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Is Double Trouble?

How to Combine Cointegration Tests

*

Christian Bayer! and Christoph Hanck!

IGIER, Universita Commerciale L. Bocconi
and
Technische Universitédt Dortmund

April 1, 2008

Abstract

This paper suggests a combination procedure to exploit the imperfect correla-
tion of cointegration tests to develop a more powerful meta test. To exemplify, we
combine Engle and Granger (1987) and Johansen (1988) tests. Either of these un-
derlying tests can be more powerful than the other one depending on the nature
of the data-generating process. The new meta test is at least as powerful as the
more powerful one of the underlying tests irrespective of the very nature of the data
generating process. At the same time, our new meta test avoids the size distortion
inherent in separately applying multiple tests for cointegration to the same data set.

KEYWORDS: Cointegration, Meta Test, Multiple Testing

JEL-Codes: C12, C22

1 Introduction

Testing for cointegration has become one of the standard tools in applied economic
research. Various tests have been suggested for this purpose, most of which are im-
plemented in standard econometric packages and hence are easily available nowadays.

Well-known examples include the residual-based tests of Engle and Granger (1987) and
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Phillips and Ouliaris (1990), or the system-based tests of Johansen (1988, 1991). This
regularly forces the applied researcher to select from the test decisions of the various
applicable procedures. Often one test rejects the null hypothesis whereas another test
does not, making it unclear how to interpret test outcomes then. More generally speak-
ing, the p-values of different tests are typically not perfectly correlated (Gregory et al.,
2004).

Because of the imperfect correlation, it is problematic to choose, for example, a
testing strategy that relies on the test that achieves the smallest p-value. Such strategy is
not suitable to decide whether or not the time series under investigation are cointegrated.
It will not control the probability of rejecting a true null hypothesis at some chosen level
« because it ignores the multiple testing nature of the problem. More specifically, using
the test with the smallest p-value will lead to an oversized test.

It has thus been suggested that the significance level of the tests should be adjusted
downwards when running more than one cointegration test. One classical solution to the
problem is the Bonferroni procedure which compares the p-values of N tests with the
more challenging cut-off value of a/N. Unfortunately, this test procedure—while able to
remove the size distortion—has low power. From this line of argument one might view
the imperfect correlation of different test statistics mostly as a problem.

However, an imperfect correlation of test statistics also implies that one test contains
information that the other one is not exploiting. Hence, we may view the imperfect cor-
relation of underlying tests as beneficial instead. This leads us to propose an aggregation
procedure to combine different underlying tests in a meta test that potentially yields an
improvement in power.

One approach popular in meta analysis to combine tests is Fisher’s 1970 approach
which found its application in econometrics in panel-unit root tests for example (Maddala
and Wu, 1999). Fisher-type tests are traditionally used to combine results from one test
on different and independent samples. This corresponds to the fact that the distribution
of the Fisher test as originally proposed applies only to independent test statistics. This
rules out using a standard Fisher test in a setup where we want to combine correlated
underlying tests of one hypothesis on a single sample. Yet, methods to deal with the
issue of correlated test statistics have been developed recently (Hartung, 1999), so that
correlation itself is no longer an insuperable obstacle to meta testing. The challenge has
instead become to estimate the correlation structure of the test statistics. We propose
a bootstrap method to carry out this estimation.

We hence exploit recent advances in meta analysis in order to provide valid inference

on cointegration when several underlying tests are available. In particular, we exemplify



our test using a combination of an Engle and Granger (1987) cointegration test with a
Johansen (1988) maximum eigenvalue test for cointegration rank.

The proposed bootstrap method for estimating the correlation structure of the under-
lying tests also yields a second version of the meta test that relaxes certain assumptions
required for Hartung’s method. Both versions of our meta test successfully control the
level « of the test and are at the same time powerful.

In particular, we demonstrate that our meta test is as powerful as the more powerful
one of the underlying tests, which amongst them can each be more powerful than the
other one, depending on the true data-generating process. Consequently the meta test
provides a test of non cointegration with attractive power properties across a wide range
of relevant data-generating processes. The test can hence be viewed as selecting the more
powerful of the underlying tests in a fully data driven fashion. At the same time, the test
avoids the size distortion associated with multiple testing that arises when separately
employing several underlying tests. To the best of our knowledge, this is the first time
that a practical approach is put forward to combine different tests of a given hypothesis
applied to a single sample.

The remainder of this paper is organized as follows: Section 2 describes our test
procedure and Section 3 gives setup and results of our Monte Carlo experiments. Sec-
tion 4 revisits a set of cointegration studies to provide an empirical application of our

cointegration test. Finally Section 5 concludes.

2 Test Procedure

2.1 Setup

Let x¢ = (z14,---,%Kt) € RE be a vector of stochastic variables integrated of order
one, I (1). The stochastic vector x; is said to be cointegrated if there exists at least one
a € RE o # 0, such that z; = a'x; is a stationary I (0) process. Suppose we have
observations Xg, ..., Xr.

