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1 Introduction

This paper develops a general model for representing preferences in terms of

parameters. In our representation the decision maker decomposes the uncer-

tainty he faces into: (1) systematic ‘patterns’ captured by the parameters,

and (2) idiosyncratic ‘noise’ around these patterns. In the stylized example of

repeated coin tosses, for instance, whether a coin turns up Heads or Tails in

any single toss is idiosyncratic, being the outcome of a multitude of complex

factors. Roughly, parameters are the lens through which a decision maker

decomposes the data into patterns and noise.

We consider a preference over acts on a state space Ω. The state space in

our formal model is abstract and need not have an intertemporal structure

(as for example in applications of spatial statistics to networks). But for

concreteness assume throughout this Introduction that Ω has the product

structure S × S × · · · , where each coordinate S represents the outcome of

some experiment. We say that a preference has a parametric representation

if there are distributions {P θ}θ∈Θ indexed by a set of parameters Θ and a

decomposition map ϑ : Ω→ Θ such that for any pair of acts f, g:1

f(·) < g(·) ⇐⇒
∫

Ω

f dP ϑ(·) <
∫

Ω

g dP ϑ(·). (1)

The distribution P ϑ(ω) captures the statistical patterns the decision maker

associates with a sequence of outcomes ω. When (1) holds we say that the

parameterization (Θ, ϑ) is sufficient for the preference: the decision maker’s

ranking of acts contingent on parameters fully captures his non-contingent

ranking. The connection to the notion of sufficiency in statistics is obvious

and discussed further below.

Our main theorem identifies conditions under which a preference has a

parametric representation with respect to a uniquely defined set of param-

eters. The key condition we use is that the preference is invariant with

respect to transformations of the state space. Perhaps the best known ex-

ample of such transformations is the group of finite permutations, where one

requires the preference to be invariant with respect to reshuffling of the coor-

dinates. Permutations give rise to the i.i.d. parameters and, with additional

1The notation (·) emphasizes that we are dealing with acts that take ω as argument.
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conditions, to de Finetti (1937)’s celebrated representation theorem. In this

paper we consider general countable semi-groups of transformation which

cover exchangeability, but also partial exchangeability, stationary distribu-

tions, Markovian structures, among others.

The sufficiency of a parametrization defines an operator:

f
Ψ7−→
∫

Ω

f dP ϑ(·)

that maps the state-based acts F to their corresponding elements in the set

of parameter-based acts F. We call a binary relation on F an aggregator,

reflecting how the decision maker subjectively aggregates the parameters

in making decisions. If the aggregator <<< satisfies our basic conditions of

reflexivity, transitivity, monotonicity, and continuity, then there is a unique

preference < on F such that for every f, g ∈ F

f < g ⇐⇒ Ψ(f) <<< Ψ(g).

The preference < is necessarily invariant and satisfies our basic conditions.

This provides a general template to incorporate subjective parameters

into most known decision models. First, start with a semi-group of transfor-

mations and let Θ be the corresponding subjective set of parameters (e.g.,

start with permutations, so Θ is the set of i.i.d. parameters). Second, pro-

pose an aggregator of parameter uncertainty, perhaps corresponding to some

compelling set of axioms (e.g., Bayesian belief over parameters, Bewley pref-

erences, . . . etc). Third, derive an invariant preference < on the state-based

acts F .

In Section 4 we provide classes of examples of aggregators and a ‘tem-

plate’ for translating theories about aggregating parameter uncertainty into

preferences on the primitive states. In Section 4.3 we develop in greater detail

an instance of this template, focusing on aggregators of the form:

V(F ) =

∫
Θ

φ(F (θ)) dµ(θ) =

∫
Θ

φ

(∫
Ω

u(f) dP θ

)
dµ(θ), (2)

for F = Ψ(f), a von Neumann-Morgenstern utility function u, and a func-

tion from reals to reals φ. We call the preferences corresponding to such
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aggregators second-order subjective expected utility preferences. These are

preferences that (to our knowledge) were first introduced by Neilson((1993),

(2009)) and used by, among others, Nau (2001), Nau (2006), Ergin and Gul

(2009), Chew and Sagi (2008), Strzalecki (2010), Grant, Polak, and Strzalecki

(2009).

The models of Neilson (1993) and Strzalecki (2010) have an interesting

interpretation in our setting. They consider functionals of the form2∫
Ω

φ
(∑

u(c) pf(ω)(c)
)
dP (ω),

where f is an Anscombe-Aumann act and pf(ω)(c) is the probability of con-

sequence c under the lottery f(ω). Writing u(f) ≡
∑
u(c) pf(ω)(c), we can

write the above in our notation as:∫
Ω

φ

(∫
Ω

u(f) dδω

)
dP,

where δω is the measure that puts mass 1 on the state ω. This can be inter-

preted in our setting as follows: if the preference is invariant with respect to

the trivial identity transformation, then the parameters are simply the dirac

measures δω that put unit mass on a state ω, and the space of parameters

is in fact Ω itself. This coincides with the second-order subjective expected

utility representation (2) with the trivial identity transformation; see Section

3.3.3.

The aggregator (2) may therefore be viewed as a generalization of Neil-

son’s representation to coarser parameterizations (e.g., where parameters are

i.i.d. distributions). Invariance with respect to non-trivial transformations

means that the decision maker pools many states into risky events ϑ−1(θ),

while in Neilson (1993) and Strzalecki (2010) the risky events are singletons.

We interpret Neilson (1993)’s and Strzalecki (2010)’s decision makers as ones

who do not not do such pooling, so each state is its own parameter. Section

4.3 discusses this in more details.

Our model also helps clarify Klibanoff, Marinacci, and Mukerji (2005)’s

functional form which is similar to (2), but where the outer integral is over

2Strzalecki (2010) consider an important special case of this function, namely the one
corresponding to multiplier preferences.
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mixtures of parameters ∆(Θ), rather than parameters Θ, and where their

behavioral data includes choices over “second-order acts.” As we discuss

briefly in Section 4.4 and in greater details in the companion note, Al-Najjar

and De Castro (2010), the behavioral content of their model is different from

what we have here and in the other papers cited above as it requires the

decision maker to express rankings over unobservable objects. Klibanoff,

Marinacci, and Mukerji assume that the decision maker can make bets that

pay depending on which probability distribution on Ω obtains. The outcome

of such “second-order acts” is unobservable, even in principle and in idealized

experiments where infinite amount of data is available. For example, given

two i.i.d. parameters θ, θ′, a second-order act would have to specify what the

decision maker gets at a distribution 1
2
θ + 1

2
θ′, and which in turn may be

different from what he would get at, say, 1
4
θ+ 3

4
θ′. Even with infinite amount

of data, all that one observes is ϑ(ω) which, in this example, is either θ or θ′,

so payments contingent on whether a distribution αθ+(1−α)θ′ has ‘occurred’

do not correspond to typical revealed preference experiments. Our framework

does not appeal to unobservable second-order acts. Parameter-based acts are

just ordinary acts (i.e., functions of ω) that happen to be measurable with

respect to events of the form ϑ−1(θ) ⊂ Ω.

We close with two additional connections to the literature. First, parame-

ters are obviously central in statistical theory and its applications. Although

Bayesian and classical statistics differ in their approach to inference, both use

data to learn the value of an unknown underlying parameter. In the statistics

literature, parameters are usually formalized as extreme points of convex sets

of distributions; see, for example, Dynkin (1978), Dawid (1982), Lauritzen

(1984) among others. From the perspective of economic and game theoretic

modeling, the treatment of parameters in statistics is unhelpful: parameters

are either objective, a datum handed down as part of the description of the

statistical model or, in Bayesian statistics, they are subjective but require a

commitment to a Bayesian model of inference. In this paper parameters are

part of the decision maker’s subjective model of the world (reflected in his

invariance assumptions) but require no commitment to a specific approach

to resolving parameter uncertainty.

The second connection concerns the interpretation of subjectivity vs. ob-
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jectivity in decision making. A common distinction is between objective

parameters, interpreted as risk, and the subjective aggregation over parame-

ters, interpreted as ‘model uncertainty’ (see for instance, the literature on ro-

bustness in macroeconomics). While intuitively compelling, formalizing this

distinction is quite challenging.3 In our framework, parameters are derived

from the invariance of preferences to transformations, and they are therefore

subjective. But parameters are also linked via a subjective ergodic theorem

to the empirical frequencies, which are objective. In Al-Najjar, De Castro,

and Pai (2010) we use this connection with frequencies to test the decision

maker’s invariance assumption. Roughly, we show that the parametrization

(Θ, ϑ) can be tested, but the subjective aggregator over parameters cannot.

In the simplest setting of exchangeability, that the data is consistent with

the i.i.d.ness assumption can be tested, but the subjective belief µ over pa-

rameters cannot.

2 Preliminaries

2.1 States, Acts and Preferences

Given a Polish space X, i.e., a complete separable metrizable space with

the Borel σ-algebra X , let ∆(X) be the set of countably additive probability

measures on (X,X ). Note that ∆(X) itself is a Polish space with its standard

(weak?) topology.

Our primitive is a binary relation < on acts defined on a compact Pol-

ish state space Ω with the Borel σ-algebra Σ. Assume that the space of

consequences is ∆(C) where C is finite.4 We will consider only measurable

functions between Polish spaces, unless explicitly stated otherwise.

Under the usual convex combination operation, the set ∆(C) is a mixture

space in the sense of Herstein and Milnor (1953). We describe mixtures of

elements of C abstractly because they can be interpreted as either lotteries

3In a recent paper, Gilboa, Maccheroni, Marinacci, and Schmeidler (2008) argue for a
separation between objective and subjective parts of a preference. Roughly the objective
part is an incomplete preference that satisfies Bewley’s axioms. Their approach is quite
different from our approach which emphasizes the role of parameters.

4This assumption is convenient but not essential to most of our results.
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over C or as frequencies. Our framework and main results will shed some

light on how the two might be connected.

An act is any measurable function:

f : Ω→ ∆(C).

An act that takes the constant value x is, with some abuse of notation,

denoted x. Let F be the set of all <-bounded acts; that is, for each f ∈ F ,

there exists x, y ∈ ∆(C) such that x < f(ω) < y for all ω ∈ Ω. The decision

maker’s choice behavior is represented by a preference relation < on F . We

assume that < satisfies the following conditions.

Assumption 1 (Order Properties) < is reflexive and transitive on F
and complete on ∆(C).

Next we introduce the usual monotonicity assumption (Savage (1954)’s

P3):

Assumption 2 (Monotonicity) If f(ω) < g(ω) for all ω ∈ Ω, then f < g.

Write fn → f if fn converges to f pointwise. The following pointwise

continuity condition is equivalent to countable additivity of the prior under

subjective expected utility.

