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Abstract

The present paper introduces two bonds in a standard New-Keynesian model
to study the role of segmentation in bond markets for the determinacy of rational
expectations equilibria. We use a strongly-separable utility function to model ‘liquid’
bonds that provide transaction services for the purchase of consumption goods.
‘Miquid’ bonds, instead, provide the standard services of store of value. We interpret
liquid bonds as mimicking short-term instruments, and illiquid bonds to represent
long-dated instruments. In this simple setting, the expectation hypothesis holds after
log-linearizing the model and after pricing the bonds according to an affine scheme.
We assume that monetary policy follows a standard Taylor rule. In this context, the
inflation targeting parameter should be higher than one for determinacy of rational
expectations equilibria to be achieved. We compute an analytical solution for the
bond pricing kernel. We also show that the possibility of obtaining this analytical
solution depends on the type of utility function. When utility is weakly separable
between consumption and liquid bonds, the Taylor principle holds conditional to the
output and inflation coefficients in the Taylor rule. Achieving solution determinacy
requires constraining these coefficients within bounds that depend on the structural
parameters of the model, like the intertemporal elasticity of consumption substitution.
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1 Introduction

The Taylor principle has become one of the pillars of modern normative analysis of
monetary policy. In a nutshell, it prescribes that the central bank should adjust the
nominal rate of interest more than one-for-one as a response to changes in the inflation
rate. In the standard New-Keynesian models, the Taylor principle alone pins down the
equilibrium inflation rate. Yet, the recent experience of the reaction implemented by several
central banks in the middle of the financial turmoil has stressed the role that the presence
of assets with different characteristics, such as maturity and liquidity profile, cover in the
monetary transmission mechanism.

In this paper we study the role of endogenous spreads between government bonds with
different maturities in defining the conditions of determinacy of a rational expectation
equilibrium (REE) induced by monetary policy rules a la Taylor. Our goal is to investigate
if the Taylor principle still holds in an economy where government bonds with different
characteristics coexist.

We consider a New Keynesian model where bonds provide liquidity services in place
of money. The model includes two types of bonds: liquid and illiquid. Liquid bonds are
directly providers of liquidity services. They play a role similar to that of real money
balances in the usual New Keynesian monetary models. Under this view, these bonds
make it easier for consumers to make transactions. Like the standard modelling approach
used for real money balances, we insert the real quantity of liquid bonds directly into the
utility function.! Illiquid bonds are instead used as an intertemporal store of value, that
is as a mere financial aset. To make the model analytically tractable, we do not explicitly
consider the role of transaction costs for illiquid bonds. In this sense, the model discussed
here represents the simplest possible framework that allows for the simultaneous presence
of interest rates on two different government bonds in a general equilibrium framework with
both nominal and real frictions. Assuming that assets are held until maturity, we interpret
liquid bonds as mimicking short-dated instruments, and illiquid bonds as representing
long-term assets.

This paper is close to Canzoneri and Diba (2005) and Canzoneri, Cumby, Diba,
and Lopez-Salido (2011) who study the interactions between monetary and fiscal policy
when bonds and money are imperfect substitutes in providing transaction services for the
purchase of consumption goods. We fill a gap in the current literature on determinacy and
monetary policy initiated by Bullard and Mitra (2002), by inserting an explicit role for
the term structure of interest rates and solving for an endogenous term spread. McCough,
Rudebusch, and Williams (2005) have addressed a similar question, but their model is not

solved analytically for an endogenous term spread in the standard New Keynesian model.

LAn alternative to this formulation is provided by an explicit modelling of transaction costs in the
budget constraint of the representative agent, like in Sims (1994).



Our main result is that, even with the term structure embedded in a simple model with
nominal rigidities, the Taylor principle is verified if liquidity services provided by short term
bonds arise from a strongly separable argument of the utility function. If not, the results
are no longer clear-cut and the range of values for the inflation targeting parameter for
which we get determinacy of a REE becomes non-linear and strongly dependent on output
targeting coeflicient.

In the present framework, the term structure emerges as an affine representation where
the expectation hypothesis (EH) holds in log-linear approximation. If liquid bonds enter
into the instantaneous utility function in a strongly separable way, as in the standard
neo-keynesian model described in Woodford (2003), the parameters for monetary policy
rules should lie in the same region required in models without the term structure for
determinate equilibria to emerge. In other words, regardless of the vehicle providing
liquidity services - either liquid bonds or money -, what really matters for determinacy
is whether the liquid demand is linear with respect to consumption. Instead, if liquidity
services enter in a weakly separable way, the standard Taylor principle does not hold any
longer. In this case, the size of the inflation targeting coefficient strongly depends on
the size of the output targeting coefficient in a non-linear way. Under this perspective,
modelling the term structure with strongly separable liquidity services does not determine
an important change in determinacy conditions.

Our model achieves determinacy of the REE because of the joint role of fiscal and
monetary policy. Fiscal policy rles are a key ingredient since they allow to widen the
range of parameters for which determinacy exists. In particular, following the jargon
of Leeper (1991) and Sims (1994), we find that determinacy is obtained either by
considering active-monetary with passive-fiscal or, alternatively, by passive-monetary with
active-fiscal. Passive fiscal policy is defined by setting tax revenue to react with respect to
the outstanding real level of debt formed by both liquid and illiquid bonds. The intensity

of the reaction of fiscal policy can be changed in order to properly pin down the equilibrium.

The intuition for our results has to do with the modelling assumptions that lead two
interest rates to coexist in general equilibrium model. Including the trm structure does
not matter for the determinacy condition of the model with strongly separable utility,
since it does not change the parameter setting for monetary policy rules. This observation
does not hold any longer with weakly separable utility where the traditional arguments for
determinacy induced by Taylor-type rules are very different and strongly dependent on the
core parameters of the model.

The remainder of the paper is organized as follows. The following section introduces
the modelling framework. Section 3 describes the calibration of the benchmark model and

the impulse responses to specific macroeconomic shocks. Section 4 outlies the solution



of the model and the resulting asset pricing kernel. Section 5 presents the main results
about equilibrium determinacy. Section 6 generalizes these findings to the case with a
utility function that is weakly separable between consumption and liquid bonds. Section
7 concludes. An additional appendix contains the detailed computations for the model

solution and the entire set of proofs.?

2 The Model

The general feature of our model is to consider the explicit role of bonds as providers of
transactional services. We assume the existence of two types of bonds, namely liquid and
illiquid bonds. For their intrinsic nature, liquid bonds are assumed to be a proxy for money
holdings. They are held by the representative agent in order to facilitate the transactions
due to the purchase of consumption goods. Illiquid bonds are held for financial investment
purposes. Both types of bonds pay an interest rate which differ in equilibrium because
of two elements, namely the explicit role of transaction services and the endogenously

determined term premia.

2.1 Households

We assume the existence of an infinite number of heterogeneous agents indexed on the real

line between 0 and 1. Each i-th agent maximizes the following utility function:
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where Cj; indicates the amount of consumption expressed by each i-th agent, B;1; indicates
the amount of nominal liquid bond holdings (here indexed with 1). The general price level
is given by P;. Instantaneous utility depends positively from Cj; and B;14, while negatively
from labor supply L;. In (2), o indicates the intertemporal elasticity of substitution,
X is a scale parameter and 7 is the Frisch labor elasticity. The utility function here
represented is strongly separable between all its arguments, as in the traditional New
Keynesian microfounded model where money is inserted in (2) in place of liquid bonds
By

2Further analytical proofs can be obtained from the authors upon request.



Given standard assumptions, the demand side of the model economy boils down to
a representative agent that solves an intertemporal portfolio allocation problem. This
consists in the maximization of the utility function subject to the follwing budget

constraint:

B; B; Bii— Bijo Wi L;
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where B;s; indicates the stock of illiquid nominal bonds. Moreover, W; is the nominal
wage, T is the tax collected, assumed to be lump sum. Moreover, Ry, Rg; indicate,

respectively, the rate of return paid by liquid and illiquid bonds.

The first order conditions with respect to Cy, L, Bij1; and B9, are given, respectively,
by:

1

C,” = X\ (4)

Lft = MW (5)
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Equation (4) indicates the first order with respect to consumption; equation (5) defines the
optimal labor supply choice and equates the disutility from work effort to the real wage
weighted by the marginal utility of consumption; equation (6) is the optimal intertemporal
allocation of liquid bonds B;1; and (7) is the result of the optimal choice of illiquid bonds
Biot; At is the Lagrange multiplier. In particular, we express the demand for bonds in real
terms, after having defined b;1; = Bj1t/ Py, biot = Biot/ Py

By mixing up both (6) - (7) we get the following expression for liquid bond demand:
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It is immediate to verify that demand for liquid bonds (after dropping subscript index i)

satisfies the following properties, provided that (1 — l) <1:
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The intuition goes as follows: the increase in consumption increases the demand for liquid

bonds, since they are employed for transaction. On the other hand, the increase in current,



Ry, and expected rate of return on liquid bonds, Ry;+1, increases the demand for liquid
bonds, since investors tend to favor investment with higher return, given the same level
of risk. In the same guise, the increase in the return of illiquid bonds, Rs:, depresses the
demand for liquid bonds.