We are concerned with the following null hypothesis:
Hy : There exists no cointegrating relationship among the variables in x;.
against the alternative hypothesis

Hj : There exists at least one o # 0 such that z; = a’x; is I (0).



The literature has suggested various test procedures to discriminate between these
two hypotheses. Well-known examples include the residual-based tests of Engle and
Granger (1987) and Phillips and Ouliaris (1990), or the system-based tests of Johansen
(1988, 1991).

For the Engle-Granger test, one computes the t-statistic of y—1 in the OLS regression

P
A’[Lt = (’7 — l)ﬂtfl ‘I‘ Z Z/pAﬁ»tfp + €t. (1)
p=1

Here, 4y is the usual residual from a first stage OLS regression of one of the zp, k =
1,..., K, on the remaining elements of x; (and appropriate deterministic terms). The
sum 25:1 vpAty_, captures residual serial correlation. Alternatively, one could control
for serial correlation by the semiparametric approach of Phillips and Ouliaris (1990).

The system-based tests of Johansen (1988) test the presence of h cointegrating re-
lationships by estimating the number of significantly non-zero eigenvalues of the matrix
IT estimated from the Vector Error Correction Model (VECM)

P
AXt = HXt,1 + Z I‘pAXt,p + Mo + €. (2)
p=1

The actual tests are either the Aiace-test with test statistic
K
Airace () = =T > In(1—#) (3)
j=h+1

or the A\pax-test with test statistic
Amax (h) = =T In (1 — 7tpyq) . (4)
Here, 7r; denotes the jth largest eigenvalue of IL.

2.2 Exploiting Imperfect Correlation between Cointegration Tests

As Gregory et al. (2004) show, the p-values that correspond to the above test statistics are

only weakly correlated, in particular when comparing residual-based and system-based

1

tests." As we argued in the introduction, this means that a more powerful test can

'In unreported simulations, we find that under the null hypothesis, the correlation of probits of the
p-values (see below) is about .55 for Atrace and Engle-Granger tests.



in principle be achieved by exploiting the imperfect correlation of suitably transformed
test statistics. The actual test that we propose is based on Hartung’s (1999) method to
combine dependent test statistics.

Let &, be the test statistics of a test ¢ = 1,..., N of a set of cointegration tests
(e.g. the ones discussed above) and Z; its asymptotic distribution function under the
null hypothesis. Under the null, the integral transformation of the test statistic, Z; (§;),
yields a uniformly distributed random variable on the unit interval. This variable closely
corresponds to the p-values of the test, which are defined as p; = Z; (§;) if the test rejects
for small values of §; and p; = 1 — E; (&;) if the test rejects for large values of ;. Based
on these p-values, we can define a probit representation of the test as ®~1(p;) =: t;,
where ® is the cumulative distribution function of the standard normal distribution.

Let t = (t1,...,ty). Then, asymptotically, the components of t are marginally stan-
dard normal under the null. Hartung (1999) now, as highlighted by Demetrescu et al.
(2006), additionally makes the auxiliary assumption that t is jointly normally distrib-
uted, denoted t ~ N (0,X). Under this assumption, we have ¢/t ~ N (0,¢'3¢), where

t=(1,...,1)". This leads to a standardized meta test statistic,

Ut

\/L/EL.

The statistic 7 follows a standard normal distribution under Hy and the auxiliary as-

T =

sumption of joint normality. Of course, there is no a priori reason to justify joint nor-
mality of t in the case of cointegration tests that we consider. Fortunately, Demetrescu
et al. (2006) demonstrate that Hartung’s procedure can be fruitfully applied even if the
assumption is not met.

As a practical requirement, we need a feasible consistent estimator of X. If the
number of tests N is small, there is no hope to estimate ¥ meaningfully from the
realizations of t. This is so even if one is willing to assume constant correlation of ¢;,1;
as in Hartung (1999), which in any case would not be a sensible assumption in our
setting. Instead, we rely on a bootstrap method to estimate 3.

Thus, we require a method to bootstrap cointegration tests under the null hypothesis.
Such a bootstrap procedure has recently been proposed by Swensen (2006). In brief,
Swensen’s procedure resamples residuals from an estimated VECM representation of
the data-generating process (DGP) to then generate integrated but non-cointegrated
time series. From the resulting bootstrap distribution of the test statistic, we estimate
the correlation matrix of t.

More specifically, we use the following algorithm.



Algorithm 1 :

1. Estimate the unrestricted VECM
P
Ax; = Ixy_1 + Z LpAX:—p + po + € (5)
p=1
to obtain coefficient estimates fi, f[,f‘p and residuals €.

