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Abstract

We present new sufficient conditions for the existence of a contin-
uous utility function for an arbitrary binary relation on a topological
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1 Introduction

The problem concerning the existence of a continuous utility function for a
not necessarily total (linear) preorder (or for a partial order) on a topological
space was extensively treated in the literature concerning the applications of
mathematics to economics and social sciences.

Peleg [27] was the first who provided sufficient conditions for the existence
of a continuous utility function for a partial order on a topological space.
Peleg said that he was solving a problem raised by Aumann [1], who pointed
out that it is realistic not assume that an individual may compare any two ob-
jects according with its own preferences, so that “incomparability” may take
place in some cases (see also Ok ([25]).

Following the illuminating approach of Nachbin [24], who combined the
classical results of mathematical utility theory with some of the most impor-
tant achievements in elementary topology, Mehta was able to establish very
general conditions for the existence of a continuous utility function for a not
necessarily total preorder on a topological space (see e.g. Mehta [21] and the
survey in Mehta [22]). The reader may also consult the book by Bridges and
Mehta [6] for a miscellanea of theorems concerning the existence of continuous
order isomorphisms.

Herden [15] found a characterization of the existence of a continuous
utility function for a not necessarily total preorder on a topological space by
using the concept of a separable system. Herden also showed that the classical
utility representation theorems of Eilenberg-Debreu and Debreu (see Debreu
[10, 11] and Eilenberg [12]) concerning the existence of a continuous utility
function for a continuous total preorder on a connected and separable topo-
logical space and respectively on a second countable topological space are
corollaries of his main result. By using similar arguments, Bosi and Mehta [5]
presented a unified approach to the existence of a semicontinuous or contin-
uous utility function on a preordered topological space, while the continuous
utility representation problem in arbitrary concrete categories was discussed
by Bosi and Herden [4].

In a slightly different context, Chateauneuf [9] characterized in a very el-
egant way the representability of a preference relation with pseudotransitive
preference-indifference on a connected topological space by means of a pair of
continuous real-valued functions.

In order to possibly generalize the theorems of Eilenberg-Debreu and De-
breu to the case of a non-total preorder, Herden and Pallack [18] introduced
the concept of a weakly continuous preorder - on a topological space (X, τ).

We recall that a preorder - on a topological space (X, τ) is said to be
weakly continuous if for every x, y ∈ X such that x ≺ y there exists a continu-
ous increasing function uxy : (X, τ, -) −→ (R, τnat,≤) such that uxy(x) < uxy(y).
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Herden and Pallack showed that Debreu theorem is generalizable to the case
of a weakly continuous preorder while Eilenberg-Debreu theorem is not. Fur-
thermore, looking at the proof of theorem 2.15 in Herden and Pallack [18],
it is easily seen that there exists a continuous utility function for any weakly
continuous preorder - on a topological space (X, τ) such that the product
topology τ × τ on X × X is hereditarily Lindelöf (it is well known that this
requirement generalizes the assumption of second countability of the topolog-
ical space (X, τ)).

In this paper, we first generalize the aforementioned result presented by
Herden and Pallack by showing that the existence of a continuous utility func-
tion for a binary relation R on a topological space (X, τ) is equivalent to
the existence of a topology τ ′ coarser than τ such that R is weakly contin-
uous on (X, τ ′) and (X, τ ′) has a countable network weight (or equivalently
the product topology τ ′ × τ ′ on X × X is hereditarily Lindelöf). Then we
use this result in order to derive some sufficient conditions for the existence
of a continuous utility function. In this way, we generalize Debreu continuous
utility representation theorem by showing that every weakly continuous
binary relation on a topological space with a countable net weight has a contin-
uous utility representation. This result may be viewed as a generalization of a
proposition in Caterino, Ceppitelli and Mehta [8], where the authors consider
the case of a continuous total preorder on a topological space with a countable
net weight.

Finally, we show that suitable notions which generalize the concept of com-
pactness such as σ-compactness, hemicompactness and the concept of k-space
(see e.g. McCoy [20]) may be invoked in order to guarantee the continuous
representability of a weakly continuous binary relation on a submetrizable
topological space (i.e., on a space that admits a coarser metrizable topology).
It is remarkable that these situations do not imply second countability or local
compactness (see Levin [19] and Back [2]). On the other hand, assumptions
of this kind are interesting in economics since they are very frequently applied
to function spaces (for example, the compact-open topology on the space of all
continuous functions is considered in Ok [26] in connection with the problem
of representing continuous multifunctions).

