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Abstract

Factor models for portfolio credit risk assume that defaults are independent condi-

tional on a small number of systematic factors. This paper shows that the conditional

independence assumption may be violated in one-factor models with constant default

thresholds, as conditional defaults become independent only including a set of observ-

able (time-lagged) risk factors. This result is con�rmed both when we consider semi-

annual default rates and if we focus on small �rms. Maximum likelihood estimates for

the sensitivity of default rates to systematic risk factors are obtained, showing how they

may substantially vary across industry sectors. Finally, individual risk contributions

are derived through Monte Carlo simulation.
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1 Introduction

Estimating the credit risk of a portfolio of �nancial instruments requires two types of inputs:

1) exposure-speci�c variables like probability of default, loss given default and exposure at

default; 2) the multivariate distribution of future credit events or, in other words, some

assumptions on both the marginal distribution and the dependence structure of variables

that may trigger defaults. The second type of inputs includes the estimation of correlations

between these variables, which are often interpreted as the obligors' asset values, as in the

credit risk model introduced by Merton (1974).

Correlations are particularly important because they limit the possibility to fully diversify

credit risk at a portfolio level. For large and diversi�ed portfolios they represent the main

source of uncertainty about future losses, but their estimation is quite challenging, due to

the fact that asset returns are not observable. The existing literature o�ers three alternatives

to solve this problem. First, a factor structure can be assumed for asset returns, and asset

correlations are derived from the covariance matrix of the chosen factors (Kealhofer and

Bohn, 2001). Second, the rapid development of the credit derivatives market allows to derive

the correlations implicit in the prices of such instruments (Tarashev and Zhu, 2006). Third,

asset correlations can be obtained from historical data on defaults and credit transitions.

When default data are used, asset correlations can be derived from default correlations

using non parametric approaches as in Lucas (1995) or in Gordy (2000). Alternatively, asset

correlations are obtained directly from default data, through maximum likelihood estimation;

this approach is introduced by Gordy and Heit�eld (2002) and then used in various papers,

among which Düllmann and Scheule (2003) and Rösch and Scheule (2004). An important

advantage of parametric methodologies is that structural restrictions arising from theoretical

assumptions can be easily incorporated in the model. Furthermore, deterministic explanatory

variables like macroeconomic factors can be considered together with unobservable random

factors.

Many empirical works and applications, including the Basel II regulatory framework, are

based on the model proposed by Vasicek (1997). Asset returns are assumed to be jointly

Gaussian distributed and defaults occur when they fall below a constant threshold. A crucial

assumption of one-factor models is that defaults are independent conditional on the (single)

common risk factor. As suggested by Schönbucher (2000) this assumption should be carefully

checked, as a violation could lead to an underestimation of tail probabilities.

Our empirical results show that in the one-factor framework the hypothesis of conditional
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independence between defaults is violated, and that the introduction of a set of deterministic

explanatory variables is necessary. This evidence is con�rmed also when we use semi-annual

data on default rates, thus obtaining estimates based on a considerably longer time series

of defaults. Similar results are also found estimating a speci�c model for small enterprises,

even if sensitivities to economic conditions tend to decrease.

This paper is organized as follows. Section 2 describes the two-state factor model used

in the following analysis. Section 3 presents our empirical results, how they vary according

to the industry and the size of the obligor, and also according to the length of the horizon

considered. In Section 4 individual contributions to portfolio credit risk are obtained through

Monte Carlo simulation.

2 A credit risk model with factor structure

Consider a portfolio of exposures where the normalized return on the assets of obligor i at

time t, with i ∈ {, ..., nt} and t ∈ {, ..., T}, is driven by both observable (time-lagged) and

unobservable risk factors:

Ri,t = α′Zt−1 + Ui,t (1)

where the vector Zt−1 represents a set of information available at time t−1 to estimate the

default probability of obligor i. It may include obligor-speci�c variables as well as factors that

a�ect the credit quality of the whole portfolio. The unobservable variable Ui,t is in�uenced

by a one-dimensional systematic factor Yt and by a �rm-speci�c component Ei,t:

Ui,t =
√
δYt +

√
1− δEi,t (2)

where Yt and Ei,t follow standard normal distributions. All variables in equations (1) and

(2) are assumed to be independent and each Ei,t is also independent across obligors. There-

fore, conditional on the realizations of common risk factors, defaults are independent. From

equation (2) it follows that the sensitivity of asset returns to the systematic unobservable

risk factor depends on the time-invariant parameter δ, which represents the so-called asset

correlation.

The default of a �rm occurs when the return on its assets falls below a threshold k, and

let the random variable Di,t be a default indicator, i.e., a variable that is equal to one if �rm

i is in default at time t and zero otherwise:
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Di,t = 1⇐⇒ Ri,t < k (3)

Conditional on the realization of common risk factors, the default probability can be

expressed as:

pi,t (zt−1, yt) = P (Ri,t < k | zt−1, yt)

= P (α′zt−1 + Ui,t < k)

= P
(
α′zt−1 +

√
δyt +

√
1− δEi,t < k

)
= Φ

(
k −α′zt−1 −

√
δyt√

1− δ

)
(4)

where Φ denotes the standard normal cumulative density function.