2. Check whether the system has no explosive root, i.e. whether ||z|| > 1, by solving

~

det[A(z)] = 0, where
Az)=(1—2)Ig —Mz—T1(1—2)z— - —Tp(1 —2)2".

b=1,..,.B
t=P+1,..,
with replacement from the residuals {&},_p | -

3. If so, draw B series of pseudo errors {e;b} o by resampling non-parametrically

4. With these pseudo errors, construct B series of pseudo observations xj, from
P
* I * ~ *
Axy, = Z LpAX; p + o + €
p=1
For the initial observations, set Xy, = x4,t=10,... ,P.3

5. Compute the test statistics 52‘71) for all pseudo samples b =1,..., B and all cointe-

gration tests that are to be combined, i =1,..., N.

6. Estimate the distribution function of the test statistic of each test as

. #{¢f, <zlh=1,...,B
:Z(ZL'): { h B }

and calculate the corresponding p-values p;, = Zf ({Zb) or 1 —E5 (&), as ap-

propriate. Correspondingly, calculate the p-values, p;, of the test statistics on the

original data by evaluating =5 (&;) or 1 —Z¥ (&;).

?As pointed out by Swensen (2006) one could alternatively estimate a restricted VAR in first dif-
ferences to impose the null of no cointegration. However, as Paparoditis and Politis (2003) show for
unit-root tests, imposing such a restriction may lead to a power loss.

3Since we require pseudo observations that are integrated but non-cointegrated, IT = 0 is imposed



7. Obtain the corresponding probit representation of each test statistic, t;, = é_l(pfb),
stacked in t; = ( ’{’b, ey *N7b)’ where ®~ 1 is the quantile function of the standard

normal distribution. Correspondingly, obtain t; = ®~1 (p;).

8. Estimate the covariance matriz 3 of the probits of the tests by
1

> = EZ(tZ — ) (t; — ),
b

where T = % Y, t7.
This Algorithm provides a feasible version of the test statistic T,
Ut
VUES
where t is the probit representation of the bootstrap version of the underlying tests (see

step 7 of Algorithm 1). We then reject Hy at level v if 7% < @71 (a).

Note that 7* will reject Hg at least at level « if all underlying tests t; reject at level

*
T =

. This is so because t; < ®~1 () for all i = 1,..., N implies

Ut Ut
" = <= < a

Vose SN <P
since the entries of the positive semi-definite correlation matrix 3* are bounded by 1
and —1.

Swensen (2006) shows that his bootstrap procedure for the Johansen Agace test,

i.e. steps 1-6 in Algorithm 1, delivers a consistent estimate = of the distribution of the
test statistic under the null hypothesis. It hence yields consistent estimates of p-values.
The key element in Swensen’s (2006) proposition is that the above bootstrap algorithm
yields pseudo observations which have a representation asymptotically equivalent to the
true DGP. Therefore, we expect Swensen’s proposition to carry over to other tests for
cointegration, in particular the ones we mentioned before. We corroborate this conjecture

via extensive simulation in Section 3.

2.3 Alternative Formulation

Our Hartung-type test is a modification of the ‘inverse normal’ meta test (Stouffer et al.,
1949) robustified against dependence among the test statistics. Alternatively, we can

formulate an analogous test that is more closely related to the meta test of Fisher



(1970), suitably modified to take dependencies between the test statistics into account.
The advantage of this second test is that it does not rely on joint normality of t. We

keep from the Fisher test the aggregator of p-values
X=-2> In(p).
i

Of course we cannot invoke a x2 (2N) null distribution of y as independency of the
aggregated test statistics is necessary for this result. We therefore propose the following
modification of Algorithm 1 to estimate the distribution of x to account for dependency

among the test statistics.
Algorithm 2 :

1. - 6. As in Algorithm 1.

7. Obtain the corresponding aggregate x test statistic

Xp = —QZID (0ip) -

8. Estimate the cumulative distribution function © of the x; by

_#{x<alh=1,....B)

0" (z) 5

This provides us with a dependency robust version of the Fisher test, where the p-
values p; of the underlying tests are obtained as in step 6 of Algorithm 1. We calculate

the final test statistic as

X" =-2) In(p)
i
and then reject Hy at level « if x* exceeds the (1 — a)-quantile of ©*. This second test
can be viewed as a distribution-free version of the test described in Algorithm 1.
3 Monte Carlo Experiments

3.1 Setup

Next, we study the properties of the proposed tests in a series of Monte Carlo experi-

ments. As emphasized in the introduction, different tests for cointegration are likely to



differ in their power against different points in the space of the alternative hypotheses.
For example, Johansen’s A\ ax test can be expected to be relatively more powerful if the
data is indeed generated by a finite order VECM with uncorrelated errors. Since our
test combines information from tests that are powerful in different directions, a potential
advantage of our testing strategy is that it should be more robust across different DGPs.