2 Notation and preliminaries

Throughout this paper, we shall denote by R a binary relation on an arbi-
trary nonempty set X. The strict part RS of R and the symmetric part I of
R are defined as follows:

xRSy ⇔ (xRy) ∧ ¬(yRx) (x, y ∈ X),

xIy ⇔ (xRy) ∧ (yRx) (x, y ∈ X).
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Further, we shall denote by RS and R′
S the graphs of RS and the dual of

RS, namely

RS = {(x, y) ∈ X ×X : xRSy},

R′
S = {(x, y) ∈ X ×X : (y, x) ∈ RS}.

A preorder R on X is a reflexive and transitive binary relation on X. A
preorder is said to be total if for any two elements x, y ∈ X either xRy or yRx.
In the sequel, a preorder will be preferably denoted by the symbol -. In this
case, the strict part of a preorder - will be indicated by ≺.

The pair (X, R) will be referred to as a related set in the general case.
If in addition τ is a topology on the set X, then the triplet (X, τ, R) will be
referred to as a topological related space.

If (X, R) is a related set, then a subset A of X is said to be decreasing if,
for every x ∈ X and y ∈ A, xRy implies that x ∈ A.

Given a related set (X, R), a real-valued function u on X is said to be

(i) increasing if u(x) ≤ u(y) for all x, y ∈ X such that xRy,

(ii) order-preserving if it is increasing and u(x) < u(y) for all x, y ∈ X
such that xRSy.

In the sequel, an order-preserving function will be referred to as a util-
ity function.

If - is a total preorder on a set X, then the associated order topology will
be denoted by τ-. We recall that τ- is the topology generated by the sets
L(x) = {z ∈ X : z ≺ x} and U(x) = {z ∈ X : x ≺ z} with x ∈ X.

From Herden and Pallack [18], a binary relation R on a topological space
(X, τ) is said to be weakly continuous if for all x, y ∈ X such that xRSy there
exists a continuous increasing real-valued function uxy on (X, τ, R) such that
uxy(x) < uxy(y).

Herden and Pallack [18, Lemma 2.2] proved that if R is a total preorder,
then the above defined continuity of R on (X, τ) coincides with the classical
requirement that L(x) = {z ∈ X : zRSx} and U(x) = {z ∈ X : xRSz} are
open subsets of X for every x ∈ X. In this case, the total preorder R on (X, τ)
is said to be continuous.

We recall that a preorder - on a topological space (X, τ) is said to be
closed if - is a closed subset of X ×X with respect to the product topology
τ × τ on X ×X. Herden and Pallack [18, Proposition 2.11] proved that every
weakly continuous binary relation R on a topological space (X, τ) has a weakly
continuous refinement by a closed preorder (i.e., for every weakly continuous
binary relation R on (X, τ) there exists a weakly continuous preorder - on
(X, τ) such that R ⊂- and RS ⊂≺).
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We recall that a topology τ on a set X is a hereditarily Lindelöf topology
if for every subset A of X and every open covering C of A there exists some
countable subcovering C ′ ⊂ C of A.

Let us recall some classical definitions in the theory of cardinal functions.
As usual, the symbol ℵ0 will stand for the smallest infinite cardinal.
A family N of subsets of a topological space (X, τ) is called a network for X
if every non empty open subset of X is a union of elements of N .
The network weight (or net weight) of (X, τ) is defined by

nw(X, τ) = min{|N | : N is a network for (X, τ)}+ ℵ0.

As usual, define by

w(X, τ) = min{| B |: B is a base for (X, τ)}+ ℵ0

the weight of (X, τ). We recall that if (X, τ) is either metrizable or locally
compact or else linearly ordered then nw(X, τ) = w(X, τ) (see Engelking [13]).
For what concerns subspaces and topological products we have that if (Y, τ ′)
is a subspace of (X, τ) then

nw(Y, τ ′) ≤ nw(X, τ)

and
nw(

∏
s∈S

Xs,
∏
s∈S

τs) = max{|S|, sup
s∈S

nw(Xs,
∏
s∈S

τs)}.

So every subspace of a countable product of spaces having countable net
weight has countable net weight. Since nw(X, τ) = ℵ0 implies that (X, τ) is
Lindelöf, a countable product of spaces with countable net weight is heredi-
tarily Lindelöf.

3 Existence of continuous utilities

Herden and Pallack [18, Theorem 2.15] proved that every weakly continu-
ous binary relation on a second countable space has a continuous utility rep-
resentation. This result generalizes the famous Debreu utility representation
theorem which states that every continuous total preorder on a second count-
able topological space admits a continuous utility representation (see Debreu
[10, 11]).

