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A CASE FOR AFFIRMATIVE ACTION
IN COMPETITION POLICY

BERTRAND VILLENEUVE AND VANESSA YANHUA ZHANG

Abstract. We analyze the trade-off faced by competition author-
ities envisaging a one-shot structural reform in a capitalistic indus-
try. A structure is (1) a sharing of productive capital at some time
and (2) a sharing of sites or any other non-reproducible assets.
The latter represent opportunities. These two distinct dimensions
of policy illustrate the importance of a dynamic theory in which
firms may differ in several respects. Though equalization of endow-
ments and rights is theoretically optimal, realistic constraints force
competition authorities to adopt second-best solutions. Affirma-
tive action here appears to explain why helping the disadvantaged
contributes maximally to social surplus.
Keywords. Competition policy, capacity accumulation, Cournot
competition, asymmetric duopoly, regulatory consistency, differen-
tial games.
JEL Classification: C73, L13, L40.

1. Introduction

Restructuring a capital-intensive industry where some incumbent
dominates the market is a hard task for competition authorities and
regulators. It may not be a reliable option to open the market and let
time pass. First, capital may be so long-lived that the incumbent will
influence prices for a long time. Second, the incumbent may retain the
best sites and know-how, which leaves the incumbent with a permanent
superiority vis-à-vis the entrants. These issues are especially pertinent
for merger remedies or regulatory reforms in electricity, telecommunica-
tion and other spectrum-based industries where investment is durable
and capacity expansion is constrained.
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2 B. VILLENEUVE AND V.Y. ZHANG

Assume that a competition authority has to decide merger remedies
such as asset transfer from the newly dominant firm to its competitors.
Or assume that a regulator has to ignite competition by transferring
assets from an incumbent to an entrant. Theoretically, creating a sym-
metric oligopoly by splitting the total installed capacity into several
identical lots is sensible in both cases. However, such radical moves ex-
ceed the routine of competition policy and they are rarely employed.1

Obvious reasons are that, for efficiency purposes, firms have to keep a
degree of geographic or technological integrity.

A complete evaluation of reforms or remedies requires a dynamic
theory of the full consequence of reorganizing an industry under certain
constraints. In this paper, a firm is characterized by initial capacity (i.e.
productive forces at divestiture date 0) and opportunities (i.e. quality of
sites and technologies that the firm inherits). Opportunities, modeled
as investment costs, summarize conditions under which the firm will
operate and develop.

If firms have the same technologies, investment costs are normally
the same for all. In practice, performance depends on location and
availability of inputs other than capital, labor or energy. In the case of
power generation, regions differ considerably in the comparative and
absolute advantages of wind farms, dams or nuclear plants. The differ-
ence between nominal and actual power is particularly clear for wind
farms: with identical turbines (nominal capacity), the intensity and
variability of wind power directly determine production (actual capac-
ity). History and geography may have established asymmetric posi-
tioning of firms among available sites. Typically, one firm is a former
monopoly and the other a start-up, the structure of the industry has
been deeply marked by political interference, or two regions have been
interconnected and opened to trade after a long period of isolation.
Moreover, in the markets that have been competitive for a long time,
the firms’ past race to sites may have resulted in clearly differentiated
outcomes.

These historical processes, interesting as they may be, are not the
focus of this study. Instead, we take their consequences (here different
investment costs) as initial conditions for structural reforms. Autho-
rizing investments, reshuffling assets, or splitting dominant firms are

1For example, physical divestiture in the electric sector is an appealing solution
that has been implemented quite rarely.
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especially relevant for mature industries like the energy sector. In this
sense, costs and opportunities are controls for the competition author-
ity or the regulator. This paper will discuss the type of constraints
under which these controls can be used.

Restructuring an industry poses numerous challenges. Two practical
limitations may be encountered. The first comes from technological
criteria. Due to economies of scale in technical expertise, production
planning and management, it may be proposed to set up technologi-
cally uniform firms. For example, restructuring could result in one firm
specialized in nuclear plants, a second in gas-fired turbines, a third in
dams, and a fourth in windmills. Other groupings are also possible:
green versus dirty, thermal versus non-thermal, etc. The second limi-
tations comes from geographic criteria. It may be reasonable to have
the plants of a particular firm close to each other. On the contrary,
it may be preferred that each firm should be present in each region.
In the case of the electricity industry, it is important to decide where
the boundaries between regions or sub-regions should be drawn in that
interaction between firms via electric grid depends on location. There-
fore, when the competition authority or the regulator decides that N

firms should be established, the key issue is the attribution of various
existing technologies or locations to firms.

The diversity of available policies calls for an abstract version of the
trade-off faced by competition authorities or regulators. The literature
connected to our question either uses rich static models to address com-
petition policy issues, or sets up complete dynamic descriptive theories.
We propose an approach which links these two domains and further
explore the dynamic effect of restructuring an industry in competition
policy.

In merger control and competition policy, symmetry versus asymme-
try is an on-going debate among competition authorities and scholars.
Perry and Porter (1985) consider a model of asymmetric competition
among sellers with increasing marginal costs that depend on firms’ pro-
ductive capacity. When capacity is tied to physical assets and when
there is a fixed amount of such assets available to the sellers in the
market, the competitors’ ability to increase output in response to ris-
ing prices is limited. Asymmetry in the initial distribution of the pro-
ductive capacity among the sellers can reinforce this effect, making it
particularly attractive for two relatively large sellers to merge. Farrell
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and Shapiro (1990a,b) also permit firms to differ in their costs. They
find that with no synergies the market price will go up post merger,
even if one firm is highly inefficient and gets to use the more efficient
firm’s technology. McAfee and Williams (1992) study mergers between
firms with asymmetric but constant average costs. They find that
mergers increasing the size of the largest firm will reduce welfare.

