast period, as follows: First we
compare the performance of OLS and Empirical Bayes methods for the ten forecast and
estimation periods for the initial public offerings (IPO's). Then we repeat the exercise
for seasoned issues, i.e. the firms that had already been trading at ISE in the particular
sector that the IPO was introduced.

In each case, both for the IPO’s and for the seasoned issues, we had set the initial
dates of the regressions to the days where a new stock, IPO, is introduced to the sector.
For example, for strategy (A) the estimation period starts the day the IPO is introduced
(t=1) and the first five days of trading (t=1,2,3,4,5) are used to estimate the betas. Then
performance is measured for the forecast period, which is another 5 days after the
estimation period ends (t=10). Alternatively, for strategy (J), estimation period also
starts the day the IPO was introduced (t=1) and uses the 120 consecutive observations
(t=1,2,3…120) following the introduction of the IPO for estimating betas. The forecast
period is twenty days immediately following the estimation period (t=20). The time
series data for each stock in all 19 sectors and the index are arranged in such a way to
let the date at which an IPO is introduced to initiate the regressions.

Investment Strategy A B C D E F G H I J
Estimation Period (days) 5 10 15 20 20 40 60 80 100 120
Forecast Period (days) 5 5 5 5 20 20 20 20 20 20
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IV. COMPARISON OF OLS AND EMPIRICAL BAYES ESTIMATORS

The performance of the OLS and Empirical Bayes estimators are compared by
considering two forecast error measures; (1) Sum of Squared Residuals (FSSR), and (2)
Sum of Absolute Residuals (FSAR). Both of them measure the discrepancy between the
predicted values of stock returns using CAPM (Equation 1) and the true ones. Both
forecast errors are similar to each other in the sense that they measure the discrepancy
between the forecasted and actual values of stock returns. However, FSSR uses squared
errors and penalizes the larger discrepancies more by taking their square and summing
up. Similarly, the smaller discrepancies, the ones less than 1, are praised by becoming
even smaller when squared. FSAR on the other hand, is more tolerant towards large
forecast errors, and less tolerant to smaller errors by using the absolute values. The
formulae for FSSR , and FSAR are given below:

2
it

T
1t itSSR )RR̂(F   (16)

|RR̂|F it
T

1t itSAR   (17)

We compare the performances of OLS and Empirical Bayes estimators via FS (or
FA) which is the ratio of the FSSR (or the FSAR) calculated from the Empirical Bayes and
OLS estimators. FS (or FA) is calculated as follows:

)FF()FF(F EB,SSROLS,SSROLS,SSREB,SSRS  (18)

)FF()FF(F EB,SAROLS,SAROLS,SAREB,SARA  (19)

where |.| stands for the absolute value, i, refers to firm (i) in each case (i=1,…ns), ns

being the number of firms in the sth sector), FSSR,OLS stands for the sum of squared
residuals from OLS estimations, FSSR,EB stand for the sum of squared residuals from
Empirical Bayes estimations, similarly FSAR,OLS stands for the sum of absolute residuals
from OLS estimations, and FSAR,EB stands for the sum of absolute residuals from
Empirical Bayes estimations.

FS is zero (FS =0) if the squared forecast errors estimated from Empirical Bayes
and OLS are equal (FSSR,EB = FSSR,OLS). In this case neither method is superior to other.
FS is less than zero (FS < 0) if the forecast errors estimated by Empirical Bayes are less
than the forecast errors estimated by OLS (FSSR,EB < FSSR,OLS). If, FS < 0, we understand
that the Empirical Bayes estimates of beta are superior to the OLS estimates. FS is
greater than zero (FS > 0) if the forecast errors estimated by Empirical Bayes are
greater than the forecast errors estimated by OLS (FSSR,EB > FSSR,OLS). If FS > 0, we
understand that the OLS estimates of beta are superior to the Empirical Bayes
estimates. The investor is advised to prefer estimating betas by the Empirical Bayes
method if FS < 0.

Alternatively, FA is zero (FA =0) if the absolute forecast errors estimated by
Empirical Bayes and OLS and are equal (FSAR,EB = FSAR,OLS). In this case neither method
is superior to other. FA is less than zero (FA < 0) if the forecast errors of Empirical



INTERNATIONAL JOURNAL OF BUSINESS, 8(3), 2003 323

Bayes are less than the forecast errors of OLS (FSAR,EB < FSAR,OLS). If FA < 0, we
understand that the Empirical Bayes estimates of beta are superior to the OLS
estimates. FA takes a value greater than zero (FA > 0) if the forecast errors of Empirical
Bayes are greater than the forecast errors of OLS (FSAR,EB > FSAR,OLS). If FA > 0, we
understand that the OLS estimates of beta are superior to the Empirical Bayes
estimates. The investor is advised to prefer estimating betas by the Empirical Bayes
method if FA < 0.

V. EMPIRICAL RESULTS

We have run 21,170 regressions and calculated betas for a total of 210 IPO’s. We have
calculated the betas for each stock using first the OLS and then the EB. Using both
methods we have calculated the betas under 10 different estimation-forecast period
pairs. Using both methods and all ten estimation-forecast period pairs, we have
calculated betas each time an IPO entered the sector. We calculate FS and FA for 10
different estimation-forecast horizons (A, B…J). Thereby, for each estimation-forecast
horizon, we can compare the performance of Empirical Bayes and OLS estimators.
Note here that the Empirical Bayes is superior to OLS if FS < 0 and/or if FA < 0.