The following theorem characterizes the existence of a continuous utility
function for an arbitrary binary relation on a topological space and therefore
generalizes the aforementioned result proved by Herden and Pallack.

Theorem 3.1 Let R be a binary relation on a topological space (X, τ).
Then the following conditions are equivalent:
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(i) There exists a continuous utility function u on (X, τ, R);

(ii) There exists a topology τ ′ on X coarser than τ such that R is weakly
continuous on (X, τ ′) and (X, τ ′) is second countable;

(iii) There exists a topology τ ′ on X coarser than τ such that R is weakly
continuous on (X, τ ′) and (X, τ ′) has a countable net weight;

(iv) There exists a topology τ ′ on X coarser than τ such that R is weakly
continuous on (X, τ ′) and the product topology τ ′ × τ ′ on X × X is
hereditarily Lindelöf;

(v) There exists a topology τ ′ on X coarser than τ such that R is weakly
continuous on (X, τ ′) and the topology (τ ′ × τ ′)RS induced by
the product topology τ ′ × τ ′ on the graph RS of RS is Lindelöf.

Proof. (i) ⇒ (ii). Let u be a continuous utility function on (X, τ, R).
Consider the total preorder . on X defined by

x . y ⇔ u(x) ≤ u(y) (x, y ∈ X),

and let τ ′ = τ. be the order topology associated to .. Observe that from
the Debreu Open Gap Lemma (see e.g. Bridges and Mehta [6, Lemma 3.13]),
since there exists a utility function u on the totally preordered set (X, .)
there also exists a continuous utility function u′ on the totally preordered
topological space (X, τ ′, .). Since . is (continuously) representable we have
that τ ′ is second countable (see Bridges and Mehta [6, Proposition 1.6.11]).
It is clear that τ ′ is coarser than τ from the definition of the total preorder .
and the continuity of the function u on the topological space (X, τ). Further,
we have that R is weakly continuous on (X, τ ′) since u′ is continuous on (X, τ ′)
and we have that, for all x, y ∈ X,

xRy ⇒ u(x) ≤ u(y) ⇒ x . y ⇒ u′(x) ≤ u′(y),

xRSy ⇒ u(x) < u(y) ⇒ x < y ⇒ u′(x) < u′(y).

(ii) ⇒ (iii). Trivial.
(iii) ⇒ (iv). See the considerations at the end of section 2.
(iv) ⇒ (v). Immediate.
(v) ⇒ (i). Since the binary relation R on the topological space (X, τ ′) is
weakly continuous, we have that for every pair (x, y) ∈ X × X such that
xRSy there exists a continuous increasing function uxy on (X, τ ′, R) such that
uxy(x) < uxy(y). It is not restrictive to assume that uxy takes values in [0, 1].
Define for every pair (x, y) ∈ X ×X such that xRSy

Auxy(x) := u−1
xy ([0,

uxy(x) + uxy(y)

2
[), Buxy(y) := u−1

xy (]
uxy(x) + uxy(y)

2
, 1]).

6



Then the family C := {Auxy(x)×Buxy(y)}(x,y)∈RS
is an open cover of the graph

RS of RS. Since the topology (τ ′ × τ ′)RS induced by the product topology
τ ′×τ ′ on RS is Lindelöf, there exists a countable subfamily C ′ of C which also
covers RS , and therefore there exists a countable family {un}n∈N of continuous
increasing functions on (X, τ ′, R) such that for every (x, y) ∈ X×X with xRSy
there exists some n ∈ N such that un(x) < un(y). Hence, u :=

∑∞
n=0 2−nun is

a continuous utility function on the topological related space (X, τ ′, R). Since
τ ′ is coarser than τ , we have that u is also a continuous utility function on the
topological related space (X, τ, R) and the proof is complete. 2

We recall that from Herden [16] a topology τ on a set X is said to be
useful if every continuous total preorder - on the topological space (X, τ) is
representable by a continuous utility function u : (X, τ, -) −→ (R, τnat,≤)
(see also Herden and Pallack [17]). From Theorem 3.1 we immediately obtain
the following corollary which provides a condition under which a topology is
useful.

Corollary 3.2 A topology τ on a set X is useful provided that the product
topology τ × τ on X ×X is hereditarily Lindelöf (in particular, in case that τ
has a countable net weight).