Assumption 3 (Continuity) Given a pair of acts f, g ∈ F , if there are

sequences {fn}, {gn} and acts a, b ∈ F such that: (i) fn → f and gn → g;

(ii) a(ω) < fn(ω), gn(ω), f(ω), g(ω) < b(ω), ∀ω ∈ Ω, n ∈ N; and (iii) fn < gn

for all n ∈ N, then f < g.5

Next we assume Herstein and Milnor (1953)’s linearity in mixtures:

Assumption 4 (Mixture Linearity) Let x, y, z ∈ ∆(C). Then x ∼ y ⇒
1
2
x+ 1

2
z ∼ 1

2
y + 1

2
z.

5Our continuity assumption is similar to Ghirardato, Maccheroni, Marinacci, and Sinis-
calchi (2003)’s B3. They require that, if fn → f and gn → g pointwise and fn < gn for
each n, then f < g. Note that they do not require the sequences to be bounded by a
function b.
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By Herstein and Milnor (1953)’s theorem (see details in the appendix), there

is an affine function u : ∆(C) → R , unique up to positive affine trans-

formations, such that for any pair of constant acts f, g, that take values

`f , `g ∈ ∆(C) respectively,

f < g ⇐⇒
∫
c∈C

u(c) d `f ≥
∫
c∈C

u(c) d `g.

We will sometimes use the convenient notation u(`), ` ∈ ∆(C) to denote the

expected utility
∫
c∈C u(c) d `. Finally, we assume that the preference is not

trivial.

Assumption 5 (Non-triviality) There are x, y ∈ ∆(C) such that x � y.

2.2 Transformations and Ergodicity

Next we introduce standard mathematical notions of transformations and

parametrizations. A transformation is any measurable function τ : Ω → Ω.

Thus, starting with a state ω, τ generates a sequence of states ω, τω, τ 2ω, . . ..

We will also deal with (countable) semi-groups of transformations Γ.6 It is

useful to recall the following standard definitions (below, γ will denote a

generic element of the semi-group Γ):

• An event E is γ-invariant if E = γ−1(E); E is Γ-invariant if it is γ-

invariant for every γ ∈ Γ.

• {1, τ , τ 2, . . .} is the semi-group of transformations generated by τ , where

1 is the identity transformation.

• Eγ ⊂ Σ is the σ-algebra generated by the γ-invariant events; EΓ is the

σ-algebra generated by {Eγ, γ ∈ Γ}.

• A probability measure P is γ-invariant if P (γ−1(E)) = P (E) for every

E ∈ Σ; P is Γ-invariant if it is γ-invariant for every γ ∈ Γ.

6A semigroup is a set Γ together with an operation “·” satisfying closure—∀γ, ζ ∈ Γ,
γ · ζ ∈ Γ—and associativity—∀γ, ζ, % ∈ Γ, (γ · ζ) ·% = γ · (ζ · %). In our case, the operation
considered is function composition.
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• P is γ-ergodic if either P (E) = 0 or P (E) = 1 for every γ-invariant

event E; P is Γ-ergodic if it is γ-ergodic for every γ ∈ Γ.

It is well-known that the set of Γ-invariant measures is convex and its

extreme points are the Γ-ergodic measures.

2.3 Parameterizations

We will be interested in representing preferences in terms of parameters. Fix

a countable semi-group of transformations Γ, and write the set of Γ-ergodic

measures as {P θ}θ∈Θ, with Θ denoting an index set of parameters. Viewed

as a set of probability measures, Θ inherits the relativized topology and

σ-algebra of ∆(Ω) (see Definition A.21).7 A standard definition of decom-

position map with respect to a semi-group is given in Varadarajan (1963).

Since some of our theorems refer to decompositions without explicit reference

to a semi-group, we provide a more abstract definition below.8

Definition 1 (Decomposition Maps and Parametrizations) Fix a σ-

algebra E ⊂ Σ, a set of probability measures P, and a subset {P θ}θ∈Θ ⊂ P
with index set Θ. A function ϑ : Ω → Θ is a decomposition map (with

respect to E, P, {P θ}θ∈Θ) if

(i) ϑ is measurable;

(ii) P θ(ϑ−1(θ)) = 1 for all θ ∈ Θ; and

(iii) for every A ∈ Σ, P ϑ(ω)(A) is a version of the conditional probability of

A given E for every P ∈ P.9

Refer to (Θ, ϑ) as a parametrization and Θ as the set of parameters.

If Γ is a semi-group of transformations then we refer to (Θ, ϑ) as the

Γ-parametrization if E = EΓ, P is the set of Γ-invariant probability mea-

sures, {P θ}θ∈Θ is the set of Γ-ergodic measures, and ϑ is Γ-invariant (i.e.,

7We will always assume that there is at least one Γ-ergodic measure.
8The definition is standard and essentially that of a sufficient statistic. See, for example,

Billingsley (1995, p. 450), Varadarajan (1963) and Dynkin (1978).
9The key point is that the conditional distribution Pϑ(ω) does not depend on P .
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ϑ(γ(ω)) = ϑ(ω),∀γ ∈ Γ). If Γ is the semi-group generated by τ , then we

abuse terminology and refer to (Θ, ϑ) as the τ -parametrization.

The ergodic decomposition theorem (see, e.g., Varadarajan (1963)) shows,

under general conditions, that a decomposition map exists.10 Note that such

decomposition is a purely mathematical object that may bear little or no

connection to choice behavior. The next section develops such connection.

3 Invariance and Sufficient Statistics

The central concept in this paper is invariance to transformations of the state

space. Invariance is a central, foundational concept in statistical inference

and, as we show later, in connecting the notions of risk and uncertainty.

3.1 Invariance

Intuitively, a transformation τ is a rearrangement of the state space, and

invariance refers to the property that the preference remains the same after

the states have been thusly rearranged. At a minimum, invariance with

respect to a single transformation τ should require that for any act f ,

f ∼ f ◦ τ .

For a concrete example, suppose that Ω has a product structure, i.e., Ω =

S × S × · · · with each coordinate S interpreted as modeling the random

outcome of an experiment of interest (a coin toss, an econometric model,

and so on). Write a generic state ω in terms of the infinite sequence of

coordinate values (s1, s2, . . .). Consider the permutation transformation:

(s1, s2, . . .)
π−→ (s2, s1, . . .).

10It is also essentially unique, in the sense of Lemma 4.4 in Varadarajan (1963). We
comment further on this below. We cannot use directly Varadarajan’s result because we
do not assume—as we did in a previous version of this paper—that a set which is µ-null for
all invariant measures µ is also <-null. Without this property (previously called Bayesian
consensus), it is not clear what is the meaning of Varadarajan’s map for the preference.
In the appendix, the Bayesian consensus is proved as a consequence of the existence of ϑ,
which is directly established.
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Invariance with respect to this permutation formalizes the intuition that the

decision maker views the first and second experiments as similar. More gen-

erally, invariance with respect to the set of finite permutations indicates that

the decision maker is indifferent to relabelings of the coordinates, and leads to

the concept of exchangeability. Another example is the shift transformation:

(s1, s2, . . .)
T−→ (s2, s3, . . .).

Invariance with respect to this transformation corresponds to a decision

maker with stationary preferences.

We will be interested in invariance with respect to sets of transformations.

At a minimum, starting with a transformation τ we would like to consider

its iterates τ 2, τ 3, . . .. If we are to incorporate a set of transformations Γ in

our model, it seems natural to require that Γ be closed under composition:

given two transformations γ1, γ2 ∈ Γ their composition γ1 ◦ γ2 should also

belong to Γ. For example, we need the process of shifting by two coordinates

T 2 ≡ T ◦ T to also be a legitimate transformation (i.e., belongs to Γ). This

amounts to saying that Γ is a semi-group of transformations.11 We note

finally that we do not require transformations γ to have an inverse (which is

why we work with semi-groups rather than groups). For example, the shift

T is not invertible, but our results apply to the semi-group obtained by T

and its iterates {T, T 2, . . .}.

Definition 2 (Invariance) Let Γ be a countable semi-group of transforma-

tions. The preference < is Γ-invariant if for all acts f ∈ F , integer n, and

γ1, . . . , γn ∈ Γ,

f ∼ f ◦ γ1 + · · ·+ f ◦ γn
n

. (3)

If Γ is the semi-group generated by τ , then we abuse terminology and call <
τ -invariant.

Note that without the linear structure on the space of consequences (for

instance, if consequences were just the finite set C), the averages in (3)

11The other axiom of semi-groups, associativity, is automatically satisfied for the com-
position of functions ◦.
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would not make sense. The linear structure ensures that these conditions

are behaviorally meaningful. Thus, letting u be an affine utility function on

consequences, we have for every ω:

u

(
f ◦ γ1 + · · ·+ f ◦ γn

n
(ω)

)
=
u ◦ f ◦ γ1(ω) + · · ·+ u ◦ f ◦ γn(ω)

n
.

Note that this last condition incorporates the decision maker’s risk attitude,

expressed in u, while (3) is free from such reference. We think of invariance

as part the decision maker’s understanding of similarity in the problem he

faces, and thus should not be confounded with his attitude towards risk.

The invariance condition is interesting only when we consider ‘coarse’

parametrizations with respect to which the preference is invariant. To make

this formal, note first that if Γ ⊂ Γ′ then Γ′-invariance implies Γ-invariance.

Note further than every preference is invariant with respect to the trivial

semi-group {1} that consists of the identity transformation 1, defined by

1(ω) = ω.12 Invariance has more of a bite when we consider rich sets of

transformations with intuitive structures. See Section 3.3 for discussion and

examples.

3.2 Subjective Ergodic Theory and Sufficient Statis-
tics

In the remainder of this section, we restrict attention to semi-groups gener-

ated by a single transformation τ . In Section 3.3 we show that they can be

the basis for a general theory to model invariance relative to general classes

of transformations, e.g., the group of finite permutations that give rise to

exchangeability.

Next we introduce the concept of sufficient parametrizations:

Definition 3 (Sufficiency) A parametrization (Θ, ϑ) is sufficient for a pref-

12Because in this case, (3) reduces to: f ∼ f◦1+···+f◦1
n = f, which is guaranteed by

reflexivity.
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erence < if ϑ is the essentially unique function satisfying:13

∀f, g ∈ F , f < g ⇐⇒
∫

Ω

f dP ϑ(·) <
∫

Ω

g dP ϑ(·). (4)

A parametrization (Θ, ϑ) is sufficient for < if in ranking f and g, it is

enough for the decision maker to examine the acts
∫

Ω
f dP ϑ(·) and

∫
Ω
g dP ϑ(·)

that aggregate, slice by slice, the acts f and g using the parameters. In

words, the integrals with respect to the parameters (the RHS of 4) are suffi-

cient summary of how < ranks all acts. The notion of parametric preference

has bite only when there is a non-trivial parametrization.