To complete the outline of the demand side, we assume the existence of a large number
of differentiated goods indexed over the real line between 0 and 1. This allows each firm
to have a control of the price of her final good to be sold, since output becomes demand
determined. Following the approach by Dixit and Stiglitz (1977), we assume that the
consumption bundle Cj; demanded by each agent i € [0,1] is a CES type aggregate of all
the j € [0, 1] varieties of final goods produced in this economy, as described by:

Cir = [ / () dy} . (9)

where 0 is the elasticity of substitution between different varieties of goods produced by
each firm j. To guarantee the existence of an equilibrium, the elasticity 6 is restricted to be
bigger than one. Standard optimization problem for the choice of the optimal composition

of bundle (9) lead to the following constant-elasticity inverse demand function:

) _ {p <j>]‘6

5 (10)

where p; (7) is the price of variety j and P, is the general price index defined as:

b= Uolpt () dj]lie (11)

As 8 — oo demand function becomes perfectly elastic, and the differentiated goods are
perfect substitutes. The aggregate price level P; is beyond the control of each individual
firm. Similar steps can be applied to public expenditure G;, so that aggregate demand
is defined as the sum of private and public consumption for each variety goods: Ci (j) +
Gt (j) = Y; (j), which after aggregating over all varieties j € [0, 1] becomes: Cy + G; =Y.

In order to simplify, we assume the existence of a perfectly symmetrical equilibrium
where all agents make the same choice ez-post. Therefore, we can drop index i from all

equations in the model.

2.2 The pricing kernel

The inclusion of bonds into the utility function makes the intertemporal pricing scheme of
liquid bonds vs. illiquid bonds different, because of the presence of utility terms in equation

(5). To appreciate this, for sake of simplicity, let us consider the case where there are no



liquid bonds in the utility function, obtained by setting xy = 0. In this case, following
Ljungqvist and Sargent (2004), we get:

R = M (12)
i1 Ry
At4+1 At
E - 13
b t7Tt+1R1t+1 Ray (13)

The pricing kernel My, is defined to be:

At41

M1 = 5Et)\ (14)
tT4+1

As it is well known, the pricing kernel is the tool to price recursively the entire term

structure, starting from the shortest maturity bond. In our case, it is obvious to see that

the pricing of the two-periods bond is, after a recursive application of the kernel, given by:

A A
BrE— ot (15)
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By the same sort of argument, if we generalize to j-th period bond, we get:
j )\t+j _ p-1
B Ey =R, (16)
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The classical approach to the term structure implies that expected future short term
interest rates determine long-term interest rates. This defines the well known expectations
hypothesis (EH, henceforth), which in our case can be simply stated as: Ry = RiFiR1¢+1-

From equation (13), we get:

_ At41 - Al e
Rol' = E: |:7Tt+1)\t:| Bl + cou |:B7Tt+1>\t i "

which, after using (12) becomes:
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From (18), we observe that the EH holds if and only if utility is linear in consumption,

such that Tri‘:r;t = 1, and when the stochastic process of 7, so that the covariance term

becomes zero. In the case under exam, instead, with the inclusion of bonds into the utility

function, we observe that the pricing kernel is affected by utility terms. In fact, by taking



advantage of the first order conditions (6)-(7), we can rewrite (18) as follows:

Xbx(lfi)*l At+1
1 -1 .
— tT EiRy; 1 + couvy [5W7R1t+1} (19)

Thus, by setting x = 0 in (19) we get exactly the setting outlined in (18). From (19) we

immediately obtain the kernel expression such that:
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Thus, after plugging (21) into (19), we can observe that the interaction between the
preference structure and the pricing structure is also reflected in the second order terms.
This shows that modelling bonds with a sort of ‘liquidity preference’ motivation delivers
a non-standard representation of the stochastic pricing equations for the financial assets.

Finally, taking advantage of (4) into (14), we have:

1
M1 = BE, Ge 7 1 (21)
Ct—l-l Tt+1

In order to have a version of the kernel (14) to be employed for the analysis, we need to
have a solution for consumption and inflation as a function of all the shocks of the system.
2.3 Firms

We assume the presence of a continuum of monopolistically competitive firms distributed
on the unit line [0, 1], indexed by j € (0,1). Each individual firm faces a downward sloped
demand curve for her differentiated product Y;(j):

P(j) = {@tj)]é P, (22)

It is well known that demand function (22) can be directly derived by following the details
from Dixit and Stiglitz (1977).

The production function of each variety j employs only labor as input and it is given by:

Vi (j) = AL (4) (23)



Note that all firms producing j varieties are subjected to an homogenous technological

shock Ay, for which we assume the following structure (in log-linear terms):
/2 4
ar = (1 — pg) a+ paai—1 + a,’' “o4€; (24)

where €} is an innovation term distributed according to a standardized Normal distribution.
Price rigidities are modeled through Calvo (1983) method of price adjustment. Every
period, each seller sets prices with probability 1 — «, with a € (0, 1), independently from
the time of the last change. The parameter « indicates the degree of price stickiness.
Let us define the evolution of the price level. Let P, be the general price level index,

and be p; the new price chosen at date ¢, by all sellers . Thus the price level is given by:

1 1
A= [ o] = - ol v [ (25)
0
which is equivalent to write, given the definition of the general price level:
Pl =(1—-a)p; " +aP! (26)

To determine the price level we need the choice of ;. It is interesting to note that the
optimal choice of p; depends only upon the current and the expected future evolution
of the entire sequence of {P;};2, so there is no need to know other aspects of the price
distribution.

Firms set their own price by maximizing the following profit function:
=E; Z ap)* [)\t+k e (G Pk —w <pt(j)_ept0+ky;t+k>] (27)

By taking the First Order Condition with respect to p.(j), we get:

o8] -0
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After simplifying we have:
E z @B Lk (mi() — ()b =0 (29)
0—1

After imposing the ex-post homogeneity condition (assuming that the pricing problem

solved by each firm is equal for all firms producing the i-th varieties), and the resource



constraint, we get:

E; Z(aﬁ)k
k=0

N Pk 0—1 R\ Py
where w (+) is the utility function representing the preferences towards work vs. leisure,

which in our case is given by:

w() = (31)

1+,
In this paper we abstract from the explicit definition of price distortions induced by
monopolistic competition and nominal price rigidities. For a more general treatment,
we address the reader to Woodford (2003) and Schmitt-Grohé and Uribe (2005),
Schmitt-Grohé and Uribe (2007). Taking advantage of the form of the production function,
the first order condition on consumption given by, the first order condition of the pricing

problem is given by:

[ptu)]”*i(”%): T BT &

Pt (9-1)@ n )\t t t

After log-linearization, we get the following expression for the aggregate supply function:

Biy1 = T — kyi + faGt + gt (33)
where:
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Interestingly, the aggregate supply function (33) depends on the exogenous shocks of the
system, ag, gs.

A model like the one introduced here is often solved in terms of the output gap. This
would allow to get rid of the explicit formulation of the shock from the AS curve, since
the definition of the potential output is a linear combination of the shock. We keep tes
formulation in terms of output level, since it allows for a neat derivation of the kernel from

the model solution in terms of the shocks of the system.



2.4 Fiscal policy

The government issues two types of bonds: liquid, B¢, and illiquid, or long term maturity,

Bo;. government Budget Constraint in nominal terms is given by:

By n Ba :Blt—1+B2t—1
RiP; Ry Py P, Ry Py

+ G- 1Ty (37)

where Gy indicates the government expenditure, net of interest expenses. We assume that
bond demand expressed by each i-the agent matches the supply supplied by the government

according to the following equilibrium conditions:

1 1
By =/ Bidi;  Bag =/ Bioydi;
0 0

In the same fashion, the total amount of fiscal collection is equal to the sum of taxes paid

at the level of each i-the agent:

1
Ty =/ Tidi
0

government expenditure follows a stochastic process given by:

1/2
gt = (1= pg) g+ pggi—1 + gt/ og€t (38)

Equation (38) represents a policy shock included in the model. The term €/ indicates an
2
g
Overall the solution of the pricing kernel and the term structure is a function of two

i.i.d. normally-distributed shock with zero mean and variance sigma

shocks. There is a technological shock, representing business cycle fluctuations, and a
policy shock, in the form of g, in (38). As we will see in the following sections, this
structure permits to investigate interesting questions about the response of both short and
long rates with respect to policy changes and their feedback into the entire model economy.

According to the fiscal theory of price level determination (FTPL), the comparative
evaluation of alternative monetary policy rules should not be thought in isolation from an
explicit design of the fiscal policy stance. As described by Leeper (1991) and Sims (1994),
to prevent a strong and prolonged increase of prices, we need to introduce a policy rule
whereby taxes react to changes in the outstanding level of real public debt:

B Bat_1

Ty = o+ P, + 2 (39)

According to (39), the level of fiscal revenue 7} is set in order to react with respect to the
previus period debt: both one-period debt and two-periods debt, all expressed in real terms.
As described by Leeper (1991), Sims (1994) and Woodford (2003), rule (39) is sufficiently

10



general to encompass a wide set of debt-targeting rules, including balance-budgeting rules.
The parameter capturing the strength of tax response to debt fluctuations is given by 1,
which has been set to be equal for both short and long-term debt.

According to Leeper (1991) fiscal policy is defined to be ‘passive’ if the following conditions

is respected:
67 =] <1 (40)

and active otherwise. A passive fiscal policy sets taxes to avoid an expansionary path for
the public debt, which may lead to unwanted inflationary pressure. By changing 1 in (39)
it is possible to individuate the impact on government’s solvency after an increase in the
level of real debt.