We therefore consider the following two alternative DGPs

DGP(A): Ax;=1IIx;1 +TAx 1 +u
I' =021

DGP(B):  xi + Bror = 211, T1t + o = 221
8=-2 a=-1

21t = 21t—1 + Ult, 22t = PZog—1 + U2t

U = ) (0,I2).
U2t

These designs are widely used in Monte Carlo studies of cointegration tests. See for
instance Engle and Granger (1987), Gonzalo (1994), Gregory et al. (2004), or Swensen
(2006).

For DGP(A) the null hypothesis of no cointegration is obtained when IT = 0, whereas

In both DGPs we set

we parameterize the alternative hypothesis of cointegration by IT = (1  0)' (.15 — .15).
For DGP(B), the null hypothesis is obtained when p = 1, whereas we parameterize the
alternative hypothesis of cointegration by p = 0.85.4

For each DGP, we draw 5,000 replications under both the null and the alternative.
We choose T' € {50, 75,100, 125,150} as lengths of the time series. To mitigate the effect
of initial conditions, we simulate each DGP for T 4+ 30 time periods and discard the
first 30 observations. For each replication, we compute the 7* and the x* tests based
on B = 10,000 bootstrap replications. As underlying tests we select Johansen’s (1988)
Amax test and the augmented Engle and Granger (1987) residual-based test (AEG).

To investigate the relative performance of the new tests, we compare them to fol-
lowing alternative possibilities to test for cointegration: First, the standard augmented

Engle and Granger (AEG) and Johansen Apyax tests, where we reject the null hypothesis

10Of course, Granger’s representation theorem would allow us to write DGP(B) in a VECM form.
However, error terms would be correlated, the matrix IT would have no rows of zeros under the alternative
and I' would equal 0.



Figure 1: Empirical power, DGP(A) and DGP(B), various T
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See notes to Table 1

if the test statistics fall short of (respectively exceed) the level a critical value computed
from the appropriate distribution of the tests.” Second, we investigate bootstrap ver-
sions of both tests (denoted in the following by AEG* and A}

max

), which are by-products
of our 7* and x* tests. Third, we compute a ‘naive’ meta test based on the bootstrapped
versions of the two underlying tests. This test rejects whenever at least one of the tests
rejects. We call this test ‘naive’ because it ignores the multiple-testing nature of the
problem. Studying this test hence reveals the size distortion incurred by selecting the
most rejective test from a set of cointegration tests.

Implementation of the cointegration tests typically requires to select an order P of
lagged differences to account for auto-correlation. In practice this is often done via some
lag-length selection criterion, see e.g. Liitkepohl (2005). To reduce the computational

burden we waive this option and use a constant order of P = 2 throughout.

3.2 Results

Table 1 reports the empirical size of all tests at the level o of 5%.5 The main findings

may be summarized as follows. As expected, the ‘naive’ test is oversized and its size

’In the case of the AEG test we follow the standard practice of using MacKinnon (1996)-type critical
values, which control for number of observations.

SWe also ran all simulations described above at the 1% and 10% level, with qualitatively similar
results. We also experimented with a version of DGP(A) with AR(1) error terms instead of white noise
u:. Again, results are qualitatively similar. Tables with the additional results are available upon request.
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Table 1: Empirical size

Bootstrap tests

asymptotic tests

DGP T  x* ™ ‘naive’ A, AEG* Amax  AEG

(A) 50 0.0684 0.0748 0.1026  0.0684 0.0534 0.093 0.0352
75 0.0570 0.0636 0.0876  0.0530 0.0530 0.0888 0.0374
100 0.0520 0.0562 0.0822 0.0546 0.0486 0.0882 0.0366
125 0.0518 0.0598 0.0796  0.0490 0.0522 0.0854 0.0336
150 0.0496 0.0564 0.0750 0.0492 0.0464 0.0806 0.0314

(B) 50 0.0598 0.0656 0.0932  0.0594 0.0542 0.0876 0.0346
75 0.0558 0.0608 0.0830 0.0488 0.0536 0.0848 0.0356
100 0.0492 0.0524 0.0816  0.0538 0.0490 0.0862 0.0322
125 0.0466 0.0494 0.0746  0.0478 0.0450 0.0836  0.0294
150 0.0482 0.052 0.0738  0.0504 0.0464 0.0798 0.0332

Average rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replica-

tions. The tests 7* and x* are described in Algorithms 1 and 2 respectively. AEG and Apax refer

