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Abstract

We analyze ecosystem management under �unmeasurable�Knightian uncer-

tainty or ambiguity which, given the uncertainties characterizing ecosystems,

might be a more appropriate framework relative to the classic risk case (mea-

surable uncertainty). This approach is used as a formal way of modelling the

precautionary principle in the context of least favorable priors and maxmin

criteria. We provide biodiversity management rules which incorporate the

precautionary principle. These rules take the form of either minimum safety

standards or optimal harvesting under precautionary approaches.

Keywords: Knightian uncertainty, uncertainty aversion, ambiguity aver-

sion, risk aversion, precautionary principle, biodiversity, optimal harvesting,

robust control.
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1 Introduction

Biodiversity loss has emerged as a major issue on both academic and policy

grounds. As stated in the recent Millennium Ecosystem Assessment report

(MEA 2005a, page 4):

Humans are fundamentally, and to a signi�cant extent irreversibly,

changing the diversity of life on earth, and most of these changes

represent a loss of biodiversity.

It is estimated, in the same report, that during the past several hundred

years, humans have increased the species extinction rate by as much as 1000

times over background rates over the planet�s history. In the MEA report

(2005b), it is acknowledged that ecosystem management practices that main-

tain diversity, functional groups, and trophic levels are more likely to decrease

the risk of large losses of ecosystem services than practices that ignore these

factors.

These statements suggest that the development of management rules that

could help to prevent loss of biodiversity is a desirable goal. The attain-

ment of this goal is hindered, however, both by the complexity of ecosystems

and by important and interrelated uncertainties, a number of which include

sources such as major gaps in global and national monitoring systems; the

lack of a complete inventory of species and their actual distributions; limited

modelling capacity and lack of theories to anticipate thresholds; emergence

of surprises and unexpected consequences. These uncertainties may impede

adequate scienti�c understanding of the underlying ecosystem mechanisms

and the impacts of policies applied to ecosystems. For the purposes of our

analysis we will refer to the overall uncertainty associated with these sources

as scienti�c uncertainty.

One feature of the uncertainty structure described above is that it might be

di¢ cult or even impossible to associate probabilities with uncertain prospects

a¤ecting the ecosystem evolution. This is close to the concept of uncertainty

as introduced by Frank Knight (1921) to represent a situation where there

is ignorance, or not enough information, to assign probabilities to events.

Knight argued that uncertainty in this sense of unmeasurable uncertainty is

more common in economic decision making. Knightian uncertainty is con-

trasted to risk (measurable or probabilistic uncertainty) where probabilities

can be assigned to events and they are summarized by a subjective probability
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measure or a single Bayesian prior. Thus Knightian uncertainty or �ambigu-

ity�can be regarded as an appropriate framework for analyzing issues related

to scienti�c uncertainty in biodiversity management.1 This uncertainty con-

cept has been associated formally with the concept of multiple priors (Gilboa

and Schmeidler, 1989), as well as with the concept of uncertainty or ambiguity

aversion which in general increases with an ignorance parameter (Chen and

Epstein, 2002).

In economics, decision making under risk implies expected utility max-

imization. Under Knightian uncertainty as described above, it was Wald

(1950) who suggested that a maxmin solution could be a reasonable solution

to a decision problem where an a priori probability distribution does not ex-

ist or is not well known to the researcher. One way to approach the maxmin

solution is to use the idea of least favorable prior (LFP)2 decision theory, as

developed by Gilboa and Schmeidler (1989), which results in maxmin expected

utility theory and represents an axiomatic foundation of Wald�s criterion.

Decision theory based on the LFP can be associated with the concepts of

precautionary principle (PP), safety margin (SM), and safe minimum stan-

dards (SMS). The precautionary principle is an approach where actions are

taken to anticipate and avert serious or irreversible harm, such as for example

extinction of species for the case of biodiversity preservation, or prevention of

an irreversible climate change, in advance of or without a clear demonstration

that such action is necessary. Marchant (2003) states that he PP prescribes

how to bring scienti�c uncertainty into the decision-making processes by ex-

plicitly formalizing precaution and bringing it to the forefront of deliberations.

On the other hand the ideas of LFP or worst case scenario (WCS) and irre-

versible changes can be intuitively put together, since the emergence of a WCS

could lead to an irreversible change. Therefore a direct link can be made be-

tween LFP ideas and the PP. Scienti�c uncertainty or model uncertainty can

be manifested in multiple priors. The decision maker cannot choose among

them, but one or more of these priors, the LFP, leads to irreversible change.

To prevent the irreversible change, which is not clearly demonstrated since

the decision maker does not know that the LFP will prevail, a precaution-

ary approach should be taken, which implies that the decision rule should be

1 In a recent article Shaw and Woodward (2008) very clearly present the high relevance
of this analytical framework for environmental and resource economics.

2Given a set of prior probability distributions associated with the multiple priors frame-
work, the LFP is the one that corresponds to the least favorable outcomes. It can be
associated with the concept of the worst case scenario. Under Knightian uncertainty the
researcher cannot choose one prior to de�ne expected utility as is done under risk.
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based on LFP. Thus, the maxmin expected utility can be used as a conceptual

framework for designing management rules which adhere to the PP.

Closely related to the these concepts are the ideas of SM and SMS for

the preservation of biodiversity (e.g. Holt and Tisdell, 1993). Safety mar-

gins could be de�ned in terms of feasible variations for land allocations and

harvesting values so that, under uncertainty and ambiguity aversion, species

biomasses will not deviate more than a prespeci�ed level from a desire steady

state. Further, SMS could be de�ned in terms of minimum viable populations

and minimum habitat requirements. Using the LFP and maxmin framework,

SM and SMS can be de�ned so that species extinction is prevented under

the least favorable situation associated with the uncertainties obscuring the

scienti�c understanding of the ecosystems�mechanisms. These policies can

be regarded as management which embodies some type of PP.

The purpose of this paper is to combine these concepts and provide man-

agement rules for preserving biodiversity under scienti�c uncertainty and am-

biguity aversion, which follow a precautionary principle. The precautionary

approach is formalized by using multiple priors and LFP ideas, and maxmin

decision rules, which lead both to SM or SMS and optimal management rules

that embody the PP. Furthermore, by comparing optimal management rules

which are obtained by assuming �rst the traditional risk set up and second

ambiguity, it is possible to obtain some quanti�cation of the implications of

the PP in terms of decision variables such as harvesting and land allocation

rules.

In the rest of the paper we present two approaches to biodiversity man-

agement under scienti�c uncertainty and ambiguity aversion in models of

multiple species. In the �rst approach we apply the k -ignorance approach

for specifying the multiple priors model and we derive, in terms of a de-

scriptive non-optimizing model of species interactions, harvesting and land

allocation rules for species which are designed to provide safety standards in

the sense of either keeping the species populations in some relation to initial

values, given an exogenously determined desired steady state for biomasses,

or keeping the species biomasses above some minimum safety standard with

a given probability. In the second approach we apply robust control methods

to derive optimal harvesting rules under model uncertainty. By comparing

solutions under risk and under ambiguity we provide a measure of the impact

of adopting precautionary approaches in ecosystem management.
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2 Modelling Model Uncertainty

Rational expectations models do not permit a self-contained analysis of model

uncertainty. Assuming that economic agents have concerns about model mis-

speci�cation reopens fundamental issues expressed by Knight (1921), Savage

(1954) and Elsberg (1961), ideas which, by adopting rational expectations,

have been set aside from agents�beliefs.

Knight was the �rst who made the distinction between risky events for

which a true probability distribution can be speci�ed and a worse type of

ignorance, where a unique probability measure is not available, that he called

uncertainty. Savage believed that as an aspect of rationality, personal prob-

abilities are �correct�. On the other hand Fellner (1961) and Elsberg (1961)

challenged Savage�s theory, on the basis of experimental evidence. Gilboa

and Schmeidler (1989), motivated by the Elsberg paradox, formulated, in

an atemporal setting, a set of appropriate axioms and incorporated the idea

of uncertainty or ambguity aversion into decision making. Dynamic models

in which agents are adverse to model ambiguity have been constructed by

Epstein and Wang (1994) and Chen and Epstein (2002).