The forthcoming discussion shows that, for liquid bonds, we have an explicit demand
function depending on the preference structure of the investor. Illiquid bond are solved
endogenously, representing a residual adjustment in the government budget constraint.
This is meant to represent a condition where illiquid bonds (or long-term bonds) absorb
all the bond-demand not satisfied by the supply conditions for short-term bonds. Implicitly,
our model designs the behavior of a secondary market for government bonds by imagining

a trading of illiquid bonds (with a two-period maturity) in each period.

2.5 Monetary policy

The question addressed in the present paper regards teh role of monetary policy rules in
tying down the determinacy properties of a rational expectations equilibrium. The types
of monetary policy rules to be studied represent a variant of the basic interest rate pegging

rule proposed by Taylor (1993), generally represented by:

n br Y; n ¢y R o R
Ry = Ry (”irriw) ( t;;y) ( Ltng 1) (41)

7

where ¢, ¢,, ¢r indicate the response of policy rate Ry; with respect to inflation, output
and lagged Ry, itself, over different time horizon (n,, ny , n;), and with different intensity
captured by coefficient ¢, ¢y, ¢;. We assume all parameters ¢, ¢,, ¢r to be positive.
Given (41) the demand for short term bonds is fully determined. The general setting
of monetary policy rule specified in (41) can be simplified to the following simpler Taylor

rule:

Rit = (1 — p) (drme + dyur) + pR11—1 (42)

with p = 0 be the interest rate smoothing parameter.

11



3 Calibration and impulse responses

In this section we present the procedure adopted to calibrate the model together with
a short impulse-response analysis, in order to discover the main dynamic properties of
model economy under study. The scope of this section is to show the basic properties of
the model conditional to the evolution of exogenous shocks. The model is calibrated by
using quarterly data from US economy for the sample 1960:1-2010:3 and the caliobrated
parameter values are reported in Table 1. The annual inflation rate considered during the
considered sample period is 4.09 per cent, while the steady state short term interest rate R
is 5.58 per cent obtained as the mean of 3-months Treasury Bill Rate during the considered
sample period. To capture the steady state of the illiquid bonds, we take the mean of the
10-year return of government bond, given by 6.5 per cent. The steady state level of output
has been obtained as the mean of quarterly GDP, constant prices, seasonally adjusted over
the sample period 1960:1-2010:3. This number has been normalized by considering the
civilian population considered over the same sample period, according to the methodology
described by Kim (2000).

The intertemporal discount rate consistent with the figures outlined earlier is equal to
0.99, as it is standard in the current literature. We also assume that the inverse of risk
aversion coefficient in the utility function ¢ has been set equal to 0.5, together with Frisch
labor supply elasticity n equal to 1, and the scale parameter x has been set equal to 0.3,
as in Gali (2008). The labor share in the production function « is set equal to 0.67.

The share of consumption over GDP is set to be 0.57, implying a public expenditure
to GDP ratio equal to 0.43, an high value if compared to the true data, given the absence
of investments from the model. Price rigidity parameter § is set equal to 2/3, implying
an average price duration of three quarters, consistent with the empirical evidence. In
the same way, the elasticity of substitution between differentiated goods is equal to 6,
as commonly assumed in the traditional new-keynesian dynamic models. The parameter
representing the response of fiscal revenue to outstanding short and long term debt is set
to be 0.05.

The steady state level of labor supply is given by L = 0.33, implying a 1/3 ratio of
working activities to non-working activities. The steady state level of total public debt is
set to be 33 per cent over GDP, equal to the average of US Federal Public Debt to GDP
ratio for the sample period considered. The short term debt has been left to be free: for
the simulation reported, we set as a benchmark value 40 per cent of the total level of debt,
implying a 60 per cent of the long term debt. Finally, the monetary policy assumed for
impulse-response function is the standard Taylor rule with both contemporaneous inflation
and output targeting, with ¢, = 1.5 and ¢, = 0.5 and p = 0. The autoregressive coefficient
for the shocks are py = 0.9, pg = 0.5. Standard deviation are, instead, set to o4 = 0.007

and og = 0.01. These figures are consistent with the values used in similar papers for the

12



U.S.

The model is solved up to first order and the impulse response functions conditional
to one standard deviation technology and public expenditure shock have been reported in
Figure 1 and 2, respectively. From Figure 1 we observe that technological shock expands
output and consumption but reduces the labor effort. The increase in aggregate demand
raises inflation rate, with a consequent increase of both short and long nominal interest
rates. The level of both short and long term bonds in real terms decreases because of the
increase of the inflation rate. This determines a reduction of tax revenue. Labor supply
falls because the productivity shock is perceived as a windfall gain.

The results for an expansionary government expenditure shock are reported in Figure 2.
Output and consumption increase, along with inflation and both the short and long term
rates. Obviously, the surge in public debt (both short and long term in real terms) makes
taxes to increase, too. Interestingly, the reaction of short term rate is stronger than long
term one, highlighting a smooth-out effect, as it is customary for term structure models.

Overall, the impulse response functions show an pattern of the variables compatible
with that of the standard new Keynesian model, with the additional feature arising from
the interplay between short and long term interest rates. Under this perspective, the
inclusion of two-bonds does not imply non-standard dynamic patterns of the variables to

a major extent.

4 An analytic solution for the pricing kernel

4.1 Model reduction

The first step consists in log-linearizing the model around the deterministic steady state.
This is now a standard procedure and we are not going to describe the full details of
it. A technical appendix available upon request will report the full log-linearized version
of model. The results from our reduction strategy can be collected in the following

proposition:
Proposition 1 The reduced form model can be represented as follows:

1 k k
Tt41 = Bﬂ't - Enyaat - Bnyg.gt (43)

bot+1 + Nr1Te+1 + Mpa20t+2 + Mpal Gt+1 + Mog2gt+2 + Mog1 Jt+1 = (44)

= My2bot — NrTt — Mpa@t — NogGt

where coefficients Nya, Myg, M1, Mba2s Mbals Mbg2s Mogls M2s s Mba, Mg are given in Appendiz
1.

13



Proof 1 See Appendiz 2.
The functional form of the model described in (43) and (44) can be directly employed in the
analytical solution of the kernel, which is explicitly discussed in the following proposition.
Proposition 2 The analytical solution to the pricing kernel is:
2 1/2
Myp1 = Ao + A1ar — Aogy — ma;/ Ta€fyq — nggt/ agef_H (45)

where coefficients are:

Ao = 6—fﬂ—(1—pa)a<%+aa)+(1—Pg)g<@—%>

o
1—
A = Nea ( pa)—OéaPa
o
1—
Ay = 77cg( pg)+agpg
o
m = @"_aa
o
N2 = %4—%

Proof 2 See Appendiz 2.

The solution presented in the previous proposition depends on the assumptions
introduces in the microfounded model. We should stress that we do not need a numerical
solution of the model written in state-space form to price government bonds in our
framework. Differently from most contributions in macro-finance, we obtain an analystical
solution for hte price kernel consistent with the model structure.

4.2 Bond pricing

Given the solution outlined in the previous section, the model has two state variables
governing the dynamics of the pricing kernel: a; and g¢. Since the pricing kernel is

conditionally lognormal, the short term rate Rj; is given by:
Ry; = —log Ey exp (my41) (46)
which, given lognormality, becomes:
1
th = —Eth_l — §Vart (mt_H) (47)

Equation (47) clearly shows that fluctuations in the short rate are represented as a

combination of changes of movements in the conditional mean and variance of the pricing
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kernel. The conditional mean of the log of the pricing kernel is given by:

Eimit1 = Ao+ Arar — Aage (48)
while conditional variance is:

vary (myy1) = nia05 + 1390, (49)

Interestingly, this model allows for a time-varying structure for the conditional variance
of the kernel, given the time-varying volatility induced by shocks. The type of shocks here
included captures two types of shocks: a technological shock capturing business cycle
patterns and a fiscal policy shock, capturing policy-related shocks. This allows to study
the reaction of term structure with respect to fiscal policy shocks. To get a constant
conditional variance, we need to set n; = 19 = 0. This condition is fairly restrictive, since
we have seen that coefficients 71, 12 are function of the core parameters of the model, so
it will be only by chance that they may be equal to zero.

By combininig (47) with (48) and (49), the solution of the short-rate interest rate can

be written as:

n 7
th = —)\0 — (Al + 50’2) Q¢ + ()\2 — ;03) gt (50)

We can now further generalize the previous argument by extending the pricing scheme
to longer-term government bond. In what follows we are going to present a general
formulation to price a generic k maturity bond and we will extend the analytics to the
type of illiquid (or long term bonds) bonds.

Following Atkeson and Kehoe (2008), let us consider the price of a k-th period maturity
bond pf:

p; = log Ey exp <mt+l +Pf;11> (51)

Our goal is to derive the affine recursive pricing formula. We set the price of a k-th period

maturity bond as a function of the state variables a; and ¢, as follows:
pf = — Ak — Bray — Crg (52)

The solution is collected in the following Proposition.

Proposition 3 The affine recursive coefficients of k-th maturity bond prices are given by:

A=+ A1+ Br1(1—pa)a+Cr1(1—pg)g (53)

15



2

g
By = paB1 = 5 (0 + Bi_y) = M (54)
0.2
Cr =X+ pgCr_1 — ?g (m5 — Ci1) (55)

2 2 2 2
with A1 = Ao, Blz)\l—l—nl;a, Ci = 7722(79 — Ag.

Proof 3 See Appendiz 2.