to Engle and Granger (1987) and Johansen (1988) tests, AEG* and A

*

max are their bootstrap

counterparts. ‘Naive’ rejects when AEG* or >‘1*nax rejects.
Table 2: Empirical power
Bootstrap tests asymptotic tests
DGP T xX* T* ‘naive’ A, AEG* Amax  AEG
(A) 0.1244 0.1342 0.1836 0.1032 0.1154 0.1074 0.1704 0.0712
0.2284 0.2426 0.3106 0.2138 0.1908 0.1884 0.3116  0.1388
0.4094 0.4352 0.5106 0.3964 0.3142 0.3182 0.5258 0.2436
0.6424 0.6644 0.7174 0.6274 0.4714 0.4726 0.7408 0.3954
0.8286 0.8458 0.8690 0.809 0.6264 0.6312 0.8884 0.5516
(B) 0.0922 0.101 0.1274 0.0722 0.0882 0.0746 0.1166 0.0596
0.1216 0.1356 0.1586 0.0760 0.1288 0.1288 0.1414 0.0904
0.1900 0.2108 0.2442 0.1390 0.2032 0.2006 0.2064 0.1500
0.2884 0.3122 0.3442 0.1958 0.308 0.3068 0.2816 0.2382
0.3932 0.4248 0.4558 0.2676  0.4212 0.4122 0.3872 0.3402

See notes to Table 1
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Figure 2: Empirical power, DGP(B), T' = 100, various p
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See notes to Table 1

exceeds the nominal level by approximately 3 - 4 percentage points.” All other bootstrap

tests control size reasonably well. The 7* test (and to a lesser extent also the x* test)

*

exhibits a slight upward size distortion for small 7', partly due to a distortion of A,

for small T. However, this size distortion vanishes for 7' > 100. In line with e.g. Swensen
(2006), we find a more pronounced upward size distortion of the asymptotic Apax test.
By contrast, the asymptotic AEG test is slightly undersized.

Table 2 now reports the empirical power of all tests at the level a of 5%. Figure 1
summarizes the main information of Table 2 graphically. As expected, power increases
in T for all tests. While of the single tests the AEG* test is the most powerful single
test for DGP (B), the Apmax and A% tests are most powerful for DGP(A).® This result
may not entirely surprising, as both tests were originally designed having DGPs of type
(A) and (B) respectively in mind.

The meta tests x* and 7 both perform similarly and well, though 7* has slightly
higher power throughout. In particular, the 7* test is somewhat more powerful than the
most powerful single test for either DGP.

In addition to the Monte-Carlo experiments displayed in Tables 1 and 2, we run
further experiments varying the degree of mean reversion of the cointegration error
in DGP(B), i.e. distance of the alternative from the null. That is we choose p €
{0.95,0.85,0.75,0.65,0.55}. We focus on DGP(B) as the underlying tests are the more

"Note that this size distortion is very close to the one that can be inferred from Table I in Gregory
et al. (2004).

¥1n judging the power of the asymptotic Amax test versus its bootstrap counterpart, one needs to take
into account the test’s upwards size distortion. Consequently, its size-adjusted power is lower.

12



Table 3: Rejection rates when combining N > 2 tests

Size Power
DGP T 7(2) 7°(4) Xx"(2) x"(4) ™2) () x*(2) x'(4)
(A) 50 0.0748 0.0750 0.0684 0.0706 0.1342 0.1336 0.1244 0.1272
75 0.0636 0.0598 0.0570 0.0546 0.2426 0.2428 0.2284 0.2336
100 0.0562 0.0526 0.0520 0.0504 0.4352 0.4376 0.4094 0.4216
125  0.0598 0.0562 0.0518 0.0500 0.6644 0.6612 0.6424 0.6524
150 0.0564 0.0536 0.0496 0.0502 0.8458 0.8428 0.8286 0.8340

(B) 50  0.0656 0.0650 0.0598 0.0598 0.1010 0.1042 0.0922 0.0942
75  0.0608 0.0582 0.0558 0.0518 0.1356 0.1372 0.1216 0.1268
100 0.0524 0.0502 0.0492 0.0484 0.2108 0.2200 0.1900 0.2028
125 0.0494 0.0502 0.0466 0.0462 0.3122  0.3228 0.2884 0.3022
150 0.0520 0.0506 0.0482 0.0472 0.4248 0.4338 0.3932 0.4098

Average rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replica-
tions. The tests 7* and x* are described in Algorithms 1 and 2 respectively. 7*(N) and x*(V)
combine N tests.

challenging competitors in that case. We fix T' = 100, which corresponds to a typical
sample size in applications. Figure 2 summarizes the results. Throughout, the 7* test
outperforms the AEG* test marginally, which is itself substantially more powerful than
the A}, test.

To summarize, both 7* and x* control the size of the test and yet provide a powerful

and flexible alternative to traditional cointegration tests.

3.3 Extension to more than two tests

We combined AEG and Apax tests to illustrate our approach with two widely applied
cointegration tests. Of course, as the discussion in Section 2 makes clear, our approach
is not restricted to combining two tests. The procedures can accommodate other and
more tests as well. Potentially, this could yield further gains in power if the additional
tests added extra information.