In the recent literature we can distinguish two main, although interrelated,

approaches for dealing with ambiguity: the multi priors and the robust control

approaches.

2.1 Modelling Uncertainty Using Multiple Priors

Let the set of states of the world be 
 and consider an individual observ-

ing some realization !t 2 
: The basic idea underlying the multiple priors
approach is that beliefs about the evolution of the process f!tg cannot be
represented by a probability measure. Instead, beliefs conditional on !t are

too vague to be represented by such a single probability measure and are rep-

resented by a set of probability measures (Epstein and Wang, 1994). Thus

for each ! 2 
, we consider P (!) as a set of probability measures about the
next period�s state. Formally P is a correspondence P : 
!M (
) assumed

to be continuous, compact-valued and convex-valued andM (
) is the space

of all Borel probability measures.

The individual ranks uncertain prospects or acts which are denoted by �:

Let u be a von Neumann-Morgenstern utility function. The utility of any act

� in an atemporal model is de�ned (Gilboa and Schmedler, 1989; Chen and

Epstein, 2002) as

U (�) = min
Q2P

Z
u (�) dQ (1)
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In a continuous time framework, recursive multiple prior utility, in a �nite

time setting, is de�ned as:

Vt = min
Q2P

EQ

�Z T

t
e��(s�t)u (�) ds

�
(2)

where the subjective set of priors P on a space (
;F) is uniformly absolutely
continuous with respect to Q�P:3,4

These de�nitions of utility in the context of multiple-priors correspond

to an intuitive idea of the �worst case�. Utility is associated with the util-

ity corresponding to the least favorable prior. With utility de�ned in this

way, decision making by using the maxmin rule follows naturally, since maxi-

mizing utility in the multiple-prior case implies maximizing the utility which

corresponds to the LFP.

The individual�s set of priors can be further speci�ed for the purposes

of the analysis by the so called k -ignorance approach. In this case the in-

dividual considers the reference probability measure P and another measure

Q 2 M (
) : The discrepancy between the two measures is de�ned by the

relative entropy

R(Q==P ) =

Z +1

0
e��tEQ[

1

2
"2t ]dt (3)

where " is a measurable function associated with the distortion of the proba-

bility measure P to the probability measure Q. According to the k -ignorance

approach, the individual incorporates into her/his decision-making problem

the instantaneous relative entropy constraint Q(�) = fQ : EQ[
1
2"
2
t ] � � ; for

all tg; which means that probability measures di¤ering from the reference

measure P by at least as much as � should be taken into account. If Q

is a probability measure associated with the least favorable outcome, then

k -ignorance embodies an LFP or worst case scenario idea.5

2.2 Modelling Uncertainty Using Robust Control Methods

Another way to embody decisions makers�concerns about model misspeci�ca-

tion is to use robust dynamic control, which is also a minmax approach which

3Uniformly absolutely continuous means that for every " > 0 there is � > 0 such that
E 2 F and Q(E) < � implies that P (E) < " 8P"P.

4For further details and behavioral implications of the structure of P see (Epstein and
Wang, 1995, Chen and Epstein 2002).

5Another way to specify the set of priors is the so called e-contamination approach
(Epstein and wang 1994), where the set of priors is a convex combination of the probability
measure P and the measure Q: Thus
P� = f(1� �)P + �Q : Q 2M (
) ; � 2 [0; 1]g
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has been introduced to economics by Hansen and Sargent (see for example

Hansen and Sargent (2001)). In this case the decision maker suspects that

his/her model is misspeci�ed, in the sense that there is a group of approxi-

mate models which are also considered as possibly true given a set of �nite

data. These approximate models are obtained by disturbing a benchmark

model, and the admissible disturbances re�ect the set of possible probability

measures that the decision maker is willing to consider, or otherwise how am-

biguous the decision maker is about the initial estimated model. The objective

of this approach is to choose by a minmax criterion, formulated in terms of

a di¤erential game where one agent is �Nature�that �chooses�the LFP, a rule

that will work well under a range of di¤erent model speci�cations. The robust

control method which can be regarded as an approach for deriving optimal

dynamic policy rules under model uncertainty will be presented in more detail

in section 4.

In relation to biodiversity management the approaches described above

allow us to model the uncertainties or ambiguities underlying our scienti�c

knowledge about ecosystems in a way that, as will be shown later, leads to

well de�ned policy rules and allows for the quanti�cation of the precautionary

principle.

3 Safety Standards and Biodiversity Management: A Non-
optimizing Approach

Economists usually try to manage ecosystems and biodiversity in an optimal

way despite the fact that the complexity of ecosystems might make optimiza-

tion exercises di¢ cult, even at a theoretical level. On the other hand, if we

are interested in preserving diversity it might be useful to think about man-

aging ecosystems using safety rules, which when applied prevent species or

a set of species from becoming extinct.6 Safety rules in biodiversity preser-

vation could acquire greater importance when the ecosystem manager faces

Knightian uncertainty or ambiguity which, as discussed above, is a poten-

tially very relevant case in ecosystem management. In this situation worst

case events might cause surprises and extinction of species. Since these ir-

reversible changes have occurred in reality, dealing with worst case scenarios

means that ecosystem management and biodiversity preservation are asso-

6Safety regulation is a more general issue in economics. For a general discussion of the
role of economic analysis in the development of environmental health and safety regulation,
see Arrow et al. (1996). For a discussion of safety standards in species protection, see for
example Holt and Tisdell (1993).
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ciated with a PP, which implies that the management rules are such that

species will not become extinct under worst case scenarios.

3.1 Safety Standards in a Deterministic Model

We examine �rst the determination of safe minimum standards for preventing

biodiversity loss, in terms of minimum population levels in the context of a

deterministic model. The deterministic model developed here is used as a

vehicle for the introduction of uncertainty in analyzing biodiversity manage-

ment, which is the main target of this paper. In this model population levels

are directly controlled by harvesting, and available habitat for each species

which is determined by land allocations rules.

We start by considering an ecosystem manager who manages a landscape,

normalized to unity, where two species coexist. Let Bit for i = 1; 2 be

the biomasses of the two interacting species at time t; where b12; b21 are the

interaction coe¢ cients between them. It is assumed that the evolution of the

initial biomasses (B10;B20) through time can be described by the system of

deterministic di¤erential equations:

_B1=B1f1(w)[1� h1 �B1w � b12B2w] (4)

_B2=B2f2(1� w)[1� h2 �B2(1� w)� b21B1(1� w)]

where hi = di+ ĥi, hi denotes the total removal rate from biomass, ĥi denotes

net harvesting, and di are the death rates, for i = 1; 2: Since the death rates

are assumed known and �xed choosing hi is equivalent to choosing ĥi; thus we

use hi as our control variable. Furthermore fi are the intrinsic growth rates

with (w; 1� w) being a land allocation rule. It is assumed that the intrinsic
growth rate which depends on w or 1 � w is increasing and concave in the

land allocated to the species with fi (0) = 0.

Using a non-dimensionalization, which is usually applied to models of

interacting populations, the model above can be rewritten in a simpli�ed

form as:

_u1= u1(1� u1 � a12u2 � h1) = g1 (u1; u2;h1; h2) (5)

_u2= u2f̂(w)(1� u2 � a21u1 � h2) = g2u1; u2;h1; h2; f̂ (w))

f̂ (w) =
f2(1� w)
f1(w)

; a12 = b12
w

1� w; a21 = b21
1� w
w

; u1 = B1w; u2 = B2(1� w)

In this model carrying capacity is proportional to 1=w or 1= (1� w) for a
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space normalized to one.