Motta et al. (2007) raise questions on the recent symmetric settle-
ments of merger remedy in Europe and claim that they increase the
potential for tacit collusion and joint dominance. Compte et al. (2002)
also cast some doubt on standard merger remedies, which favor di-
vesting some capacity of the merged firm and transferring it to other
competitors in order to maintain a reasonable amount of symmetry be-
tween competitors. The argument is made through a repeated Bertrand
game. It confirms that introduction of asymmetric capacities makes
tacit collusion more difficult to sustain when the aggregate capacity is
limited, which may benefit competition.

In fact, repeated games are not suitable for capital-intensive indus-
tries. In these industries, building capacity takes time and thus pro-
duction flexibility is narrow; moreover, depreciation of capital being
slow, firms see their capacities as fixed temporarily, thus limiting their
ability to commit to a punishment scheme (which involves increased
production).

Besides the static and the repeated games, theories of the dynamics
of industries have been well developed. Most of them are descriptive
in that they try to retrieve empirical facts like durable asymmetries
or to explore the role of preemption. Ingredients may vary as they
may concern economies of scale, indivisibilities, idiosyncratic shocks or
learning curves.

Tombak (2006) studies asymmetry as a strategic choice by firms and
extends Fudenberg’s and Tirole’s (1984) classic results using the Boe-
ing vs. Airbus case. Besanko and Doraszelski (2004) find, in a model
with lumpy investment and idiosyncratic shocks, that asymmetry may
tend to persist under certain conditions and symmetry is a rare and
temporary coincidence in an ever-moving economy. Koulovatianos and
Mirman (2004) find that when large firms have a cost advantage due
to their size, asymmetry leads to a decline in the supply of all firms,
which suggests that cost advantage is an important aspect to the role of
asymmetry in oligopolistic markets. Chen (2008) investigates the price
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and welfare effects of mergers through simulations of capacity accumu-
lation. He finds that asymmetric costs may lead to asymmetric sizes
post merger even though firms are ex ante identical. Ishii and Yan
(2007) use an empirical dynamic model to study the “make or buy”
decision faced by independent power producers (IPP) in restructured
U.S. wholesale electricity markets. Asymmetry in plant characteristics
between divested and new assets leads to the difference in expected
profit between the two assets. They find that divestiture has encour-
aged new IPP participation and has not crowded out a large amount
of new generation capacity in the long run.

In this paper we produce a simple and workable model in which poli-
cies can be evaluated analytically. The industry dynamic models that
inspire us are in Reynolds (1987) and Hanig (1986). Differential games
are practical to analyze the accumulation of productive capacity in an
imperfectly competitive market. As capacity accumulation takes time,
initial capacities and investment cost are the crucial factors of differ-
entiation between firms. These are the channels that the competitive
authorities or the regulators use to improve market performance.

We introduce affirmative action which captures the best response to
various constraints faced by competition authorities and regulators: if
for some reasons, full-symmetrization of initial capacities and oppor-
tunities is impossible, compensation has to be implemented. The firm
that receives lesser opportunities should receive more initial capacity
and the other way around. These two dimensions of policy, and the
way they can compensate each other, illustrate the importance of hav-
ing and using a dynamic theory in which firms may differ in several
respects. Affirmative action appears to explain why helping the disad-
vantaged firms maximizes social surplus.

Our paper is organized as follows. In Section 2, we set up the model
and present the key assumptions on the constraints faced by the policy-
maker. In Section 3, we solve the model and establish the general
features of the investment trajectories. Section 4 describes the trajec-
tories, in particular their dependency on the choice of the policy-maker.
Section 5 provides the comparative statics of the steady state. Section
6 shows the importance of affirmative action. Section 7 discusses the
robustness of the results with respect to synergies. Section 8 gives a
series of extensions. A conclusion follows.
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2. The model

2.1. Capacity and market for final product. The game is played
in continuous time with an unbounded horizon; in the following game,
t is a date in R+. There are two firms serving the market, i denotes
an arbitrary firm while j denotes the other. Capacity is the maximum
a firm can produce at a given date t. Capacity accumulation by firm i

follows

(1)
•
ki ≡

dki(t)

dt
= Ii(t)− δiki(t),

where Ii(t) and ki(t) are, respectively, firm i’s investment and capacity
at date t, and δi is a constant depreciation rate.

The instantaneous cost of investment is quadratic

(2) Ci(Ii) = γ0
i + γiIi +

I2
i

2θi

,

with γ0
i , γi and θi non-negative reals.2 A fundamental difference be-

tween our model and Reynolds’ (1987) or Cellini’s and Lambertini’s
(2003) is that, in our case, the two firms may have different technolo-
gies, namely, different investment costs and depreciation rates. The
product is homogeneous and firm i’s marginal production cost is con-
stant and equal to ci. The global constraint of the industry is an
important modeling choice: we expose in Subsection 2.2 how we model
the joint condition on Ci(·) and Cj(·).

The inverse demand function is linear. Thus denoting qi(t) the quan-
tity sold by firm i at time t, the price is

(3) P (t) = A− qi(t)− qj(t).

Firm i’s production qi(t) is a proportion αi(t) of its capacity ki(t), with
αi(t) ∈ [0, 1]; thus qi(t) = αi(t)ki(t).

As firm i’s instantaneous profit is

(4) πi(t) = (P (t)− ci)qi(t)− Ci(Ii(t)),

firm i’s objective is to maximize the present value of its profit flow

(5)
∫ ∞

0

πi(t)e
−ρitdt,

2Hanig (1986) defines a quadratic adjustment cost which depends on the net
investment Ii(t) − δiki(t); the advantage and the limitation are that investment
cost is null in the stationary state. Fudenberg and Tirole (1983), in a model based
on Spence (1979), assume no depreciation.
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where ρi is firm i’s discount rate. The control variables are the instan-
taneous investment rate Ii(·) and the rate of capacity utilization αi(·);
accumulation equation (1) and firm j’s strategy are the constraints.