The yield Rg; on a k maturity bond can be expressed as:

k
Ry, = —1t (56)

which, by using (52), becomes:

1

R =
kt L

(Ar + Brat + Crgr) (57)

We can now compute the term spread, i.e. the difference between long-term Ry; and

short-term yield Rj;, which by using (50) and (57), becomes:

A B 202 C nio?
mr4m=<;+m>+<;+h+m2>w+<;—&+]; gt (58)

Differently from Atkeson and Kehoe (2008), our setting does not allow for a parallel
shift of the term structue, since all yield change differently after a shock to a; or g;. This
is due to the assumptions made for (24) (38), which are not random walk. This implies
a general set of formula for recursive terms of the affine coefficients Ay and By which
are non-linear, as proved in Proposition 3. On the other hand, equation (58) shows that
the difference between a k-th maturity bond and the short rate bond is mainly due to
exogenous shock fluctuations. Apart from this, the two yields differ for a constant term
given by (% + )\0).

We are now in the position of specifying the pattern for the long-term rate for k = 2,

as assumed in the present setting. We can collect the results in the following Corollary:

Corollary 1 For a two-period illiquid bond, the yield and the term spread are respectively
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given by:

1
Ry = 3 (A2 + Baar + Cagt) (59)
A B 252 C 202
Ry — R, = <22+)\0> + <22+A1+ 77120“>at+ (;—A2+n229 g (60)

where the coefficients are:

Ay =Bi(1—pa)a+Ci(1—py)g (61)
03 2 2
By = paB1 — (nf + B}) — Mt (62)
02
Co = Ao+ pyC1 = 1 (0 = CF) (63)

with By and C1 defined in Proposition 1

Proof 4 By setting k = 2 in (52), (53)-(55), (57) and (58), rearrange and simplify, it is

immediate to get the results stated in the text.

We can rewrite equation (60) in a more suitable fashion, so that the link between the

returns on long-term and short-term bonds can be expressed as:

Roy = Ry + no + naat + nggt (64)
where:

n = (z‘;z + Ao) (65)

= (322 a4+ 77%;3) (66)

c o2
Ng = (22—)\2+ 22g> (67)

From (64), excluding the stochastic processes a; and ¢;, we can see that the two returns
R; and Ry, differ only for a constant term. This raises two observatons. First, in general
equilibrium, the coexistence of two interest rates can be consistent with a constant wedge
between the two if there is no uncertainty. Second, the wedge fluctuates with a drift if

uncertainty is added. We would get a very similar result if we imposed exogenously a
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relation between liquid and illiquid bonds like (64). For example, this can be obtained by

assuming that the relation between the two rates evolves according to:
Roy = HRZ/ (68)

with H is a constant, Z; is stochastic term, for which we can assume an autoregressive

structure. The log-linearized version of (68) is:
Roy = o + Ry + v (69)

where 19 = logH, (; = logZ; — logZ, and a letter without time subscript denote a
steady state. If we express (; as a linear combination of a;, g we can immediately get a

representation very similar to that reported in (64):
Ry =m0+ Re+ v (Sar+ (1 &) g1) (70)

The representation of equation (70) is qualitatively similar to (68). In fact, if the
focus of the analysis is on evaluating the effect on determinacy of a rational expectations
equilibrium induced by term structure, the two representations under (68)-(70) do not
imply any differences in the results about determinacy. In other words, it does not matter
in terms of the analysis about determinacy whether the link between liquid and illiquid
bond rate of return is imposed, as occurs with (70), or whether it is explicitly derived
by following the procedure previously described earlier. The advantage of the endogenous
derivation of the link between Ro; and Ry consists in the fact that the resulting coefficients
are functions of all the core parameters of the model.

The representation outlined in equations (68)-(70) has been considered in Marzo and
Zagaglia (2008). The different results obtained in Marzo and Zagaglia (2008) are mainly
due to the different modelling strategy adopted to include liquid and illiquid bond: in
fact, in that paper illiquid bond are subjected to transaction costs in the representative
agent’s budget constraint. This delivers a different functional form for the aggregate
supply function that depends explicitly on the short term interest rate (the yield paid to
liquid bond, equal to the policy rate), creating a different transmission channel of short
term rate to term structure. In the present paper, instead, bonds are included directly in

the utility function, and there are no transaction costs in the household’s budget constraint.

A final remark about the expectations hypothesis is in order. Taking advantage of the
log-linearized reduced form of the model, we can derive the following relation (expressed

in log-linear terms) between long and short rate:

Ryt = Ry + Ry (71)
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Equation (71) is the log-linear representation of the expectation hypothesis. In other
words, the inclusion of bonds in the utility in a weakly separable way, does not induce
a violation of the EH. To get a model setting where the EH appears to be violated, it
would be necessary to include stronger frictions among different types of bonds or money,

as outlined in a preliminary work done by Marzo and Zagaglia (2008).

5 Determinacy of rational expectations equilibria

In this section we are going to study the determinacy properties of the model. Each
determinacy condition is derived conditional to a specific monetary policy rule. We are
going to consider seven variants of the rules proposed in (41)-(42): a contemporaneous
inflation-targeting rule, and a rule for backward-looking and for forward-looking inflation
targeting. In addition, we will consider a policy rule for flexible inflation targeting, where
target for output is also included.

After taking advantage of the log-linearized version of the model, we can reduce the
system to the aggregate supply function (43), the Taylor rule (42), the government budget

constraint (44) and the following version of the intertemporal IS equation:
Eiyii1 — SgEigii1 + 0ScEymip1 = yp — Sqgt + 0S8Ry (72)

where S, and S, indicate, respectively, the share of public expenditure and consumption
over GDP. Another equation of the system is given by the aggregate supply curve given
by (33). For what concerns determinacy analysis we can drop from the aforementioned
equations all terms involving exogenous stochastic processes a; and g; , since they do not
impact on the dynamic properties of the model. As a general remark, after using the
Taylor rule to eliminate Rj; into equation (72) and in the government budget constraint
(37) , we can further reduce the model down to a three-equation system in the variables

m,ye and bo. As a result, we obtain the following matrix representation for the system:
AZ, 1 = BZ, (73)

where vector Z; is given by Z; = [my, y, by]’, and matrices A and B are properly defined

according the specific setting adopted. We can rewrite the system as follows:
Zy1 =127, (74)

with: I' = A~'B. Matrix I includes the driving dynamic properties of the system. Thus,

the determinacy analysis is focused entirely on it.
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5.1 Pure inflation targeting

The monetary policy rule here studied are given by:

Ry = o¢rm (75)
Ry = ¢rmiqn (76)
Ry = ¢rm (77)

Rule (75) is a simple representation of a targeting regime for current inflation, while
(76) indicates a pure expected inflation targeting, and (77) represents a lagged inflation
targeting.> After plugging equations (75)-(77) into (72) and (37) and rearranging, we
obtain a three-equation system that can be represented as (74). Rules (75)-(77) are
denoted as absolute inflation targeting to stress the absence of any other goal for monetary
authority. In contrast, with flexible inflation targeting, output is also an argument of the
monetary policy rule.

The determinacy conditions for a REE induced by the rules (75) and (76) are stated
in Proposition 4. The backward-looking rule implies an upper bound for the coefficient ¢,

that is discussed in Proposition 5.

Proposition 4 Given ¢, > 0, conditions for determinacy of a REE to be unique under a
Taylor Rule of types (75)-(76) are given by:

O > 1 (78)
1-8 < ¥v<1+p (79)

Or, alternatively:

or < 1 (80)
1-8 > ¢  ¢>1+0 (81)

Proof 5 See Appendiz 2.

According to the results outlined in Proposition 4, the Taylor principle for a model with
our term structure specification is complied upon fully with a pure inflation targeting rules.
This is not the case for a model with backward-looking inflation targeting such as (77), as

detailed in the following proposition.

Proposition 5 Given ¢ > 0, conditions for determinacy of a REFE to be unique under a

3These policy rules have also been considered by Bullard and Mitra (2002) and Lubik and Marzo (2007)
in a model with one type of bond and money inserted in the utility function in a strongly separable way.
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Taylor Rule (77) are given by:

2(14+p)
1 < o<1+ Tck (82)
1-8 < ¢<1+p (83)
Or, alternatively:
O < 1 (84)
1-8 > 9 v>1+0 (85)

Proof 6 See Appendix 2.

From this result, we observe that a backward inflation rule prescribes an upper bound
that is a function of the inflation targeting coefficient. In this respect, the model partially
confirms the results existing in the literature, with a model including the term structure.
The results replicate the interaction between active-monetary and passive-fiscal outlined
in Leeper (1991). A determinate equilibrium can be reached also with an inflation
targeting coefficient lower than one (¢, ), provided that fiscal policy is set to be active,
or non-respondent to the path of outstanding debt. The novelty presented here, consists

in the presence of an upper bound for the backward-looking inflation targeting rule.

5.2 Flexible inflation targeting

In what follows, we consider a monetary policy rule with inflation and output stabilization.
This is meant to mimic a regime of flexible inflation targeting according to Svensson (2003).
We focus on two types of rules, namely a classical Taylor rule, with contemporaneous
targeting of inflation and output, and a variant with expected inflation targeting together
with current output targeting.

The results for the classical Taylor rule are collected in the Proposition 6

Proposition 6 Under simple Taylor Rule with contemporaneous inflation and output

targeting given by:

Riy = ¢rmi + Oyt (86)

Provided that ¢, ¢, > 0 conditions for determinacy of a REE to be unique are:

1-p
k¢w+¢y>m
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and:

k(¢pr—1)+ ¢, (1—5)>0 (88)

1-<y<1+p (89)

Alternatively, the REE is determinate if either (87) or (88) or both have the reverted

iequality and:

or < 1 (90)
1-58 >4  ¢>1+p (91)

Proof 7 See Appendiz 2.