For a12a21�1 6= 0 the dynamical system (5) has four steady states de�ned
for _u1 = _u2 = 0. In three of them either both or one of the species biomasses

are zero. Since we are interested in the preservation of both species we will

focus on the fourth steady state where both biomasses are positive and thus

both species are preserved in long-run equilibrium. The species biomasses in

this steady state are:

u�1=
1

a12a21 � 1
(h1 + a12 � h2a12 � 1) (6)

u�2=
1

a12a21 � 1
(h2 + a21 � h1a21 � 1) :

It follows that a desired steady state u� = (u�1; u
�
2) de�ned through (6) can be

attained if there exist non-negative �xed harvesting rules (h�1; h
�
2) = h

� which

solve the linear system (6) for the given u� = (u�1; u
�
2) : The stability properties

of the desired steady state are characterized in the following proposition.

Proposition 1 Assume that the non-negative harvesting rule (h�1; h
�
2) = h�

attains the desired steady state u� = (u�1; u
�
2) : Then if

(i)
1� h�1 � a12 + h�2a12 + f̂(w)(1� h�2 � a21 + h�1a21)

a12a21 � 1
< 0:

(ii) (1� h�1 � a12 + h�2a12)(1� h�2 � a21 + h�1a21)

�(�h�1a12 � a212 + h�2a212 + a12)(�h�2a21 � a221 + h�1a212 + a21)> 0:

The desired steady state is stable and can be reached from any initial bio-

mass levels in its neighborhood.

Proof. The proof follows directly for the Jacobian of the dynamical system
(5) evaluated at the desired steady state. The Jacobian is

J (u�1; u
�
2) =

"
1�h�1�a12+h�2a12

a12a21�1
�h�1a12�a212+h�2a212+a12

a12a21�1
f̂(w)

�h�2a21�a221+h�1a212+a21
a12a21�1 f̂(w)

1�h�2�a21+h�1a21
a12a21�1

#

Condition (i) implies negative trace, while condition (ii) implies positive de-

terminant. Therefore the Jacobian matrix has eigenvalues with negative real

parts and the desired steady state is stable.

At this stage the desired steady state is rather loosely determined, with-

out any reference to optimality criteria. It can be assumed, however, that
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this steady state is determined through some political process, which is a sit-

uation very often encountered in reality, where competing conservation and

harvesting objectives determine some equilibrium desired steady state. The

process of arriving at this steady state is not modelled here.

3.2 Safety Standards in Stochastic Environments

3.2.1 Safety Standards under Risk Aversion

Having de�ned the desired deterministic state as a benchmark we consider,

in this section, the more realistic case where the evolution of biomasses is

stochastic. We assume at this stage that the manager of the ecosystem has

a single subjective prior distribution. A single prior is the main character-

istic of the vast majority of continuous time dynamic models which assume

probabilistic sophistication, implying that we analyze the problem under risk

(measurable uncertainty). We follow this approach because it is an intuitive

way to proceed to the case of Knightian (unmeasurable) uncertainty, but also

because it allows us, by comparing solutions under risk and solutions under

uncertainty, to obtain a quanti�cation of the precautionary principle, since

as discussed in the introduction, PP can be associated with the Knightian

uncertainty framework.

Keeping that same structure with the deterministic model, we assume

that the evolution of the initial biomasses B10;B20 through time is given by a

system of stochastic di¤erential equations, which in the nondimensionalized

form can be written as:

du1= u1 (1� u1 � a12u2 � h1) dt+ �1(h; u1)dz1 (7)

du2= f̂ (w)u2 (1� u2 � a21u1 � h2) dt+ �2(h; u2)dz2

where dz1; dz2 denote two correlated Brownian motions, with � being the

correlation coe¢ cient between them.7

To obtain a better understanding of the problem, we analyze a �rst or-

der linear approximation (see Flemming, 1971) of the stochastic di¤erential

equations (7) in the neighborhood of the desired deterministic steady state

(u�1; u
�
2), (h

�
1; h

�
2).

7For an appropriate speci�cation of the dynamics of the uncontrolled system, the two
biomasses should not take negative values, which means that �i (h; 0) = 0 for i = 1; 2.
Alternatively if the variances are independent of u; it can be assumed that the ui represents
logarithms of the nondimensionalized biomasses so that they follow a lognormal distribution.
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Let (ui � u�i ) = xi; dui = dxi; (1� 2u�1 � a12u�2 � h�1) = �11;�a12u�1 =
�12;�f̂ (w) a21u�2 = �21; f̂ (w) (1� 2u�2 � a21u�1 � h�2) = �22; where �ij ; i; j =

1; 2 depend on the harvesting and the land allocation parameters at the de-

sired deterministic steady state. Using matrix notation, the �rst-order linear

approximation of the stochastic di¤erential equations (7) in the neighborhood

of the desired deterministic steady state can be written as:

dx=Axdt+�dz where (8)

dx=

"
dx1

dx2

#
; A =

"
�11 �12

�21 �22

#
;� =

"
�1 0

0 �2

#
; dz =

"
dz1

dz2

#
:

The following proposition can be stated:

Proposition 2 Given a land allocation rule and a harvesting rule (w; h1; h2)
and initial values (x10; x20) ; the expected values of the two biomasses are given

by

Ex1t=A1tx10 +A2tx20 (9)

Ex2t=A3tx10 +A4tx20:

Proof. System (8), multiplied from the left by a suitable matrix, becomes

(see Oksendal (2000)): 8

d(e�Atxt) = e
�Atdx� e�AtAxdt = e�At�dz (10)

where eF =
1X
n=1

1

n!
Fn = F +

1

2!
F 2 +

1

3!
F 3 + ::::: (11)

where F =�At: (12)

Equivalently:

e�Atxt � x0 =
Z t

0
e�As�dzs (13)

xt = e
Atx0 +

Z t

0
eA(t�s)�dzs ; x0 =

"
x10

x20

#
(14)

8 In our case F is the matrix �At: The elements of this matrix converge to a real
number. This holds because each element of this matrix is upper bounded by the sum
aq =

P1
q=1

2q�1

q!
(�tx)q; with x being the maximum of the four elements of matrix A in equa-

tion (8). For the above general term a known convergence criterion holds: lim sup jaq+1
aq
j < 1

and therefore the series converge.
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where

eAt =

"
A1 A2

A3 A4

#
(15)

with Ai for i = 1; :::; 4 depending on the values of the interaction coe¢ cients

aij and on fi, hi: The Ai can be calculated using relationship (11): Using

relationships (13) and (15), we can derive:

x1t=A1tx10 +A2tx20 +

Z t

0
G1dz1 +

Z t

0
G2dz2 (16)

x2t=A3tx10 +A4tx20 +

Z t

0
G3dz1 +

Z t

0
G4dz2 (17)

with Gi being functions of fi , hi; and �i; with the property that they belong

to the class V = V (0; T ):9 The four integrals in equations (16) and (17) are

stochastic integrals with the property that for all the possible combinations of

i; j;

E
Z t

0
Gidzj = 0: (18)

Therefore taking expected values in (16) and (17), condition is (9) ob-

tained.