2.2. Sites and investment costs. We propose a simple theory of
Ω, the feasibility constraint faced by the competition authority or the
regulator in the allocation of costs. Let’s focus on the trade-off between
Ci(·) and Cj(·). Clearly, sensible comparative statics has to be made
along certain efficiency frontier, i.e. where Ci(·) cannot be decreased
without increasing Cj(·). Our ideas are close in inspiration to those
expressed in Perry and Porter (1985) or Farrell and Shapiro (1990a,b)
for the analysis of mergers. However, the substantial difference is that,
in our model, restructuring of an industry impacts investment rather
than production costs. Our focus on investment costs only is motivated
by its direct relevance for the industry dynamics.

Assume that there is a continuum of sites parameterized by θ ∈ [θ, θ].
The investment cost attached to site θ is γ(θ)z + z2

2θ
where z is the site

specific rate of investment and γ(·) is a positive function. Firm i can
be described by the sites it owns. Ownership is summarized by ωi(θ),
the mass of θ-sites that firm i owns out of an exogenous total h(θ),
with ωi(θ) + ωj(θ) = h(θ). When it invests a total Ii, firm i optimally
spreads its capacity augmentation across the sites it owns, which yields
the aggregate Ci(Ii). We find the expression of costs already given
above (see equation 2):

Given that γi is the average γ(θ) (weighted by wi(θ) · θ) and that θi

is the weighted (by wi(θ)) sum of θ, we have the overall constraints:

θi + θj = Θ,(6)

θiγi + θjγj = Γ,(7)

where Θ and Γ are economy-wide (i.e. independent of site sharing be-
tween firms) investment costs. All calculations and exact expressions
are in Appendix A.1.

2.3. The competition authority’s problem. The competition au-
thority has to evaluate policies by taking into account their full con-
sequences, summarized by capital trajectories (ki(t), kj(t))t≥0. We will
first determine these trajectories by solving the game and then calcu-
late the present profits, the present consumer surplus and the present
social surplus.
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θi

Monopoly i

Monopoly j

Affirmative action

ki(0)/K(0)

Affirmative action

Symmetry

Biggest gets more

Biggest gets more

kj(0)/K(0)

θj

Figure 1. A kind of Edgeworth box.

The constraint on capacity at reform date 0 is

(8) ki(0) + kj(0) = K(0),

where K(0) is total initial capacity. To simplify policy analysis, we shall
assume at the evaluation stage that sites differ only with respect to the
quadratic part (γ(·) is then a constant function). The two constraints
on costs (6) and (7) boil down to (6):

A policy is summarized by (ki(0), kj(0), θi, θj), a choice of initial ca-
pacities and perspectives for the two firms under the two constraints
(8) and (6). Some of our results will be illustrated with the Edgeworth
boxes in Figure 1, where each point represents a policy. Two regions
represent the policies that compensate an advantaged firm in one di-
mension by a disadvantage in the other (affirmative action), and vice
versa. The other two regions are giving advantages to one firm in both
dimensions. We shall see that affirmative action is generally preferable.

3. The Cournot-Nash equilibrium

3.1. The equilibrium. The existing literature on differential games
focusses on two types of strategies: open-loop and closed-loop strate-
gies.3 Both types can form a Nash equilibrium. In the open-loop
equilibrium, strategies are just functions of time; they are time con-
sistent inasmuch as the opponent doesn’t deviate. In the closed-loop

3See Dockner et al. (2000) for a complete survey.
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equilibrium, one player defines actions that depend on what the other
has done and the equilibrium is sub-game perfect.

We explore the open-loop solution in the study for three reasons.
First, the solution is unique and analytically tractable. This is ex-
tremely convenient for pursuing the comparative statics that the com-
petition authorities need to decide on policy. In contrast, due to the
multiple solutions of the nonlinear characteristic equations, the calcu-
lation of the closed-loop equilibrium requires a selection that seems
resistant to algorithmic treatment.4 Second, far from being an inferior
concept, the open-loop equilibrium represents specific assumptions on
players’ information (Dockner et al., 2000, chapter 4). For example,
the other’s position may be imperfectly observed, e.g. with delay or
noise; also, if investment has to be programmed in advance, reaction
to the opponent’s decisions may not be immediate and sharp. Since
delayed state variables are hard to handle, the open-loop equilibrium
may be a reasonable approximation.5 Third, open-loop strategies cap-
ture well the ability to commit on the part of investors. Playing strong
is known to be an individually beneficial strategy; it can become a mu-
tually beneficial one if it limits temptation to play a preemption war
(a dynamic version of the prisoner’s dilemma).6 Whether a firm plays
strong is a modeling choice that can be discussed rather than a logical
necessity.

3.2. General solution. The law of motion followed by firm i’s invest-
ment is

(9) (ρi + δi)Ii −
•
I i + (2αiki + αjkj)αiθi = ((A− ci)αi − (ρi + δi)γi)θi.

See proof in Appendix A.2.
In the Cournot game of the two-period setting of Kreps and Scheink-

man (1983) or the differential game in Dockner (1992), full utilization of
capacity is assumed. In contrast, firms in our model can choose to leave
a fraction of their capacities idle. For example, if a firm inherits huge

4Reynolds’ (1987) ingenious resolution of the fully symmetric case is evocative
of the difficulty one faces with the closed-loop equilibrium in our more general case.