As the number of borrowers grows, if the share of the largest exposure vanishes to zero,

the default rate DRt converges to the conditional default probability by the strong law of

large numbers:

DRt → E [DRt | zt−1, yt] = pi,t (zt−1, yt) (5)

Φ−1 (DRt)→
k −α′zt−1√

1− δ
−
√
δ√

1− δ
yt (6)

For a given q ∈ (0, 1), let ψq(Y ) denote the qth percentile of the distribution of the random

variable Y . If the expected default rate is monotonically decreasing in the systematic random

factor, the qth percentile of its distribution can be expressed as (Gordy 2003):

ψq(E [DRt | zt−1, Yt]) = E [DRt | zt−1, ψq(Yt)] (7)

Given a database of default data, assuming that the random factor is independently and

identically distributed over time, the parameters in equation (4) can be estimated maximizing

the log-likelihood function:

lnL =
T∑
t=1

ln

+∞∫
−∞

{∏
i∈Nt

pi,t (zt−1, yt)
di,t (1− pi,t (zt−1, yt))

1−di,t

}
dΦ (yt) (8)
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The integrals in equation (8) can be solved approximately using the adaptive Gaussian

quadrature described in Pinheiro and Bates (1995). It follows from the general theory of

maximum likelihood estimation that the estimates exist asymptotically, and are consistent

as well as asymptotically normally distributed (Davidson and MacKinnon, 1993).

3 Empirical analysis

3.1 Data

This paper uses a time series of default data coming from the �Base Informativa Pubblica�

(BIP), a database provided by the Bank of Italy containing quarterly time series for the

number of defaults and the number of loans that were not in default at the beginning of the

period, starting in 1990. The number of defaults in a given quarter is given by the number

of borrowers that become "adjusted bad debtors" during that quarter.2

In the BIP database borrowers can be distinguished according to several variables like

industry sector and geographical location. In this paper we focus on non-�nancial companies,

as divided between the �fteen industries listed in Table 1, which also shows the average

number of �rms and the average default rate.

3.2 Parameter estimates

The credit risk model described in Section 2 relies on the crucial assumption that, conditional

on common risk factors, defaults are independent. If this were not the case, i.e. if systematic

factors did not capture all the correlation between defaults, maximizing the log-likelihood

function in equation (8) would lead to an underestimation of tail probabilities.

As a test of our model we can use the fact that, under the conditional independence

assumption, as the number of borrowers grows the default rate DRt converges to the con-

ditional default probability. Since the number of borrowers in our dataset is large enough

to represent a reasonable approximation of an in�nitely granular portfolio, we can use (6)

2According to the de�nition used by the Bank of Italy a borrower becomes an �adjusted bad debtor� if
reported to the Italian Central Credit Register: a) as a bad debt by the only bank that disbursed credit; b)
as a bad debt by one bank and as having an overshoot by the only other bank exposed; c) as a bad debt by
one bank and the amount of the bad debt is at least 70% of its exposure towards the banking system, or as
having overshoots equal to or more than 10% of its total loans outstanding; d) as a bad debt by at least two
banks for amounts equal to or more than 10% of its total loans outstanding.

Further information about the dataset and the Italian Central Credit Register is available at the Bank of
Italy's website.

4



Table 1: Industry sectors
Average number of borrowers and
average default rate (1990-2008)

N %DR
1 Agricultural, forestry and �shery products 48,651 1.85
2 Metal products, except transport equip. 31,742 1.68
3 Food and tobacco products 17,113 2.45
4 Textiles, clothing and footwear 30,602 2.93
5 Paper and paper products 10,793 2.18
6 Building and construction 95,055 2.77
7 Trade services, recovery and repair services 172,580 2.38
8 Lodging and catering services 35,893 2.21
9 Other market services 117,178 1.84
10 Fuel, power products and chemical products 6,850 1.67
11 Ores and metals and non-metallic minerals and products 15,450 2.09
12 Agricultural and industrial machinery and transport equip. 22,631 1.91
13 Electrical goods, o�ce and data processing machines 16,351 2.17
14 Other manufactured products 34,594 2.07
15 Transport and communication services 28,480 2.37

and run a regression of Φ−1 (DRt) on a constant and a set of potential explanatory vari-

ables. Then, we can investigate the properties of the residuals, in particular checking if the

assumptions of normality and serial independence are violated.

We start considering the one-factor version of the Vasicek model, thus imposing α′ =

0, as this model is used in many empirical works and applications, including the Basel

II regulatory framework. In fact, when correlation estimates are obtained through non-

parametric approaches, as in Gordy (2000) or de Servigny and Renault (2002), asset returns

are assumed to be jointly Gaussian distributed and defaults occur when they fall below a

constant threshold.

If we run a regression of Φ−1 (DRt) on a constant, the correlogram of residuals provides

strong evidence of serial correlation. Table 2 shows autocorrelations and partial autocorre-

lations up to 12 lags, together with the Ljung-Box Q-statistics for the null hypothesis of no

autocorrelation, which is strongly rejected. This can be explained by the fact that default

rates are likely to depend on their past values due to the persistence of economic shocks and

because of possible contagion e�ects.