We therefore ran some extra simulations, where we additionally include the semi-
parametric t-test of Phillips and Ouliaris (1990) (in their notation Zt) and the Airace test
of Johansen (1988). From the work of Gregory et al. (2004) we know that the correla-
tion of tests within a group of tests, i.e. among residual-based and among system-based

tests, is fairly high. Therefore we expect no large gain in power. Our exercise serves to

13



check whether this intuition is correct; and more importantly it serves to check whether
the meta test is still able to control size for N > 2. Both questions can be answered
affirmatively, see Table 3. For comparison, we report the results for the combination
of two tests (7%(2), x*(2)) from Tables 1 and 2. There is a small—but insignificant—
improvement in both size and power by moving to a version of the meta test that uses

four underlying tests.

4 Empirical Application

4.1 Setup

Naturally we are interested in the applicability and the relevance of our testing strategy
in practice. To shed light on this question, we revisit the studies which Gregory et al.
(2004) investigated for ‘mixed signals’, i.e. conflicting test results from cointegration
tests. Gregory et al. (2004) analyze the cointegration tests reported in 34 studies dealing
with cointegration which were published in the Journal of Applied Econometrics (JAE)
from 1994 to March/April 2001.° From these studies we construct 161 data sets in which
we test for cointegration. The data sets exhibit large differences in sample size, which
ranges from 27 to 7693 with a median size of 73. Similarly the number of variables differs
across studies and ranges from 2 to 11.

Our goal is to document the extent to which conflicting test results arise in actual
applications and how our proposed meta test is able to heal this problem. As Gregory
et al. (2004), we do not intend to suggest that the authors of the original studies have
been in any way strategic in their choice of which test for cointegration to apply. Most
applied researchers tend to view the different tests as rather interchangeable, with the
choice more dependent on the nature of the investigation.

We follow Gregory et al. (2004) closely in their setup. The original published studies
employ different methods to test their specifications. To make the results comparable,
we impose a unifying but standard methodology. For the residual-based tests where a de-
pendent variable is required, we follow the choice in the original paper if possible. If there
is no obvious dependent variable, we choose it on the basis of the highest R?. Addition-
ally we need to allow for variation in lag lengths across data sets. The literature discusses
a number of different methods for choosing the number of lags. We have chosen a fairly

standard one and determine the lag length P for the VECM estimation of our algorithm

9The data sets are available online through the Journal of Applied Econometrics’ website
(http://qged.econ.queensu.ca/jae/2004-v19.1/gregory-haug-lomuto/).
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using a Schwarz Information Criterion (BIC) as described e.g. in Liitkepohl (2005, Sec-
tions 4.3.2 and 8.1). We search over the range 1 < P < min (8 (%)1/5 , %) , Where
K is the number of variables, and impose the same number of lags for the two Johansen
tests and the Engle-Granger test. Our qualitative conclusions would not be different if

alternative selection methods were employed. All tests include a constant and a trend.

4.2 Results

We compare the test results of (bootstrap versions of ) Arace, Amax, Phillips and Ouliaris
(1990), AEG tests as underlying tests with the 7* (4) test.! To see how the 7* test had
worked in practice, we proceed as follows. We first check whether all single test agree
or not in their testing decision at the 5% level, see left panel of Table 4. In those cases
where conflicting test results occurred we check what the test used in the original paper
had suggested as a test result (more precisely what would have been the outcome of our
bootstrap version with the chosen lag-length criterion), see the right panel of Table 4.
In all cases we compute and compare to the test result according to the 7* (4) test.

Table 4 reports the frequencies for all possible pairs of outcomes.!! As we argued
at the end of Section 2, a feature of our test is that whenever all underlying bootstrap
tests reject, so will the 7*. This theoretical result is confirmed. Moreover, we also see
that when all tests do not reject the null, the meta test typically does not reject either.
However, such cases of agreeing tests make up only 68% of all data sets (tests).

For the remaining 32% of data sets we have conflicting single tests and here our test
turns out to be most useful. It allows the researcher to arrive at a definite conclusion.
We find in 60% (=27/45) of the conflicting cases that the meta test does not reject the
null. In the remaing 40% of the conflicting cases, however, the 7* test leads to a rejection
of the null of no cointegration. Moreover, we note the following.

First, rejecting whenever at least one (but not all) of the tests rejected would have
lead to a substantial overstatement of cointegration (45 vs. 18 cases according to the 7*
test). Similarly, not rejecting whenever one test did not reject would have lead to an
understatement of cointegration.

Second, the tests that have been ‘preferred’ in the actual studies tend to be more

10We performed the analogous exercise with asymptotic single tests. One might view this alternative
as closer to conventional empirical practice. On the other hand, using the bootstrap tests as in Table 4
avoids the size distortion of the Johansen test in small samples (see Table 1). In any case, results are
very similar. Tables are available upon request.