The above definition of sufficiency for preferences is closely related to

the standard concept of sufficiency in mathematical statistics. Recall that a

measurable function κ : Ω→ A, where A is an abstract measurable space, is

a sufficient statistic for a family of probability distributions P if the condi-

tional distributions P (· |κ) do not depend on P ∈ P . Roughly, κ is sufficient

if it captures all the relevant information contained in a state ω: given knowl-

edge that κ(ω) = κ̄, no further information about ω is useful in drawing an

inference about P . By analogy, ϑ is a sufficient statistic for the family of all

τ -invariant preferences (that satisfy our other conditions).

Every transformation τ gives rise to empirical limits of an act:

f ?(ω) ≡ lim
n→∞

1

n

n−1∑
j=0

f
(
τ jω
)
,

a concept that connects subjective probability and frequencies.

Theorem 1 Given a transformation τ , there is a (τ -) parametrization (Θ, ϑ)

such that for every τ -invariant preference < satisfying assumptions 1-5:

1. (Θ, ϑ) is sufficient for <;

2. For every act f , f ∼ f ? and for all ω outside a <-null set Ω′,14 f ?

13That is, if ϑ′ is another function satisfying (4), the set {ω ∈ Ω : ϑ(ω) 6= ϑ′(ω)} is
<-null.

14We use the standard definition of null events: E ⊂ Ω is <-null if for all acts f , g, h:[
f(ω), if ω ∈ E
h(ω), if ω 6∈ E

]
∼
[
g(ω), if ω ∈ E
h(ω), if ω 6∈ E

]
.
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exists and

f ?(ω) =

∫
Ω

f dP ϑ(ω). (5)

3.3 Parametric Preferences

The central concept of this paper is that of a parametric preference:

Definition 4 (Parametric Preference) We say that < is a parametric

preference (with parameters Θ) if it has a sufficient parametrization (Θ, ϑ).

In general, we are interested in more parsimonious (more restrictive)

parametrization than what is delivered by a single transformation τ . For

example, if Ω has product structure and the transformation τ is just the

shift T , then Θ is the set of stationary ergodic measures, which includes

the set of i.i.d. distributions, but also all stationary non-i.i.d. distributions

(e.g., all k-stage Markov processes). If < is in addition invariant to all

finite permutations (exchangeable, as we define below), then < continues

to be T -invariant and (Θ, ϑ) remains a parametrization for <. But this

parametrization does not take into account the additional restriction that <
is also permutation-invariant.

The following theorem provides a tighter description of the set of param-

eters that takes into account additional restrictions:

Theorem 2 Let (Θ, ϑ) be a sufficient parametrization of <, and let Θ ⊂ Θ.

Then there exists a semi-group Γ of measurable transformations γ : Ω→ Ω,

such that the following are equivalent:

1. f ∼ f ◦ γ for all γ ∈ Γ and f ∈ F ;15

2. There exists a map ϑ : Ω→ Θ such that (Θ, ϑ) is a sufficient parametriza-

tion of <;

3. ϑ−1(Θ \Θ) is <-null.

15Note that this does not require the full-invariance with respect to the semi-group in
the sense of (3).
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Moreover, Θ̄ is Γ-invariant.

Condition 3 in the theorem captures the intuition of a parametric restric-

tion: parameters outside Θ̄, although part of the parametrization implied by

τ -invariance, are irrelevant for the preference. Theorem 2 makes the con-

ceptual point that all parametric restrictions can be reduced to invariance

conditions, not that the semi-group it constructs admits a simple description.

There are situations where a specific semi-group of interest Γ naturally cor-

responds to a specific set of parameters (for instance, the set of permutations

and i.i.d. probabilities). In such cases, Theorem 2 is not very helpful because

the semi-group whose existence it asserts may bear little resemblance to Γ.

The following theorem is more useful in this case:

Theorem 3 Let (Θ, ϑ) be a sufficient parametrization of <, Γ any countable

semi-group, and ΘΓ the corresponding set of Γ-ergodic probabilities. Assume

that u(∆(C)) = R,16 ΘΓ ⊂ Θ, and that ϑ is Γ-invariant. Then the following

are equivalent:

1. f ∼ f ◦ γ for all γ ∈ Γ and f ∈ F ;

2. There exists a map ϑ̃ : Ω → ΘΓ such that (ΘΓ, ϑ̃) is a sufficient

parametrization of <.

Although our main focus is on decomposition maps that correspond to

semi-groups, this is clearly not essential. Parametric preferences are well-

defined and the equivalence of (2) and (3) in Theorem 2 holds even if we work

directly with a decomposition map with respect to an abstract σ-algebras,

since Definition 1 of decomposition maps allows for this case. The semi-group

structure is used here only to characterize or restrict the set of parameters

that are relevant for a preference.

16Although the assumption u(∆(C)) = R rules out C finite, this is not a problem for
this result. See comments in its proof.
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3.3.1 Exchangeability

The classic example of invariance and its implications is de Finetti (1937)’s

notion of exchangeability and his representation theorem. To introduce ex-

changeability, assume that the state space has the product structure Ω =

S × S × · · · . Let Π be the group of all finite permutations, with a generic

permutation denoted π. The following result is an immediate corollary of

Theorem 3.

Corollary 1 Assume that < is T -invariant and that (Θ, ϑ) is a sufficient

T -parametrization. Let ΘΠ ⊂ Θ be the set of i.i.d. measures. Then the

following are equivalent:

1. f ∼ f ◦ π for every π ∈ Π and f ∈ F ;

2. (ΘΠ, ϑ) is sufficient for <.

Note that, as in Theorems 2 and 3, we do not require full-invariance with

respect to the semi-group in the sense of (3). Epstein and Seo (2010) were

the first to propose invariance with respect to the group of permutations Π:

for every f ∈ F , integer n, and π1, . . . , πn ∈ Π

f ∼ f ◦ π1 + · · ·+ f ◦ πn
n

. (6)

They also studied weaker versions of this criterion of exchangeability and

their implications under maxmin expected utility. See De Castro and Al-

Najjar (2009) for a more detailed discussion of their work. In a paper subse-

quent to this one, Klibanoff, Mukerji, and Seo (2010) showed various inter-

esting equivalent forms of this condition.

3.3.2 Markov Parameters

There is a large literature that studies weaker notions of exchangeability,

usually referred to as “partial exchangeability.” See Diaconis and Freedman

(1984) for a general treatment.
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An important case is when the set of parameters are Markov processes.

This is a set of parameters that includes as special case the set of i.i.d. dis-

tributions. Diaconis and Freedman (1980) characterize the group of trans-

formations M that gives rise to Markov parameters.

3.3.3 The Trivial Parametrization

The ‘finest’ parametrization (i.e., the one with the most parameters) is the

one where each state ω is its own parameter, the dirac measure δω that puts

unit mass on that state. This parametrization represents the polar case where

the decision maker makes no connections between states. This intuition is

confirmed by the next proposition showing that the trivial parametrization

corresponds to the semi-group {1}, where 1 is the identity transformation:

1(ω) = ω. For the next proposition, assume an abstract Ω that does not

necessarily have a product structure.

Proposition 3.1 The (essentially unique) parametrization (Θ, ϑ) correspond-

ing to the trivial semi-group {1} is one where:

• the parameters are the dirac measures δω, ω ∈ Ω;

• ϑ is the identity.

Let IA denote the indicator function of an event A, so I?A(ω) is the em-

pirical frequency under τ of the event A at state ω.

Proof of Proposition 3.1: For the trivial group 111, the limit f ? trivially

exists for all ω ∈ Ω. In particular, I?A(ω) = IA(ω) = δω(A), for all A ∈ Σ.

Therefore, we can define the decomposition map ϑ(ω) = δω and Θ = Ω will

be the parameter space. All the properties of the decomposition map are

easily seen to be satisfied.

Every preference is trivially 1-invariant, imposing no restrictions on the

preference. Interpreting invariance as a belief in a similarity relationship

between states, under the trivial transformation every state is similar only to

itself. In the case of coin tosses, under the trivial parametrization, no finite
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amount of data will enable the decision maker to learn the true parameter.17

Compare this with exchangeable parametrizations where it is easy to devise

(classical or Bayesian) procedures that ‘learn’ the true i.i.d. parameter.

3.3.4 Discussion

Next we turn to some issues of interpretation:

• Parameters and Frequencies: The probability measure P ϑ(ω) can be

constructed by observing the (deterministic) sequence of τ(ω), τ 2(ω), . . .,

for all ω in a set Ω′ that is the complement of a <-null set. In the

Appendix, Theorem A.9 shows that information about the frequencies

starting with a typical initial state ω is sufficient to derive the param-

eter ϑ(ω). The distribution P ϑ(ω) is therefore nothing but a compact

way to represent the empirical frequencies at ω.

• Parameters and Objectivity: Parameters P θ may be interpreted as ob-

jective risks because they are derived from the empirical frequencies,

which are objective. Uncertainty, on the other hand, concerns how the

decision maker aggregates over parameters. A Bayesian, for instance,

would rank acts according to their expected utility with respect to a

subjective prior over Θ, while a classical statistician may follow very

different procedures.

• Taste over Consequences vs. Invariance Judgment: The preference <
distills not just the decision maker’s judgment of similarity but also,

among other things, his ranking of consequences and his risk attitude.

The decision maker’s similarity judgment is conceptually distinct from

such taste issues. For example, when facing a sequence of statistical ex-

periments, the decision maker judgment whether the experiments are,

say, exchangeable is an assertion of a statistical connection between

experiments that ought to be unrelated to his taste over consequences.

The order of quantifiers in Theorem 1 is important: the same param-

eterization (Θ, ϑ) works simultaneously for all Γ-invariant preferences,

17See Jackson, Kalai, and Smorodinsky (1999) for a formal notion of learnability.
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regardless of the decision maker’s utility function over consequences or

his risk attitude.

4 Aggregating Parameter Uncertainty

Given our weak assumptions, the parametric preferences framework is con-

sistent with a broad range of approaches for aggregating uncertainty about

parameters. Here we provide a general methodology for doing so.

4.1 Parameter-Based Acts

A parameter-based act is any measurable function

F : Θ→ ∆(C).

Contrast this with (ordinary) state-based acts which are defined on Ω. Let

F denote the set of parameter-based acts. As a notational convention, we

denote state-based acts with lower case letters f, g, h and parameter-based

acts by the upper case letters F,G,H.

It is usually more convenient to introduce assumptions regarding how

the decision maker treats parameter-uncertainty directly on acts defined in

terms of parameters. To avoid ambiguity, we refer to a binary relation <<< on

F as an aggregator because it describes how the decision maker aggregates

uncertainty about parameters. Since an aggregator is just a preference on an

auxiliary state space Θ, the properties of reflexivity, transitivity, monotonic-

ity, and continuity can be defined similarly to the corresponding properties

of preferences.