In the case of IPO’s, the major problem is that the time-series data are not
available, and the number of observations to be used for estimating betas are severely
limited. This way we can understand if Empirical Bayes is a convincing alternative to
estimate betas with limited number of data points in the case of IPO’s. The second
problem in the case of IPO’s is the number of firms in each sector that we use as the
prior. In our data set, a sector is defined if it includes at least three firms. Therefore, the
number of firms in each sector starts from 3 and gradually increases to 28 as new firms
enter the sector. This gave us an opportunity to observe the successes of the Empirical
Bayes estimators when the number of firms in each sector is changing as a result of
which the priors we use are changing. Table 2 reports the mean values of FS and Table
3 reports the mean values of FA for IPO’s.

Considering Tables 2, and 3, that report the mean FS and FA for the IPO’s, one
can easily observe that, overall, the Empirical Bayes technique does better then the
OLS with improved results when the estimation period is shorter. In Table 2, we can
see that regardless of the number of firms in the sector which we use to get the prior,
for shorter estimation periods of 5 to 20 days (columns A through D) in 67 out of 76
cases FS <0, indicating that Empirical Bayes is better. A similar picture is apparent in
Table 3. For shorter estimation periods of 5 to 20 days (columns A through D) in 66 out
of 76 cases FA <0. This brings additional support that Empirical Bayes is a better
method to estimate the betas for IPO’s.

The same is true when the estimation period moves from 1 month (20 days) to 6
months (120 days) and the forecast period is fixed at one month (20 days), columns (E)
through (J). In Table 2 we observe see that for the 20 days’ forecast period, in 86 out of
114 cases FS <0. In Table 3, FA < 0 in 87 out of 114 cases. Overall, we can say that
Empirical Bayes estimators dominate OLS estimators, but the level of domination
diminishes as the estimation period becomes longer and the number of observations
used in regressions increases from 5 to 120. The main reason behind this is not the
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deterioration in the performance of EBE as the estimation period gets larger; it is the
progress of OLS performance as the number of observations in the estimations increase.

Table 2
Mean FS for IPO’s under different investment strategies

This table reports the mean values of FS under different investment strategies for firms in each
sector. The investment strategies are given in the first row. The sector codes are given in the first
column. FS is described in equation (18) in the text as the ratio of the difference of the squared
forecast errors estimated using Empirical Bayes and OLS to the sum of the two. FS takes the
value zero (FS =0) if the squared forecast errors estimated from Empirical Bayes and OLS and are
equal (FSSR, EB = FSSR,OLS). In this case neither method is superior to other. FS takes a value less
than zero (FS < 0) if the forecast errors estimated from Empirical Bayes are less than the forecast
errors estimated from OLS regressions (FSSR, EB < FSSR,OLS). If, FS < 0, we understand that the
Empirical Bayes estimators of beta were superior to the OLS estimators, and thus Empirical
Bayes is a better method to estimate the betas. FS takes a value greater than zero (FS > 0) if the
forecast errors estimated from Empirical Bayes are greater than the forecast errors estimated from
OLS regressions (FSSR, EB > FSSR,OLS). If, FS > 0, we understand that the OLS estimators of beta
were superior to the Empirical Bayes estimators, and thus OLS is a better method to estimate the
betas. The investor is advised to prefer estimating betas using the Empirical Bayes method if FS <
0.