Remark 3.3 It is clear that Theorem 3.1 implies that whenever the prod-
uct topology τ × τ on X × X is hereditarily Lindelöf then there exists a
continuous utility function u for every weakly continuous binary relation R on
(X, τ) (see the considerations in the introduction). On the other hand, the
condition according to which the product topology τ × τ on X ×X is hered-
itarily Lindelöf is not necessary for the topology τ to be useful. An example
can be constructed in the following way. Consider a Tychonoff space Y (that is
a completely regular Hausdorff space) such that Y × Y is not Lindelöf, for in-
stance the Sorgenfrey line. It is know that Y can be embedded in a Tychonoff
cube X = [0, 1]J and so Y ×Y is homeomorphic to a subspace of X×X. Hence
X × X is not hereditarily Lindelöf. But, since X is compact, every continu-
ous total preorder on X has a maximum and minimum. Therefore applying
Theorem 3 in Monteiro [23] to X, which is pathwise connected, we get that
every continuous total preorder on X is representable by a continuous utility
function.

We say that a topology τ on a set X is strongly useful (see Bosi and Herden
[3]) if every weakly continuous preorder - on the topological space (X, τ) is
representable by a continuous utility function u : (X, τ, -) −→ (R, τnat,≤).
It is clear that a strongly useful topology on a set X is also useful. Further,
we say that a topology τ on a set X is R-strongly useful if every weakly con-
tinuous binary relation R on the topological space (X, τ) admits a continuous
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utility function u : (X, τ, R) −→ (R, τnat,≤). Indeed the two definitions are
equivalent. In fact we can state the following proposition whose proof is based
on Proposition 2.11 in Herden and Pallack [18] (see the introduction).

Proposition 3.4 Let (X, τ) be a topological space. The following condi-
tions are equivalent:

(i) τ is R-strongly useful;

(ii) τ is strongly useful;

(iii) every closed and weakly continuous preorder - on (X, τ) admits a
continuous utility function.

The following corollary of Theorem 3.1 provides a characterization of R-
strongly useful topologies in the metrizable case. The proof is based on the
theorem in Estévez and Hervés [14].

Corollary 3.5 Let τ be a metrizable topology on a set X. Then the follow-
ing conditions are equivalent:

(i) τ is R-strongly useful;

(ii) τ is useful;

(iii) τ is separable.

Denote by ∆(X) the diagonal of a set X (i.e., ∆(X) = {(x, x) : x ∈ X}).
We recall that if (X, τ) is a topological space, then a subset of X is said to be
a Gδ-set if it is a countable intersection of open subsets of X.

Corollary 3.6 Let (X, τ, R) be a linearly ordered topological space and as-
sume that R is continuous. If the product topology τ × τ on X ×X is Lindelöf
and X has a Gδ- diagonal, then R has a continuous utility representation.

Proof. Since R is a linear order then {∆(X),RS,R′
S} is a partition of

X × X. Hence RS ∪ R′
S = (X × X) \ ∆(X) is Lindelöf because it is a

countable union of closed subsets of X ×X. Further, since R is a continuous
linear order on (X, τ), we have that RS (R′

S) is open in X ×X since for every
(x, y) ∈ RS ((x, y) ∈ R′

S) there exists a continuous increasing function uxy

on (X, τ, R) such that uxy(x) < uxy(y) (uxy(x) > uxy(y)) and therefore if we
adopt the notation in the proof of Theorem 3.1 we have that Auxy(x)×Buxy(y)
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is contained in RS (Buxy(x) × Auxy(y) is contained in R′
S). In particular, we

have that RS is a Lindelöf spaces when endowed with the induced topology
τ × τRS , and therefore Theorem 3.1 applies (see in particular the equivalence
of the statements (i) and (v)). 2

Corollary 3.7 Let - be a total preorder on a set X. Then - has a util-
ity representation if and only if the product topology τ- × τ- on X × X is
hereditarily Lindelöf.

Proof. If - is a total preorder on a set X and there exists a utility
representation for -, then the order topology τ- on X is second countable
(see e.g. Proposition 1.6.11 and Corollary 1.6.14 in Bridges and Mehta [6])
and therefore it is clear that the product topology τ- × τ- on X × X is
hereditarily Lindelöf. The converse is an immediate consequence of Theorem
3.1 (see in particular the equivalence of the statements (i) and (iv)) since it is
clear that - is (weakly) continuous on (X, τ-). 2

Remark 3.8 Using the proof of Corollary 3.7 we may immediately conclude
that if (X, -) is a linearly preordered set, then the following equivalence holds:

τ- × τ- is hereditarily Lindelöf ⇔ τ- is second countable.

From Theorem 3.1 we can also immediately deduce the following proposi-
tion (see in particular the equivalence of the statements (i) and (iii)) which
generalizes the classical Debreu continuous utility representation theorem.

Proposition 3.9 Let (X, τ) be a topological space with nw(X, τ) = ℵ0 and
let R be a weakly continuous binary relation defined on (X, τ). Then R has a
continuous utility representation.