This section’s objective is to provide a template for how to start with

properties of the aggregator <<< and translate them into properties of a prim-

itive preference on F . Our main tool is the operator Ψ : F → F:

Ψ(f)(θ) =

∫
Ω

f dP θ,

which relates state-based and parameter-based acts. The following proposi-

tion establishes its usefulness in linking aggregators to preferences: starting
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with an abstract decomposition map and an aggregator, we can construct a

preference on the underlying state space.

Proposition 4.1 Let (Θ, ϑ) be a decomposition map. Then for any aggre-

gator <<< on F satisfying assumptions 1-5, there is a uniquely defined prefer-

ence < on F satisfying the same assumptions such that (Θ, ϑ) is a sufficient

parametrization for <, that is:

f < g ⇐⇒ Ψ(f) <<< Ψ(g). (7)

Conversely, given a preference < satisfying assumptions 1-5 and its suf-

ficient parametrization (Θ, ϑ), there is an aggregator <<< on F satisfying the

same assumptions and (7).

Next, consider a situation where we only know that there is a functional

V : F→ R which represents the aggregator <<< :

F <<<G ⇐⇒ V(F ) > V(G).

Proposition 4.2 Let (Θ, ϑ), < and <<< satisfy all the conditions of Propo-

sition 4.1. Then, there is a functional V representing <<< if and only if there

are functions V : F̃→ R and u : ∆(C)→ R, where F̃ ⊂ RΘ and u is affine,

such that

f < g ⇐⇒ V

(
θ 7→

∫
Ω

u(f) dP θ

)
> V

(
θ 7→

∫
Ω

u(g) dP θ

)
. (8)

Proof: By Proposition 4.1 and the assumption, f < g ⇔ Ψ(f) <<< Ψ(g) ⇔
V (Ψ(f)) <<<V(Ψ(g)). By monotonicity, if F (θ) ∼∼∼G(θ) for all θ ∈ Θ, then

F ∼∼∼G. Since < and <<< are complete in ∆(C) and satisfy the Herstein-

Milnor axiom, there is an affine function u : ∆(C) → R representing the

preference (and the aggregator) over ∆(C). Therefore, we can write the

functional V as V ◦ u, where V : F̃ → R and F̃ = u(F) ⊂ RΘ. Since u

is affine, u (Ψ(f)(θ)) =
∫

Ω
u(f) dP θ, which establishes (8). The converse is

trivial.

19



4.1.1 Uncertainty Averse Aggregators

For concrete examples of aggregators, consider the class of uncertainty averse

preferences characterized by Cerreia, Maccheroni, Marinacci, and Montruc-

chio (2008) (henceforth CMMM). This class is very broad and covers most

models of uncertainty aversion in the literature. Here the aggregator charac-

terized is

F <<<G ⇐⇒ min
µ∈∆σ(µ̄)

Φ

(∫
Θ

u(F ) dµ, µ

)
> min

µ∈∆σ(µ̄)
Φ

(∫
Θ

u(G) dµ, µ

)
(9)

where: µ̄ ∈ ∆(Θ), ∆σ(µ̄) is the set of countably additive probability measures

which are absolutely continuous with respect to µ̄, u : ∆(C)→ R is an affine

function with u(∆(C)) = R, and Φ : R × ∆(Θ) → (−∞,∞] is a function

satisfying certain technical conditions; see CMMM for details.

Proposition 4.3 Let (Θ, ϑ), < and <<< satisfy all the conditions of Propo-

sition 4.1. The following statements are equivalent:

(i) <<< satisfies the axioms A.1− A.8 of CMMM.

(ii) there exist an affine u : ∆(C) → R, with u(∆(C)) = R, a function18

Φ : R×∆(Θ)→ (−∞,∞] and µ̄ ∈ ∆(Θ) such that, for all f, g ∈ F ,

f < g ⇐⇒ min
µ∈∆σ(µ̄)

Φ

(∫
Θ

(∫
Ω

u(f)dP θ

)
dµ, µ

)
> min

µ∈∆σ(µ̄)
Φ

(∫
Θ

(∫
Ω

u(g)dP θ

)
dµ, µ

)
.

Proof: By CMMM’s Theorem 7, condition (i) holds if and only if (9) is true.

Since u is affine, if F = Ψ(f) then u(F (θ)) =
∫

Ω
u(f) dP θ. This concludes

the proof.

In this proposition, one could substitute CMMM’s axioms by some other

set of axioms Ax provided that an aggregator <<< satisfies Ax if and only if

18Φ satisfy some technical conditions. See CMMM for details.
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there exist functions A : F̃ → R and affine u : ∆(C) → R, F̃ = u(F) ⊂ RΘ,

such that

F <<<G ⇐⇒ A(u(F (·))) > A(u(G(·))).

Then the proposition would hold with the obvious adaptations.

4.2 Second-Order Expected Utility

We next consider in greater details a (parametric) second-order expected

utility model. This may be viewed as generalizing the model introduced by

Neilson((1993), (2009)). As noted in the introduction, this type of preferences

gained considerable attention in the literature recently.19

As we shall see below, parameters are more integral to the second-order

expected utility model than the other preference models discussed earlier.

This makes it an especially attractive class to examine the implications of

parametric preferences framework in details.

Definition 5 We say that <<< has an expected utility representation on

parameter-based acts if

• There exists a function ϕ : ∆(C)→ R and a countably additive proba-

bility measure ν on Θ such that for any F,G ∈ F

F <<<G ⇐⇒
∫

Θ

ϕ(F ) dν ≥
∫

Θ

ϕ(G) dν (10)

and:

• The function ϕ is unique up to positive affine transformations, and the

measure ν is unique.

Conditions characterizing the existence of an expected utility represen-

tation amount to imposing the appropriate version of the Savage axioms on

F.

19Related models include, among others, Nau (2001), Klibanoff, Marinacci, and Mukerji
(2005), Nau (2006), Ergin and Gul (2009), Chew and Sagi (2008), Strzalecki (2010), Grant,
Polak, and Strzalecki (2009), and Klibanoff, Mukerji, and Seo (2010).
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Theorem 4 Let (Θ, ϑ), < and <<< satisfy all the conditions of Proposition

4.1. The following statements are equivalent:

1. <<< has a subjective expected utility representation;

2. There is a probability measure µ on Θ, and a function φ : R→ R such

that, for any pair of acts f, g:

f < g ⇐⇒
∫

Θ

φ

(∫
Ω

u(f) dP θ

)
dµ ≥

∫
Θ

φ

(∫
Ω

u(g) dP θ

)
dµ. (11)

If a preference can be represented as in (11), then µ is unique, and the re-

striction of the function φ to u(∆(C)) is unique up to positive affine trans-

formations.

Moreover, if (Θ, ϑ) is a Γ-parametrization, then < is Γ-invariant.

Proof: Assume (1) in the statement of the theorem and let (ϕ, µ) be as in the

definition so (10) holds. Since ϕ and u both represent the same preference

on ∆(C), there must be a monotone increasing function φ : u(∆(C)) → R
such that ϕ(c) = φ(u(c)) for every consequence c.

Fix f, g and let F,G be the corresponding parameter-based acts, that is,

F (θ) =
∫

Ω
f dP θ and similarly for G. Then:

f < g ⇐⇒
∫

Ω

f dP ϑ(·) <
∫

Ω

g dP ϑ(·) (12)

⇐⇒ F <<<G (13)

⇐⇒
∫

Θ

ϕ (F ) dµ ≥
∫

Θ

ϕ (G) dµ (14)

⇐⇒
∫

Θ

φ ◦ u
(∫

Ω

f dP θ

)
dµ ≥

∫
Θ

φ ◦ u
(∫

Ω

g dP θ

)
dµ (15)

⇐⇒
∫

Θ

φ

(∫
Ω

u(f) dP θ

)
dµ ≥

∫
Θ

φ

(∫
Ω

u(g) dP θ

)
dµ (16)

In the above: (12) follows from the definition of a sufficient parameterization;

(13) follows from Proposition 4.1; (14) follows from condition (10) and the
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fact that the acts in (13) are parameter-based; (15) follows from ϕ(c) =

φ(u(c)) for every c; and finally (16) follows from the fact that u is linear.

Note that φ can be moved along with u inside the integral only if it is linear.

Conversely, assume that (2) in the theorem holds. Then, we can repeat

the above arguments to get the equivalence of (16) and (14). Now, by Propo-

sition 4.1, we get the equivalence (14) and (13), which means that <<< has a

subjective expected utility representation.

Finally, we assume (11) and show that < is Γ-invariant. Fix γ1, . . . , γn ∈
Γ and act f . Then:∫

ϕ

(∫
1

n

n−1∑
j=0

f ◦ γj dP θ

)
dµ =

∫
ϕ

(
1

n

n−1∑
j=0

∫
f ◦ γj dP θ

)
dµ

=

∫
ϕ

(
1

n

n−1∑
j=0

∫
f dP θ

)
dµ

=

∫
ϕ

(∫
f dP θ

)
dµ.

This concludes the proof.

The reader may wonder why we need to offer a different proof, since

Proposition 4.2 and especially Proposition 4.3 seem to contain, as a special

case, expected utility aggregators. There is a subtle difference: in the two

propositions, the aggregator is already represented by an affine u, while in

Theorem 4 ϕ need not be linear. Note that if ϕ is linear, then the model

above collapses to a standard expected utility preference.

One way to think of a parametrization is as a process in which the de-

cision maker partitions the state space into events {ϑ−1(θ)}Θ within which

variability in consequences is treated as objective risk, in the sense that he

applies the same risk attitude given by u that he applies to objective lotteries.

To provide further intuition, consider the state space Ω = {H,T}∞ and two

decision makers with preferences < and <′ with the same utility functions

u so they display identical attitudes towards objective risk. Suppose that

< is invariant only with respect to the trivial semi-group {1}, while <′ is

exchangeable. Then the sets of parameters are Θ = Ω and Θ′ = [0, 1] re-

spectively. Define the second-order probabilities µ and µ′ to be the uniform
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distributions on Θ and Θ′ respectively. Finally, assume that φ is strictly

concave and identical for both preferences.

Consider now the act f that pays 1 dollar if the first toss is H and

0 otherwise. Then for the first decision maker, the parameter-based act

corresponding to f yields utility δω 7→ u
(
f(ω)

)
while for the second, it

is θ 7→ θu(1) + (1 − θ)u(0), where we take θ to be the probability of H.

The overall value of the act under the representation (11) is, respectively,

0.5φ(u(1)) + 0.5φ(u(0)) and
∫
φ[θu(1) + (1 − θ)u(0)] dµ. The former is ob-

tained by applying a mean preserving spread to the latter, so it is smaller.

The decision maker with finer parameterization perceives less risk and more

uncertainty than the one whose parametrization is coarser.