Sector A B C D E F G H I J

1 -0.242 -0.091 -0.051 0.030 -0.046 -0.015 -0.012 0.000 -0.011 -0.021

2 -0.236 -0.039 0.154 -0.095 0.024 -0.061 -0.012 -0.051 0.034 0.116

3 -0.178 -0.125 -0.091 -0.049 -0.075 0.002 -0.008 -0.009 -0.042 -0.041

4 -0.065 -0.220 -0.134 -0.107 -0.093 -0.209 -0.259 -0.103 -0.066 -0.125

5 -0.244 0.025 -0.106 -0.141 -0.062 -0.052 -0.044 -0.009 -0.015 -0.023

6 0.023 -0.320 -0.179 0.174 0.017 -0.195 0.006 0.006 -0.036 -0.013

7 -0.194 -0.210 -0.099 -0.098 -0.108 -0.036 -0.020 -0.027 -0.015 -0.011

8 -0.113 -0.120 -0.132 -0.115 -0.058 -0.005 -0.068 -0.020 -0.050 -0.020

9 -0.181 -0.133 -0.056 -0.048 -0.046 0.063 0.041 -0.018 0.003 0.006

10 -0.094 -0.268 -0.096 -0.049 -0.053 -0.020 -0.083 -0.023 0.064 0.001

11 0.001 -0.114 -0.082 -0.013 -0.111 -0.011 -0.015 -0.055 0.013 -0.018

12 -0.240 -0.056 -0.067 -0.070 -0.053 -0.052 -0.016 -0.016 -0.016 -0.040

13 -0.228 -0.093 -0.056 -0.195 -0.076 0.002 -0.018 -0.019 -0.004 0.008

14 -0.263 -0.272 -0.129 -0.036 -0.004 0.010 0.013 -0.018 0.003 -0.009

15 -0.329 0.006 -0.217 -0.136 -0.035 0.005 -0.094 -0.030 0.004 -0.016

16 -0.339 -0.567 -0.154 -0.444 0.054 -0.049 -0.003 -0.013 0.007 0.018

17 -0.233 -0.210 -0.027 -0.079 -0.111 -0.062 -0.025 -0.020 -0.058 -0.015

18 -0.482 -0.065 0.041 -0.164 -0.051 -0.023 -0.009 -0.010 -0.213 -0.157

19 0.064 0.112 0.001 0.223 0.075 0.023 -0.003 -0.011 -0.035 0.008

mean -0.188 -0.145 -0.078 -0.074 -0.043 -0.036 -0.033 -0.023 -0.023 -0.018
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Table 3
Mean FA for IPO’s under different investment strategies

This table reports the mean values of FA under the different investment strategies for firms in
each sector. The investment strategies are given in the first row. The sector codes are given in the
first column. FA is described in equation (19) in the text as the ratio of the difference of absolute
forecast errors estimated using Empirical Bayes and OLS to the sum of the two. FA takes the
value zero (FA =0) if the squared forecast errors estimated from Empirical Bayes and OLS and
are equal (FSAR, EB = FSAR,OLS). In this case neither method is superior to other. FA takes a value
less than zero (FA < 0) if the forecast errors estimated from Empirical Bayes are less than the
forecast errors estimated from OLS regressions (FSAR, EB < FSAR,OLS). If, FA < 0, we understand
that the Empirical Bayes estimators of beta were superior to the OLS estimators, and thus
Empirical Bayes is a better method to estimate the betas. FA takes a value greater than zero (FA >
0) if the forecast errors estimated from Empirical Bayes are greater than the forecast errors
estimated from OLS regressions (FSAR, EB > FSAR,OLS). If, FA > 0, we understand that the OLS
estimators of beta were superior to the Empirical Bayes estimators, and thus OLS is a better
method to estimate the betas. The investor is advised to prefer estimating betas using the
Empirical Bayes method if FA < 0.

Sector A B C D E F G H I J

1 -0.111 -0.034 0.002 0.049 -0.030 -0.004 -0.005 -0.006 -0.007 -0.009

2 -0.059 0.028 0.085 -0.023 0.012 -0.036 -0.019 -0.042 0.026 0.066

3 -0.100 -0.073 -0.056 -0.032 -0.045 0.004 -0.002 -0.005 -0.025 -0.030

4 -0.032 -0.090 -0.060 -0.045 -0.039 -0.127 -0.161 -0.061 -0.052 -0.100

5 -0.141 0.039 -0.059 -0.070 -0.033 -0.024 -0.025 -0.003 -0.006 -0.015

6 0.056 -0.172 -0.075 0.086 -0.009 -0.112 0.006 0.001 -0.021 -0.009

7 -0.117 -0.112 -0.089 -0.062 -0.063 -0.017 -0.018 -0.010 -0.013 -0.008

8 -0.051 -0.077 -0.077 -0.057 -0.030 -0.010 -0.041 -0.020 -0.024 -0.011

9 -0.112 -0.063 -0.036 -0.009 -0.026 0.038 0.025 -0.013 0.006 0.005

10 -0.054 -0.123 -0.018 -0.008 -0.016 -0.026 -0.037 -0.011 0.044 0.012

11 -0.010 -0.064 -0.060 -0.013 -0.093 -0.001 -0.009 -0.034 0.015 -0.007

12 -0.124 -0.032 -0.028 -0.026 -0.024 -0.028 -0.008 -0.008 -0.008 -0.025

13 -0.124 -0.068 -0.005 -0.125 -0.039 0.016 -0.006 -0.002 -0.003 0.000

14 -0.140 -0.129 -0.077 -0.040 -0.015 0.007 0.003 -0.019 0.009 -0.003

15 -0.170 -0.015 -0.107 -0.055 0.001 0.006 -0.046 -0.019 0.000 -0.005

16 -0.224 -0.326 -0.136 -0.291 -0.034 -0.019 0.004 0.006 0.006 0.013

17 -0.127 -0.098 -0.017 -0.048 -0.084 -0.037 -0.012 -0.011 -0.034 -0.008

18 -0.303 -0.034 0.033 -0.079 -0.012 -0.021 -0.004 -0.001 -0.147 -0.095

19 0.021 0.065 -0.020 0.108 0.021 -0.020 -0.004 -0.020 -0.023 0.035

mean -0.101 -0.073 -0.042 -0.039 -0.029 -0.022 -0.019 -0.015 -0.013 -0.010
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Table 4
Mean FS for non-IPO’s under different investment strategies