In expressions (9), Ait is de�ned as Ait = Ai(w; h1; h2; t) and thus the

associated expected deviations from the desired steady state depend on the

land allocation weights (w; 1� w) and on the harvesting rules (h1; h2). Since
Exit = E (uit � u�i ) = Euit � u�i ; (9) can be written as:

Eu1t=A1(w; h1; h2; t) (u10 � u�1) +A2(w; h1; h2; t) (u20 � u�2) + u�1 (19)

Eu2t=A3(w; h1; h2; t) (u10 � u�1) +A4(w; h1; h2; t) (u20 � u�2) + u�2

Suppose that for a given (u�1; u
�
2) the manager wants the expected biomasses

at time t to satisfy a certain exogenous safety standard by being a certain pro-

portion of initial biomasses, Euit = 
iui0. The land allocation and harvesting
rule (wt; h1t; h2t) that satis�es (19) for Euit = 
iui0, provided that it exists,10

9V is the set of measurable and adapted functions f with the property E
R T
0
f(t; !)2dt <

1: Then for the corresponding stochastic integral it holds that E
R T
0
f(t; !)dzt = 0:

10System (19) is a nonlinear system with two equations and three unknowns (w; h1; h2) :
Solution means that by �xing one of the unknowns, say w; the other two will be determined
as functions hi = hi (w) : Thus for a given land allocation w, hi (w) is the harvesting rule
which satis�es the safety margin. A solution will exist if the Jacobian determinant of (19)
with respect to (h1; h2) does not vanish in an appropriate neighborhood which contains the
solution.
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can be regarded as a safety rule, which under conditions of risk prevents ex-

pected species biomasses from moving below the safety standard at time t:

If the safety standard is determined by a rule Euit = 
iuit�1, t = 1; 2; :::

then the sequence (wt+1; h1t+1; h2t+1); t = 0; 1; 2; ::: will determine an adap-

tive safety rule which will not let expected biomasses go below an exogenous

safety standard.

The multi-species case Our model can be extended to the multi-species

case. In this case, the evolution of the biomass of the kth species is given by:

duk = ukf̂k(w)[1�hk�ukwk�
X
j 6=k

bkjujwk]dt+�kdzk , j; k = 1; ::::; n (20)

with w =(w1; :::; wn) ;
P
k wk = 1 being the land allocation rule and f̂k(wk) =

fk(w)
f1(w)

. Following the same procedure as above, the expected values of species

biomasses are de�ned as:

Exkt =
nX
i=1

Atkixi0 ; k = 1; ::n: (21)

3.2.2 Safety Margins under Knightian Uncertainty and Precaution

Suppose now that the ecosystem manager operates under conditions of am-

biguity or Knightian uncertainty, which could be a realistic approximation

of the actual ecosystem conditions. Along the lines of our previous discus-

sion, this type of uncertainty can be modelled in terms of the multiple priors

approach. In particular, we assume that the manager has multiple priors re-

garding the evolution of the species biomasses. We further specify the set of

priors by following the k -ignorance approach.

For the two species case the ecosystem�s dynamics can now be written as:

dx=Axdt+�Rdbz where (22)

dx=

"
dx1

dx2

#
; A =

"
�11 �12

�21 �22

#
;� =

"
�1 0

0 �2

#

R=

"
1 0

�
p
1� �2

#
; dẑ =

"
dbz1
dbz2
#

with all the variables de�ned as in (8), � being the correlation coe¢ cient
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between the two Brownian motions in the initial system (8), and dẑ1; dẑ2
being two independent Brownian motions.

In the k -ignorance approach, the landscape manager has reference priors

about the biomasses�evolution, which are expressed by dzi: Because of ambi-

guity the manager considers a decision-making problem with multiple priors.

In this problem the prior, which according to the manager�s beliefs is further

away from the reference prior, does not di¤er from the reference prior, in

terms of relative entropy, more than a positive number. This means that the

manager is characterized by a subjective �maximum�level of ignorance, and

believes that all sources of uncertainty that make him/her ambiguous about

the reference model (or reference prior) cannot lead to a model that di¤ers

from the reference model by more that a certain level. To obtain the set of

priors which re�ect ambiguity, using as the benchmark model the model of

the reference priors (8), we consider measurable drift distortions to the refer-

ence priors. More speci�cally the initial Brownian motions, dzi; i = 1; 2; of

the stochastic system (8) are replaced by

zi(t) = bzi(t) + Z t

0
"i(s)ds ; i = 1; 2 (23)

where bzi are Brownian motions and "i are measurable functions. By doing
this, system (22) takes the form:

dx = Axdt+�REdt+�Rdbz where E = ""1
"2

#
: (24)

Following the same approach as in the proof of proposition 1, the evolution

of species biomass under ambiguity (unmeasurable uncertainty) is given by:

xt = e
Atx0 +

Z t

0
eA(t�s)�REds+

Z t

0
eA(t�s)�Rdbzs: (25)

If we compare equation (25) with (13), it can be seen that the extra term,R t
0 e

A(t�s)�REds; acts as a measure of precaution and re�ects the impact of

Knightian uncertainty or ambiguity, relative to the case of risk. This has as a

result the introduction of two extra terms in equations (16) and (17). There-

fore the expected values change depending on the structure of the problem�s

parameters.

In particular, when considering distortions in the benchmark model, the

initial measure P is replaced by another probability measure Q. The dis-
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crepancy between the two measures is measured by the relative entropy,

R(Q==P ) =
R +1
0 e��tEQ[

1
2"
2
t ]dt: According to the k -ignorance framework,

we consider the instantaneous relative entropy constraint11 Q(�) = fQ :

EQ[
1
2"
2
t ] � � ; for all tg; which restricts the set of models the decision maker

considers at each instant of time. This constraint means that the deviation

between the reference prior and the distorted priors cannot be more than � i:12

Then, the worst case perturbation is:

"�it = �
p
2� i: (26)

It should be clear that (26) re�ects the idea of the LFP with the multiple priors

model. By adopting this approach the distortions are now constant negative

numbers and therefore we can calculate the adjusted values. In particular, ex-

amining one of the possible cases of the signs of the matrix eA(t�s)�RE in the

integral
R t
0 e

A(t�s)�REds which re�ects the impact of Knightian uncertainty

on decision making, the following proposition can be stated:

Proposition 3 Given a land allocation rule and a harvesting rule (w; h1; h2);
the di¤erences in expected values of the biomasses of species i = 1; 2, under

ambiguity formalized in terms of k-ignorance, relative to the risk (measurable

uncertainty) case, are given by
R t
0 e

A(t�s)�REds:

Proof. Regarding the sign choice of the matrix eA(t�s)�RE we have that: 13

if eA(t�s)� =

"
+�
�+

#

R =

"
1 0

�
p
1� �2

#
; E� =

"
�
p
2�1

�
p
2�2

#
RE� =

"
�
p
2�1

�
p
2�1��

p
2�2
p
1� �2

#

eA(t�s)�RE� =

"
�� � (

p
2�1�+

p
2�2
p
1� �2)�� ;�� < 0

�+ � (
p
2�1�+

p
2�2
p
1� �2)�+ ;�+ > 0

#
: (27)

Therefore from equation (27) we obtain that if the term (
p
2�1�+

p
2�2
p
1� �2)

is less than or equal to zero, then the second element of the matrix is positive

11This is in contrast to the robust control approach where we consider a lifetime constraint.
12This � i re�ects the manager�s beliefs about ambiguity and model uncertainty. If � = 0

then the manager is risk averse in the traditional sense and believes that the reference prior
is an adequate representation of uncertainty.
13Depending on the values of the elements of matrix A, other possible cases can be

examined. For the speci�c case of choices of signs in Proposition 4, which turns out to
be the more interesting one, we provide numerical results.

14



and the �rst is negative. When �1 = k�2 the above condition is satis�ed ifp
k�+

p
1� �2 6 0 : Particularly if k = 1; the previous condition is satis�ed

if � 6 �
p
2
2 :

Condition (27) implies that under ambiguity aversion and given land al-

location and harvesting rules, the path of the expected deviations from the

desired steady state changes relative to the risk aversion case. In particular,

when
p
2�1� +

p
2�2
p
1� �2 6 0; the expected value that corresponds to

the �rst species can be lower, and the expected values corresponding to the

second species can be higher as compared to the values obtained under risk

aversion. In general, however, the �nal outcome depends on the type of corre-

lation between the two biomasses and the regulator�s beliefs about the worst

case scenario. This could be of interest since it implies that our approach of

dealing with ambiguity does not lead simply to wider values and uniformly

more conservative behavior regarding both species, but takes into account the

structure of the ecosystem and the relationship among species.