4.3 Separating Objective and Subjective Uncertainty

The double integral representation in Theorem 4 includes as a special case

expected utility models as well as some of the ambiguity aversion prefer-

ences studied in the literature. In this subsection we consider the models of

Neilson((1993), (2009)) and the related work by Strzalecki (2010). Neilson

considers the representation:

VN(f) =

∫
φ
[
u(f(ω))

]
dµ(ω). (17)

The next proposition is a simple consequence of Theorem 4 and Proposition

3.1 characterizing Neilson’s representation in terms of the trivial semi-group

{1}:

Proposition 4.4 For every preference relation < the following are equiva-

lent:

1. The preference < satisfies assumptions 1-4, is invariant with respect

to the trivial semi-group {1}, and has an expected utility representation

on parameter-based acts;

2. There is a probability measure µ on Θ, and a function φ : R→ R such

that < can be represented by the functional VN .
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The uniqueness properties of µ, φ hold as in Theorem 4.

In an important recent paper Strzalecki (2010) introduces additional

structure that ensures that φ has the specific functional form correspond-

ing to multiplier preferences:

φα(r) =

{
− exp

(
− r

α

)
α <∞,

r α =∞.

Here α is interpreted as a measure of uncertainty aversion: when α = ∞
the decision maker is expected utility maximizer, while for finite α he treats

subjective uncertainty about the state ω differently from the way he treats

objective lotteries over consequences.

Neilson((1993), (2009)) and Strzalecki (2010) implicitly assume that the

decision maker has no additional (subjective) structure on the decision prob-

lem in the form of non-trivial invariance. In the context of a sequence of

coin tosses, the decision maker may believe that there are common factors

that connect consecutive tosses, justifying an assumption of exchangeabil-

ity, for instance. In applications of multiplier preferences to dynamic macro

and finance models, it is common to assume that the decision maker has

a parametric representation of the uncertainty he faces—for instance, that

the time series of interest are governed by some Markovian process P θ of

unknown parameter θ. In this case, it seems plausible that, conditional on

knowledge that the parameter is θ, the decision maker treats P θ as objective

risk.

Introducing invariance with respect to a non-trivial semi-group Γ captures

the idea that the decision maker treats as objective risk not just the objective

lotteries on consequences, but also all uncertainty conditional on knowledge

of the value of the parameter. If (Θ, ϑ) denotes the parametrization corre-

sponding to Γ, then we can extend Neilson((1993), (2009)) and Strzalecki

(2010) models to accommodate the parameters as an additional source of

objective uncertainty, yielding the functional form:
∫
φ
(∫

u(f) dP θ
)
dµ(θ)

derived in Theorem 4.
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4.4 “Second-Order” Acts

Klibanoff, Marinacci, and Mukerji (2005) provide a model with similar rep-

resentation which, in our notation, has the form:∫
∆(Ω)

φ

(∫
Ω

u(f(ω)) dP (ω)

)
dν(P ). (18)

They interpret ν as the decision maker’s subjective uncertainty about the

‘true’ objective process P , and the support of ν as the set of ‘true’ processes

or parameters the decision maker views as possible.

In terms of foundations, Klibanoff, Marinacci, and Mukerji postulate two

preferences: One preference < over the set of state-based acts F , and second

preference <̆ over “second-order acts,” which is the set F of all functions of

the form:

f : ∆(Ω)→ ∆(C).

It is not possible to formally compare this approach with the framework

of this paper because neither second-order acts nor integration over ∆(Ω) in

(18) have a behavioral meaning in our model. Here we briefly highlight the

main issues. A detailed discussion is in Al-Najjar and De Castro (2010).

The second-order expected utility model (11) differs from (18) along two

fundamental dimensions:

• Foundations: The behavioral foundations underlying (18) require deci-

sion makers to express a preference <̆ over second-order acts.

• Functional Form: In (18) the outer integral is over mixtures of pa-

rameters so decision makers have beliefs about randomizations over

parameters.

The two issues above are closely related. We illustrate this with a simple

example and refer the reader to Al-Najjar and De Castro (2010) for a more

comprehensive argument. Consider a repeated coin toss setting with only

two possible i.i.d. parameters θ0 6= θ1. A second-order act restricted to this

domain is a function f : [0, 1] → R. Here, f(0) and f(1) denote the conse-

quences obtained if θ0 or θ1 occur, respectively, while f(α) is the consequence

when the ‘true’ distribution is the mixture Pα ≡ αP θ0 + (1− α)P θ1 .
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In any parametric preference, regardless of functional form, a bet on a

parameter θi is just a compact way of expressing a bet on the event ϑ−1(θi) ⊂
Ω. Parameter-based acts are nothing more than ordinary acts, compactly

expressed using parameters. For 0 < α < 1, statements like “Pα occurred”

has no behavioral meaning. Even in highly idealized thought experiments,

all that is observed is the state ω, from which one can infer whether the

parameter is either θ0 or θ1, in our example. The mixture Pα, on the other

hand, is not observed, even in the limit with infinite amount of data. As a

result, a second-order act f cannot be executed and a preference <̆ over such

acts is not meaningful in our model. The functional form (18) reflects this:

the only way to identify the belief ν is by asking the decision maker to rank

second-order acts.

Any preference that incorporates second-order acts is inconsistent not

just with the second-order expected utility model (11) but all parametric

preferences covered in this paper, regardless of functional form.
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A Preliminary results

A.1 <-Null sets

Lemma A.1 Let Cn be <-null for all n ∈ N. Then, C = ∪n∈NCn is <-null.

Proof: Let f, g, h be arbitrary acts. Define AN ≡ ∪Nn=1Cn; fN ≡ f1AN +

x1C\AN + h1Cc , and gN ≡ g1AN + x1C\AN + h1Cc . Observe that fN =∑N
n=1 f1Cn + x1C\AN + h1Cc and gN =

∑N
n=1 g1Cn + x1C\AN + h1Cc . Using

the nullness of Cn for each n = 1, 2, ..., we have:

fN = f1C1 + f1C2 + · · ·+ f1CN + x1C\AN + h1Cc

∼ g1C1 + f1C2 + f1C3 + · · ·+ f1CN + x1C\AN + h1Cc

∼ g1C1 + g1C2 + f1C3 + · · ·+ f1CN + x1C\AN + h1Cc

· · ·
∼ g1C1 + g1C2 + · · ·+ g1CN + x1C\AN + h1Cc

= gN .

It is easy to see that fN → f1C +h1Cc and gN → g1C +h1Cc . Since f, g, h ∈
F , there exist xa, xa such that xa < a(ω) < xa,∀ω ∈ Ω, for a = f, g, h.

Define u(ω) ≡ max{xf , xg, xh} and l(ω) ≡ min{xf , xg, xh}. Note that these

values are well-defined because < is complete on ∆(C). Therefore, continuity

implies f1C + h1Cc ∼ g1C + h1Cc . Since f, g, h are arbitrary, C is null.

Lemma A.2 If A ⊂ E, A ∈ Σ and E is <-null then A is <-null.

Proof: Let f, g, h ∈ F . Define f ′ ≡ f1A + h1E\A and g′ ≡ g1A + h1E\A.

Since E is null, we have:[
f ′(ω), if ω ∈ E
h(ω), if ω 6∈ E

]
∼
[
g′(ω), if ω ∈ E
h(ω), if ω 6∈ E

]
.

Note, however that the left and right side above are respectively:[
f(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
and

[
g(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
.

Therefore, A is <-null.
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Definition A.3 Let N denote the set of <-null sets and let H be a sub-σ-

field of Σ. Let H denote the following class of sets:

H ≡ {A ∈ Σ : ∃B ∈ H, A∆B ∈ N},

where A∆B ≡ (A ∩Bc) ∪ (Ac ∩B).

Lemma A.4 H is a σ-field cointaining H. More precisely, H = H ∨ N is

the smallest σ-field containing both H and N .

Proof: It is obvious that H ⊃ H and ∅ ∈ H. If A ∈ H, let B ∈ H be

such that A∆B ∈ N . Since Bc ∈ H and Ac∆Bc = A∆B, then Ac ∈ H.

Finally, assume that {An}n∈N ⊂ H. Then there exist {Bn}n∈N ⊂ H, such

that Cn ≡ An∆Bn ∈ N . Let A ≡ ∪n∈NAn and B = ∪n∈NBn. It is clear that

B ∈ H and

A∆B = [(∪n∈NAn) ∩ (∪n∈NBn)c] ∪ [(∪n∈NAn)c ∩ (∪n∈NBn)]

= [(∪n∈NAn) ∩ (∩n∈NB
c
n)] ∪ [(∩n∈NA

c
n) ∩ (∪n∈NBn)]

⊂ [∪n∈N (An ∩Bc
n)] ∪ [∪n∈N (Acn ∩Bn)]

= ∪n∈NCn.

The set ∪n∈N Cn is <-null by Lemma A.1. Since A∆B is Σ-measurable and

is contained in the <-null set ∪n∈N Cn, Lemma A.2 shows that A∆B ∈ N .

This establishes that H is a σ-field.

Finally, it is clear that H ⊃ H∪N . Since it is a σ-field, then H ⊃ H∨N .

On the other hand, if A ∈ H, there exists B ∈ H such that A∆B ∈ N .

Then, C = A \ B ⊂ A∆B is Σ-measurable and therefore, <-null. But

A = B ∪ C ∈ H ∪N and therefore, A ∈ H ∨N .

A.2 Reduction to real-valued functions

Under our assumptions, Herstein and Milnor (1953)’s theorem implies the

existence of a linear function u : ∆(C)→ R, unique up to affine transforma-

tions, representing < on ∆(C). By linear, we mean that u(αx+ (1−α)y) =

αu(x) + (1− α)u(y), for every x, y ∈ ∆(C) and α ∈ [0, 1]. Moreover, since u
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is linear, I ≡ u(∆(C)) ⊂ R is a convex subset of R, that is, I is an interval.

By non-triviality (there exists x, y such that x � y) and taking an affine

transformation of u if needed, we can assume that [0, 1] ⊂ I. Moreover,

pointwise continuity implies that:

Lemma A.5 u : ∆(C)→ R is continuous.20

Proof: Let xn, x ∈ ∆(C),∀n ∈ N, xn → x and assume that there exists

δ > 0 such that for any m ∈ N, there exists nm > m such that u(xnm) /∈
(u(x)−δ, u(x)+δ).Define A = {j ∈ N : xnj < x} and B = {j ∈ N : x < xnj}.
Since < is complete on ∆(C), A∪B = N and at least one of the two sets is

infinite. Without loss of generality, assume that A is infinite. Then, for any

j ∈ A, u(xnj) > u(x) + δ. Since u(∆(C)) is convex, there exists y such that

u(x) < u(y) < u(x) + δ < u(xnj). Consider the sequence yj = y,∀j ∈ N.

Then, xnj < yj, xnj → x and yj → y. Pointwise continuity implies that

x < y, which contradicts u(y) > u(x).