5It may be felt that the open-loop equilibrium is inadequate for representing re-
action to unexpected shocks. However, the closed-loop equilibrium doesn’t address
this problem (it is designed as a theory of reaction to voluntary deviations by the
competitor, which is a totally different issue).

6Reynolds (1987) shows that the closed-loop equilibrium is more competitive—
less profitable—than the open-loop equilibrium for that reason.



10 B. VILLENEUVE AND V.Y. ZHANG

capacity in a small market (e.g. due to permanent reduction of demand
caused by the introduction of a substitute), withholding capacity makes
sense. The method we follow is simple. We characterize in detail
trajectories along which firms fully utilize their capacities. We check
equilibrium conditions ex post and show the clear practical relevance
of the full utilization scenario (see also Section 4).

Using accumulation equation (1), we eliminate investments to sim-
plify (9) as

(10)
••
k i+δi

•
ki−(2θi + (ρi + δi)δi) ki−θikj +(A−ci−(ρi+δi)γi)θi = 0.

We show in Appendix A.3 that capacities, as functions of time, have
the form

(11) ki(t) = k∗i + k
(1)
i eλ1t + k

(2)
i eλ2t,

where λ1 and λ2 are two strictly negative reals.7 We also provide re-
strictions on the other parameters. The practical consequence is that
once initial capacities ki(0) and kj(0) and investment costs θi and θj

are chosen or known, trajectories are in fact fully determined.

3.3. Simplification. The capacity trajectories are entirely solvable
with asymmetric costs. Calculation of the surpluses, which is on the
basis of any policy evaluation, require a few simplifications:

(1) Perfect capital markets: Firms have the same interest rate ρ.
(2) Homogenous capital: Firms have the same depreciation rate δ.
(3) γi(·) = Constant. The only constraint on costs is θi + θj = Θ.8

(4) Identical production cost (ci = cj = c).

Moreover, we will denote

(12) A ≡ A− c− (ρ + δ)γ.

With these simplifications, λ1 and λ2 can be calculated explicitly:

λ1 = − δ
2
− 1

2

√
5δ2 + 4

(
δρ + θi + θj +

√
θ2

i + θ2
j − θiθj

)
,(13)

λ2 = − δ
2
− 1

2

√
5δ2 + 4

(
δρ + θi + θj −

√
θ2

i + θ2
j − θiθj

)
.(14)

7They are the negative eigenvalues of the matrix characterizing the dynamics of
the system.

8See Subsection 2.3.
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Note that λ1 < λ2 < 0. These explicit expressions simplify the char-
acterization of the trajectories. Convergence speeds only depends on
opportunities, not on the sharing of capacities.

4. Dynamics

The case illustrated in Figure 2 will deliver the essential message. If
θi = θj, the picture is symmetric with respect to the 45◦ line. E is the
steady state. Trajectories combine two movements:

(1) the fastest, parallel growth, associated with λ1. Trajectories
follow the 45◦ line: AE arrives from below, CE arrives from
above.

(2) the slowest, difference reduction, associated with λ2. Trajecto-
ries follow FE and F ′E, along which total capacity is constant.

At each instant, capital is predetermined but production decisions
are controlled by utilization rates and are thus very flexible. An under-
standing of the instantaneous Cournot game (in which only demand
and the linear production costs are considered) suffices to calculate αi

and αj. More precisely in Figure 2, CD supports player i’s Cournot re-
action function ki = 1

2
(A−c−kj), and BC supports player j’s Cournot

reaction function kj = 1
2
(A − c − ki). Thus the quadrilateral ABCD

is the region in the plane (ki, kj) in which players are constrained by
their actual capacities; necessarily, αi = αj = 1.

The steady state E is in the interior of ABCD, meaning that capac-
ity is fully employed when the economy converges.9 Finding a large and
realistic set of initial conditions such that capacity is fully utilized all
along the accumulation path is now straightforward. It suffices to look
at the trajectories that converge to the steady states, follow them back-
wards, and eliminate their portions outside the full-utilization region
ABCD. We propose a simple (though not maximal) “safety zone” in
which assuming full-utilization all along the trajectories is consistent:
AGFCF ′G′ in Figure 2.10

In view of this, we can now state:

9In the steady state, it is immediate to check that the left hand side of (36) is
strictly positive, thus we conclude that µi > 0, i.e. αi = 1.

10If a trajectory starts somewhere in the shaded area AGFCF ′G′, then it stays
therein. This safety zone is bounded by the axes, the Cournot best responses (BC
and CD) and edges GF and F ′G′ that are parallel to the 45◦ line.
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Safe zone

C Short run Cournot

E Long run equilibrium

F

F’

ki

kj

B

A
D

C

E
G

G’

Figure 2. Trajectories.

Proposition 1 (Relevance of full-utilization scenarios). In any equili-
brium, capacities become fully-utilized and remain so as the long-run is
sufficiently approached.

Along all trajectories except the 45◦ line, one capacity is monotonic
whereas the other peaks and then decreases. This is a consequence of
the different speeds of the two pure movements described above. In this
sense, we have an overshooting effect for at least one of the firms.11,12

Overshooting here can be interpreted as a form of transitory preemp-
tion. The intuition is that building capacity takes time, thus the firm
starting with large capacity is able to take advantage of its advance and
to play a temporary monopoly strategy; indeed, having more capacity
is akin to moving first, i.e. preempting the market. This temptation
vanishes as the small firm catches up: in the long run, maintaining the
advance is too costly since it would suppose sustaining a higher rate of
investment (higher marginal cost) for the same marginal revenue.