This table reports the mean values of FS under different investment strategies for non-IPO’s in
each sector. The investment strategies are given in the first row. The sector codes are given in the
first column. FS is described in equation (18) in the text as the ratio of the difference of the
squared forecast errors estimated using Empirical Bayes and OLS to the sum of the two. FS takes
the value zero (FS =0) if the squared forecast errors estimated from Empirical Bayes and OLS and
are equal (FSSR, EB = FSSR,OLS). In this case neither method is superior to other. FS takes a value
less than zero (FS < 0) if the forecast errors estimated from Empirical Bayes are less than the
forecast errors estimated from OLS regressions (FSSR, EB < FSSR,OLS). If, FS < 0, we understand that
the Empirical Bayes estimators of beta were superior to the OLS estimators, and thus Empirical
Bayes is a better method to estimate the betas. FS takes a value greater than zero (FS > 0) if the
forecast errors estimated from Empirical Bayes are greater than the forecast errors estimated from
OLS regressions (FSSR, EB > FSSR,OLS). If, FS > 0, we understand that the OLS estimators of beta
were superior to the Empirical Bayes estimators, and thus OLS is a better method to estimate the
betas. The investor is advised to prefer estimating betas using the Empirical Bayes method if FS <
0.

Sector A B C D E F G H I J

1 -0.171 -0.047 -0.024 -0.009 -0.016 -0.012 -0.005 -0.004 -0.006 -0.009

2 -0.241 -0.043 0.273 -0.066 -0.052 -0.003 0.047 0.069 0.122 0.312

3 -0.155 -0.090 -0.062 -0.041 -0.037 -0.022 -0.009 -0.006 -0.009 -0.004

4 -0.010 -0.230 0.013 -0.049 -0.068 -0.030 0.005 0.000 -0.005 -0.008

5 -0.102 -0.056 -0.002 -0.026 -0.014 -0.018 -0.019 -0.015 0.000 -0.004

6 -0.196 0.025 0.068 -0.030 -0.144 -0.052 0.144 0.010 -0.016 -0.033

7 -0.105 -0.092 -0.029 -0.048 -0.034 -0.017 -0.009 -0.007 -0.004 -0.006

8 -0.119 -0.046 -0.022 -0.025 -0.021 0.018 -0.020 -0.016 -0.012 -0.009

9 -0.117 -0.042 -0.005 0.039 0.005 0.029 0.035 -0.002 -0.010 -0.008

10 -0.080 -0.202 -0.003 -0.038 -0.029 -0.028 -0.011 -0.013 0.048 0.011

11 0.001 0.038 0.156 0.059 0.055 0.012 -0.006 -0.045 -0.007 -0.019

12 -0.128 -0.068 -0.068 -0.038 -0.031 -0.035 -0.026 -0.003 -0.010 -0.005

13 -0.095 -0.061 -0.025 -0.027 -0.029 0.000 -0.007 -0.013 -0.017 -0.001

14 -0.113 -0.045 -0.054 -0.038 -0.038 -0.018 -0.013 0.001 0.000 -0.005

15 -0.038 0.103 -0.170 -0.006 -0.008 0.007 0.006 -0.023 0.002 -0.004

16 -0.029 -0.088 -0.047 0.072 0.004 0.088 -0.003 -0.023 0.008 -0.002

17 -0.131 -0.047 -0.021 -0.019 -0.025 -0.008 -0.017 -0.006 -0.009 -0.009

18 -0.150 -0.036 -0.005 -0.016 0.008 -0.029 -0.009 -0.003 0.070 -0.007

19 0.356 0.038 -0.001 0.238 0.111 0.020 -0.015 -0.012 -0.015 0.019

Mean -0.085 -0.052 -0.001 -0.004 -0.019 -0.005 0.004 -0.006 0.007 0.011
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Table 5
Mean FA for non-IPO’s under different investment strategies

This table reports the mean values of FA under the different investment strategies for non-IPO’s
in each sector. The investment strategies are given in the first row. The sector codes are given in
the first column. FA is described in equation (19) in the text as the ratio of the difference of
absolute forecast errors estimated using Empirical Bayes and OLS to the sum of the two. FA

takes the value zero (FA =0) if the squared forecast errors estimated from Empirical Bayes and
OLS and are equal (FSAR, EB = FSAR,OLS). In this case neither method is superior to other. FA takes
a value less than zero (FA < 0) if the forecast errors estimated from Empirical Bayes are less than
the forecast errors estimated from OLS regressions (FSAR, EB < FSAR,OLS). If, FA < 0, we
understand that the Empirical Bayes estimators of beta were superior to the OLS estimators, and
thus Empirical Bayes is a better method to estimate the betas. FA takes a value greater than zero
(FA > 0) if the forecast errors estimated from Empirical Bayes are greater than the forecast errors
estimated from OLS regressions (FSAR, EB > FSAR,OLS). If, FA > 0, we understand that the OLS
estimators of beta were superior to the Empirical Bayes estimators, and thus OLS is a better
method to estimate the betas. The investor is advised to prefer estimating betas using the
Empirical Bayes method if FA < 0.