Now, u : ∆(C) → R induces a preference order on the set D of the

Σ-measurable functions f : Ω→ I as follows: for each f, g ∈ D,

f <D g ≡ u−1(f) < u−1(g). (19)

In fact, (19) is not completely formal, since u is not invertible in general

and, therefore, u−1 ◦ f : Ω→ ∆(C) is actually a correspondence rather than

an act in F . However, by monotonicity all selections of this correspondence

will be indifferent, so that <D is well-defined by (19). Observe that since

u represents < when restricted to consequences, we have x, y ∈ I, x > y ⇔
x <D y.

Conversely, given a preference <D on D and function u : ∆(C) → I we

can define a preference <′ on F by the following: for any f, g ∈ F ,

f <′ g ≡ u(f) <D u(g). (20)

20This lemma holds even if C is just a Polish space. If C is finite, ∆(C) is finite
dimensional and continuity follows immediately from the linearity of u. Thus, this lemma
is relevant only to infinite dimensional spaces.
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It is easy to see that if we start with < on F , obtain <D on D by (19) and

use this <D together with u in (20) to define a preference <′, then < and

<′ coincide.21

In sum, a preference < on ∆(C)-valued functions F defines a preference

<D on real-valued functions D and a preference <D on D together with a

function u : ∆(C) → R defines a preference < on F . The next proposition

establishes a useful link between the two:

Lemma A.6 Consider one of the following two cases:

1. It is given a preference < on F satisfying our assumptions and let <D

be defined as in (19).

2. It is given a preference <D on D and a linear u : ∆(C) → R, let <
be defined by (20).

In any case, < is Γ-invariant if and only if <D is Γ-invariant.

Proof: Fix an act f : Ω → ∆(C). Since f ∈ F is bounded, there exist x, x

such that x < f(ω) < x, for all ω ∈ Ω. Herstein and Milnor (1953) also

show that for any z satisfying x < z < x, there exists a unique α ∈ [0, 1]

such that z ∼ αx+ (1− α)x. Therefore, u(f(Ω)) ⊂ u ([x, x]), where [x, x] ≡
{αx+ (1− α)x : α ∈ [0, 1]}, and the function u is invertible when restricted

to [x, x]; in this proof, u−1 will denote the inverse function of this restriction.

Since u is linear in ∆(C), then for every ω ∈ Ω,

u

(
f ◦ γ1 + · · ·+ f ◦ γn

n
(ω)

)
=
u ◦ f ◦ γ1(ω) + · · ·+ u ◦ f ◦ γn(ω)

n
. (21)

We claim that u−1 is also linear. To see this, observe that:

u (αz + (1− α)w) = αu(z) + (1− α)u(w)

⇒ u−1 [u (αz + (1− α)w)] = u−1 (αu(z) + (1− α)u(w))

⇒ αz + (1− α)w = u−1 (αu(z) + (1− α)u(w))

21 Given f, g ∈ F , (19) implies that u(f) <D u(g) ⇔ f < g, from the discussion
following (19). However,
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If we put u(z) = a and u(w) = b, so that z = u−1(a) and w = u−1(b), the

last equation is just:

u−1 (αa+ (1− α)b) = αu−1(a) + (1− α)u−1(b),

that is, u−1 is linear as we claimed.

Now, assume that <D is Γ-invariant, that is, for every γ1, ..., γn ∈ Γ and

f̃ ∈ D, the following holds:

f̃ ∼ f̃ ◦ γ1 + · · ·+ f̃ ◦ γn
n

. (22)

Fix f ∈ F . From (20),

f ∼ f ◦ γ1 + · · ·+ f ◦ γn
n

⇐⇒ u(f) ∼D u
(
f ◦ γ1 + · · ·+ f ◦ γn

n

)
.

Using (21) and (22), we obtain that < is Γ-invariant. The proof of the

converse statement is analogous.

The above results shows that it is enough to consider preferences over

bounded real valued functions with values in I = u(∆(C)). Since u is affine,

u(∆(C)) will be an interval I ⊂ R (which may be the whole R). We can

calibrate u so that the two outcomes x, y ∈ ∆(C) assumed to exist in As-

sumption 5, have values 0 and 1, respectively. In particular, this implies that

the interval [0, 1] ⊂ I ⊂ R and that for any x, y ∈ [0, 1], x > y ⇔ x �D y.

In next sections, we will consider only <D and, for convenience, we

will drop the superscript D, denoting it only by <. The following result

summarizes the properties of <D that we will need and which are implied

by the assumptions on < given in the body of the paper.

Corollary A.1 <D is defined for functions f : Ω→ I ⊂ R and satisfies the

following:

1. (Preorder) <D is reflexive and transitive.

2. (Monotonicity) If f(ω) > g(ω) for all ω ∈ Ω, then f <D g.
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3. (Pointwise continuity) Suppose that for a given pair of acts f, g ∈ D
there are sequences {fn}, {gn} such that: (i) fn → f and gn → g;

(ii) |fn(ω)| ≤ b(ω) and |gn(ω)| ≤ b(ω), for all ω and some b ∈ D;

and (iii) fn <D gn for all n. Then f <D g.

4. (Non-triviality) For any x, y ∈ I, x > y ⇔ x <D y and [0, 1] ⊂ I.

In the next section, we will prove theorems about preferences <D defined

on measurable functions f : Ω → I ⊂ R. It is useful to observe that to a

preference <D corresponds more than one < on F , because we can take

different utility functions. To clarify this, suppose that we begin with a

preference < on F obtain <D as in (19) using the u related to <, and now

consider <D with another linear function u′ : ∆(C) → R. If we use u′ and

<D as in (20), we obtain <′:

f <′ g ≡ u′(f) <D u′(g).

Observe that if u 6= u′ then < and <′ will be different as well. However, we

have the following:

Lemma A.7 < and <′ have the same null sets. Moreover, < and <D

have the same null sets.

Proof: Since <D can be obtained from <′ using u′ (instead of u) in (19), it

is enough to show that < and <D have the same null sets. Let f, g, h ∈ F .

Then, (19) and (20) imply that:[
f(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
∼
[
g(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
⇐⇒

[
u(f(ω)), if ω ∈ A
u(h(ω)), if ω 6∈ A

]
∼D

[
u(g(ω)), if ω ∈ A
u(h(ω)), if ω 6∈ A

]
.
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A.3 Statement of subjective ergodic theorems

The proof of Theorem 1 is based on two theorems about preferences defined

for real-valued functions, whose statements and proofs are given below.

Consider a preference < defined on the set D of all Σ-measurable func-

tions f : Ω → I ⊂ R, satisfying all the assumptions listed in Corollary A.1.

In this section, we will simplify notation by writing < instead of <D. No

confusion should arise since we consider no other preference here.

Theorem A.8 (The Subjective Ergodic Theorem) The following con-

ditions are equivalent:

1. < is τ -invariant.

2. For every act f , the empirical limit f ? is well-defined off a <-null

event.

In this case, f ? ∼ f ,22 and f ? is τ -invariant, that is, f ?(τω) = f ?(ω),

whenever the limit exists.

If < is τ -ergodic, then f ? is constant except in a <-null set.

This theorem was proved in De Castro and Al-Najjar (2009). Since the

proof is long and technical, we include it as supplemental material.

For stating the next theorem, we need some notation. Let ∆(Ω) is the

set of all probability measures in Ω, endowed with its usual weak∗-topology.

Let Perτ ⊂ ∆(Ω) denote the set of all τ -ergodic probability measures. As

usual, it is convenient to write this set of τ -ergodic measures will be indexed

by a set of parameters Θ, that is, Perτ = {P θ}θ∈Θ. Of course, this set of

parameters can be itself identified with Perτ and thus inherit its topological

and measurable structure.

Theorem A.9 Assume that Ω is compact. If < is τ -invariant, then there

exists a decomposition map ϑ : Ω→ Θ such that (Θ, ϑ) is sufficient for <.

22Extend f? arbitrarily at ω’s where the limit does not exist.

34



A.4 Proof of Theorem A.9

Consider the sup-norm in D:

‖f‖ = sup
ω∈Ω
|f(ω)|.

A subset D̃ ⊂ D is separable if there exists a countable dense subset, that

is, a countable set H ⊂ D̃ such that for every f ∈ F̃ and ε > 0, there exists

h ∈ H such that ‖f − h‖ < ε.

Comments: Our first difficulty in proving Theorem A.9 is that the set D is
not separable in general. This creates a number of difficulties. Therefore, we
need to find a suitable subset D̃ ⊂ D which is separable and has sufficiently
nice property as to imply things about D.

We need the following:

Lemma A.10 Let S be a Polish space and S, its Borel σ-algebra. Then,

there exists a countable algebra S◦ of subsets of S that generates S.

Proof: Since S is Polish, by (Royden 1968, Theorem 8, p. 326) it is Borel

isomorphic to (i) [0, 1]; (ii) N; or (iii) a finite set. Sets A and B are Borel

isomorphic if there is a measurable bijective map h : A→ B, with measurable

inverse. Consider first the case where S is Borel isomorphic to [0, 1]. Let

A denote the collection of finite unions of intervals of the form [a, b), for

a, b ∈ Q∩ [0, 1]. It is easy to see that A is a countable algebra that generates

the Borel field of [0, 1]. Since intersections and set difference is preserved

under the inverse of a function, then S◦ ≡ h−1(C) is also a countable algebra.

Since h−1(σ(C)) = σ(h−1(C)), then S◦ generates the Borel field S.

If S is Borel isomorphic to N, take as A the algebra of all singletons of

N, which generates its Borel field. Then, repeat the ideas above. Finally, if

S is Borel isomorphic to a finite set, take as A the power set of this finite set

and repeat the same arguments.

Lemma A.11 Let S◦ as in the above lemma. Then B(S,S◦) is separable.
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Proof: The set B(S,S◦) is the closed linear span of a countable set, namely,

∪n∈N {
∑n

i=1 αi1Ai : αi ∈ Q;Ai ∈ S◦, for i = 1, 2, ..., n}. Therefore, it is

separable.

Let Σ◦ be a countable algebra that generates Σ, which exists by Lemma

A.10. Thus the set B(Ω,Σ◦) ⊂ D is clearly separable.

Lemma A.12 Let D̃ ⊂ D be separable. Then, there exists Ω′ ⊂ Ω with

<-null complement, such that the limit

lim
N→∞

1

N

N−1∑
j=0

f
(
τ jω
)

exists for all f ∈ D̃ and ω ∈ Ω′.