As effects are continuous with respect to cost allocation, generaliza-
tion to θi 6= θj is direct. One movement could be labeled approximate
parallel growth, and the other approximate difference reduction, where
one capacity-unit less for one firm corresponds to about one capacity-
unit more to the other firm. Overshooting for one of the firms is also
typical. Overshooting of total capacity now becomes prevailing on one

11Strictly speaking, if a firm starts big and close to the steady state, we may
observe the contraction of capacity only for this firm.

12This confirms Hanig’s (1986) simulations.
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side of the approximate parallel growth trajectory; on the other side,
total capacity simply grows.

5. The long run

In the steady state k∗i = I∗i /δ. Thus we find

(15) k∗i =

�
1+

(ρ+δ)δ
θj

�
�

2+
(ρ+δ)δ

θi

��
2+

(ρ+δ)δ
θj

�
−1
· A.

A higher θi decreases the cost of sustaining any level of capital. Con-
sistently, the equilibrium capacity of firm i is increasing with respect
to θi and increasing with respect to θj. Note that when θi is close to
an extreme point (0 or Θ), the economy behaves as if the market were
monopolized.

Proposition 2. The steady state profit π∗
i is such that

(16)
∂π∗

i

∂θi

> 0 and
∂π∗

i

∂θj

< 0.

Proof. See Appendix A.4. �

Each firm’s steady state profit decreases in its own instantaneous
investment cost, but increases in its rival’s instantaneous investment
cost. When we take the constraint on the allocation of sites into ac-
count, these two effects draw in the same direction, thus

(17)
dπ∗

i

dθi

∣∣∣∣
θi+θj=Θ

> 0 and
dπ∗

i

dθj

∣∣∣∣
θi+θj=Θ

< 0.

Proposition 3. Equalizing investment costs

(1) maximizes the long run total capacity, and thus the consumer
surplus, and

(2) maximizes the total surplus.

Proof. See Appendix A.5. �

The second point is not a consequence of the first, since the propo-
sition says nothing of profits. In fact, profits are maximized when one
firm collects all sites and monopolizes development and sales. So when
a regulator has to assign sites to firms, full symmetry of capacities and
opportunities gives the most propitious conditions for competition in
the long run.

The intuition for these results is very similar to that of static Cournot
models.
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6. Affirmative action

How should competition authorities or regulators approach the long
run optimum? Firms could be given equal numbers of plants of various
types of technologies; in theory, there is considerable flexibility in the
way sites can be reallocated to yield similarly performing firms if the
only constraint were θi + θj = Θ and ki(0)+kj(0) = K(0). In practice,
however, the flexibility in the grouping of plants or technologies may
be limited: the competition authority may follow a geographical or
technological logic when it comes to redefining the two firms; more
importantly, sites cannot be reshuffled without reshuffling assets.

The former argument says that, presumably, there are constraints on
the policies that can be chosen in effect in the Edgeworth box (see Sub-
section 2.3). Whether the fully symmetric allocation of plants is fea-
sible is a matter of circumstances. We examine now the consequences
of these restrictions for policy. We start with descriptive comparative
statics and we continue with normative assessments.

The first approach to the dynamics is to draw “half-lives”, which is
the time needed to cover half the distance between the current state
and the steady state. As there are two combined processes, we have
half-lives T1 and T2 with

(18) T1 = − log[2]/λ1 < T2 = − log[2]/λ2.

Proposition 4 (Redistributing opportunities). More asymmetric op-
portunities foster capacity growth (T1 decreases) and cause longer dura-
bility of initial differences in capacities (T2 increases).

Proof. See Appendix A.6. �

We fix parameters at plausible values.

Table 1: Parameters
Demand A = 1
Production cost c = 0
Investment cost Θ = 1/10 with θi + θj = Θ
Rates δ = .05 ρ = .08
Capacity K(0) = 1/2 with ki(0) + kj(0) = K(0)

Figure 3 shows how T1 and T2 vary with θi. We see that T1 (growth)
is relatively insensitive to the sharing of opportunities. On the contrary,
T2 (difference reduction) becomes relatively high with unequal sharings:
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half-life towards the steady state takes as much as 6 years when a firm
is given essentially all sites.

0.02 0.04 0.06 0.08 0.1
t

1

2

3

4

5

6

Half-life in years

θi

Θ/2

T2

T1

Figure 3. Half-lives.

Note also that a faster depreciation (higher δ) accelerates conver-
gence along the two dimensions. Intuitively, since investment is less
durable, the current state is less durably affected by the past, which
means that long-term values can be attained quickly. In addition, the
steady state capacities decrease as δ increases; thus an economy starting
with no capacity will always approach its long run equilibrium faster if
δ is higher (less distance to be covered and higher speed).

These descriptive results depict the behavior of the economy in a
useful way. However, competition authorities need firmer normative
guidance. To look more precisely at the impact of asymmetry on con-
sumer welfare, a natural (and simple) angle is to look at total capacity
over time, which represents total consumption. We start with the im-
pact of the initial conditions.

Proposition 5 (Redistributing initial capacity). Fix θi and θj. With-
out loss of generality, assume that θi ≥ θj (Firm i has the least costs).

Denote total capacity as K(t) ≡ ki(t)+kj(t). Fix total initial capacity
K(0). ki(0) is the portion allocated to Firm i, while K(0)− kj(0) goes
to Firm j.

(1) Total capacity at date 0 and in the long run are independent of
initial sharing.

(2) Total capacity K(t) increases more slowly at date 0 for higher
ki(0).
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(3) Total capacity K(t) at any date t > 0 is smaller for higher ki(0).