In order to eliminate any serial correlation we include the (percentage) lagged default rate

in the model. The coe�cient of the new variable is highly signi�cant, the model's �t improves
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Table 2: Linear regression for default rate (1)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.015 0.000 1 0.897 0.897 17.842 0.000

2 0.721 -0.427 30.058 0.000
Tests for zero-mean residuals 3 0.507 -0.207 36.479 0.000
Test Statistic p-value 4 0.305 0.016 38.946 0.000
Sign -0.5 1.000 5 0.102 -0.208 39.246 0.000

Wilkoxon 0 1.000 6 -0.072 -0.034 39.406 0.000
7 -0.210 -0.008 40.872 0.000

Tests for normality of residuals 8 -0.304 -0.060 44.235 0.000
Test Statistic p-value 9 -0.375 -0.135 49.852 0.000

Shapiro-Wilk 0.876 0.018 10 -0.406 0.042 57.153 0.000
D'Agostino-Stephens 3.606 0.165 11 -0.406 -0.050 65.373 0.000

12 -0.378 -0.055 73.535 0.000

and the correlogram shows that we have almost eliminated correlation between residuals

(Table 3). To verify if residuals are normally distributed we perform two statistical tests,

Shapiro-Wilk and D'Agostino-Pearson (see D'Agostino and Stephens, 1986 for a discussion).

In both cases the normality assumption is rejected at very high con�dence levels, suggesting

that we should extend our set of explanatory variables.

Table 3: Linear regression for default rate (2)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.396 0.000 1 0.376 0.376 2.987 0.084
%DRt−1 0.165 0.000 2 0.193 0.061 3.829 0.147

3 -0.102 -0.225 4.077 0.253
Tests for zero-mean residuals 4 0.056 0.185 4.157 0.385
Test Statistic p-value 5 -0.159 -0.233 4.858 0.434
Sign -3 0.238 6 -0.140 -0.087 5.446 0.488

Wilkoxon -23.5 0.325 7 -0.229 -0.057 7.159 0.412
8 -0.102 -0.055 7.534 0.480

Tests for normality of residuals 9 -0.077 0.023 7.769 0.558
Test Statistic p-value 10 -0.037 -0.074 7.831 0.645

Shapiro-Wilk 0.848 0.008 11 0.059 0.127 8.012 0.712
D'Agostino-Stephens 13.185 0.001 12 -0.046 -0.201 8.138 0.774

In order to choose an additional independent variable we consider the log-changes of a

broad set of key economic indicators for Italy - including GDP, industrial production, new
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orders to manufacturing, gross �xed capital formation, household con�dence, a composite

leading indicator and real interest rates - as measured at various quarterly lags and over

di�erent time horizons ranging from two to four quarters. It turns out that the semi-annual

log-change of household con�dence calculated at the end of the previous year is the variable

that, together with a constant and the lagged default rate, maximizes our model's �t. An

analysis of the possible reasons why household con�dence shows the best predictive power

among the selected macroeconomic variables goes beyond the scope of this paper, but this

result is probably due to its anticipatory nature, as con�rmed by the fact that the leading

economic indicator has a similar performance.

Table 4 shows that all coe�cients are signi�cant with the expected sign (default rates

increase when economic conditions deteriorate) and, �nally, that the normality hypothesis

for the residuals cannot be rejected even at quite low con�dence levels. We also check the

zero-mean assumption for our residuals performing the sign test and the Wilkoxon signed

rank test; in both cases the null hypothesis cannot be rejected at very low con�dence levels.

Table 4: Linear regression for default rate (3)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC Q-Stat p-value
Intercept -2.441 0.000 1 0.218 0.218 1.003 0.317
%DRt−1 0.187 0.000 2 0.167 0.126 1.633 0.442

Houseconf t−1 -1.806 0.000 3 0.003 -0.060 1.633 0.652
Tests for zero-mean residuals 4 -0.178 -0.201 2.445 0.655
Test Statistic p-value 5 -0.019 0.068 2.455 0.783
Sign 0 1.000 6 -0.296 -0.271 5.090 0.532

Wilkoxon -3.5 0.899 7 -0.110 -0.014 5.486 0.601
8 -0.313 -0.291 9.016 0.341

Tests for normality of residuals 9 -0.109 0.039 9.490 0.393
Test Statistic p-value 10 0.027 -0.005 9.522 0.483

Shapiro-Wilk 0.969 0.775 11 -0.054 -0.062 9.675 0.560
D'Agostino-Stephens 1.004 0.605 12 0.176 0.026 11.542 0.483