Further insights can be obtained by considering land allocation and har-

vesting rules which correspond to the same expected deviations for the bio-

masses under both risk aversion and ambiguity aversion. Consider a rule

(wr; hr1; h
r
2) under risk aversion (Proposition 2) and a rule (w

a; ha1; h
a
2) un-

der ambiguity aversion (Proposition 4) which both attain the same safety

standard for the same initial biomass values. Comparison of the rules could

provide some quantitative measure associated with precaution. In particular

deviations jwr � waj ; jhri � hai j i = 1; 2; would quantify the impact of being

precautious in terms of harvesting and land allocation. This is because they

represent the necessary changes in the harvesting and land allocation that will

preserve under a least favorable prior, the same amount of biomasses relative

to the risk aversion case, which is the case where the manager is con�dent

about the reference model.

3.3 Numerical Approximations

To obtain a better understanding of the structure of the solution of the above

problem some numerical results are provided.14 We assume that a suitable

�xed land allocation rule ŵ = (ŵ;1� ŵ) has been chosen such that f̂(w) = 1
14The linearization which we adopt for our numerical simulations produces clearly inter-

pretable results, but it should be noticed that these results hold in a bounded time interval,
otherwise linearity might lead to unbounded solutions. Nevertheless even with this limita-
tion the linear approximation provides clear insights into the e¤ects of precaution. A full
scale empirical implementation with appropriate curvature assumptions is beyond the scope
of the present paper and represents an area for further research.
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and a21 = a12 = 0:7:15 For the harvesting rule at the deterministic case

we assume h�1 = h�2 = 0:5: This rule implies that the desired deterministic

steady state (DDSS) de�ned by (6) is u�1 = u
�
2 = 0:2941: This steady state is

stable since the trace of the associated Jacobian matrix is negative, while the

determinant is positive.

Table 1 below depicts the deviations of the expected values of the two

biomasses from the DDSS (0:2941; 0:2941) during three time periods, if har-

vesting of the species during these periods is kept at the level of (h1;h2) =

(0:5; 0:5):

t = 1 t = 2 t = 3

x1 = u1 � u�1 0:4281 0:2597 0:1575

x2 = u2 � u�2 0:4281 0:2597 0:1575

Table 1: Deviations of expected values for the two biomasses as a function
of t; where h1 = h2 = 0:5; and

DDSS = (u�1; u
�
2) = (0:2941; 0:2941) ; a21 = a12 = 0:7; f̂1(w) = 1:

Table 1 indicates that the expected values of the two biomasses in the

�rst three periods are 0:4281 + 0:2941 = 0:7222; 0:2597 + 0:2941 = 0:5538;

and 0:1575 + 0:2941 = 0:4516; respectively. Expected biomasses decline as

they converge towards the DDSS according to the stability properties of this

steady state.

We turn now to the case of Knightian uncertainty and precaution. Cal-

culating the terms that correspond to the integral
R t
0 e

A(t�s)�REdt; we can

quantify the impact of precaution at the expected values of the two bio-

masses. We adopt the same parameter values as in table 1, that is f̂(w) = 1;

a12 = a21 = 0:7. Furthermore, we assume that the standard deviation is

the same for the two biomasses, that is �1 = �2 = 0:1; that the correlation

coe¢ cient is � =
p
2=2; and that the parameter � i which re�ects manager�s

ambiguity and �maximum�ignorance is equal to 0:15 for each one of the two

biomasses and each instant of time. Table 2 presents the changes in the devi-

ations of the expected values of the two biomasses under ambiguity, relative

to the traditional risk aversion case.

t = 1 t = 2 t = 3

change in x1 �0:0412 �0:0628 �0:0728
change in x2 �0:0629 �0:1044 �0:1326

15Matlab has been used for numerical calculations.
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Table 2: Changes in the expected values for the two biomasses due to
precaution as a function of t where, h1 = h2 = 0:5; � =

p
2=2; � i = 0:15;

�i = 0:1; i = 1; 2.

Model uncertainty and ambiguity aversion induces a reduction in the ex-

pected values of the two biomasses relative to the risk aversion case. The

results of table 2 can be interpreted in the following way. If the manager is

ambiguity averse with ignorance parametrized by � i = 0:15 and follows the

harvesting rule h1 = h2 = 0:5; then in the �rst period expected biomasses

will be 0:0412 and 0:0629 less than expected biomasses under risk for species

1 and 2 respectively. Thus taking into account that a worst case senario (or a

least favorable prior), which is parametrized by the value of � i; may emerge

because the manager is ambigous about his/her reference model, then the

expected values of biomasses are less relative to the case where the manager

is con�dent about the reference model and the worst case scenario is ruled

out. The biomass evolution for the �rst three periods are shown in table 3.

t = 1 t = 2 t = 3

Eu1 0:681 0:491 0:379

Eu2 0:6593 0:4494 0:319

Table 3: Expected values for the two biomasses under ambiguity aversion,
where h1 = h2 = 0:5; � =

p
2=2; � i = 0:15; �i = 0:1; i = 1; 2.

The convergence to the DDSS is faster relative to the risk aversion case,

but eventually the expected biomasses will fall below the DDSS due to ambi-

guity. Thus under ambiguity aversion expected values tend to be less relative

to risk aversion for the same level of harvesting.

A plausible question emerging from this result is: �how much should the

harvesting rule under ambiguity aversion change, relative to the risk aversion

rule, so that expected biomasses under risk and ambiguity aversion will be

the same?� The di¤erence in harvesting between risk and ambiguity can be

regarded as a measure of precaution in the following sense. If, because of

ambiguity about the reference model, the manager is to take into account the

possible emergence of a worst case scenario, then in order to keep expected

biomasses at the the same level as if the reference model was known, harvest-

ing should be changed by a certain amount relative to the harvesting when

the reference scienti�c model is known. The necessary changes in harvest-

ing in order to keep the same expected biomasses under di¤erent uncertainty

structures, while land allocation is kept constant, are shown in table 4.
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t 1 2 3

change in h1 �0:0679 �0:1324 �0:2637
change in h2 �0:0727 �0:1372 �0:2747

u�1 0:3275 0:3654 0:4341

u�2 0:3435 0:3814 0:4708

Table 4: The impact of precaution in terms of harvesting and on steady

state, where � =
p
2=2; � i = 0:15; �i = 0:1, i = 1; 2; h1 = h2 = 0:5; n = 2

Harvesting should be reduced in the �rst period by �0:0679 and �0:0727
for species 1 and 2 respectively, when the manager operates under model un-

certainty and ambiguity aversion, so that expected values are the same as in

the case where the manager operates without model uncertainty and he/she

is just risk averse. In a sense these reductions can be regarded as re�ecting

the cost of been precautious, in terms of reduced harvesting, under model

uncertainty. Since however harvesting changes, the DDSS, which is also the

expected desired steady state (EDSS) for the biomasses which is implied by

the new harvesting rules, changes. The sequence of new expected DDSS is

shown in the two last rows of table 4. The results suggest that ambiguity

aversion implies an increase in expected steady state biomass values relative

to risk aversion. This can be regarded as the e¤ect of precaution. Since the

manager is ambiguous about the reference model, in order to take into ac-

count the emergence of a worst case scenario, harvesting should be reduced

and expected biomass values should be increased relative to the case where

scienti�c uncertainty does not exist. The speci�c structure of anbiguity im-

plied by the k -ignorance approach allows the quanti�cation of the precaution

e¤ect in terms of harvesting.