Proof. See Appendix A.7. �

The proposition provides a strong result: initial conditions determine
uniform ranking of capacity over time. We can directly conclude the
impact on consumer’s welfare without further calculations: consumers
prefer that less efficient firms be compensated by better opportunities.
The result is even stronger: consumers would prefer maximal compen-
sation, i.e. giving all the capacities to the less efficient firm. See Figure
4(a). A corollary is that if costs are symmetric (θi = θj), total capac-
ity as a function of time is independent of the initial allocation of the
existing capacity.

The intuition is that longer survival of the inefficient firm constrains
the efficient firm for a longer time. The efficient firm has to accommo-
date its non-trivial rival in production while preparing, with smooth
investment, its future dominance. Though the initial conditions on
capital vanishes in the long run, the transition is so important for con-
sumers that they want such extreme remedies if exact symmetry is not
possible.

The appreciation by firms is of course very different, as we illustrate
in Figure 4(b). Firms collectively prefer monopolies. Low contours
have not been traced for legibility.
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(a) Present consumer surplus. (b) Present total profit.

Figure 4. Synthesis.

The symmetric initial allocation θi = θj = Θ/2 and ki(0) = kj(0) =

K(0)/2 is a singular point. Indeed, all firms are symmetric in cost
parameters and initial capacities; thus in the Edgeworth box, social
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welfare (or consumers’ surplus or total profit) exhibits a central sym-
metry. It is less clear why it should be a maximum, a minimum or a
saddle-point. In fact, all possibilities are open.

Figure 5 shows the contours of the present value of total surplus in
the Edgeworth box.13 We retrieve numerically the maximum for the
fully symmetric situation. The stretched shape illustrates that con-
straints on ki(0) (respectively θi) have to be compensated by distortion
on θi (respectively on ki(0)).14 Indeed, the firm with lesser investment
opportunities has to be compensated with more initial capacity if the
competition authority or the regulator seeks maximum efficiency.
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Figure 5. Present total surplus.

7. Synergies

The constraint on site allocation θi + θj = Θ is without synergies.
We could assume instead that grouping sites is efficiency enhancing or
degrading. A simple formulation is

(19) θi + θj +
aθiθj

Θ
= Θ with a ∈ (−∞, 1).

Positive a means that concentration degrades the economy’s invest-
ment potential, thus reinforcing the interest of promoting two equal
firms. Negative a means that there are synergies: θi + θj is maximal
for a monopoly. This may lead the competition authority to prefer

13Note that the function can be calculated exactly with Mathematica, but its
full expression takes several pages.

14The sign of the off-diagonal terms of the Hessian matrix informs on how con-
tours are stretched.
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to asymmetric structure. We study this case now using parameters in
Table 2.

Table 2: Parameters
Demand A = 1
Production cost c = 0
Investment cost Θ = 1/100 with θi + θj + aθiθj

Θ = Θ
Synergy parameter a < 0
Rates δ = .05 ρ = .08
Capacity K(0) = .17 with ki(0) + kj(0) = K(0)

The contours of the long-run total present surplus in Figure 6(a) have
the control variable θi − θj on the horizontal axis and the exogenous
synergy parameter a on the vertical axis. For a below −3.5, the optimal
structure in the long run is the monopoly. Above −3.5, symmetric
duopoly is optimal.

To show in this context the importance of transition, we took a =

−.5. Though in this case symmetry is preferred in the long-run, the
value of a implies that splitting sites into two equal lots decreases θi+θj

by about 10% compared to the maximum. In Figure 6(b), we traced
the contours of the total present surplus with K(0) = .17 as in Table
2. Low contours have not been traced for legibility. We see two max-
ima involving both an asymmetric structure of the industry (they are
equivalent by permutation). They represent the optimal social trade-
off between concentrating sites for investment efficiency (due to a < 0)
and balancing market power by avoiding the establishment of a mo-
nopoly. This is the affirmative effect again: a disadvantaged firm in
one dimension is compensated in the other. This is entirely due to
the dynamics, since the optimum policy here differs from the long-run
optimal choice.

8. Extensions

Extension 1. Some new sites may be discovered; others may be ex-
hausted or degraded. The impact on the parameters could be a change
of Θ. Assume that we expand Θ keeping θi = θj = Θ/2; we take
γ = c = 0 to shorten expressions. The steady state flow of profit is
then

(20) π∗
sym(Θ) = Θ(Θ+(2ρ+δ)δ)

(3Θ+2(ρ+δ)δ)2
· A2.
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Figure 6. Total surplus with synergies.

We find
∂π∗

sym(Θ)

∂Θ
=

δ(2δ3+6δ2ρ+δ(Θ+4ρ2)−2Θρ)
(3θ+2(ρ+δ)δ)3

· A2 Q 0,(21)

∂π∗
sym(Θ)

∂δ
= −2Θ(2δ3+6δ2ρ+δ(Θ+2ρ2)−Θρ)

(3Θ+2(ρ+δ)δ)3
· A2 Q 0.(22)

To simplify the discussion, let’s assume that Θ is “large”.
The sign of ∂π∗

sym(Θ)

∂Θ
is given approximately by δ − 2ρ. Very patient

(impatient) players gain (lose) if their investment costs decrease: they
see (they don’t see) the durable impact of investment on profits and
thus tend (not) to restrict themselves.

The sign of ∂π∗
sym(Θ)

∂δ
is given approximately ρ−δ. Very patient players

suffer more from higher depreciation rate, which is the intuitive result
(investment cost raises and commitment through investment regresses).
For very impatient players, a higher depreciation rate is beneficial as
it diminishes equilibrium capacities, a discipline they are not able to
impose on themselves. They benefit from a higher depreciation rate
mostly because they are discouraged from investing (direct effect).