We �nally have a model that meets all the assumptions discussed in section 2, thus we can

derive risk estimates as quantile measures of our loss distribution using equation (7). In order

to do so, we need to estimate the correlation parameter that measures the sensitivity of asset

returns to the random risk factor, the so-called asset correlation. This can be done either

considering the variance of the residuals of our regression or maximizing the log-likelihood

function in equation (8).
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Table 5 shows our maximum likelihood estimates for the entire portfolio and for each

industry sector separately3. The highest (unconditional) default probabilities, indicated by

the largest default thresholds, are found for sectors 4 and 15. Comparatively low default

probabilities are found for sectors 9 and 10. Asset correlation, as expressed by the sensitivity

of asset returns to the unobservable common risk factor is never signi�cant at the 99% level,

except for the whole portfolio, and it is not signi�cant at the 90% level in three cases; its

highest values are 0.42% for sector 12 and 0.38% for sector 2. Serial dependence between

default rates turns out to be quite relevant in industries 1, 6 and 9, whilst it is not signi�cant

at the 95% level for sector 4. The log-change in household con�dence performs fairly well, as

it is signi�cant at the 99% level in 11 sectors and it is below the 90% level only for Building

and construction and (marginally) for Fuel, power products and chemical products.

Table 5: Maximum likelihood estimates
Industry Constant Asset correlation %DRt−1 Houseconft−1

Est. Pr > |t| %Est. Pr > |t| Est. Pr > |t| Est. Pr > |t|
1 -2.472 0.000 0.279 0.034 0.203 0.000 -0.944 0.002
2 -2.451 0.000 0.379 0.017 0.128 0.000 -1.150 0.001
3 -2.214 0.000 0.023 0.452 0.104 0.000 -0.493 0.002
4 -2.029 0.000 0.367 0.013 0.045 0.059 -0.929 0.004
5 -2.314 0.000 0.301 0.043 0.121 0.000 -0.925 0.004
6 -2.474 0.000 0.228 0.011 0.223 0.000 -0.273 0.221
7 -2.380 0.000 0.134 0.012 0.156 0.000 -0.723 0.000
8 -2.473 0.000 0.156 0.036 0.194 0.000 -0.483 0.031
9 -2.618 0.000 0.114 0.016 0.210 0.000 -0.781 0.000
10 -2.518 0.000 0.171 0.168 0.144 0.000 -0.450 0.104
11 -2.400 0.000 0.051 0.231 0.137 0.000 -0.792 0.000
12 -2.362 0.000 0.424 0.017 0.113 0.000 -1.154 0.001
13 -2.300 0.000 0.154 0.056 0.116 0.000 -0.699 0.004
14 -2.320 0.000 0.277 0.018 0.114 0.000 -1.006 0.001
15 -2.105 0.000 0.297 0.021 0.053 0.022 -0.578 0.042
All -2.413 0.000 0.092 0.009 0.163 0.000 -0.726 0.000

In general, the results in Table 5 suggest that sensitivities to risk factors vary across

borrowers, according to the industry in which they operate. If this were the case, the portfolio

composition could signi�cantly a�ect our risk estimates and risk contributions would di�er

across industries. This issue can be formally investigated through statistical tests, as the

ratio of any estimate in Table 5 with its standard error produces a t-value, with approximate

3Serial independence and normality of residuals were also checked at industry level.
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Table 6: Statistical tests for ML estimates
H0 :Industry estimates are equal to portfolio estimates

Industry Intercept Asset corr. %DRt−1 Houseconft−1

1 4.504 6.527 7.405 3.239
2 2.688 8.544 5.836 5.803
3 23.969 7.075 16.731 5.286
4 27.965 8.765 20.521 2.879*
5 7.176 6.440 6.431 2.791*
6 5.384 6.908 12.911 7.775
7 3.504 3.165 1.655* 0.055*
8 5.655 3.705 6.996 4.317
9 22.485 1.790* 12.567 1.170*
10 8.085 2.794* 3.481 4.073
11 1.442* 3.423 6.709 1.388*
12 3.440 8.908 8.181 5.642
13 10.408 3.324 10.214 0.461*
14 7.444 7.288 9.263 4.325
15 23.830 7.372 20.236 2.172*

* indicates that the null hypothesis cannot be rejected at the 99% level

degrees of freedom computed as the number of observations minus one. Table 6 shows the

values of the relevant t-statistics under the null hypothesis that sensitivities estimated at

industry level are equal to those estimated for the entire portfolio, which is rejected at the

99% con�dence level in most cases.

Considering the important role played by common risk factors, it may be useful to per-

form some sensitivity analysis of portfolio credit risk with respect to their coe�cients. In

particular, we consider the values of such coe�cients at the 90th, 95th and 99th percentiles

of their distribution and calculate 99.9% VaR using equation (7)4. Estimated sensitivities

to systematic risk factors may have a signi�cant impact on portfolio credit risk: when we

consider 90% level values our risk measure may increase by more than 7%, but if we consider

99% level values its increases range between 24% and 26% (Table 7).

3.3 Portfolio credit risk and time horizon

In this section we repeat the empirical analysis of section 3.2 using semi-annual default data.