Sector A B C D E F G H I J

1 -0.092 -0.027 -0.012 -0.010 -0.007 -0.003 0.001 0.002 -0.002 -0.004

2 -0.160 -0.003 0.162 -0.043 -0.020 0.002 0.009 0.037 0.062 0.196

3 -0.090 -0.045 -0.036 -0.024 -0.023 -0.014 -0.006 -0.002 -0.003 -0.003

4 -0.023 -0.145 0.004 -0.032 -0.007 -0.021 0.005 0.015 -0.003 -0.006

5 -0.057 -0.034 0.001 -0.011 -0.003 -0.009 -0.007 -0.004 0.000 -0.002

6 -0.125 0.005 0.001 -0.032 -0.102 -0.042 0.070 0.002 -0.014 -0.019

7 -0.064 -0.051 -0.016 -0.027 -0.021 -0.011 -0.004 -0.004 -0.002 -0.002

8 -0.072 -0.022 -0.009 -0.011 -0.006 0.009 -0.012 -0.009 -0.007 -0.007

9 -0.069 -0.022 -0.017 0.020 0.003 0.021 0.026 -0.001 -0.004 -0.002

10 -0.045 -0.103 -0.002 -0.022 -0.022 -0.017 -0.010 -0.006 0.035 0.002

11 0.029 0.065 0.116 0.073 0.070 0.008 0.000 -0.020 0.001 -0.011

12 -0.068 -0.038 -0.039 -0.011 -0.014 -0.017 -0.016 -0.004 -0.006 0.000

13 -0.053 -0.028 -0.019 -0.017 -0.022 -0.005 -0.005 -0.011 -0.011 -0.002

14 -0.066 -0.029 -0.026 -0.022 -0.022 -0.009 -0.007 0.000 0.003 -0.003

15 -0.015 0.065 -0.095 -0.008 -0.005 0.000 0.002 -0.011 0.001 -0.007

16 -0.017 -0.045 -0.033 0.050 0.009 0.049 -0.002 -0.015 0.004 -0.002

17 -0.078 -0.024 -0.009 -0.008 -0.013 -0.004 -0.009 -0.006 -0.007 -0.007

18 -0.084 -0.023 -0.004 0.011 0.011 -0.019 0.000 0.001 0.036 -0.002

19 0.217 0.022 -0.004 0.157 0.067 0.010 -0.013 -0.005 -0.006 0.009

Mean -0.049 -0.025 -0.002 0.002 -0.007 -0.004 0.001 -0.002 0.004 0.007
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Tables 4 and 5 report the mean FS and FA values for seasoned equities. The
overall picture is similar to the case of IPO’s. Empirical Bayes estimators dominate
OLS estimators in general, and for short estimation periods in particular. Table 4
reports that for shorter estimation periods of 5 to 20 days (columns A through D) in 64
out of 76 cases FS <0, indicating that Empirical Bayes is better. Table 5 presents that
for the same shorter estimation periods (columns A through D) in 62 out of 76 cases FA

<0. Also, the values of FS and FA in columns (A) through (D) of Tables 4 and 5
respectively tend to become smaller, as the estimation period moves from one week (A)
to four weeks (D).

The estimation period moves from 1 month (20 days) to 6 months (120 days) and
the forecast period is fixed at one month (20 days) in columns (E) through (J) of Tables
4 and 5. In Table 4 we can see that for the estimation period, using 120 days’ data, FS <
0 in 82 out of 114 cases. In Table 5, for the estimation period using at most 120 days’
data FA < 0 in 78 out of 114 cases.

We are also interested in the success of Empirical Bayes estimators, as the
number of firms in a specific sector is increasing when the IPO is launched. The
number of firms in each sector is important because we use the beta coefficients of
those firms as the priors of Empirical Bayes estimators. In our data set the minimum
number of firms in a sector is 3 and the maximum is 28. This gives us an opportunity to
observe the successes of the Empirical Bayes estimators when the number of firms in
each sector is changing, thus the prior that we used was alternating accordingly. Table 6
is prepared to display FS for IPO’s as defined in (19).

Overall, we observe that FS <0, indicating that EB dominates OLS. Roughly
speaking, FS gets larger when an IPO is introduced to a sector with larger number of
firms, indicating that EB is slightly superior to OLS when sector size is larger.
However, the effect of sector size is not reported as the estimation period also changes.
But, as we have observed in tables 2 and 4, FS also becomes larger at shorter estimation
periods.

Table 7 reports the frequencies with which either EB or OLS estimators perform
better under alternative investment strategies. We prepared panels 1 and 3 of table 7 for
absolute comparisons. For example, in the case of IPO’s, take panel 1, for strategy A,
where both the estimation and forecast periods are five days. EB performed better than
OLS in 75% of the cases. Similarly for strategy J where the estimation and forecast
periods are 120 and 20 days respectively, EP performed better than OLS in 63% of the
cases. We prepared panels 2 and 4 of Table 7 by ignoring differences between the
performances of the two methods up to five percent. For example, take panel 2 of Table
7. In the case of IPO’s, and for strategy A, sum of absolute residuals (FSAR) for EB
estimates was at least 5% better than the sum of absolute residuals for OLS estimates in
81% of the cases. Similarly, this percentage is 76 for strategy J.

Overall, we observe from table 7 that EB performs much better than OLS in
most of the cases. In general, we observe that EB performs better than OLS for both the
IPO’s and seasoned equities for shorter estimation and forecast horizons. Also the
frequency of cases that EB performs better increases as we introduce the 5%
benchmark. Sum of absolute residuals from EB estimates are at least 5% better than
that of OLS estimates more frequently. For example, take strategy G. For IPO’s EB
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performs better than OLS in 61% of the cases. The frequency increases to 75% when
we consider only the cases where EB performs at least 5% better than OLS. Similarly,
in the case of seasoned equities, EB performs better than OLS in 61% of the cases.
However, this frequency increases to 73% when we consider only the cases where EB
performs at least 5% better than OLS.