By keeping all the parameter values as above except for the value of the

correlation coe¢ cient which we set at � = �
p
2=2; we repeat the calculations

leading to table 2. We present the new results in table 5 below.

t = 1 t = 2 t = 3

change in x1 �0:0478 �0:0848 �0:1147
change in x2 0:0047 0:0156 0:0296

Table 5: Changes at the expected values for the two biomasses due to
precaution as a function of t; where h1 = h2 = 0:5; � = �

p
2=2; � i = 0:15;

�i = 0:1; i = 1; 2

It can be seen that in this case precaution induces a reduction in the

expected values only for the �rst biomass. For the second species there is an
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increase in the expected values. The impact of precaution, as de�ned in table

4, can be quanti�ed in terms of harvesting units as shown in table 6 below.

t 1 2 3

change in h1 �0:0326 �0:0580 �0:0944
change in h2 �0:0237 �0:0444 �0:0732

u�1 0:3255 0:3469 0:3787

u�2 0:2958 0:3016 0:3081

Table 6: The impact of precaution in terms of harvesting, where
� = �

p
2=2; � i = 0:15; �i = 0:1, i = 1; 2; h1 = h2 = 0:5

In table 6 both harvesting and the DDSS move towards the same direction

as in table 3, with the only di¤erence being the magnitude of the change.

The analysis above suggests that ambiguity aversion induces a di¤erent

EDSS than the one corresponding to risk aversion, which is in general higher.

Another way of approaching the problem is to keep the EDSS �xed at the

original level of (u�1; u
�
2) = (0:2941; 0:2941), and calculate the changes in har-

vesting rates which under ambiguity aversion will provide the same expected

values as in the case of risk aversion.

Using the results of tables 1 and 2 we obtain table 7.

t = 1 t = 2 t = 3

change in h1 �0:1259 �0:1889 �0:3443
change in h2 �0:1337 �0:2001 �0:3630

Table 7: The impact of precaution in terms of harvesting, where � =
p
2=2;

� i = 0:15; �i = 0:1, i = 1; 2; h1 = h2 = 0:5; n = 2:

Using the results of tables 1 and 5 we obtain table 8.

t = 1 t = 2 t = 3

change in h1 �0:061 �0:0844 �0:1248
change in h2 �0:043 �0:0607 �0:0928

Table 8: The impact of precaution in terms of harvesting, � = �
p
2=2;

� i = 0:15; �i = 0:1, i = 1; 2; h1 = h2 = 0:5:

In order to explore the impact of the correlation coe¢ cient � we derive the

change in harvesting in order to keep constant the expected biomass values
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under di¤erent uncertainty structures. The results are shown in table 9, for

� = �0:9;�0:95;�0:99 and t = 1: Table 9 depicts, for one time period and

for various values of the corelation coe¢ cient the impact on harvesting rates

for keeping the same EDSS under ambiguity aversion as in the case of risk

aversion.

�nt = 1 Changes in (h1; h2)

�0:9 (�0:0410;�0:0150)
�0:95 (�0:0336;�0:0047)
�0:99 (�0:0248;+0:0076)

Table 9: The impact of precaution in terms of harvesting where, � i = 0:15;
�i = 0:1, i = 1; 2; h1 = h2 = 0:5:

It can be noticed from the last row of table 9 (� = �0:99) that if the
manager wants to follow a precautionary principle and to keep the expected

requirement within the same values as in the risk aversion case under certain

values of our parameter space, harvesting should be reduced for the �rst

species but increased for the second. Furthermore the associated steady state

could have lower biomass values than the values proposed under risk Thus

depending on the correlation among the two species biomasses, precaution

could imply conservative behavior towards one species and aggressive behavior

towards the other relative to risk aversion. It should be emphasized that this

conservative/aggressive behavior keeps the expected values within the same

levels as in the risk aversion case.

This result about conservative/aggressive behavior might be regarded as

counterintuitive, since one expects precaution to induce uniformly conserva-

tive behavior, as has been detected in the areas of monetary policy (Onatski

and Williams, 2003) and portfolio selection (Vardas and Xepapadeas, 2007).

In the case examined in the present paper it is the very strong negative corre-

lation coe¢ cient that allows behavior to be aggressive regarding one species,

since the emergence of a least favorable prior will move species biomasses in

di¤erent directions.

3.4 Probabilistic Safety Minimum Standards under Risk and
Uncertainty

Another way of approaching biodiversity management in terms of exogeneous

safety minimum standards is to ask the question: �Under what harvesting and

20



land allocation rules will species biomasses exceed a minimum level set exo-

geneously with a given probability�? This rule is formulated in the following

proposition.

Proposition 4 Given land allocation and harvesting rules (w1; :::; wn;h1; :::; hn);
upper and lower bounds can be determined for the probabilities that the bio-

masses of species i = 1; 2; :::; n are higher than 1

 of the initial biomasses

values. The safety rules and the corresponding bounds are characterized by

(
Ak1
l1k

+Akk +
Akn
lnk

)� 1



�Pr(xkt >

1



xk0) � 
(

Ak1
l1k

+Akk +
Akn
lnk

)

with ljk =
xk0
xj0

k = 1; :::n j 6= k: (28)

For n=2 species the above relationship takes the form

(A1 +
A2
l
)� 1



�Pr(x1t >

1



x10) �




x10
(A1x10 +A2x20)

= 
(A1 +
A2
l
) (29)

(lA3 +A4)�
1



�Pr(x2t >

1



x20) �




x20
(A3x10 +A4x20)

= 
(lA3 +A4) (30)

where l=
x10
x20

:

Proof. Proofs follow directly from (8), using standard operations from prob-

ability theory.

In expressions (29) and (30), Ai is de�ned as Ai = Ai(w; h1; h2; t) and

thus the associated probability bounds depend on the land allocation weights

(w; 1� w) and on the harvesting rules (h1; h2). The land allocation and har-
vesting rule (w; h1; h2) that satis�es proposition 4 therefore provides a proba-

bilistic safety rule, since it bounds the probability of having the biomasses at

any point in time above the level 1
xi0; i = 1; 2. By choosing this level, that is

by choosing 1=
; relations (29) and (30) can be used to determine a land al-

location and a harvesting rule (w; h1; h2) for desired probability bounds. For

example, a rule (w; h1; h2)jxp could be speci�ed such that the biomasses during
the planning period exceed by x% the initial biomasses, with a probability

that is between p and p + �p: Thus x% can be regarded as a probabilistic

SMS for keeping species from extinction with probability p: Then the rule

(w; h1; h2)jxp can be regarded as a probabilistic safety rule which may prevent

21



the loss of biodiversity or the irreversible extinction of a species with a given

probability.

A proposition similar to 4 can also be derived under model uncertainty

and ambiguity aversion. The basic result is that to keep the same probabilitic

SMS between risk and ambiguity aversion, harvesting in general should be

reduced when model uncertainty exists. As indicated however by numerical

results, there exist parameter constellations such that, when a strong nega-

tive correlation among species exists, the combined conservative/aggressive

behavior noted in the previous section also emerges.

4 Optimal Harvesting Rules under Uncertainty: Risk vs Am-
biguity

4.1 Optimal Harvesting under Risk

In the previous section we analyzed harvesting rules which would seek to se-

cure SF and SMS for biodiversity preservation under alternative assumptions

regarding the structure of uncertainty. In this section we turn to the deriva-

tion of optimal harvesting rules under alternative uncertainty structures. In

particular we study the impact of model uncertainty and uncertainty, or ambi-

guity, aversion on optimal harvesting rules and we try to quantify precaution,

measured as the deviation between optimal harvesting rules under uncertainty

aversion relative to traditional risk aversion.

In the two species model, we consider the problem of choosing harvesting

paths for a �xed land allocation w = (w; 1�w) which will maximize expected
discounted bene�ts de�ned as:

max
fh1(t);h2(t)g

E0
Z T

0
e��t

24X
i=1;2

�
�ihi �

1

2
�ih

2
i

�
+
X
i=1;2

�
�iui �

1

2
�iu

2
i

�35 dt
(31)

subject to

du1 = u1 (1� u1 � a12u2 � h1) dt+ �1(h)dz1
du2 = f̂ (w)u2 (1� u2 � a21u1 � h2) dt+ �2(h)dz2:

It should be noted that the objective function includes both consumptive

bene�ts assosiated with harvesting and non-consumptive bene�ts, like exis-

tence values, assosiated with the levels of existing biomasses. Thus problem

(31) can be regarded as the regulator�s or the biodiversity manager�s prob-
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lem. For �i = �i = 0 the problem can be associated with a private agent who

does not attach any welfare weights to existing biomass but cares only about

consumptive bene�ts.