Estimating portfolio credit risk over short horizons (less than one year) may be useful for

4For observable risk factors the results of sensitivity analysis are time-varying, as they depend on the
value of the corresponding variable.
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Table 7: Sensitivity of V aR99.9% to ML estimates
(% default rates for 2009)

Percentile
50th 90th 95th 99th

All 2.246
Random factor 2.378 2.676 2.786

%DRt−1 2.419 2.688 2.827
Houseconft−1 2.327 2.668 2.779

two reasons: �rst, it allows to generate �short-term� portfolio loss distributions, which can be

used to price �nancial instruments with quarterly or semi-annual cash �ows (e.g. portfolio

credit derivatives); second, it gives the opportunity to obtain one-year loss distributions

using parameters estimated from a much larger number of observations.

Portfolio credit risk increases with horizon because of 1) an increase in default probabili-

ties with constant asset correlations or 2) an increase in both (Lucas, 1995). In other words,

defaults tend to cluster over longer horizons due solely to an increase in the marginal proba-

bilities of default events, or also because they are more �rm-speci�c over short horizons, but

more triggered by systematic factors over longer time periods. For instance, Zhou (1997)

shows that, as the horizon lengthens, an increase in default correlations may be solely due

to an increase in default probabilities, with constant asset correlations.

Our results for semi-annual default rates con�rm the empirical �ndings of section 3.2.

Data exhibit serial correlation that can be eliminated including lagged default rates in the

model, but residuals remain highly non-normal (Tables 8 and 9).

We repeat the selection process aimed at �nding an additional explanatory variable and,

as in section 3.2, the lagged semi-annual log-change of household con�dence turns out to

be the one that maximizes our regression's �t. The coe�cient of the new variable is highly

signi�cant, with the expected sign, and we can no longer reject the hypothesis that residuals

are normally distributed (Table 10).

Table 11 shows our maximum likelihood estimates for the entire portfolio and for each

industry sector separately5. Asset correlation, as expressed by the sensitivity of asset returns

to the unobservable common risk factor is now signi�cant at the 99% level for eight industries

(and for the whole portfolio); its highest value is 0.37% for sectors 4 and 6. Serial dependence

between default rates is even more relevant, as it is always signi�cant at the 99% level. On

the contrary, the log-change in household con�dence shows a lower predictive power, as it is

5Serial independence and normality of residuals were also checked at industry level.
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Table 8: Linear regression for semi-annual default rate (1)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.292 0.000 1 0.944 0.944 36.604 0.000

2 0.872 -0.172 68.732 0.000
Tests for zero-mean residuals 3 0.796 -0.067 96.225 0.000
Test Statistic p-value 4 0.715 -0.073 119.07 0.000
Sign -3 0.418 5 0.604 -0.326 135.86 0.000

Wilkoxon -11.5 0.870 6 0.498 0.049 147.63 0.000
7 0.400 0.004 155.49 0.000

Tests for normality of residuals 8 0.301 -0.115 160.07 0.000
Test Statistic p-value 9 0.207 0.073 162.32 0.000

Shapiro-Wilk 0.893 0.002 10 0.104 -0.250 162.91 0.000
D'Agostino-Stephens 8.101 0.017 11 0.010 -0.017 162.91 0.000

12 -0.068 0.122 163.18 0.000

Table 9: Linear regression for semi-annual default rate (2)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.639 0.000 1 0.114 0.114 0.5197 0.471
%DRt−1 0.304 0.000 2 0.088 0.076 0.8395 0.657

3 0.024 0.006 0.8640 0.834
Tests for zero-mean residuals 4 0.273 0.268 4.1295 0.389
Test Statistic p-value 5 -0.018 -0.084 4.1441 0.529
Sign -5.5 0.099 6 -0.114 -0.155 4.7446 0.577

Wilkoxon -56.5 0.401 7 -0.040 -0.004 4.8213 0.682
8 -0.008 -0.063 4.8246 0.776

Tests for normality of residuals 9 0.193 0.260 6.7449 0.664
Test Statistic p-value 10 -0.042 -0.016 6.8378 0.741

Shapiro-Wilk 0.898 0.003 11 -0.140 -0.209 7.9298 0.720
D'Agostino-Stephens 14.695 0.001 12 -0.048 -0.008 8.0651 0.780

signi�cant at the 99% level in only six sectors and it is below the 90% level in four cases. In

general, however, the results in Table 11 con�rm that sensitivities to risk factors substantially

vary across industries.
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Table 10: Linear regression for semi-annual default rate (3)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC Q-Stat p-value
Intercept -2.653 0.000 1 -0.072 -0.072 0.2082 0.648
%DRt−1 0.315 0.000 2 0.109 0.105 0.7017 0.704

Houseconft−1 -0.379 0.000 3 0.018 0.033 0.7152 0.870
4 0.236 0.232 3.1454 0.534

Tests for zero-mean residuals 5 -0.058 -0.032 3.2950 0.655
Test Statistic p-value 6 0.020 -0.035 3.3134 0.769
Sign -4.5 0.188 7 -0.040 -0.053 3.3903 0.847

Wilkoxon -25.5 0.706 8 0.007 -0.052 3.3926 0.907
9 0.053 0.086 3.5382 0.939

Tests for normality of residuals 10 0.117 0.149 4.2678 0.934
Test Statistic p-value 11 -0.214 -0.206 6.7984 0.815