Conditions (87)-(89) highlight a tension between ¢, and ¢,, provided that ¢, > 1. These
results confirm the findings by Bullard and Mitra (2002) and Lubik and Marzo (2007).

A second type of Taylor rule is represented by an expected inflation targeting together
with a current output targeting, obtained by setting p = 0 in (42) and considering the
expected inflation rate in place of the current rate. The Taylor rule to be studied is now

given by:
Ryt = ¢or By 11 + dyye (92)

The results on the determinacy properties of the equilibrium induced by (92) are collected

in Proposition 7.

Proposition 7 Undet expected inflation and current output targeting rule given by (92),
provided that ¢ > 0, ¢, > 0, conditions for a REE to be unique are:

2(1+p5) 2(145)
L<or< S g (93)
and:
1-8<¢<1+4p (94)

Alternatively, the REE is determinate if either (93) is not satisfied to get determinacy,
condition (94) must be replaced by:

1=p>¢  $>1+p (95)
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Proof 8 See Appendiz 2.

Even in this case, condition (93) identifies an upper bound for the inflation targeting
coefficient conditional on the size of output targeting. Fiscal policy induces an additional
degree of freedom, thus letting the policy maker choose between the combination

active-monetary and passive-fiscal or vice-versa.

5.3 Interest-rate smoothing

By setting p # 0 in equation (42), we obtain a Taylor rule with interest rate smoothing.

The results are collected in Proposition 8:

Proposition 8 With rule (42), provided that ¢,y p > 0, conditions for a REE to be

UnIque are:

k(¢r+p—1)+(1—P8)¢y >0 (96)
p<p (97)
1-6<y<1+p (98)

Alternatively, if either (96) or (97) are not satisfied, REE determinacy is obtained by
replacing (98) by:

1-8>% ¢>14+8 (99)
Proof 9 See Appendiz 2.

These results confirm the standard outcomes from a simple new Keynesian model without
the term structure. From this perspective, the inclusion of the term structure appears
irrelevant in terms of determinacy analysis as the Taylor principle is fully satisfied (see
Bullard and Mitra, 2002). A possible interpretation of these resultsis related to the role of
the expectations hypothesis, which holds perfectly in the log-linear version of the model.
The next step is to verify if these results hold when a different assumption is made for

modelling bonds.
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6 Robustness

In this section, we investigate the role of the modelling assumption for the liquidity services
provided by government bonds. We have assumed that the utility function is strongly
separable between bonds, consumption and labor effort. In what follows, we consider a

utility function where bonds and consumption are weakly substitutes:

1—1
1— o 1
[Cgblt 7} LtH"
o n

with by, = By/P;. From (100), we observe that liquid bond by are treated as if they were
cash balances, since they directly provide utility to the representative agent with a direct
interaction with consumption. The first order condition with respect to consumption (4)
is now replaced by:

1-1)—1, (1—y)(1-1%
VC';Y( 2 bgt " J):At (101)

Moreover, the first order condition with respect to liquid bonds by; is now given by:

1-(1-2 A

1-1 —-1 A
(1—y) ) ")blt )7y A (102)
Ty Rt
Thus, rearranging (101) and (102), the demand for liquid bonds takes the form:
1- Ry R
b, = 1=, L (103)

(Rot — Rit+1R1t)

It is not difficult to check that liquid bond demand (103) still respects the usual properties:
it is increasing in consumption Cy and Ry, Ri:1 and decreasing with respect to Roy.
In order to reduce the model, we can write the log-linearized version of the optimality

condition (101) as follows:

[7(1—i>—1} e+ (1—7) (1—i) biy = A (104)

while the log-linearized version of the liquid bond demand (103) is:

1 RS R

blt:Ct+( Ry +

1= 5R) ™ (n - pR) j e (105)

(m — BRy

Equations (104)-(105)are the key ingredients of the model. In equation (104), the Lagrange
multiplier depends on nominal rates through equation (105), differently from the standard
case, where )\ is a function of C; only. This feature produces a strong impact on the

resulting form of the intertemporal IS and aggregate supply equations. In fact, the IS
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curve depends on both expected and current short term rate in log-linear terms:
Yit1 — 0Scapi Rip1 + 0Semiet1 + 9o g1 = Yo — oScarRiy + gog (106)
while Aggregate Supply now becomes:

Brig1 = 7 — kY + Nasas + Ngsgt + Nrs Rt (107)

where all coefficients are reported in Appendix 1.

From equation (107), we note that the introduction of weak separability in the utility
function modifies the functional form of the AS equation in a substantial way. The short
term interest rate directly affects the expected inflation rate together with exogenous
shocks. A similar result would have been obtained after the introduction of transaction
costs in the representative agent’s budget constraint. Intuitively, this means that monetary
policy, by controlling the short term rate Ry, affects directly the firm’s costs and her ability
to borrow from banks. An increase in short term rate Rj; has the effects of increasing

the cost structure of firms, implying an increase of expected inflation as direct consequence.

Also in this formlation the expectations hypothesis holds in log-linear terms. Equation
(71) applies to this context too. The model can be reduced through the same steps of the
benchmark case. The system can be set in the form (73) with vector of variables still given

by: Z; = [mt, ys, bag). Matrices A and B from (73) are now defined as:

B 0 0
A= [O'Sc (1 - OAR(@F)] (1 - O'ScaR1¢y) 0 (108)
Ml Lyl 1
(1+nrsdx) —(k—nrse,) 0
B = aroScpr (1 —oScardy) 0 (109)
(1-%)
Hr Hy 3
while matrix I" becomes:
(A+npsédx) _ (k—nrsdy) 0
8 8
I'= ®1 ©2 0 (110)
03 04 (1;#)

where all coefficients are reported in Appendix 1.

With the present setting at hands, the following result holds:
Proposition 9 With rule (42), provided that ¢, ¢y, p > 0, conditions for a REE to be
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unique are:

k— 77RS¢y

b2y Ors} < Pr < 111
argmaz { o2, dr3 } o Fon (L4 1) + Trsdy (111)
1
o Soom < (Z5y (112)
with
q; , = USc¢y (aR + /BaRl) - (1 + 5)
" nrs (1 — kScar)
Frs = (1= B)oSchdy +nrsoScpy — o Sck
" NRSOSchy + kar (0Sc — nrs)
1-B<¢<1+p (113)

Alternatively, if either (111) or (112) are not satisfied, REE determinacy is obtained by
replacing (113) by:

1—-06> Y>14+p (114)
Proof 10 See Appendiz 2.

These results highlight the presence of a set of non-linear bounds for monetary policy
parameters ¢, and ¢,: this property is entirely dependent on the setting adopted for
the bond modelling approach. In fact, under the assumption of weakly separable utility
function between consumption and liquid bonds modifies both aggregate supply and
intertemporal IS curve. This makes the Taylor principle no longer determined since the
inflation targeting coefficient is now dependent on output targeting coefficient.

To provide a graphical representation of the implications of Proposition 9, we have
simulated the evolution pattern of ¢, and ¢, conditional to two different values for
the parameter representing the intertemporal elasticity of substitution in consumption
0. Figure 3 reports the numerical bounds for the regions of determinate model solution,
where ¢, varies between 0 and 10. The parameters of the model are exactly the same as
those described in Table 1, apart from ~, which has been set equal to 0.8, to assign a larger
weight to consumption in utility. The top panel in Figure 3 is obtained for a value of o equal
to 2, while in the bottom panel we set ¢ = 0.5. In both pictures, the determinacy region is
identified with a text label. Outside the bounds, the model is not characterized by unique
solutions unless we change the parameter of the fiscal policy rule (114). Therefore, the
picture reported in Figure 3 has been plotted with a setting consistent with the condition

(113). From the top panel of Figure 3, we observe a determinacy region when o = 2 only
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when there is an almost one-to-one increase in both ¢, and ¢,.

Intuitively, with o > 1, the marginal utility of consumption is decreasing with respect
to by1:. Hence, a negative shock to inflation implies an increase in demand for liquid bonds
b1, a lower marginal utility of consumption, and a lower labor supply. On the other hand,
if o < 1, the marginal utility of consumption is decreasing with respect to bi¢. In this case,
a negative shock to inflation implies a decrease in demand for liquid bonds by, together
with an increase in marginal utility of consumption and higher labor supply. Therefore, the
elasticity of intertemporal substitution is a crucial parameter for the determinacy region

induced by a Taylor rule, differently from the case of strongly separable utility.

7 Concluding remarks

This paper studies the role of the term structure of interest rates within a simple
new-Keynesian model. We investigate the determinacy conditions induced by Taylor-type
monetary policy rules. We find that what really matters for determinacy is not just the
inclusion of both long and short term bonds, but the way in which liquidity services are
modelled. With liquid bonds entering the utility function in a weakly separable way with
consumption, the requirement for the inflation coefficient in the monetary policy rule for
the determination of equilibria is similar to what arises in models without bond market
frictions. However, if transaction services enter in a weakly separable way, the bounds of
the determinacy regions produced by the inflation coefficient of the Taylor rule becomes
non-linear. In this case, the results are no longer clear-cut, since the bounds are strongly
dependent on other policy parameters, as well as on the core parameters of the model.

In our model, the expectations hypothesis holds and the bond pricing scheme follows
an affine structure. Under this perspective, the difference between long and short term
interest rates in a log-linear approximation is due to exogenous shock hitting both the
level and the slope of the resulting term structure.