Table 6
Mean FS for IPO’s as sector size changes

This table reports the mean values of FS under different investment strategies for firms in sectors
with different number of firms when the IPO enters. The number of firms in the sector when the
IPO enters is given in the first column. Estimation and forecasting periods are specified in the
first row. FS is described in equation (18) in the text as the ratio of the difference of the squared
forecast errors estimated using Empirical Bayes and OLS to the sum of the two. FS takes the
value zero (FS =0) if the squared forecast errors estimated from Empirical Bayes and OLS and are
equal (FSSR, EB = FSSR,OLS). In this case neither method is superior to other. FS takes a value less
than zero (FS < 0) if the forecast errors estimated from Empirical Bayes are less than the forecast
errors estimated from OLS regressions (FSSR, EB < FSSR,OLS). If, FS < 0, we understand that the
Empirical Bayes estimators of beta were superior to the OLS estimators, and thus Empirical
Bayes is a better method to estimate the betas. FS takes a value greater than zero (FS > 0) if the
forecast errors estimated from Empirical Bayes are greater than the forecast errors estimated from
OLS regressions (FSSR, EB > FSSR,OLS). If, FS > 0, we understand that the OLS estimators of beta
were superior to the Empirical Bayes estimators, and thus OLS is a better method to estimate the
betas. The investor is advised to prefer estimating the betas using the Empirical Bayes method if
FS < 0.

Number
of firms

A B C D E F G H I J Mean

3 -0.134 -0.039 -0.033 -0.010 -0.011 -0.015 -0.037 -0.012 -0.029 -0.013 -0.033

4 -0.070 -0.047 0.024 -0.005 -0.048 -0.021 -0.008 -0.036 0.018 0.009 -0.018
5 -0.031 -0.128 -0.038 -0.069 -0.048 -0.049 -0.019 -0.014 -0.025 -0.009 -0.043

6 -0.117 -0.052 -0.018 -0.032 -0.019 -0.033 -0.033 -0.003 -0.002 0.004 -0.031
7 -0.083 -0.062 -0.099 -0.063 -0.035 0.044 0.012 0.013 0.001 -0.043 -0.032
8 -0.189 -0.040 -0.032 -0.023 -0.026 0.024 -0.005 -0.013 0.002 -0.002 -0.030

9 -0.310 -0.059 -0.011 0.030 0.016 -0.011 0.005 0.000 -0.006 0.002 -0.034
10 -0.114 -0.028 0.002 -0.010 -0.028 -0.042 0.001 -0.009 -0.011 -0.014 -0.025
11 -0.017 -0.041 -0.009 0.024 -0.061 -0.024 -0.017 -0.013 -0.064 -0.064 -0.029
12 -0.123 -0.072 -0.083 -0.035 -0.018 -0.004 0.007 -0.011 -0.006 -0.010 -0.036
13 -0.109 -0.071 0.007 -0.050 -0.021 -0.002 -0.018 -0.005 0.008 -0.005 -0.027
14 -0.019 -0.095 -0.089 -0.104 -0.098 -0.003 -0.030 -0.010 -0.028 -0.006 -0.048
15 -0.052 -0.088 -0.015 0.000 -0.023 -0.022 0.000 -0.016 -0.002 0.004 -0.021
16 -0.085 -0.035 0.003 0.069 -0.021 0.031 -0.003 -0.006 -0.015 -0.009 -0.007
17 -0.256 -0.022 -0.042 -0.070 -0.055 -0.007 -0.017 -0.020 -0.002 0.003 -0.049
18 -0.061 0.077 -0.092 -0.046 -0.032 -0.007 -0.018 0.003 -0.012 -0.006 -0.019
19 -0.229 -0.255 -0.026 -0.096 -0.105 -0.082 -0.007 -0.065 -0.037 -0.007 -0.091
20 -0.121 -0.091 -0.074 -0.059 -0.030 -0.011 -0.003 -0.011 -0.006 -0.007 -0.041
21 -0.100 -0.245 -0.212 -0.132 0.044 -0.010 0.001 -0.038 0.004 -0.008 -0.069
23 -0.396 -0.205 -0.267 -0.146 -0.118 -0.067 -0.068 -0.005 0.002 -0.005 -0.127
24 -0.213 -0.058 -0.026 -0.056 -0.108 -0.020 -0.017 -0.011 0.009 -0.009 -0.051
28 -0.204 -0.234 0.054 0.027 -0.226 -0.007 -0.127 -0.017 0.012 -0.022 -0.074

Mean -0.138 -0.086 -0.049 -0.039 -0.049 -0.015 -0.018 -0.014 -0.009 -0.010
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Table 7
Comparison of EB and OLS estimators using frequencies of better performance

In this table we report the frequencies with which EB estimation outperforms the OLS estimation.
The investment strategies are given in the first row from A through J. We grouped the results into
three. The first group reports the cases whereby Empirical Bayes estimators and the OLS
estimators had smaller FSAR (sum of absolute residuals), respectively. The second group reports
the cases for IPO’s whereby Empirical Bayes estimators and the OLS estimators had FSAR values
smaller by at least 5%, respectively. The third group reports the number of cases whereby for
seasoned equities, Empirical Bayes estimators and the OLS estimators had smaller FSAR (sum of
absolute residuals), respectively. The fourth group reports the number of cases for seasoned
equities whereby Empirical Bayes estimators and the OLS estimators had FSAR values smaller by
at least 5%, respectively. For each group, the first rows shows the number of cases where FSAR,

EB < FSAR, OLS , the second row shows the number of cases where FSAR, EB > FSAR, OLS , and the
third row shows the percentage of cases where FSAR, EB < FSAR, OLS .