The following corollary is an immediate consequence of Proposition 3.9.

Corollary 3.10 Let (X, τ) be a countable topological space and let R be a
weakly continuous binary relation defined on (X, τ). Then R has a continuous
utility representation. 2

Remark 3.11 We may observe that since there exist countable spaces
which are not second countable, Corollary 3.10 is not a consequence of Theo-
rem 2.15 in Herden and Pallack [18]. 2

In order to present further implications of Theorem 3.1, let us now recall
some definitions. A topological space (X, τ) is said to be submetrizable if
there is a metric topology τ ′ on X which is coarser than τ . Moreover, (X, τ) is
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hemicompact if there is a countable family {Kn} of compact subsets of X such
that every compact subset of X is contained in some Kn. Of course, every
hemicompact space is a countable union of compact sets, that is every hemi-
compact space is σ -compact. Finally, X is a k-space if a subset A ⊂ X is open
if and only if A ∩K is open in K for every compact subset K of X. Theorem
2.15 in Herden and Pallack [18] generalizes the well known Levin’s Theorem
(see Levin [19]) which states that every closed preorder defined on a second
countable locally compact topological space is representable by a continuous
utility function. Caterino, Ceppitelli, Maccarino [7] extended Levin’s Theorem
to submetrizable hemicompact k-spaces. These spaces are, in general, neither
locally compact nor second countable. Therefore, Theorem 2.15 in Herden and
Pallack [18] cannot be applied in this case.

Proposition 3.12 Let (X, τ) be a submetrizable, σ -compact space and let
R be a weakly continuous binary relation defined on (X, τ). Then R has a
continuous utility representation.

Proof. Since compact topologies are minimal among T2 topologies, every
compact submetrizable space is metrizable, hence second countable. By σ-
compactness, we have that X = ∪nKn with Kn compact, for every n ∈ N.
Let Bn be a countable base for Kn. Then it is easily seen that N = ∪nBn is a
countable network for (X, τ). Hence, the thesis follows from Proposition 3.9.
2

Remark 3.13 We recall that every submetrizable σ -compact space is sep-
arable. The weaker assumptions of submetrizability and separability are not
sufficient to guarantee the existence of a continuous utility representation for
every continuous linear preorder. As an example of this fact, consider the Sor-
genfrey line (R, τ) (see Remark 3.3).
Let - be the preorder on R defined by:

x - y ⇔


| x |>| y | or (| x |=| y | and x < 0) or x = y ∀x, y ∈]− 1, 1]

or
x ∈]−∞,−1]∪]1, +∞[ and y ∈ R

.

Then it is not hard to show that - is a continuous linear preorder on
R. Further - has uncountably many jumps (i.e., uncountably many pairs
(x, y) ∈ R× R such that x ≺ y and for no z ∈ R it happens that x ≺ z ≺ y).
Indeed, (−a, a) is a jump for every 0 < a < 1. Hence we may conclude that
- cannot be representable by a (continuous) utility function. This preorder
could be also constructed by means of a chain of open and closed subsets of R
(see Bosi and Herden [3]).
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The following proposition generalizes Proposition 2.12 in Herden and Pal-
lack [18], who showed that every closed preorder - on a topological space (X, τ)
is weakly continuous provided that (X, τ) is either a compact (Hausdorff-)space
or a locally compact second countable (Hausdorff-)space. Indeed, if (X, τ)
is either a compact (Hausdorff-)space or a locally compact second countable
(Hausdorff-)space then (X, τ) is a hemicompact k-space.

Proposition 3.14 Let (X, τ) be a hemicompact k-space and let - be a
closed preorder on (X, τ). Then - is weakly continuous.

Proof. Assume that X = ∪nKn with Kn compact and Kn ⊂ Kn+1 for
every n ∈ N. Consider any two elements x, y ∈ X with x ≺ y. Then the set
F = {x, y} is contained in Kn for some integer n. The function f : F → IR
defined by f(x) = 0, f(y) = 1 can be extended to a continuous increasing
function on all of Kn (see from Levin [19, Lemma 2]). Since X is a k-space,
by using a recursive process, we obtain an extension of the function f on all
of X which is increasing and continuous. 2

Finally, from Proposition 3.12 and from the above Proposition 3.14 we
immediately obtain the following result which was already proved by Caterino,
Ceppitelli and Maccarino [7, Theorem 3] by using a different technique.

Proposition 3.15 Let (X, τ) be a submetrizable, hemicompact k-space and
let - be a closed preorder on (X, τ). Then - has a continuous utility repre-
sentation.
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