This comparative statics shows that patient players react less aggres-
sively to cost reductions: they prefer to benefit from cheaper capital
which reduces their bill, rather than increase capacity by too much,
which would undermine profitability. In contrast, impatient players
can’t resist the temptation to grow. In both comparisons above, they
may benefit from higher costs.
Extension 2. A has been treated up to now as a constant. In fact, it can
be replaced by A(t), an arbitrary function of time without changing the
algebra. More precisely, in the expressions in which A appears, it can
be revised by replacing A with A(t). The conditions for full utilization
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of capacity may become complex, but the case A(t) = A exp(gt), with
g > 0 a growth rate, could be used to avoid this problem.

9. Conclusion

The dynamic oligopoly model presented in this paper makes a case
for affirmative action in competition policy. The results have to be
examined with care, however, since misunderstanding the effects would
lead to suboptimal decisions.

The first (obvious) result is that firms do better if competition is
minimized, namely, if one firm gathers all opportunities and capacity at
the starting point, and quickly builds and sustains a monopoly position
in the long run.

The second intuitive results is that, if investment costs cannot be
set equal, as far as consumer surplus is concerned, symmetric alloca-
tion of initial capacity is no longer optimal: firms with less investment
opportunities (higher investment cost) should be compensated (or allo-
cated) with more capacities at the initial stage. That is what we called
affirmative action.

The third result shows that these two kinds of logic compensate each
other when the social surplus is considered. If competition authorities
or regulators are free to set investment cost and initial capacity, symme-
try maximizes social surplus. By keeping firms in equal positions, the
competition authority or the regulator avoids creating quasi-monopoly
or quasi-Stackelberg situations, which would be detrimental to con-
sumers.

The analysis above also directly uncovers the important issue of con-
sistency of competition policy. Assume the competition authority can
intervene frequently but is limited, every time it acts, in its ability to
reshuffle assets. Once the short run benefits of asymmetry are reaped,
it will wish to restructure the industry again to get another crop of
short run benefits. This may be feasible because the constraint that
prevented full equalization in the first place is likely to relax over time.
However, the rational anticipation of such discretionary interventions
by firms would perturb and invalidate the notion of equilibrium we
have studied. Whether it is preferable to commit not to restructure
again is an open question.

Future research along these lines might consider other aspects of
competition policy. One example is planned capacity transfer from one
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firm to the other at dates posterior to the first reform. They might be
associated with monetary transfer (ceding conditions). For example in
2001, the European Commission urged the French energy giant, Elec-
tricité de France (EDF), to sell part of its capacities through auction as
an EDF/EnBW merger remedy.15 These capacities are called virtual
power plants, which are a form of financial instead of physical divesti-
ture as analyzed in this paper. It is worthwhile to investigate whether
the welfare effect of affirmative action still hold when the timing of the
game is changed and when financial transactions are involved.

15http://ec.europa.eu/comm/competition/mergers/cases/decisions/m1853_en.pdf

http://ec.europa.eu/comm/competition/mergers/cases/decisions/m1853_en.pdf
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Appendix A. Proofs.

A.1. Constraint on investment costs. Investment is represented by
the function zi(θ); the corresponding cost for site θ is γ(θ)zi(θ)+ zi(θ)

2

2θ
.

Let’s define

(23) 〈f(θ), g(θ)〉 ≡
∫ θ

θ

f(θ)g(θ)dθ, ∀g, f.

Therefore, Ci(I) as defined in Section 2 solves the following program

Ci(I) = min
zi

〈
ωi(θ), γ(θ)zi(θ) + zi(θ)

2

2θ

〉
,(24)

s.t. I = 〈ωi(θ), zi(θ)〉 .

The first order condition gives (λ is the Lagrange multiplier)

(25) zi(θ) = (λ− γ(θ))θ, ∀θ.

The relationship between λ and I can now be calculated:

(26) λ = I+〈ωi(θ),γ(θ)θ〉
〈ωi(θ),θ〉 .

We can now express firm i’s investment cost

(27) Ci(I) =
〈ωi(θ),γ(θ)θ〉2−〈ωi(θ),θ〉〈ωi(θ),γ(θ)2θ〉

2〈ωi(θ),θ〉 + 〈ωi(θ),γ(θ)θ〉
〈ωi(θ),θ〉 I + 1

2〈ωi(θ),θ〉I
2.

The (constant) first term γ0
i equals 0 if γ(·) is constant, as we assume

in the text for policy analysis. We can identify directly γi and θi:

γi = 〈ωi(θ),γ(θ)θ〉
〈ωi(θ),θ〉 ,(28)

θi = 〈ωi(θ), θ〉 .(29)

Given that ωi(θ) + ωj(θ) = h(θ) (all sites are allocated), we have
〈ωi(θ), ·〉+ 〈ωj(θ), ·〉 = 〈h(θ), ·〉, therefore

θi + θj = Θ = Constant,(30)

θiγi + θjγj = Γ = Constant,(31)

with Θ = 〈h(θ), θ〉 and Γ = 〈h(θ), γ(θ)θ〉.

A.2. Fundamental dynamic equations. Using the inverse demand
function, we can write the Hamiltonian function of firm i as
(32)

Hi(I, α, k) = (A−αiki−αjkj−ci)αiki−γiIi−
I2
i

2θi

+λi(Ii−δiki)−µiαi.

where λi is the co-state variable associated with ki and µi is the La-
grange multiplier of the constraint forcing capacity utilization not to
exceed 1.
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The first order conditions are
∂Hi

∂αi
= 0,(33)

∂Hi

∂Ii
= 0,(34)

and the adjoint equation is

(35) − ∂Hi

∂ki
=

•
λi − ρiλi.

Consequently,

ki (A− 2αiki − αjkj − ci) = µi,(36)

−γi − Ii/θi + λi = 0,(37)

δiλi − αi (A− 2αiki − αjkj − ci) =
•
λi − ρiλi.(38)

From (37), we can derive

(39)
•
λi =

•
I i/θi.