"For 18 data sets step 2 of our Algorithm finds an explosive root and hence we cannot calculate our
bootstrap tests.
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Table 4: Test results in applied studies and the 7 test

number of cases in which ...

single test results ... ... in case of conflicting
agree conflict results: ‘preferred’ test*

roo-r > roo-or >

T*(4):r 65 1 18 84 ™@4):r 11 5 16
T*(4):—r 0 32 27 59 TH(4):-r 14 11 25
> 65 33 45 143 > 25 16 41

T : test rejects; —r : test does not reject
* : Test type on which conclusions in the original study were based. For four data sets where we
obtain conflicting test results no cointegration testing was reported.

Absolute frequencies of cointegration-test results for data from Gregory et al. (2004). Single tests
include bootstrapped Engle-Granger, Phillips-Ouliaris and Johansen tests. The 7% (4) combines
these tests as described in Section 2. All bootstrap tests are constructed using 10,000 bootstrap

resamples.

rejective than our meta test (25 vs. 16 rejections in 41 tests).!? This suggests that the
evidence in favor of cointegration would have been somewhat less pronounced if the
studies could have relied on a suitable meta test for cointegration.

Third, whether or not the preferred test rejected the null does not seem to be infor-
mative on whether or not 7* rejects conditional on observing conflicting test results. This
is reflected by approximately equal conditional probabilities: 27/45 ~ 14/25 ~ 11/16.
In other words, we cannot conclude from a published test result what the 7* test would
indicate, conditional on the fact that a further single test leads to a conflicting test

result.

5 Conclusion

This paper proposes a meta test that combines information from different underlying
tests for cointegration. To the best of our knowledge, this is the first time that a practical

approach has been put forward to combine different tests of one hypothesis applied to a

12Tn four cases of conflicting test results, the original study did not report a cointegration test but was
rather concerned with e.g. estimating cointegration vectors.
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single sample. The test takes into account the multiple testing nature of running more
than one underlying test and hence controls size. By contrast, running more than one
test and then simply inferring about the hypothesis from the most rejective test does
not achieve this goal but leads to a significantly oversized test, as we have shown. While
controlling size, the proposed meta test is powerful, and certainly more powerful than
traditional methods to account for multiplicity like for example the Bonferroni method.

Extensive Monte Carlo simulations demonstrate the effectiveness of our approach.
An application of our test to a set of cointegration studies confirms its practical value. It
allows the applied researcher arrive at an unambiguous test decision in cases of conflicting
single test results.

The setup we put forward is fairly general and hence can be adopted to other testing
problems for which several (imperfectly correlated) tests have been developed. Examples
include testing for unit roots or heteroscedasticity. Essentially, what is needed is a
bootstrap method suitable for the phenomenon of interest. For the above mentioned
testing problems such bootstrap methods would be the sieve and the wild bootstrap,
respectively.

In practice, a major advantage of our proposed test should be that it relieves the
applied researcher from the discretionary and sometimes arbitrary choice of the cointe-

gration test(s) she wants to rely on to reach a test decision.
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Appendix for the referee

The following provides size and power tables for the 1% and 10% nominal level for
DGP(A) and (B). Furthermore it provides size and power results for a third DGP with

autocorrelated errors. This DGP has the same parameterization as DGP(A) except for

that

Ujt = PUjt—1 + Ejt, P =

0.33.

Table 5: Alternative DGP(C): Empirical size of the cointegration tests at nominal level

of 5%

Bootstrap tests asymptotic tests

DGP T x* T naive  A;.. AEG* Amax AEG
(C) 50 0.0716 0.0814 0.1124 0.0734 0.0594 0.1046 0.0392
AR(I) Shocks 75 0.0572 0.0652 0.0942 0.058 0.0562 0.0938 0.0398
100  0.0508 0.0564 0.0816 0.0544 0.0456 0.0954 0.0376

125 0.0516 0.0582 0.0830 0.0500 0.0542 0.0920 0.0366

150 0.0518 0.0558 0.0784 0.0488 0.0496 0.0856 0.0316

See notes to Table 1

Table 6: Alternative DGP(C):
level of 5%

Empirical power of the

cointegration tests at nominal

Bootstrap tests

asymptotic tests

DGP T x* T naive  A;.. AEG* Amax AEG

(C) 50  0.1144 0.1220 0.1756 0.0982 0.1092 0.1660 0.0712

AR(1) Shocks 75  0.1850 0.1970 0.2634 0.1688 0.1670 0.2654 0.1206
100 0.3300 0.3518 0.4192 0.3042 0.2646 0.4346 0.2074
125 0.5282 0.5544 0.6140 0.4978 0.4122 0.6282 0.3388
150 0.7174 0.7372 0.7808 0.6898 0.5488 0.7950 0.4716

See notes to Table 1
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Table 7: Empirical size of the cointegration tests at nominal level of 1%

Bootstrap tests asymptotic tests

DGP T  x* ™ ‘naive’  AX AEG* Amax  AEG

max

(A) 50  0.0142 0.0210 0.0236  0.0160 0.0106 0.0200 0.0064
75 0.0106 0.0144 0.0182 0.0100 0.0120 0.0168  0.0080
100 0.0104 0.0148 0.0186  0.0122 0.0090 0.0186  0.0064
125 0.0090 0.0142 0.0126 0.0086 0.0082 0.0144 0.0052
150 0.0104 0.0128 0.0174 0.0128 0.0088 0.0210 0.0070