Investment strategies
A B C D E F G H I J

IPO’s
EB was better 179 167 140 141 161 135 128 134 135 138
OLS was better 61 67 81 76 57 81 83 74 81 81
%EB was better 75% 71% 63% 65% 74% 63% 61% 64% 63% 63%

IPO’s
EB was at least 5% better 155 130 108 122 105 57 57 48 35 31
OLS was at least 5% better 36 50 54 42 32 25 19 16 15 10
%EB was at least 5% better 81% 72% 67% 74% 77% 70% 75% 75% 70% 76%

Seasoned Equities
EB was better 1429 1249 1185 1163 1211 1197 1143 1119 1100 1070
OLS was better 521 695 709 718 678 688 731 747 788 809
%EB was better 73% 64% 63% 62% 64% 64% 61% 60% 58% 57%

Seasoned equities
EB was at least 5% better 1045 894 694 685 590 383 291 188 183 156
OLS was at least 5% better 278 370 356 390 224 144 108 102 84 74
%EB was at least 5% better 79% 71% 66% 64% 72% 73% 73% 65% 69% 68%

VI. CONCLUDING REMARKS

This paper introduces EB as an alternative estimation procedure to estimate betas in the
case of IPO’s. In this instance, it is extremely difficult to estimate betas using
traditional analysis of historical data mainly due to the limited number of observations
on the stock prices. However, the practical need remains as portfolio managers want to
use the same intuition applied to other stocks. Despite empirical considerations, CAPM
is still a straightforward simple-to-implement model to value risky assets while at the
same time being strong in theoretical foundations.

We use Empirical Bayes method to circumvent the estimation problem in IPO’s
by using the price of other stocks in the same sector as priors. Using sector information
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as prior enables us to employ a single factor rather than a multi-factor alternative. This
way we do not deviate from the intuition behind CAPM, that IPO’s similar to seasoned
equities, should be evaluated in a portfolio context, rather than in isolation. At the same
time we keep the application as simple as possible. We still use the index as a
representation of the market and calculate risk as the sensitivity of stock to changes in
the market. We introduce Empirical Bayes as a method of adjustment whereby prices of
stocks in the sector that an initial public offering is made are used as prior information.

We have run more than twenty thousand regressions to calculate betas using
alternative estimation periods. Empirical Bayes estimates are compared to the
traditional ordinary least squares on three grounds. We used ten different
estimation/forecast period pairs to calculate. We calculated two different forecast error
measures, one magnifying large errors and the next being neutral to the size of the
error. Finally, we compared the performance of EBE and OLS in estimating betas for
IPO’s as well as seasoned equities.

Empirical Bayes estimators dominate OLS estimators. However, the level of
domination diminishes as the estimation period becomes longer and the number of
observations used in the regression increases. The main reason behind this is the
progress of OLS performance as the number of observations in the estimations increase.
Empirical Bayes estimators do not deteriorate. For shorter estimation and forecast
horizons Empirical Bayes estimators perform better than the OLS not only for the
IPO’s but also for the seasoned equity offerings.

The number of firms in each sector was important in this study because we use
the beta coefficients of those firms as the priors of Empirical Bayes estimators. This
gives us an opportunity to observe the successes of the Empirical Bayes estimators
when the number of firms in each sector is changing, thus the prior that we used was
alternating accordingly. When an IPO is introduced to a sector with larger number of
firms, Empirical Bayes estimators are slightly superior to OLS estimates and this is
more pronounced for shorter estimation periods.

Results reveal that overall, Empirical Bayes estimates perform better than OLS
estimates. Besides, Empirical Bayes is more successful for shorter estimation periods,
for IPO’s rather than seasoned equities and for IPO’s introduced into larger sectors
rather than smaller ones. All of these attributes make EB an excellent technique to
estimate betas for IPO’s. This gives portfolio managers an exceptional opportunity to
treat IPO’s with the same intuition that they treat other stocks.

Empirical Bayes estimates is an outstanding method to avoid the trade off
between the practical need to for a straightforward measure of systematic risk and
empirical problems encountered in the case of IPO’s. It gives market professionals the
opportunity to use the same measure of market risk for calculating expected returns for
both the IPO’s and seasoned issues. The intuition behind the CAPM can thus be applied
to all the securities that are used in a portfolio context.

The EB method used in this study can be executed within the Hierarchical Bayes
framework that requires more complicated calculations and computer program coding.
The Hierarchical Bayes procedure is different from the empirical one in estimating the
hyperparameters. This method employs the Bayesian procedure to estimate the
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hyperparameters instead of the ML, OLS, or MOM. We retain the Hierarchical Bayes
method, which is beyond the scope of this paper, for future research.