Our results shed light on the role of alternative modelling frameworks for liquidity
services in the definition of determinacy. The role of fiscal policy becomes also evident in
affecting bond pricing through public spending shock. Considering the fiscal policy stance,
as in the fiscal theory of the price level, allows a wider characterization of the equilibrium
conditions in comparison with what has been proposed in the literature. In this sense,
the model outlined here can be easily generalized to include money and an explicit set of

transaction costs between money and multiple bonds.
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Coefficients

Model equations (sections 2-6)
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b(l—-—vY)R c b(l— 1
Moy = ( w}?a 1i%eg _ GyTyg [( - w)anQ + 3
Variant discussed in Section 7
1
apt = (1-7) (1 - a) MR
ar = (1_'7)<1_(17>an—1
— (r —BRy) — BR1 (1 — BRy)
o (= BRy) (1 - BR1)
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_ O'Scd)ﬂnRS (aR¢W - 1) + O‘R¢7r0'30 (]- - B) - JSC
a1 B (1 - JSCQR1¢W)
(k - 77RS¢y) oSe (1 - O‘R¢7r) + (1 - OéRO'chby)

T B(1—oS.anmon)
w3 = a31 (14 ¢xnrs) — 32000 ScOr + i
04 = (MrsPy — k) az1 + azz (1 — aroScoy) + 1y
a3 = GSC (1 - aR¢W) Hyl — (1 - UScaR1¢y) Hrl
B (1 —oS.aripy)
_ Hy1
azy =

1 0S:QR10y

B Schur-Cohn criterion

B.1 2 x 2 matrix

The characteristic polynomial for a generic 2 x 2 matrix A is 22 — tr (A) z + det (4) = 0.
From La Salle (1986), conditions for the two roots to lie outside the unitary circle are given
by:

det (4)] > 1 (115)
Itr(A)] < 1+det(A) (116)

In particular, condition (116) can be split in the following two inequalities:

1+ det (A) + tr (A4)

> (117)
1+4det(A) —tr(A) >

0
0 (118)
3 x 3 MATRIX

We collect in what follows the full set of conditions to be satisfied by a generic 3 x 3 matrix
B to obtain one root inside and two roots outside the unit circle. The characteristic
polynomial for a 3 x 3 matrix is:

P(A) = XN 4 A2 + A\ + A (119)

where Ag = —det (B), Ay = —tr (B), A = —tr (B), Ay = (bublg — b21b12) +
(boobss — b3abas) + (b11b3s — bs1big). Therefore, necessary and sufficient conditions ar
egiven by the following restrictions on the coefficients of the characteristic polynomial
(119). Thus, either:

1. CASE 1
1+ A +A1+A4 < 0 (120)
—14+A—A1+4 > 0 (121)
or:
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2. CASE 2

1+A4A5+A1+4 > 0 (122)
—14+A—A1+4, < O (123)
A2 — AgAs+A1—1 > 0 (124)
or:

3. CASE 3
1+A34+A1+4 > 0 (125)
—14+A—A1+A4, < O (126)
A3 — AgAs+ A1 -1 < 0 (127)
| 4] > 3 (128)

C Proofs

C.1 Proof of proposition 1

From the log-linearization of the First Order Condition on labor (5) and the production
function, we find:

1+ 4 o
Yt = 1777 af — ———————————C¢ (129)
1"’5_0‘ J(%—Fl—a)

Given (129) and the resource constraint log-linearized (see the technical appendix for
details), we obtain the following equations linking consumption to the core shock hitting
the economy:

Ct = NeaGt — NegJt (130)

where coefficients were reported in Appendix 1. Taking advantage of (130) we can also
define the output equation, as follows:

Yt = Tlya Gt — NygJt (131)

with the coefficients 1,4, 7yy in Appendix 1. The log-linearized equation for liquid bond
is:

R R
bit = mpAe — B + Ub%ﬂt—i-l - nb%)\t—i—l (132)
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Moreover, the log-linearized version of the Taylor rule with contemporaneous inflation and
output targeting is:

Ryt = ¢rmy + ¢ynyaat - ¢y77yggt (133)

after having substituted out for (131). Moreover, after further substitutions, equation
(132) can be rewritten as follows:

SRy BR1Mca 531%9
Ti41 + M at+1 — Mp
™ o agTm

gr41 (134)

b b
il g ch gt — Rt +

by = — ar +
o
From FOC with respect to by, after rearrangement, we get the following expression for
thl

1 1 1 1
Rot = ——Ncalt + —Neggt + —MNealtr1 — —NegGt+1 + Ter1 — R (135)
g g g g

From Aggregate Supply function, we have:

1 k k
Tt4+1 = Bﬂt - Bnyaat - Bnyggt (136)

Let the ratio between liquid and illiquid bonds to be: b = by /be. Taking advantage of both
(43) and (133) together with their respective forward versions we obtain the following
expression for the government budget constraint:

bat 11 + N1 T4l + Ma20t+2 + Moa1 Gl + Mog2Gt+2 + Mog1Ge+1 =

(137)
= Mp2bot — NrTt — Mpa@t — Moy Gt

Q.E.D.

C.2 Proof of proposition 2

In order to achieve a solution for the full model, we start by noting that equation (43)
does not depend on by;. Therefore, we can solve for m; from (43) and then substitute out
into (44) to solve for by;. From (43), we note immediately that 37! > 1. This implies an
explosive root. Therefore, following Sargent (1979), we can solve (43) as follows:

(1)

Tt+1 =
e
H2
Where pg is the explosive root of (43). By applying lag polynomial L to (138) we find:

- ()

Tyl = [Myati+1 + NygGi+1] (139)
4
12

[nyaat + nyggt] (138)
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By using the definition of lag polynomial as in Sargent (1979):

E s/ 1)
Mip1 = —— — | [MyaGit1 + Nyggi+1] =
2 ; (Mz) . v
knya o= [ 1" k
= Zhe Z <M2> S M Z < > Gt+i+1

e —

(140)

Applying the definition of stochastic processes for a; and g¢¢ given in (24) and (38) and
developing the series in (140).

knya —
Ti+1 = Ty [ Z( >at+1

+

2
S i (141)
k g
+ Tug ( pﬁ) -I—Z <pg> gt+1
2 TS o \M2
Thus, applying the formula to compute the sum of infinite terms:
k 1-— a k
Mol = Mya ( Pa) A2 + Mlya ( 2 >Gt+1+
pe (p2—1) p2 \ M2 = Pa (142)
knyg (1- pg) gu2 | knyg H2
+ + Gt+1
pe (p2 —1) 2 \ p2 — pg

Thus, simplifying and considering the definition of the root s = 7!, after rearranging,
we get the following solution for m:

Tt = fr + Qaat + aggy (143)
where:

f — knya (1 B pa) aﬁ + knyg (1 B pg) gﬁ

" (1-5) (1-5)
P knyaﬂ

¢ (1 - Bpg)

_ k1jyq 3

N T

To solve for by, insert the solution for 7 from (143) together with the expression for (24)
and (38) into (44). After rearranging, we get the following expression for by, ready to be
solved:

bat11 = h + maba — dqait1 — dgGi+1 (144)
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where:

Yo = NMx1Qq + Mpa2 (1 _pa)a+77b92 (1 —Pg)g+777rf7r
1-— 1-—
- Ya ( pa)a_l_’Vg( Pg)g_,m

Pa Pg

_ Ya

0o = Nr1Qa + Mba2Pa + Mbal + ;

a

_ Vg

59 = Nr1Qyg + Tba2Pg —+ Mbg1 + ;

g9

By applying standard methods, we can rewrite and solve (144) as follows (see Sargent
(1979)):

h 1
b = — ) 5 -
241 = 70 ol 1 — 1l (0gaty1 + ggt—l—l)
h > >
1 — 7o a ZZ; Mp2 Ot —i+1 g iz; Mp29t—i+1 (145)
h o . > '
Tl 80 Y (Pam2)' ars1 = 8g Y (pgm2)’ gi+1
1=0 i=0

Where in the last line we took advantage of (24) and (38). Finally, by applying the infinite
sum of series, the solution to equation (145) can be rewritten as:
h da g

— ay — gt 146
L—mp2 1= pamp2 1 — pgni2 (146)

boty1 =

Therefore, the solution of system is fully captured by equations (143) and (146). We can
now solve explicitly for the pricing kernel. Thus, taking advantage of the definitions of
shocks, the first order conditions on consumption log-linearized, the resource constraint
log-linearized and the definition of the stochastic processes, we get:

Co41 — €t = Nea (Ap41 — ) — neg (g1 — G) =
2
= Neca (1 - pa) a ~+ Nea (pa - 1) a—+ ncaa%/ Uangrl — Mg (1 - pg) g+ (147)
1/2
— Neg (pg - 1) g —Ncggy Og

Using (147) and (143) lagged forward for 711, after using again the shocks definition, we
get the solution for the kernel equation (21) as a function of the exogenous forces of the

system a;, g; reported in the text.
Q.E.D.
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C.3 Proof of proposition 3

Let us start with & = 1. To find the price of liquid, short term bond, let us set pg 1=0
in (52) to get:
pt = log Eyexp (mi1 + pii1) = log By exp (myy1) =

1
= Emyi1 + iVart (Mmig1) =

= —A; — Biag — Cigs (148)

Now, by using (50) together with (148):

2 2
“ Ay — Brag — Chge = —Xo — (Al + 7721a§> ar + </\2 - 7’220§> 9 (149)

After equating coefficients it is immediate to get the definitions of Ay, By, C1, as stated in
the text.