Proof: Let H = {hn : n ∈ N} be a countable dense set of D̃. By Theorem

A.8, there exist a set Ωn such that Ω \ Ωn is <-null, and the limit

lim
N→∞

1

N

N−1∑
j=0

hn
(
τ jω
)

exists for all ω ∈ Ωn. Define Ω′ ≡ ∩nΩn and, for each f ∈ D̃ and N ∈ N,

fN(ω) ≡ 1
N

∑N−1
j=0 f (τ jω). By Lemma A.1, Ω \ Ω′ is <-null. Therefore,

it is sufficient to show that for all ω ∈ Ω′ there exists limN→∞ f
N(ω) or,

equivalently, that {fN(ω)} is Cauchy. Given ε > 0, choose hn such that

‖f − hn‖ < ε
3
, which can be done because {hn} is dense. Now, choose nε

such that N,M > nε implies |hNn (ω)− hMn (ω) | < ε
3
. Therefore:

| fN(ω)− fM(ω) | 6 | fN(ω)− hNn (ω) | + |hNn (ω)− hMn (ω) |
+ |hMn (ω)− fM(ω) |

6
1

N

N−1∑
j=0

| f
(
τ jω
)
− hn(T jω) | +

ε

3

+
1

M

M−1∑
j=0

| f
(
τ jω
)
− hn(T jω) |

6
ε

3
+
ε

3
+
ε

3
= ε,
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that is, {fN(ω)} is Cauchy for all ω ∈ Ω′. This shows that limN→∞ f
N(ω)

exists for all ω ∈ Ω′ and f ∈ D̃.

For each A ∈ Σ and ω ∈ Ω, define I(ω,A) = 1 if ω ∈ A and 0 otherwise.

Occasionally, it will be more convenient to write I(ω,A) as IA(ω) (to see it

as a function of ω for some fixed A). We will also be interested in Iω(A), to

see it as a function of A, for a fixed ω. No confusion should arise from this

abuse of notation. The following comes directly from Lemmas A.10, A.12

and the Subjective Ergodic Theorem (Theorem A.8):

Corollary A.2 There exists Ω′ such that for all ω ∈ Ω′ and all A ∈ Σ◦, the

limit I?A(ω) ≡ limN→∞
1
N

∑n−1
j=0 IA(τ jω) exists. Moreover, IA ∼ I?A.

Let the set Ω′ given by the lemma above be fixed from now on.

Definition A.13 Let (X,X ) and (Y,Y) be measurable spaces. A Markov

kernel (or a stochastic kernel) is a mapping k : X ×Y → [0, 1] satisfying the

following two properties.

1. For each x ∈ X, the set function k(x, ·) : Y → [0, 1] is a (countably

additive) probability measure.

2. For each A ∈ Y, the mapping k(·, A) : X → [0, 1] is X -measurable.

Of course, I?(ω,A) is well-defined only for ω ∈ Ω′ and A ∈ Σ◦. Our

objective will be to extend it to I? : Ω × Σ → [0, 1] and show that it is a

Markov kernel. This will be established through a series of lemmas.

Lemma A.14 For each ω ∈ Ω′, I?ω : Σ◦ → [0, 1] is a finitely additive and

monotonic set function.

Proof: If A1, ...An are disjoint events in Σ◦, then I?∪ni=1Ai
(ω) is equal to:

lim
N→∞

1

N

N−1∑
j=0

I∪ni=1Ai
(τ jω) = lim

N→∞

1

N

N−1∑
j=0

n∑
i=1

IAi(τ
jω) =

n∑
i=1

I?Ai(ω), (23)
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for all ω ∈ Ω′. This shows that the limit I?A(ω) exists and it is unique for

all ω ∈ Ω′ and all A = ∪ni=1Ai, for A1, ...An disjoint events in Σ◦, that is,

for all A ∈ Σ◦. For each A ∈ Σ◦, define ν(A) ≡ I?A(ω) (for any ω ∈ Ω′). If

A,B ∈ Σ◦ and A ⊂ B, then I?A(ω) 6 I?B(ω), that is, ν is monotone. (23)

shows that ν is finitely additive.

Lemma A.15 For each ω ∈ Ω′, I?ω : Σ◦ → [0, 1] is countably additive.

Proof: Consider a decreasing sequence of sets An ∈ Σ◦, An ↓ ∅. By

(Billingsley 1995), Example 2.10, p. 25, it is sufficient to prove that I?ω(An)→
I?ω(∅) = 0. Suppose otherwise. Then there exist ε > 0 and a subsequence

Anj such that I?ω(Anj) > ε, which means that I?Anj < ε. It is clear that

I?Anj converges to 0 pointwise and, therefore, I?Anj → 0. Pointwise continuity

implies that 0 < ε, but this contradicts the non-triviality assumption.

Lemma A.16 For each ω ∈ Ω′, there exists a unique extension νω : Σ →
[0, 1] of I?ω : Σ◦ → [0, 1].

Proof: By the Caratheodory extension theorem (see (Royden 1968, Theorem

8, p. 257)), the following outer measure is the unique extension of I?ω to all

A ∈ Σ:

νω(A) ≡ inf

{
∞∑
n=1

I?ω(An) : An ∈ Σ◦, A ⊂ ∪∞n=1An

}
. (24)

Recall that for each ω ∈ Ω′ and A ∈ Σ, I?ω(A) exists. The above result

established that I?ω(A) = νω(A) only for A ∈ Σ◦. However, νω(·) and I?ω(·)
actually agree for more general sets, as the following lemma establishes.

Lemma A.17 For any A ∈ Σ and ω ∈ Ω′, I?ω(A) = νω(A).

Proof: Take Ai ∈ Σ◦, such that A ⊂ ∪ni=1Ai. It is clear that IA(ω) 6∑n
i=1 IAi(ω) and, therefore,

ĪA(ω) ≡ lim sup
N→∞

1

N

N−1∑
j=0

IA(τ jω) 6
n∑
i=1

I?Ai(ω) =
n∑
i=1

I?ω(Ai).
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Since this is valid for any n, (24) implies that ĪA(ω) 6 νω(A). Similarly,

IA(ω) ≡ lim inf
N→∞

1

N

N−1∑
j=0

IA(τ jω) 6
n∑
i=1

I?Ai(ω) =
n∑
i=1

I?ω(Ai),

which proves that IA(ω) 6 νω(A). It is easy to see that ĪA(ω) = 1− IAc(ω).

Assume that for some A and ω ∈ Ω′, we have ĪA(ω) < νω(A). Then, IAc(ω) =

1− ĪA(ω) > 1− νω(A) = νω(Ac), but this contradicts IAc(ω) 6 I?ω(Ac). This

shows that ĪA(ω) = νω(A). Similarly, IA(ω) = νω(A), for all ω ∈ Ω′, which

shows that the limit I?A(ω) exists and it is equal to νω(A) for all ω ∈ Ω′.

Fix the ν : Ω′ × Σ→ [0, 1] defined above.

Corollary A.3 For any ω ∈ Ω′, the set function νω : Σ → [0, 1] is τ -

invariant and τ -ergodic.

Proof: We want to prove that νω(τ−1(A)) = νω(A) for every A ∈ Σ.

This comes directly from Lemma A.17 since for every ω ∈ Ω′ and A ∈ Σ,

I?τ−1(A)(ω) = I?A ◦ τ(ω) = I?A(ω), where the last inequality holds because I?A is

τ -invariant, by Theorem A.8.

Now let A ∈ Eτ , that is, τ−1(A) = A. Then IA(ω) = IA(τ jω) for every j.

Therefore, I?A(ω) = 1 if ω ∈ A and 0 otherwise. In other words, νω assumes

only the values 0 or 1 for any invariant A, that is, νω is τ -ergodic.

Lemma A.18 Fix a Σ-measurable bounded f : Ω → R and let g : Ω → R
be a Σ-measurable function which satisfies g(ω) =

∫
f(ω̃)ν(ω, dω̃),∀ω ∈ Ω′.

Then, f ∼ g.

Proof: Let A1, ..., An ∈ Σ. By Lemma A.17,
∑n

i=1 αiI
?
Ai

(ω) =
∑n

i=1 αiνω(Ai)

for all ω ∈ Ω′. Since Ω \ Ω′ is <-null,

n∑
i=1

αiIAi ∼
n∑
i=1

αiI
?
Ai
∼

n∑
i=1

αiνω(Ai),

that is, f ∼ g if f is a simple function and g is as above.
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Now, given a Σ-measurable bounded f , let B > 0 be a bound for f , that

is, f(ω) ∈ [−B,B], ∀ω ∈ Ω. For each j ∈ {−2n,−2n + 1, ..., 2n} and n ∈ N,

let Aj,n ≡ {ω : f(ω) ∈ [ jB
2n
, (j+1)B

2n
)}. Define:

fn(ω) =
2n∑

j=−2n

jB

2n
1Aj,n(ω),

that is, fn(ω) is valued jB
2n

, whenever jB
2n

6 f(ω) < (j+1)B
2n

. It is easy to

see that fn is a sequence of simple functions that converge pointwise to f ,

fn ↑ f .

Now, fix g as in the statement above and define gn : Ω→ R as follows:

gn(ω) =

{ ∫
fn(ω̃)ν(ω, dω̃), if ω ∈ Ω′

g(ω) if ω ∈ Ω \ Ω′

Fix ω ∈ Ω′ and recall that νω′(·) is a countably additive probability mea-

sure. By the Lebesgue Monotone Convergence Theorem, we have gn(ω) =∫
fn(ω̃)ν(ω, dω̃) →

∫
f(ω̃)ν(ω, dω̃) = g(ω). Since this is valid for all ω ∈ Ω′

and gn(ω) = g(ω) if ω /∈ Ω′, {ω : limn→∞ g
n(ω) 6= g(ω)} = ∅. This shows

that by gn → g. Since fn is simple, in the beginning we have established

that fn ∼ gn. Therefore, by continuity f ∼ g.

At this point, it is useful to recall the following standard definitions and

notation. Let X be a complete separable metrizable (Polish) space and X
denote the σ-field of its Borel sets. The set ∆(X) denotes all probability

measures which are defined on X . Let Cb(X) denote the set of continuous

and bounded real-valued functions f : X → R. The set ∆(X) is endowed

with its usual weak∗-topology, that is, the σ (∆(X), Cb(X))-topology. It is

well known that ∆(X) is also Polish. Let Pτ and Perτ denote, respectively,

the sets of τ -invariant and τ -ergodic measures in ∆(Ω). Also, let Pexτ denote

the set of extreme points of Pτ , that is, the set of .

Lemma A.19 If Ω is compact, then the set Pexτ is a Gδ subset of ∆(Ω).

Proof: The set ∆(Ω) is compact if and only if Ω is compact—see

(Aliprantis and Border 2006, Theorem 15.11). The statement then fol-

lows from (Aliprantis and Border 2006, Lemma 7.63)—see also (Phelps 2001,

Proposition 1.3).
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It is useful to observe that the above result is false without the assumption

that Ω is compact. (Jayne and Rogers 1977) construct examples of closed

convex bounded subsets of Banach spaces whose set of extreme points are

not Borel measurable. The conclusion above in particular implies that Pexτ
is isomorphic to a Borel set of the real line. This conclusion is important in

the proof of Lemma A.24 below, but the assumption that Ω is compact is

needed nowhere else.

Lemma A.20 The set of τ -ergodic measures is equal to the set of extreme

points of τ -invariant measures, that is, Pexτ = Perτ .