We start by analyzing �rst the deterministic solution, which will be used

as a benchmark. In the deterministic case where �i = 0 for i = 1; 2; the

current value Hamiltonian function is de�ned as:

G= J + p1F
1 + p2F

2 (32)

with

J =
X
i=1;2

�
�ihi �

1

2
�ih

2
i

�
+
X
i=1;2

�
�iui �

1

2
�iu

2
i

�
F 1= u1 (1� u1 � a12u2 � h1)

F 2= f̂ (w)u2 (1� u2 � a21u1 � h2) :

Pontryagin�s maximum principle implies the following set of optimality

conditions:

ai � �ihi � pifiui = 0 ; i = 1; 2 ; f1 = 1; f2 = f̂ (w) (33)

�1 � �1u1 +
:
p1 + �p1 + p1f1(1� u1 � a12u2 � h1)� p1f1u1 � p2f2u2a21 = 0

(34)

�2 � �2u2 +
:
p2 + �p2 + p2f2(1� u2 � a21u1 � h2)� p2f2u2 � p1f1u1a12 = 0

(35)

f1u1(1� u1 � a12u2 � h1)� u1 = 0 (36)

f2u2(1� u2 � a21u1 � h2)� u2 = 0: (37)

The optimal deterministic short-run harvesting rules are obtained by solv-

ing (33), for hi , i = 1; 2 as:

hi =
ai � pifiui

�i
: (38)

Substituting (38) into (34)-(37) we obtain the modi�ed Hamiltonian dynamic

system. The steady state of this system determines the optimal long-run

equilibrium for biomasses. An optimal steady state with preservation of both

species is characterized by u� = (u�1; u
�
2) > (0; 0). Assume that such a steady
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state exists. Using (36)-(37), we can solve for

u�i =
(1� 1

f1
� a1

�1
)(1� p2f2

�2
)� aij(1� 1

f2
� a2

�2
)Q

i=1;2(1�
pifi
ai
)� a12a21

i = 1; 2: (39)

Substituting (39) into (34)-(35), we can solve for the steady state costate

vector p� = (p�1; p
�
2) and in the sequence using (39),(38) we can obtain the

optimal steady state harvesting h� = (h�1; h
�
2).

Assume that the modi�ed Hamiltonian dynamic system (34)-(37) has a

steady state solution (u�1; u
�
2; p

�
1; p

�
2) which is a local saddle point, and let

(�;
;�) = (u� u�;h� h�;p��p); with u = (u1;u2);h = (h1; h2);p =

(p1;p2) denote deviations from the steady state.

To obtain tractable and interpretable results for the stochastic case, we

use Magill�s (1977) method for replacing a nonlinear stochastic optimal con-

trol problem by its linear-quadratic approximation around the deterministic

steady state.

Taking a �rst order linear approximation of the stochastic di¤erential

equations given by (7) around the optimal deterministic steady state (u�;h�;p�)

and following Magill (1977) problem (31) is replaced by:

max


E�(0)

Z +1

0
e��tL0(�; 
)dt (40)

subject to

d�1 = (�
11
� �1 + �

12
� �2 +M

1
�
1)dt+ �1dz1

d�2 = (�
22
� �1 + �

21
� �2 +M

2
�
2)dt+ �2dz2; or

d� = (��+M
)dt+�dz; (41)

� =

"
�1

�2

#
;� =

"
�11� �

12
�

�21� �
22
�

#
;� =

"
�1 0

0 �2

#
;
 =

"

1


2

#

M1
� = f1u

�
1;M

2
� = �f2u�2;M =

"
M1
� 0

0 M2
�

#
; dz =

"
dz1

dz2

#
:

with �11� = f1 (1� 2u�1 � a12u�2 � h�1) ;�12� = �f1a12u�1; �1 = �1(h�)

�22� = f2 (1� 2u�2 � a21u�1 � h�2) ;�21� = �f2a21u�2; �2 = �2(h�)

where

L0(�;
) =
1

2

"
�




#0 "
A N

N 0 B

#"
�




#
(42)
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with

"
A N

N 0 B

#
= f

"
Juu(u

�; h�) Juh(u
�; h�)

Jhu(u
�; h�) Jhh(u

�; h�)

#
+ (43)

X
i=1;2

p�i

"
F iuu(u

�; h�)F iuh(u
�; h�)

F ihu(u
�; h�) F ihh(u

�; h�)

#
g:

In this case the Hamilton-Jacobi-Belman (HJB) equation implies, for the value

function V , that:16

�V =max



�
L0(�;
) + V�(��+M
) +

1

2
trace(�T@2V �)

�
(44)

where; V �=
h
V�1 V�2

i
; @2V =

"
V�1�1 V�1�2
V�2�1 V�2�2

#
:

Since problem (40) is a linear quadratic problem, the value function should

be linear quadratic as well, of the form:

V (�; t) =
1

2
�
0
Q�+ r:

Then the maximizer 
 satis�es the folowing relationship:


� = �B�1(M 0Q0 +N 0)�: (45)

Substituting this value in (44) we obtain after manipulations that:

r =
1

2�
trace(�0Q0�):

Matrix Q can be detrmined by the following matrix equation

1

2
(NB�1N 0 +A) = �1

2
N(B�1 � (B�1)0)M 0Q0+ (46)

Q(�� � I
2
�MB�1N 0) +QM(

1

2
(B�1)0 �B�1)M 0Q:

After the determination of matrix Q; the optimal harvesting rule 
� can be

obtained from (45):

16We use either the notation T or 0; to denote the transpose of a matrix.
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4.2 Optimal Harvesting under Uncertainty: A Robust Con-
trol Approach

Following Hansen and Sargent (2001), problem (40) can be regarded as a

benchmark model. If the decision maker was sure about the benchmark

model, then there would be no concerns regarding scienti�c uncertainty and

model misspeci�cation. In such a case the solutions derived in the previous

section would have been adequate for characterizing the optimal harvesting

rule. If however there are concerns about model uncertainty, the decision mak-

ing framework needs to account for uncertainty or ambiguity aversion. Model

uncertainty in this case is modelled by a family of stochastic perturbations,

so that:

zi(t) = ẑi(t) +

Z t

0
!i(s)ds ; i = 1; 2 (47)

where fẑi(t) : t � 0g are Brownian motions and f!i(t) : t � 0g are measurable
drift distortions.

Consider again the �rst-order linear approximation around the optimal

deterministic stationary state (u�;h�;p�). Then the dynamics of our system

take the form:17

d�1= [f1 (1� 2u�1 � a12u�2 � h�1)�1 � f1a12u�11�2 � f1u�1
1 + !1�1] dt+(48)

�1dbz1
d�2= [f2 (1� 2u�2 � a21u�1 � h�2)�2 � f2a21u�2�1 � f2u�2
2

+�!1�2 + !2
p
1� �2�2

i
dt+ �2�dbz1 +p1� �2�2dbz2.