For k > 1, we need to write coefficients of k£ as functions of coefficients at k£ — 1. We can
rewrite (52) as follows:

Pi = —Ak—1 — Bi—rait1 — Cro19i41 (150)

Thus, by applying the definition of (24) and (38), we get:

_ 1/2
pit = —Ak-1 — By [(1 — pa) @+ paag + ay/ Uae?—&-l} -

o (151)
+ Cr—1 [(1 —Pg) g+ P9t + Gy Ugﬁfﬂ}
Therefore, by using (48)-(49) together with (151)
E; (mt+1 +Pf;11) = Ao+ Mar — Aoge — Ap—1 — Br—1 (1 — pa) a — By_1paas— (152)
+ Cr-1(1 = pg) g — Cr—1pg9t
_ 1
Var, (mt+1 + p,’le) =3 [ag (77% + Bg_l) a; + 02 (ng - C,?_l) gt] (153)

Therefore, given lognormality, we can combine bond pricing (51)-(52) with (152)-(153):

— Ay — Brar — Crge = Ao + Mar — Xogr — Ak—1 — B—1 (1 — pa) a—

+ Bi—1paat — Cr-1 (1 — pg) g — Cr—1pggt+ (154)
2 2
o (o
+5 (4 Bl et 5 (03— Cia) o
By equating coefficients, we obtain the claim of the proposition.
Q.E.D.
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C.4 Proof of proposition 4
We divide the proof in three parts, each relative to a specific monetary rule (75)- (77).

C.4.1 Current inflation rule (75)

With the inclusion of (75) in (43),(44) and (72) we can set the system in the form (74),
where matrix I' is defined as:

s —kp~! 0
= |- (0S8 +0S¢x) (1+koS.571) 0 (155)
Q1 —Qy2 ﬁ_l (1 - ¢)

Coefficients are given by:

1 /bR -
04”1:( 1nb—1>—|—¢(1—bﬂ'—bR17}b)+

B\ B 5
1 1 lenbncg
ca ol o)
k bR
125" e
oy = _(1 _/;p) ¢7r

1
Qy1 = B (0Scay = am) — yoSehr —

Qo = 5 (0Sc0y — an1) +

To get determinacy, we need two roots of matrix (155) to be outside the unit circle, and
one inside since public debt by, is a predetermined variable. Since (155) is upper triangular,
we can concentrate on the submatrix Aj; given by:

5t k!

A= (58,671 4 0Subs) (14 koSu6) (156)
Trace and determinant of submatrix Ay are, respectively:
1 okS,
tr(An) = 1+ 53 (157)
14+ koSt
det (A1) = Jr;S(b (158)

It is immediate to verify that condition (115) is automatically verified if ¢, > 0. In the
same way, condition (117) is verified if ¢, > 1, while by setting ¢, > 0 it is sufficient
to verify condition (118). This ensures that submatrix A;; has one root inside and one
outside the unit circle. To get another root inside the unit circle we need the following
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condition to be satisfied:

-9 _, (159)

g
which delivers the result stated in the text.
When both conditions ¢, > 1 and (159) are satisfied, two roots are inside and one is
outside the unit circle. If, on the other hand, ¢, < 1, then two roots will already be inside
the unit circle. Therefore, to get one root inside the unit circle, we require the following
additional condition on fiscal policy:

1 — 9|

5 > 1 (160)
which implies:
Y<1-p ¢>1+4p (161)

This proves the result for the current absolute inflation targeting rule (75).

Q.E.D.

C.4.2 Expected inflation rule (76)

Given the monetary rule under (76), matrix I' and B in the system (74) is given by:

gt —kp~! 0
= |-0S.871(1—¢r) 1—koS.871(1— ¢r) 0 (162)
31 —kasy + Qy ,8_1 (1 - d})
where:
_ 1 _27TPr P |k _ Ri(1-9) 1
azz3 =bRimp — 1 3 + 3 [1 ﬂaSc (o 1)} + 3 <b+ R1> +
1— b(l—9Y)R bR?
+ ( /3 w) Cbrr + ( g) 177b¢7r - 57_(_1 (1 - ¢) nbﬁncg
o= S B
05c (1 — ér) aya + un3
Qazl = —

B

Again, we observe that the structure of matrix I" in (162) is upper-left triangular. We can
then concentrate on the submatrix A;; given by:

_ s kB!
A = [—O'Scﬁ_l (1 _ ¢7r) 1— kO’Sc,B_l (1 . (Z)W)] (163)
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To get determinacy for the full system we require that two eigenvalues of the system to be
outside the unitary circle and one inside, since public debt by, is a predetermined variable.
Trace and determinant of submatrix (163) are given, respectively, by:

I okSe (1 — ¢x)

tI‘(All) = 1+B T (164)
det (A11) = ; (165)

From the Schur-Cohn criterion, it is immediate to check that condition (115) is fully
satisfied. Condition (117) implies:

okSc(pr —1)+2(14+5) >0 (166)
which is satisfied if and only if ¢, > 1. From (118), we get:

okSc (1 —¢z) >0 (167)
which can be rewritten as:

—0kSc (¢ —1) <0 (168)

which is satisfied if and only if ¢, > 1, as well.
The remaining part of the proof follows exactly the same steps described for the current
inflation targeting rule outlined earlier. Q.E.D.

C.5 Proof of proposition 5

Rule (77) requires a different setting for the analysis, given the time-indexing of the system.
Therefore, let us define the vector Zy = [Ry, 7, yt, bzt]'. Matrix I in this case is:

0 o 0 0
0 i . 0
B B
= oSe koS, (169)
0S. —% (1 1 kot ) 0
Q41 Qg Q43 %
where:
bRym, 1 (1—-19) 1 bR} (1 — 1))
T4 = - 5 T b - | - c
(e 7¥] 2 3 + ¢ + 3 + R MbTcg
k[(1—1) 1 b R4
= — —_— J— 1 [
Oéy3 ,8 |: ,8 <b + R1> + p
b bR
aR1 = % + 71

ap = (1—1) (1 n leUb)
15} T
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041 = ay3USc — QR

1
2 = Praprs — — (0Scoy3 + )

B

k
43 = a3 + — (0Scays + ara)

B

To get determinacy, we need two roots of the matrix (169) to be outside the unit circle
and two inside. Given the upper block-triangular structure of the matrix I" in (169), we
can concentrate on the submatrix I'1;, given by:

0 ¢ 0
1 k
ry=1| 0 3 -3 (170)
oSe koS.
oS, — 3 (1 + 7)

We apply the Schur-Cohn criterion in order to detect the presence of two roots inside and
one outside the unit circle for submatrix I'1; in (170). In this case, A9 = 7!, A1 = 871,
Ay = — (1 +B87 4+ B‘lakSc). It it then immediate to check that by applying conditions
(120)-(121) for Case 1 we get a contradiction. Therefore, from condition (122) of Case 2,
we get (after simplifying):

0Sck (pr —1) >0 (171)
which is satisfied if and only if ¢ > 1. On the other hand, from condition (123) we find:

21+ B)+0S.k(pr—1) <0 (172)
which is certainly satisfied if and only if:

2(14p)

<1
Or <14 — o7

(173)

Finally, in order to verify condition (124), after substituting out the definitions for Ay,
Ay, Ay given previously and simplifying, we need to check if the following inequality is
satisfied:

1 oSk

21.2 2Q2

B g B

which is certainly satisfied since S < 1. These conditions ensures we have two roots inside
and one outside the unit circle. To get another root inside the unit circle, condition (159)
needs to be satisfied. As we have seen before, this implies confition (79), stated in the
text.

On the other hand, if condition ¢, > 1 is not satisfied, then the same reasoning applied
in the proof of Proposition 2 can be reapeted here without any further change.

Q.E.D.

)+(1—/3’)>0 (174)
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C.6 Proof of proposition 6
With rule (86) matrix I of the system (74) can be written as:

k

3 ~5 0
r=| oS (¢n - %) kofe 114+ 0S:d, O (175)
V31 V32 (1?)
where:
,yyl _ ¢y <1 i k?O'Sc +O'Sc(z)y> . b?T¢y (1+le) +Z(1 _lenb) . kgﬂ'
e =SS (kbR o,
Yl —bgb (Rl — 7['¢7r) + qu (1 — bﬂ') + ¢yO'SC ((@r — O'ﬁSc> ;4-
1 1 b
+ (1 =) Ry <5 <b + R1> — 7r77bR177cg>

Yr2 = c ;w) (1 4+ bRimp) ér

1
Y31 = B (UScf)/yl - ’Yﬂ'l) - ’Yle'Sc(ZSTF — Vr2

k
V32 = 3 (0Sevy1 — Y1) = Yy1 (L4 0Scdy) — V2

Even in this case, to get determinacy we need two roots of matrix (175) outside and one
inside the unit circle. Given the upper-left triangular structure of the matrix I" in (175),
we can concentrate on the 2 x 2 submatrix GG11, here given by:

1 k
8 B
oS¢ (wa - E) (T + 1+ GSc¢y)
Therefore, trace and determinant of matrix (176) are, respectively, given by:
1 kS,
w(Gu) = 1+t okSg, (177)
1 Se — kor
det (Gr) = —7 <‘§y Ox) (178)

From Schur-Cohn criterion, condition (115) can be split in two parts: i) det > 1 is
immediately satisfied, given the assumption ¢, ¢, > 0; ii) det > —1, identifies the following
bound:

kb + 6y > b

o5.8 (179)
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Condition (117) is immediately satisfied, given that ¢, ¢, are assumed to be positive. On
the other hand, condition (118) directly implies:

kE(¢r—1)+¢y(1—B) >0 (180)

With conditions (179)) and (180) we have that one root of submatrix G1; in (176) will
be inside and another root will be outside the unit circle. To get determinacy for the full
system subsumed by matrix (175) we need another root to be inside the unit circle. This
is obtained by considering condition (159): this implies condition (89), stated in the text.
However, if conditions (179)-(180) are violated, then the same reasoning applied in the

proof of Proposition 2 applies here.
Q.E.D.