Shapiro-Wilk 0.966 0.300 12 -0.007 -0.070 6.8014 0.870
D'Agostino-Stephens 1.100 0.577

Table 11: Maximum likelihood estimates - semi-annual data
Industry Constant Asset correlation %DRt−1 Houseconft−1

Est. Pr > |t| %Est. Pr > |t| Est. Pr > |t| Est. Pr > |t|
1 -2.715 0.000 0.174 0.019 0.398 0.000 -0.655 0.000
2 -2.715 0.000 0.361 0.001 0.286 0.000 -0.616 0.005
3 -2.465 0.000 0.063 0.123 0.196 0.000 -0.338 0.014
4 -2.331 0.000 0.372 0.001 0.131 0.000 -0.567 0.007
5 -2.595 0.000 0.145 0.069 0.271 0.000 -0.560 0.003
6 -2.669 0.000 0.374 0.000 0.381 0.000 -0.169 0.382
7 -2.628 0.000 0.090 0.001 0.307 0.000 -0.448 0.000
8 -2.697 0.000 0.097 0.027 0.356 0.000 -0.087 0.519
9 -2.830 0.000 0.138 0.001 0.397 0.000 -0.323 0.012
10 -2.748 0.000 0.049 0.570 0.275 0.000 -0.197 0.284
11 -2.647 0.000 0.060 0.186 0.275 0.000 -0.429 0.003
12 -2.640 0.000 0.364 0.002 0.263 0.000 -0.501 0.019
13 -2.565 0.000 0.136 0.025 0.242 0.000 -0.323 0.042
14 -2.594 0.000 0.245 0.002 0.255 0.000 -0.447 0.013
15 -2.386 0.000 0.275 0.003 0.121 0.000 -0.139 0.463
All -2.652 0.000 0.084 0.000 0.315 0.000 -0.378 0.000

3.4 Portfolio credit risk and �rm size

The results of Section 3.2 are not necessarily valid for small companies, as they have, on

average, a less diversi�ed portfolio of assets than large companies, thus they may show a
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lower sensitivity to systematic risk factors. In the Basel II IRB approach, for instance,

asset correlation is an increasing function of the size of the obligor, as measured by its

yearly turnover6. The results in Düllmann and Scheule (2003) and Lopez (2003) show that

asset correlations increase with �rm size, whilst Dietsch and Petey (2004) �nd a U-shaped

relationship between the two variables. These conclusions, however, can be in�uenced by

the fact that small enterprises operate mainly in industries that are less cyclical, whereas

large �rms prevail in sectors more dependent on macroeconomic conditions, leading small

companies to show lower systematic risk.

The database used in this paper allows to distinguish only loans to sole proprietorships

with up to 5 employees as a proxy for the small business sector. Even if such a category

corresponds more to a de�nition of micro-enterprise, it can be used to repeat the analysis of

section 3.2 and check if the results vary with �rm size.

As for larger �rms, if we run a regression of Φ−1 (DRt) on a constant, the correlogram

of residuals provides strong evidence of serial correlation, which can be eliminated including

the (percentage) lagged default rate in the model (Tables 12 and 13).

Table 12: Linear regression for default rate - small �rms (1)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.008 0.000 1 0.804 0.804 14.321 0.000

2 0.626 -0.057 23.510 0.000
Tests for zero-mean residuals 3 0.438 -0.135 28.291 0.000
Test Statistic p-value 4 0.275 -0.061 30.301 0.000
Sign -0.5 1.000 5 0.146 -0.024 30.909 0.000

Wilkoxon 0 1.000 6 -0.026 -0.238 30.929 0.000
7 -0.185 -0.150 32.065 0.000

Tests for normality of residuals 8 -0.336 -0.151 36.155 0.000
Test Statistic p-value 9 -0.444 -0.096 44.010 0.000

Shapiro-Wilk 0.917 0.098 10 -0.394 0.276 50.896 0.000
D'Agostino-Stephens 5.576 0.062 11 -0.357 -0.060 57.268 0.000

12 -0.369 -0.279 65.050 0.000

It is interesting to notice that, with respect to larger �rms, departures from normality

are less evident, suggesting that for some sub-portfolios it may not be necessary to include

additional variables to meet the conditional independence assumption. The coe�cient of the

6Asset correlation is a strictly increasing function of the obligor's turnover only if this is not below 5
million euro, and not above 50 million euro.
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Table 13: Linear regression for default rate - small �rms (2)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC. Q-Stat p-value
Intercept -2.380 0.000 1 0.238 0.238 1.1990 0.274
%DRt−1 0.164 0.000 2 0.116 0.063 1.5027 0.472

3 0.093 0.055 1.7081 0.635
Tests for zero-mean residuals 4 -0.078 -0.125 1.8631 0.761
Test Statistic p-value 5 0.170 0.220 2.6673 0.751
Sign -3 0.238 6 0.078 0.000 2.8520 0.827

Wilkoxon -15.5 0.523 7 -0.077 -0.123 3.0484 0.880
8 -0.015 -0.020 3.0568 0.931

Tests for normality of residuals 9 -0.247 -0.209 5.5045 0.788
Test Statistic p-value 10 -0.144 -0.050 6.4348 0.778

Shapiro-Wilk 0.897 0.050 11 -0.001 0.045 6.4348 0.843
D'Agostino-Stephens 3.417 0.181 12 -0.120 -0.066 7.2983 0.837

semi-annual log-change in household con�dence is not signi�cant at the 99% level, con�rming

that small �rms are less in�uenced by systematic risk factors, but the normality hypothesis

for the residuals cannot be rejected even at quite low con�dence levels (Table 14).