NOTES

1. See Fama (1991) for a review of related literature and Fama and French (1996) for
further evidence that beta alone cannot explain expected returns

2. We drop subscript i which denotes the specific stock for the sake of simplicity in
the following equations. N denotes the number of firms.

3. The algorithm of the GAUSS program used in this study is given in Appendix 1.
The program itself is available from the authors upon request.

4. For a review of literature on ISE, refer to Müradoglu (2000).
5. The list of sectors and the number of firms in each sector are given in Appendix 2.

REFERENCES

Berra, A.K. and S. Kannan, 1986, An Adjustment Procedure for Predicting Systematic
Risk, Journal of Applied Econometrics, 1, 317-332.

Dimson, E., 1979, Risk Measurement When Shares are Subject to Infrequent Trading,
Journal of Financial Economics, 7, 197-226.

Fama, E.F.1991, Efficient Capital Markets II, The Journal of Finance, 46, 1575-1617.
Fama, F.E. and K.R. French, 1992, The Cross Section of Expected Returns, Journal of

Finance, 47, 427-465.
Fama, F.E. and K.R. French, 1996, The CAPM is Wanted, Dead or Alive, Journal of

Finance, 51, 1947-1958.
Fama, F.E. and K.R. French, 1997, Industry Cost of Equity, Journal of Financial

Economics, 43, 153-194.
Fama, F.E. and J.D. MacBeth, 1973, Risk, Return and Equilibrium: Empirical Tests,

Journal of Political Economy, 81, 607-636.
Karolyi, A.G., 1992, Predicting Risk: Some New Generalizations, Management

Science, 38/1, 57-74.
Litner, J., 1965, The Valuation of Risky Assets and the Selection of Risky Assets in

Stock Portfolios and Capital Budgets, Review of Economics and Statistics, 47, 13-
37.

Markowitz, H., 1959, Portfolio Selection; Efficient Diversification of Investments, New
York:Wiley.

Muradoglu, G., 2000, “Turkish Stock Market: Anomalies and Profit Opportunities,”
Security Market Imperfections in Worldwide Equity Markets, Ed. D. Keim and W.
Ziemba, Cambridge University Press, 364-390.

Pastor, L. and R. Stambaugh, 1999, Cost of Equity Capital and Model Mispricing,
Journal of Finance, 54, 67-121.

Roll, R. and S.A. Ross, 1984, On the Cross Sectional Relation Between Expected
Returns and Betas, Journal of Finance, 49, 101-122.

Sharpe, W.F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk, Journal of Finance, 19, 425-422.



INTERNATIONAL JOURNAL OF BUSINESS, 8(3), 2003 333

Siegel, A.F., 1995, Measuring Systematic Risk Using Implicit Beta, Management
Science, 41, 124-128.

Stambaugh, R., 1982, On the Exclusion of Assets from Tests of the Two-Parameter
Model: A Sensitivity Analysis, Journal of Financial Economics, 10, 237-268.

Stambaugh, R., 1997, Analyzing Investments whose Histories Differ in Length, Journal
of Financial Economics, 45, 285-331.

Tinic, S.M. and R.R.West, 1986, Marketability of Common Stocks in Canada and the
USA: A Comparison of Dealer versus Agent Dominated Markets, Journal of
Finance, 29, 729-746.

Vazicek, O., 1973, A Note on Using Cross-Sectional information in Bayesian
Estimation of Security Betas, Journal of Finance, 28, 1233-39.

Wittkemper, H.G. and M. Steiner, 1996, Using Neural Networks to Forecast the
Systematic Risk of Stocks, European Journal of Operational Research, 90, 577-
588.

Zaman, A., 1996, Statistical Foundations of Econometric Techniques, Academic Press.



334 Muradoglu, Zaman, and Orhan

Appendix 1
Gauss program algorithm

1. Arrange the data belonging to the determined period, sector, and firms.
2. Input the data set that includes the individual and market returns to the

program.
3. Obtain the OLS estimates for the regression coefficients.
4. Obtain the D-Prior estimates for Empirical Bayes.
4.1. Start with any initial values of and .
4.2. Do while and  do not converge to their ultimate values:
4.2.1. Calculate the estimate of  given the value of .
4.2.2. Calculate the estimate of  given the value of .
4.3. Endo—Get the converged values of and .
5. Calculate the sum of squared and absolute residuals.

Appendix 2
Sector classifications

The Table below reports the sector classification used in this study. We categorized the firms into
the following sectors conformable to the ISE classification. The first column of the table is the
sector code, the second column gives the number of firms in that sector, and the third column
gives the definition of the sector as it appears at ISE bulletins.

Sector code Number of firms in the
sector (ns)

Sector

1 20 Banking
2 6 IT
3 33 Textiles
4 7 Electricity
5 11 Financial leasing and factoring
6 7 Real estates investment funds
7 25 Food, drinks and tobacco
8 19 Holding companies
9 15 Paper and publishers

10 9 Chemicals
11 6 Hotels and restaurants
12 33 Machinery
13 19 Investment funds
14 16 Metals
15 7 Retail
16 8 Insurance
17 22 Construction materials
18 7 Wholesale
19 6 Transportation