Under model misspeci�cation, a multiplier robust control problem (Hansen

et al., 2002) can be associated with the problem of maximizing discounted

bene�ts under model uncertainty. This problem can be written in the linear

quadratic approximation form as:

V (�1;�2;u1; u2) =max
hi
min
!i
E0
Z 1

0
e��tJrobustdt ; Jrobust =

24L0(�;
) + X
i=1;2

�i
!2i
2

35
subject to (48). (49)

In this optimization problem �Nature� acts as a �mean� agent seeking to

17Using the correlation coe¢ cient matrix R as in equation (22), we obtain independent
distorted Brownian motions.
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�choose�the worst possible distortion. Thus the manager�s obgective is max-

imin: �Choose the harvesting rule which maximizes discounted net bene�ts

by taking into account the fact that the benchmark model could be misspec-

i�ed and biomass growth might be far less than the one suggested by the

benchmark model.�Using matrix notation the problem can be written as:

max


min
$
E
Z +1

0
e��tJrobustdt (50)

subject to

d� = (��+M
 +
�$)dt+
�dẑ; with dẑ =

"
dẑ1

dẑ2

#
;
� =

"
�1 0

�2�
p
1� �2�2

#

� =

"
�11� �

12
�

�21� �
22
�

#
;M1

� = �f1u�1;M2
� = �f2u�2;M =

"
M1
� 0

0 M2
�

#
;$ =

"
!1

!2

#
�11� = f1 (1� 2u�1 � a12u�2 � h�1) ;�12� = �f1a12u�1; �1 = �1(h�)

�22� = f2 (1� 2u�2 � a21u�1 � h�2) ;�21� = �f2a21u�2; �2 = �2(h�):

In the above problem �i for i = 1; 2 denotes the robustness parameters

which re�ects the intensity of concerns about model misspeci�cation for the

biomasses dynamics. A value of �i = 1 indicates the manager is con�dent

about the benchmark model and he/she is not concerned about possible model

misspeci�cation, with no preference for robustness. This case can be regarded

as the traditional risk aversion case. A value of �i = 0 indicates that there is

no knowledge about the initial model.

Using the results of Fleming and Souganidis (1989) regarding the existence

of a recursive solution to the multiplier problem, Hansen et al. (2002) show

that problem (50) can be transformed into a stochastic in�nite horizon two-

player game between the biodiversity manager and Nature. Nature plays the

role of a �mean agent" and chooses a reduction $ in the mean return of

biomasses to reduce the agent�s revenue function.

The Bellman-Isaacs condition for this game implies that the value function

V satis�es the following equation:

�V = max


min
$

�
Jrobust + @V (��+M
 +
�$) +

1

2
trace(
T

�
@2V 
�)

�
(51)

@V =
h
V �1 V �2

i
; @2V =

"
V�1�1 V�1�2
V�2�1 V�2�2

#
:
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As in the risk aversion case examined in the previous section, the value func-

tion should be quadratic of the form:

V (�) =
1

2
�
0
Q�+ r:

Solving initially for $; the distortion chosen by �Nature�, and taking into

account the expression of Jrobust; we obtain:

���1
0
�
Q0� =$; with ��1 =

"
1
�1
0

0 1
�2

#
:18 (52)

Optimal harvesting is determined by the the maximizer of (51); which is:


�U = �B�1(M 0Q0 +N 0)�: (53)

Substituting the values of (53),(52) into (51); we can initially determine r;Q

through the relationships

1

2
(NB�1N 0 +A) = �1

2
N(B�1 � (B�1)0)M 0Q0+ (54)

Q(�� � I
2
�MB�1N 0) +QM(

1

2
(B�1)0 �B�1)M 0Q0 � 1

2
Q(
��

�1
0
�
)Q;

r =
1

2�
trace(
0

�
Q0
�): (55)

Then using (53), we can solve for optimal harvesting 
�U :

4.3 Quantifying the Precautionary Principle

Relationships (45), (46) and (53), (54) characterize optimal harvesting under

risk aversion and ambiguity aversion respectively. The impact of the change in

the structure of uncertainty, from a single prior to multi priors, is embodied in

matrix Q determined by (46) for the risk aversion case and (54) for the ambi-

guity aversion case. Comparing relationships (46) and (54); it can be seen that

in (54); relative to (46); there is only one extra term, �1
2Q(
��

�1
0
�
)Q0:This

term quanti�es the concerns about model uncertainty and indicates a di¤er-

ent harvesting rule relative to the one suggested under the risk aversion case.

It can therefore be regarded as re�ecting precaution. This extra term can be

18 1
2
$0 � $=

P
i=1;2 �i

!2i
2
:
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written as:

Z = �1
2
Q(
��

�1
0
�
)Q0 = �1

2
Q

"
�21
�1

�1�2�
�1

�1�2�
�1

(1��2)�22
�2

#
Q0: (56)

Depending on 
��
�1
0

�
; that is, on the magnitude of the parameters

�i; �; �i; through (56) the elements of the matrix Q in the robust control

(ambiguity aversion) case will have di¤erent values, and will indicate a di¤er-

ent harvesting rule than the rule emerging from standard risk aversion case.

It is clear that if �i ! 1; i = 1; 2; that is there is no concern for model

uncertainty, Z = 0; and the optimal harvesting rules under risk aversion and

ambiguity aversion coincide. In this case precaution vanishes and only adjust-

ments for traditional risk (measurable uncertainty) a¤ect the decision rule.

Thus for �nite �i we have

PR = k
� � 
�Uk 6= 0:

This deviation can be regarded as the quanti�cation of precaution, since it

measures the deviations between optimal harvesting rules under risk aversion

and ambiguity aversion.19

5 Concluding Remarks

We introduce the conceptual frameworks of multiple priors in order to an-

alyze unmeasurable Knightian uncertainty (or ambiguity) which, given the

multiple types of uncertainty characterizing ecosystems, might be regarded

as a more appropriate framework relative to the classic risk case (measurable

uncertainty). We believe that this approach can be regarded as a formal way

of modelling the precautionary principle and providing policy rules for bio-

diversity management under model uncertainty and precaution. We specify

the multiple priors framework using the k -ignorance and the robust control

approaches, which are associated with decision making under uncertainty or

ambiguity aversion, in the context of least favorable priors and maxmin cri-

teria.

First, we apply the k -ignorance approach to a descriptive non-optimizing

dynamic model of interacting species and we provide safety standards through

land allocation and harvesting rules which could guarantee that species will

19A similar result can be obtained if we choose optimal harvesting by using the multiple
prior structure implied by k-ignorance, with the worst case perturbation de�ned as "�it =
�
p
2� iui:
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not become extinct under scienti�c uncertainty and ambiguity. We solve the

problem both under risk aversion and under uncertainty or ambiguity aver-

sion and, by comparing solutions, we provide a measure of the impact from

adopting a precautionary approach. By considering a simpli�ed linearized

version of the general model, we obtain numerical results which con�rm and

quantify our theoretical �ndings and we show that the cost of being precau-

tious can be quanti�ed in terms of reduced harvesting. Rules could indicate,

depending on the type of species interactions, conservative behavior towards

one group of species and aggressive towards another. Furthermore, we pro-

vide land allocation and harvesting rules for keeping biomasses above some

minimum safety level with a given probability.

Second we consider an optimizing framework where robust control meth-

ods are used to specify multiple priors approaches and maxmin optimal har-

vesting rules. We compare solutions under risk and under uncertainty aversion

and show how a measure of precaution can be formulated.

It should also be noted that the impact of ambiguity depends on the sub-

jective parameters, � for k -ignorance and � for robust control, which represent

the manager�s beliefs regarding possible deviations from the reference model

and the structure of least favorable priors. Although these parameters are

subjective, their e¤ects can be traced by considering a set of solutions for

di¤erent values of these parameters, since land allocation or harvesting rules

are a function of either � or �; depending on the case. For � = 0 or � = 1;
rules under ambiguity are the same as rules under tradional risk aversion and

incentives for precautionary behavior vanish.

Our conceptual framework can be extended along two possible lines. The

conceptual framework of Knightian uncertainty or ambiguity can be extended

to formal prey-predator or mechanistic resource-based models of species com-

petition, along with numerical simulation to obtain a sense of the quantita-

tive results. Finally, it might be worth exploiting the possibility of combined

presence of measurable (risk) and unmeasurable (ambiguity) uncertainty in

models described by two qualitatively di¤erent but interrelated dynamic sys-

tems. These could be, for example, coevolutionary models where population

dynamics which evolve in a fast time scale are characterized by measurable

uncertainty and a single prior, while trait dynamics which evolve in slow time

are characterized by unmeasurable uncertainly and multiple priors.
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