Table 14: Linear regression for default rate - small �rms (3)
Parameter estimates Correlogram of residuals

Variable Estimate Pr > |t| Lag AC PAC Q-Stat p-value
Intercept -2.388 0.000 1 0.079 0.079 0.131 0.718
%DRt−1 0.162 0.000 2 -0.108 -0.114 0.391 0.822

Houseconft−1 -0.314 0.092 3 0.250 0.273 1.887 0.596
4 -0.056 -0.134 1.967 0.742

Tests for zero-mean residuals 5 -0.015 0.083 1.973 0.853
Test Statistic p-value 6 0.087 -0.020 2.202 0.900
Sign -2 0.481 7 0.109 0.178 2.591 0.920

Wilkoxon -9.5 0.702 8 0.015 -0.049 2.599 0.957
9 -0.190 -0.184 4.041 0.909

Tests for normality of residuals 10 -0.212 -0.265 6.054 0.811
Test Statistic p-value 11 -0.034 -0.004 6.114 0.866

Shapiro-Wilk 0.938 0.272 12 -0.151 -0.147 7.480 0.824
D'Agostino-Stephens 0.428 0.808
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4 Risk contributions

Risk managers are typically interested in estimating not only the overall risk of a portfolio,

but also the contribution of individual exposures to such risk. In fact, individual risk con-

tributions are a a key input for setting pricing limits, calculating risk-adjusted performances

and for capital allocation decisions.

Marginal risk contributions can be represented as conditional expected losses (Tasche,

1999). Let Li be the loss from obligor i and L the total loss in the portfolio; assuming

P (L = V aRα) > 0, the marginal V aRα contribution from obligor i can be expressed as:

E (Li | L = V aRα) (9)

In the model described in section 2 individual expected losses are equal for all exposures,

as both default thresholds and sensitivities to common risk factors are assumed to be con-

stant across borrowers. The empirical results in section 3.2 show that these assumptions are

acceptable when calculating an overall portfolio risk measure. On the contrary, when we es-

timate individual risk contributions, the same assumptions should be relaxed, as incremental

risk for a borrower with a higher PD (or asset correlation) is, ceteris paribus, greater than

incremental risk for a borrower with a lower PD (or asset correlation).

In this section we consider a �ctitious portfolio of 7,500 loans, where all industries are

equally represented, and we estimate risk contributions for each sector. In order to do that,

we use maximum likelihood estimates of correlations and default probabilities to approximate

the loss distribution by Monte Carlo simulation.

We draw an independent standard normal variable for each exposure and a vector from

the multivariate normal distribution of common risk factors Y ∼ N(0,Ω), where Ω is the

covariance matrix of the empirical estimates of systematic factors in di�erent industries. We

calculate the asset return for each exposure, we compare it to the default threshold, and

determine the default indicator (one for default, zero otherwise). The portfolio loss for this

draw is given by the sum of default indicators of all exposures, thus assuming that loss

given default and exposure at default are always equal to one. To estimate the portfolio loss

distribution, to be interpreted as the distribution of the number of defaults in the portfolio,

we repeat this process many times.

Standard Monte Carlo methods are a�ected by serious problems in estimating marginal

risk contributions, as these can be represented as conditional expected losses on subportfolios,

conditioned on low-probability events. To address the problems deriving from the rarity
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of large losses, we use an adaptation of the importance sampling procedure developed by

Glasserman and Li (2005) to estimate the tail of our loss distribution. The basic idea is

moving from the real probability measure P to a new probability measure P̃ , under which

large losses are more frequent. In particular, the probability for the total loss to be above a

certain value l can be expressed as:

P (L > l) = E
(
1{L>l}

)
= Ẽ

(
1{L>l}

dP

dP̃

)
(10)

where Ẽ denotes the expectation under P̃ and dP
dP̃

is the likelihood ratio between the two

probability measures.

The procedure suggested by Glasserman and Li (2005) for credit risk models with factor

structure consists of two steps: 1) shifting the distribution of systematic factors; 2) increasing

conditional default probabilities.