C.7 Proof of proposition 7
With rule (92) matrix I' of system (74) is now given by:

.
D= | 2zt kol 114686, 0 (181)
A31 A32 (1?)
where
O bRy (1 — 1)) ¢y Se (1 —¢r)  DRY (1 — ) e
Ar = @[1+k050 (1 — ¢r)] ++Tnb¢n* 3 - p +
bRy bmmy . bRy, 1 (1—1) ( 1) (1—1)
T e e st e Utw) T
wbmdy  bRigy | (1- 1)  krbmge | krbmds  kbRig
Ay1 = 5 + 5 - 5 (by + kr) 52 + B 3
k(l—ﬁ)( 1)% (k‘%_ >[ kaSe (1 — ¢r)
T UtR) e s ) Pt T
\ bRy (1 — 1)) moy
y 57{'
oS, (1 — ¢7r) )\yl + Ar
Azl = —

g

To get determinacy, we need two roots of matrix (181) to be outside and one inside the unit
circle. Once again, given the upper-left triangular structure of (181) we can concentrate
on the 2 x 2 submatrix Hi;, here given by:

1 k

B B

Hy = [ 0Sc(1—¢n) [ koS. ] (182)
L (ﬂ +1+a$%)
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Trace and determinant of Hy; in (182) are, respectively, given by:

1 okS.(1—¢r)

tI‘(Hu) = 1+B+ 5 +0—Sc¢y (183)
det (Hy) = H"ﬂs% (184)

Condition (115) is immediately satisfied, given that ¢, ¢, > 0. Condition (117) implies
the following upper bound:

_ ., 20458 (1+5)
O =1+ koS, + ¢y 2 (185)
On the other hand, condition (118) implies:
k(¢ﬂ_1)+¢y(1_ﬁ)>0 (186)

which is certainly satisfied if ¢, > 1. With conditions (185)) and (186), one root of
submatrix Hi; in (186) will be inside and another root outside the unit circle. To get
determinacy for the full system we need the additional conditions on fiscal policy, which
will capture the position of the third root. Implementing condition (159) will imply (94),
stated in the text.

When one of (185) or (186), or both, are violated, then the same reasoning applied in the
proof of Propositions 2-4 applies here, originating bounds (95).

Q.E.D.

C.8 Proof of proposition 8
With rule (42) matrix I' of system (XX) is now given by:

011 d12 —013 0
0 % —% 0
A= oS, koS, (187)
oS, o5 (1+ i ) 0
—041 042 043 ng)
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where vector Z; is given by as Z; = [Rus, T, yt, bag] . where:

o = p+dyoSe
512 _ ¢7r - ¢yUSc
B
k
513 = B (¢7r - ¢yUSc) + (by
o = [%USC +p— Z (b + Rl)] (p+ dyoSe) +
1-— bR
+6,0Sc + ( Bw (1 + 7T177b>
by = ; (05:8y — (65 — 6y7Se) p1 — O]
_ k[opRi o (1-19) 1y
5, = ¢y—ﬂ[ e (b+R1) ¢yaSc}
Su = 6,08~ (et Ra)
_ 1y (1—1) 1 bRT (1 — ) myeg
m = B[ - T (“m)_"by”&]_ ™

Matrix (187) is upper-left triangular. In this case, to get determinacy we need two roots
inside and two outside the unit circle, since both Ri; and bo; are predetermined. We can
start by focusing on the 3 x 3 submatrix Dj; given by:

011 O12 —013
1 k
Dhu=| 0 3 -3 (188)
oS. koS.

By applying apply now the Schur-Cohn criterion for 3 x 3 matrix, from (119), we have:

Ay = —g (189)
1 p koS.  ¢yoSe koS,
Al = —+p+2+ + + n 190
1 koS,
A = p oSt g1t if@ (191)

Let us start with Case I. From condition (120), we get: k(¢ +p—1)+ (1 —5) ¢y <
0. Moreover, from condition ((121), we get a contradiction, given our assumptions on
parameters’ sign. Consider now Case II. Condition (122) implies:

k(@nt+p—1)+(1-p)d, >0 (192)
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which is satisfied if ¢, > lcondition (123) is immediately satisfied. By applying condition
(124), we get:

2 1 koS,
p2_p< + St = 14 >+p+p+
g B B B B (193)
L RSe 46,7 150
AR
After adding and subtracting k"ch to (193) and rearrange, we get:
oS, koS, koS. (B —
6,75 (1 )+ BT (g 1y BT O )
E E ER ol
PP 1 p (194)
+|l55—5+p—-1+=5—-—=51>0
[/32 BT TR R

Adding and subtracting % to the term in square bracket of (194) and rearrange, we get
that the inequality in (194) can be satisfied if and only if:

P (1-5)
(1_6> (1-p) 5 >0 (195)

which is satisfied if and only if p < 3, as stated in the text, since § < 1, by assumption.
When these conditions are satisfied, one root will be inside and two outside the unit circle.
To get determinacy for the system captured by matrix (187) we need another root inside
the unit circle, which is obtained by setting:

i ;w\ <1 (196)

which, after taking advantage of the absolute value properties, delivers the result stated in
(98).

When condition (96) or (97), or both, are not satisfied we require the following condition
on fiscal policy, such that:

H_ﬂ >1 (197)

which implies condition (99) stated in the text.
Q.E.D.

C.9 Proof of proposition 9

As in previous case, we can concentrate our attention on the 2 x 2 submatrix given by:

(+nrsdx) _ (k—nrsdy)
Ty = B B (198)
¥1 (2]
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The determinant is given by:

1 — aroScpy + ¢xnrs (1 — kagS.)

det (T'17) = 199
(1) B (1 —arioSchy) (199)
The trace is:
1+ nrsox oSe (k - URS¢y) (1 - aR¢7r) +5 - 505R0'Sc¢y
tr (T'y1) = + 200
() == 51— oSeanidy) (200)
Condition det > 1 from (115) implies :
1 — aroScdy + ¢rnprs (1 — karSe) > B (1 — ar10Scoy) (201)

which, after rearrangement becomes:

¢yoSc (ar — Bagry) — (1= 6) _ -
¢7r > RS (1 — OéRkSC) = ¢7r1 (202)

On the other hand, condition det > —1, is satisfied if and only if:

0Sc¢py (ap + Bagp) — (1+8) _ -
s (1= kSear) = On2 (203)

r >

Bounds ¢r1 and ¢ previously defined are both upper bounds. To establish which of the
two bounds in (202)-(203) are binding, let us verify if ¢r2 > ¢1. This condition is verified
if and only if:

0Scpy (ar + Bar) — (1 + B) > ¢y0Sc (ar — Bagrr) — (1 —5) (204)

which is verified if:

1
2
Therefore, if condition (205) is verified, bound ¢.o given in (203) applies.
Moreover condition (118) is satisfied if and only if:
0Sck+2 (14 B) — BoSedy (ar + ar1) — 0Sc (ar + ar1) ¢y — 0Scdynrs > (206)
br (0Scark + nrskarSe — 2nRrs + 0Scdymnrs)
which, after rearrangement, becomes:
(ﬁw < oSk +2 (1 + ,3) — Usc¢y (aR + 0431) (1 + B) — USC¢y (207)

oScark +nrskarS. — 2nrs + 0Scdynrs

As ancillary result, it is not difficult to prove that (g1 — ag) = 1. From condition (117),
we get:

(1 - ﬁ) JSc¢y + nRSUSc¢y —0S:k _ 7

T > = Or 208
¢ NrsoScpy + kar (0S. — nrs) $m3 (208)
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Therefore, by mixing up the above conditions, we get that determinacy obtains if and only
if:
k —ngrs ¢y

argmaz {gr2, r3} < ér < kagr (1+1Rrs) + Nrs Py (209)
1
21
JSCOle < d)y ( 0)

Conditions (209)-(210) identify the presence of one root inside and another outside the
unit circle for submatrix (198). To check determinacy for the whole system, we need an
additional conditions on the fiscal policy side in order to have an additional roots inside
the unit circle. This is obtained by setting:

1 — 4|
B

which is equivalent to state:

<1 (211)

1-<yp<1+p (212)

Alternatively, if one or all of (209)-(210) do not hold, conditions (211) should be replaced
by:

H_Bw‘ >1 (213)
Or, equivalently:

1-B<v;  ¢>1+8 (214)
Q.E.D.
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Table 1: Parameter Values

Parameter Value
154 0.99
o 0.5
7 1
« 0.67
) 2/3
0 6
P 0.05
PA 0.9
PG 0.5
oA 0.007
oG 0.01
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Figure 3: Determinacy regions for model with weakly separable utility
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Both panels represent the simulations relative to bounds established by condition (111) by varying paramter
¢y. The top panel is obtained by setting ¢ = 2, while bottom panel is obtained with o = 0.5.
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