Plugging these results into (38), we get equation (9) in the text.

A.3. Trajectories. Let’s define two functions of time hi ≡
•
ki and

hj ≡
•
kj. Let’s denote A− ci − (ρi + δi)γi by Ai.

We rewrite the linear second-order system of equations as a four-
dimensional first-order system:

(40)
•
H = MH −N,

where H = (ki, kj, hi, hj)
T , N = (0, 0, Aiθi, Ajθj)

T and

(41) M =


0 0 1 0
0 0 0 1

2θi + (ρi + δi)δi θi −δi 0
θj 2θj + (ρj + δj)δj 0 −δj

 .

We can now state:

Proposition 6. In the regime where capacities are fully utilized, ca-
pacities, as functions of time, have the form

(42) ki(t) = k∗i + k
(1)
i eλ1t + k

(2)
i eλ2t

where λ1 and λ2 are the two strictly negative eigenvalues of matrix M .
These six parameters k∗i , k

(1)
i and k

(2)
i (there are two firms) are such

that

(1) k∗i and k∗j are uniquely defined as the particular solution M−1N .
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(2) (k
(m)
i , k

(m)
j ) with m = 1, 2 are the 1st and 2nd coordinate of an

eigenvector of M associated with eigenvalue λm. This fixes the
ratio between k

(m)
i and k

(m)
j .

(3) If ki(0) is firm i’s initial capacity, ki(0) = k∗i + k
(1)
i + k

(2)
i .

Proof. The eigenvalues of M are denoted by λs with s = 1, 2, 3, 4. At
least one of them is negative since Tr[M ] = −(δi + δj) < 0. In fact,

(43) Det[M ] = (2θi + δi(δi + ρi))(2θj + δj(δj + ρj))− θiθj > 0,

meaning that there is an even number (namely 2 or 4) of negative eigen-
values. Moreover, the coefficient of the 2nd order in the characteristic
polynomial Det[M − λI] is
(44)
(−1)2

2!
·
∑

s,s′={1,2,3,4}
s 6=s′

λsλs′ = −2(θi+θj)−(δ2
i +δ2

j −δiδj +ρiδi+ρjδj) < 0,

meaning that eigenvalues can’t be all negative. We conclude that there
are two negative eigenvalues (noted λ1 and λ2) and two positive ones
(noted λ3 and λ4). The weights given to diverging exponentials must
be null (otherwise capacity diverges to ±∞ as t → +∞). �

A.4. Proof of Proposition 2. We have
(45)

π∗
i =

 �
1+

(ρ+δ)δ
θj

��
2+

(2ρ+δ)δ
θi

�

2

�
2+

(ρ+δ)δ
θi

��
2+

(ρ+δ)δ
θj

�
−1
· A

2

+ γρ

�
1+

(ρ+δ)δ
θj

�
�

2+
(ρ+δ)δ

θi

��
2+

(ρ+δ)δ
θj

�
−1
· A.

As A doesn’t depend on θi nor θj, straightforward calculations show
that

(46)
∂π∗

i

∂θi

> 0 and
∂π∗

i

∂θj

< 0.

A.5. Proof of Proposition 3. Total long-run capacity is

(47) k∗i + k∗j =

�
2+

(ρ+δ)δ
θi

+
(ρ+δ)δ

θj

�
�

2+
(ρ+δ)δ

θi

��
2+

(ρ+δ)δ
θj

�
−1
· A.

Variations with respect to θi can be analyzed directly. The derivative
changes sign only once from positive to negative at θi = Θ/2.

The second point is proved with the help of the formal calculator
Mathematica. The derivative of the total long run surplus has three
roots. One is Θ/2; the other two are symmetric with respect to Θ/2

and one of them is negative (the expression takes several lines). These
conditions guarantee that the surplus has a unique extremum (at Θ/2)
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in [0, Θ] when θi varies. The second-order condition at Θ/2 is easy to
verify as symmetry simplifies the expression.

A.6. Proof of Proposition 4. The variations of the eigenvalues only
depend on the variations of θ2

i +θ2
j −θiθj. Along the efficiency frontier,

θi + θj = Θ, thus we have to analyse θ2
i + θ2

j − θiθj = Θ2 − 3θi(Θ− θi).
We find that |λ1| increases and |λ2| decreases as the situation be-

comes more symmetric. The consequence is that, for more symmetric
distributions of sites, growth of total capacity (related to λ2) is slower
whereas the difference reduction (related to λ1) is faster.

A.7. Proof of Proposition 5. It is obvious from the analysis of the
steady state (i.e. the particular solution to the differential system) that
the total capacities at date 0 and in the long run are independent of
the initial allocation rule (ki(0), kj(0)). At date 0, the slope of the total
capacity is denoted by ξ with

(48) ξ =
∂K(t)

∂t

∣∣∣∣
t=0

= λ1(k
(1)
i + k

(1)
j ) + λ2(k

(2)
i + k

(2)
j ).

Calculations of the eigenvectors and eigenvalues plus utilization of
Proposition 6 (point 2) gives us the effect of ki(0) on the slope ξ

(49)
∂ξ

∂ki(0)
= − (θi−θj)(λ1−λ2)

2
√

θ2
i −θiθj+θ2

j

< 0.

The total capacity increases more at date 0 when more of the initial
capacity is given to the efficient firm.

If we look at the total capacity K(t) at any date t > 0, the derivative
of slope ξ(t) with respect to ki(0) will be

(50)
∂ξ(t)

∂ki(0)
= − (θi−θj)(e

λ1t−eλ2t)

2
√

θ2
i −θiθj+θ2

j

< 0,

which proves the proposition.
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