In our model the estimated coe�cients of the unobservable common risk factors are very

low, thus we focus only on the second step of the importance sampling procedure. In partic-

ular, we consider a new (increased) default probability for industry j, with j ∈ {, ..., }:

p (θ, Yj) =
p (Yj) e

θ

1 + p (Yj) (eθ − 1)
(11)

where θ is the solution to the equation:

∂

∂θ
ψ (θ,Y) = V aRα (12)

with

ψ (θ,Y) =
15∑
j=1

log
(
1 + p (Yj)

(
eθ − 1

))
(13)

The likelihood ratio that allows to move from the probability measure P̃ back to the

original measure can be expressed as:

λ = exp (−θ (Y)L+ ψ (θ (Y) ,Y)) (14)

The V aRα contribution for obligors in sector j becomes:

V aRα,j =
Ẽ
(
Ljλ1{L=V aRα}

)
Ẽ
(
λ1{L=V aRα}

) (15)
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Table 15 reports the V aR99.9% contributions for each industry in our portfolio. The results

con�rm the key role played by sensitivities to common risk factors (both observable and

random) in determining individual risk contributions to portfolio credit risk. For instance,

sector 6 shows the third lowest unconditional PD (as indicated by the constant in Table 5)

but also a quite high autoregressive component, which re�ects in its risk contribution. On

the contrary, sector 4 has the highest unconditional PD, but its risk contribution is reduced

by low serial dependence. As for asset correlation, we can notice that sector 3 shows a high

default probability, but a much lower risk contribution (in relative terms) due to its low

sensitivity to the random risk factor. (Tables 5 and 15).

Table 15: V aR99.9% contributions
Importance sampling estimates for 2009

(as % default rate)
99.9% con�dence intervals are in parentheses

Industry Annual Semi-annual
1 0.1908 (0.000473) 0.0848 (0.000379)
2 0.1665 (0.000445) 0.0788 (0.000373)
3 0.1680 (0.000413) 0.0904 (0.000381)
4 0.1696 (0.000449) 0.1538 (0.000536)
5 0.2045 (0.000488) 0.0866 0.000380)
6 0.1761 (0.000455) 0.0988 (0.000431)
7 0.1704 (0.000425) 0.0783 (0.000355)
8 0.1561 (0.000409) 0.0683 (0.000333)
9 0.1170 (0.000351) 0.0567 (0.000305)
10 0.1147 (0.000356) 0.0474 (0.000277)
11 0.1369 (0.000376) 0.0664 (0.000328)
12 0.1976 (0.000497) 0.0903 (0.000403)
13 0.1786 (0.000439) 0.0839 (0.000372)
14 0.1960 (0.000473) 0.0906 (0.000395)
15 0.2404 (0.000533) 0.1156 (0.000452)

When we consider semi-annual data, observable risk factors are less important in deter-

mining risk contributions, as lagged default rates are lower with respect to yearly data, but

also because changes in macroeconomic conditions do not fully display their e�ects over short

horizons. At the same time, sensitivities to random factors have a relatively greater impact.

For instance, the risk contribution of sector 6 is very high compared to its PD, because of

a signi�cant asset correlation, whereas industries 7 and 11 display low risk contributions for

the opposite reason (Tables 11 and 15).
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5 Conclusions

This paper shows that measuring portfolio credit risk using the one-factor version of the

Vasicek model with constant default thresholds may lead to an underestimation of tail prob-

abilities, as a single systematic risk factor cannot capture all the correlation between asset

returns, leading to a violation of the conditional independence assumption. Instead, we

prove through statistical tests that factor models require the inclusion of deterministic ex-

planatory variables like macroeconomic factors and autoregressive components, together with

unobservable random factors. In fact, default rates are in�uenced by macroeconomic condi-

tions with a certain time-lag, but they also depend on their past values due to the persistence

of economic shocks and because of possible contagion e�ects.

Sensitivities to risk factors vary across borrowers, according to the industry in which they

operate, therefore a change in the composition of a portfolio may signi�cantly a�ect our risk

estimates. Serial dependence between default rates is quite relevant in all industries and it

is not signi�cant at the 99% level in only two cases. Macroeconomic conditions, as measured

by the log-change in household con�dence, also play a major role in most cases, but they are

not signi�cant at the 90% level for two sectors. Finally, asset correlation, as expressed by

the sensitivity of asset returns to the unobservable common risk factor, is never signi�cant

at the 99% level, except for the whole portfolio, and it is not signi�cant at the 90% level in

three cases.

The main results obtained with annual default rates are con�rmed by semi-annual data,

thus using a considerably longer series of observations. When we increase the frequency of

our data the autoregressive component becomes more important, but it is still not su�cient

to explain all the correlation between defaults.

Portfolio credit risk and sensitivities to systematic risk factors vary according to the size

of the borrower. If we compare the results obtained for small companies with the coe�cients

derived for larger �rms, we observe that serial dependence between default rates remains

signi�cant, but macroeconomic conditions play a less important role.

Default thresholds and sensitivities to common risk factors can be assumed to be con-

stant across borrowers when calculating a single measure for portfolio credit risk. These

assumptions must be relaxed when we estimate individual risk contributions, which repre-

sent a fundamental input for pricing, calculating risk-adjusted performances and for capital

allocation decisions. Maximum likelihood estimates are used to derive the risk contribution

for each industry sector through Monte Carlo simulation and our results con�rm the key role
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played by sensitivities to common risk factors (both observable and random).
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