(B) 50  0.0170 0.0210 0.0236  0.0160 0.0106 0.0200 0.0064
75  0.0116 0.0144 0.0182 0.0100 0.0120 0.0168  0.0080
100 0.0112 0.0148 0.0186  0.0122 0.0090 0.0186  0.0064
125 0.0090 0.0142 0.0126 0.0086 0.0082 0.0144 0.0052
150 0.0122 0.0128 0.0174 0.0128 0.0088 0.0210 0.0070

See notes to Table 1

Table 8: Empirical size of the cointegration tests at nominal level of 10%

Bootstrap tests asymptotic tests

DGP T x* ™ ‘naive’ A\’ AEG* Amax  AEG

max

(A) 50  0.1212 0.1262 0.1822  0.1238 0.1046 0.1738 0.0706
75 0.1078 0.1118 0.1598  0.1026 0.1022 0.1754 0.0764
100 0.0984 0.1022 0.1524 0.1010 0.0952 0.1620 0.0726
125 0.1026 0.1052 0.1560  0.1002 0.1058 0.1664 0.0800
150 0.1012 0.1036 0.1510  0.0978 0.0994 0.1566 0.0738

(B) 50  0.1106 0.115  0.1702  0.1162 0.1008 0.1688 0.0684
75 0.1060 0.1116 0.1582  0.0996 0.1052 0.1690 0.0752
100 0.1022 0.1034 0.1574 0.1028 0.0992 0.1572 0.0728
125 0.0962 0.1006 0.1486  0.0980 0.0950 0.1606 0.0682
150 0.0940 0.0982 0.1426  0.0944 0.0934 0.1556 0.0712

See notes to Table 1
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Table 9: Empirical power of the cointegration tests at nominal level of 1%

Bootstrap tests asymptotic tests

DGP T x* T* naive A\’ AEG* Amax  AEG

max

(A) 50  0.0302 0.0378 0.0472 0.0268 0.0264 0.0444 0.0166
75  0.0660 0.0802 0.0978 0.0614 0.0546 0.1034 0.0374
100 0.1402 0.1664 0.1990 0.1486 0.0986 0.2224 0.0694
125 0.2884 0.3362 0.3790 0.3126 0.1892 0.4164 0.1370
150 0.4874 0.5456 0.5796 0.5190 0.2888 0.6242 0.2144

(B) 50  0.0240 0.0334 0.0344 0.0178 0.0228 0.0270 0.0148
75 0.0288 0.0360 0.0384 0.0192 0.0308 0.0320 0.0210
100 0.0582 0.0750 0.0748 0.0344 0.0608 0.0594 0.0402
125 0.0906 0.1168 0.1140 0.0570 0.0964 0.0896 0.0616
150 0.1378 0.1722 0.1620 0.0804 0.1446 0.1282  0.1006

See notes to Table 1

Table 10: Empirical power of the cointegration tests at nominal level of 10%

Bootstrap tests asymptotic tests

DGP T x* T naive AEG* Amax  AEG

*
)‘max

(A) 50  0.2188 0.2258 0.3132 0.1894 0.2074 0.2910 0.1456
75 03748 0.3834 04762 0.3348 0.3212 0.4746 0.2548
100 0.6044 0.6120 0.6942 0.5628 0.4776 0.6944 0.3990
125 0.8010 0.8114 0.854 0.7740 0.6446 0.8654 0.5756
150 0.9306 0.9370 0.9484 0.9066 0.7874 0.9544 0.7324

(B) 50 01618 0.1698 0.2278 0.1344 0.1624  0.2166 0.1116
75 02150 0.2280 0.2912 0.1624 0.234 0.2610 0.1778
100 0.3126 0.3286 0.3926 0.2304 0.3366  0.3478 0.2690
125 04364 0.4582 05172 03214 04704  0.4480 0.3944
150  0.5626 0.5830 0.6456 0.433  0.605 0.5580  0.5242

See notes to Table 1
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Table 11: Frequencies of test results in applied studies and the 7* test: Comparison to
asymptotic tests

results

conflict agree

rooor >

T 7 12 70 2 4
T ar 18 4 37 59
> 30 74 33 143

T : test rejects; —r : test does not reject
* . Test type on which conclusions in the original study were based. For four data sets where we
obtain conflicting test results no cointegration testing was reported.

Absolute frequencies of cointegration-test results for data from Gregory et al. (2004). Single tests
include asymptotic Engle-Granger, Phillips-Ouliaris and Johansen tests. The 7% (4) combines
bootstrtapped versions of these tests as described in Section 2. All bootstrap tests are constructed
using 10,000 bootstrap resamples.
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