Proof: This comes from (Aliprantis and Border 2006, Theorem 19.25).

This allows us to define the set of parameters:

Definition A.21 Let Pexτ = Perτ be written as {P θ}θ∈Θ, where Θ is a set

of parameters, which is identified with Pexτ = Perτ ⊂ ∆(Ω) and, therefore,

inherits the topology and measurable structure of ∆(Ω).

The following definition is standard.

Definition A.22 Let X and Y be separable metrizable spaces. A Markov

transition (or simply a transition) from X to Y is a Borel measurable function

M : X → ∆(Y ).

Lemma A.23 The function I? : Ω′ × Σ → [0, 1] is a Markov kernel and

ϑ : Ω′ → ∆(Ω) defined by ϑ(ω)(·) = νω(·) is a Markov transition and takes

values in Perτ .

Proof: The set Ω′ is clearly separable metrizable. Corollary A.3 shows that

νω ∈ Perτ and the fact that I?A is τ -invariant for each A ∈ Σ implies that ϑ

above defined is measurable, by Aliprantis and Border (2006, Theorem 19.7,

p. 627). This establishes that ϑ is a Markov transition, which is equivalent

to I? : Ω′×Σ→ [0, 1] is a Markov kernel—see Aliprantis and Border (2006)’s

Theorem 19.12 and 19.13, p. 630.
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Lemma A.24 There is an extension of I? : Ω′ × Σ → [0, 1] to ν : Ω ×
Σ→ [0, 1] which is a Markov kernel. Moreover, there is a Markov transition

ϑ : Ω→ Θ such that ϑ(ω)(·) = I?ω(·), for every ω ∈ Ω′.

Proof: Let I? : Ω′ × Σ → [0, 1] and ϑ : Ω′ → ∆(Ω) be as in Lemma A.23.

By lemmas A.19 and A.20, the set of ergodic measures Θ is a Gδ set and,

therefore, isomorphic to a Borel subset of the real line. By (Shortt 1983,

Theorem 1), there exists an extension ϑ of ϑ′ from Ω′ to Ω . By (Aliprantis

and Border 2006, Theorem 19.12), the function ν : Ω × Σ → [0, 1] defined

by ν(ω, ·) ≡ ϑ(ω)(·) is a Markov kernel. Since ϑ extends ϑ′, then ν(ω,A) =

I?(ω,A) for every (ω,A) ∈ Ω′ × Σ, that is, ν is an extension of I?. This

completes the proof.

From now on, let ν : Ω× Σ→ [0, 1] and ϑ : Ω→ Θ be as defined above.

Lemma A.25 For each f ∈ D, we have:

f(·) ∼
∫
f(ω̃) P ϑ(·)(dω̃), (25)

Proof: Define g : Ω→ R by g(ω) =
∫
f(ω̃)ν(ω, dω̃). Observe that we can we

write P ϑ(ω) = ϑ(ω), and equivalently define g(ω) =
∫
f(ω̃) P ϑ(ω)(dω̃),∀ω ∈

Ω. By (Aliprantis and Border 2006, Theorem 19.7), g is Σ-measurable. Thus,

Lemma A.18 implies that f ∼ g, as we wanted to show.

Corollary A.4 Let the set A ∈ Σ be such that µ(A) = 0 for all µ ∈ Perτ .

Then A is <-null.

Proof: Let f, g and h be arbitrary acts and let fAh denote the act that

takes value f(ω) if ω ∈ A and h(ω) if ω /∈ A. By Lemma A.25, fAh ∼∫
(fAh)(ω̃) P ϑ(·)(dω̃). Since P ϑ(ω) ∈ Perτ and µ(A) = 0 for all µ ∈ Perτ ,

then
∫

(fAh)(ω̃) P ϑ(ω)(dω̃) =
∫
h(ω̃) P ϑ(ω)(dω̃),∀ω ∈ Ω. Therefore, fAh ∼∫

h(ω̃) P ϑ(·)(dω̃) ∼ h. Repeating the argument for g, we conclude fAh ∼
h ∼ gAh, that is, A is <-null.
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Definition A.26 A map U : D → D is a τ -universal conditional expectation

if it satisfies the following two conditions:

1. U(f) is Eτ -measurable for every f ∈ D;

2. for any τ -invariant measure µ ∈ Pτ , f ∈ D and A ∈ Eτ ,23∫
A

f dµ =

∫
A

U(f) dµ. (26)

Whenever τ is clear from the context, we will refer only to universal

conditional expectation.

Lemma A.27 The map Mϑ : D → D defined by:

Mϑ(f)(·) ≡
∫
f(ω̃) P ϑ(·)(dω̃), (27)

is a universal conditional expectation.

Proof: This map is the specialization of the general map defined by (Varadarajan

1963) for the semigroup generated by τ . As such, it is a universal conditional

expectation.

Corollary A.5 If ϑ̃ : Ω→ Θ is such that

f(·) ∼
∫
f(ω̃) P ϑ̃(·)(dω̃), (28)

is satisfied and the map M ϑ̃ : D → D defined by

M ϑ̃(f)(·) ≡
∫
f(ω̃) P ϑ̃(·)(dω̃), (29)

is a universal conditional expectation, then D = {ω ∈ Ω : ϑ(ω) 6= ϑ̃(ω)} is

<-null.

Proof: SinceMϑ andM ϑ̃ are both universal conditional expectations, µ(D) =

0 for all µ ∈ Pτ—see Varadarajan (1963, section 4). By Corollary A.4, D is

<-null.

23It is sufficient to require (26) to hold for f = 1A, for any A ∈ Σ since this implies (26)
for all f ∈ D.
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B Proofs

B.1 Proof of Theorem 1

Proof of Theorem 1:

Let P denote the set of preferences on F satisfying assumptions 1-5. As

discussed in section A.2, for each preference <∈ P there is a linear utility

function u : ∆(C) → R that represents < on ∆(C). Analogously, let

PD denote the set of preferences on real-valued functions D satisfying the

properties stated in Corollary A.1. As discussed in section A.2, for each

<∈ P it corresponds a <D∈ PD, defined by (19) and, conversely, to each

<D∈ PD and linear u corresponds a <∈ P, as defined by (20).

Fix f ∈ F and a linear function v : ∆(C)→ R, and define the sets:

A ≡ {ω ∈ Ω : ∃ lim
n→∞

1

n

n−1∑
j=0

f
(
τ jω
)
}

and

Ãv ≡ {ω ∈ Ω : ∃ lim
n→∞

1

n

n−1∑
j=0

v
[
f
(
τ jω
)]
}.

Notice that the above sets do not depend on any preference.

Since C is finite, ∆(C) is finite dimensional and we can find a countable

set U of linear functions u : ∆(C) → R such that xn → x if and only if

u(xn) → u(x) for every u ∈ U (a finite dimensional space has only one

topology). Define Ã ≡ ∩u∈UÃu. Thus, A = Ã.

Theorem A.8 shows that Ãcu = Ω \ Ãu is <D-null for any <D∈ PD. By

Lemma A.1, Ãc is also <D for any <D∈ PD. By Lemma A.7, Ac = Ãc is

<-null for any <∈ P.

By Theorem A.9, there exists a decomposition map ϑ : Ω → Θ such

that (Θ, ϑ) is sufficient for <D for any <D∈ PD. In particular, this means

that u(f) ∼D
∫
u(f) dP ϑ(·) = u

(∫
f dP ϑ(·)), because u is linear. By (20),

f ∼
∫
f dP ϑ(·) and (Θ, ϑ) is sufficient for <∈ P. By construction, u(f)?(ω) =∫

u(f) dP ϑ(ω) in a set Ω′ whose complement is <-null and, repeating the

above argument, we can have f ?(ω) =
∫

Ω
f dP ϑ(ω) in this set.
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Note that the assumption that C is finite was used in the proof of the

above theorem only to guarantee that the convergence of v(f(ω)) for all linear

v : ∆(C)→ R implies the convergence of f(ω). If C is not finite, the above

proof still establishes the following:

Theorem B.1 Assume that < satisfies assumptions 1-5, Ω is compact Pol-

ish, C is a Polish, and < is τ -invariant. Then there exists a decomposition

map ϑ : Ω → Θ, where Θ is the set of τ -ergodic parameters, and an affine

utility function u : ∆(C)→ R which represents < on ∆(C) such that:

1. (Θ, ϑ) is sufficient for <.

2. for any f ∈ F , the set {ω ∈ Ω : 6 ∃ limn→∞
1
n

∑n−1
j=0 u (f (τ jω))} is <-

null.

B.2 Proof of Theorem 2

We first prove the equivalence of (2) and (3) without using the semi-group

Γ. Then, we define Γ and using this Γ, we show the equivalence of (1) and

(3).

(2) ⇒ (3): Assume that (Θ, ϑ) is a sufficient parametrization of <. We

want to prove that A ≡ ϑ−1(Θ \ Θ) is <-null. Assume otherwise. Then

there exist f, g, h ∈ F such that the acts

f ′ ≡
[
f(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
and g′ ≡

[
g(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
are not indifferent. Fix ω ∈ Ω and let θ = ϑ(ω) ∈ Θ. Then,∫

Ω

f ′ dP ϑ(ω) =

∫
ϑ−1(θ)

f ′ dP θ =

∫
ϑ−1(θ)

h dP θ,

where the last inequality comes from the fact that ϑ−1(θ) ⊂ Ac. A similar

equality holds also for g, for any ω. This implies that the integrals
∫
f ′ dP ϑ(·)

and
∫
g′ dP ϑ(·) are equal and thus indifferent. But since (Θ, ϑ) is a sufficient

parametrization of <, this means that f ′ ∼ g′, which is a contradiction.

(3) ⇒ (2): Assume that A ≡ ϑ−1(Θ \ Θ) is <-null. Define ϑ(ω) = ϑ(ω)

if ω ∈ ϑ−1(Θ) and ϑ(ω) = θ ∈ Θ (arbitrarily) if ω ∈ A. Since (Θ, ϑ) is a
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sufficient parametrization and A is <-null, it is clear that f ∼
∫
f dP ϑ(·),

that is, (Θ, ϑ) is a sufficient parametrization of <.

We now define Γ as follows. For each ω̃ ∈ ϑ−1(Θ), define the transforma-

tion γω̃ : Ω→ Ω by:

γω̃ (ω) =

{
ω, if ω ∈ ϑ−1(Θ)
ω̃, if ω ∈ A = ϑ−1(Θ \Θ)

That is, the transformation γω̃ takes every point in A to ω̃, while leaving

every other point fixed. Let Γ ≡ {γω : ω ∈ ϑ−1(Θ)}. It is easy to see that

this defines a semi-group.

(1)⇒ (3): Now assume that < is weakly Γ-invariant, that is, f ∼ f ◦ γ
for all γ ∈ Γ. We want to prove that A is <-null. Assume otherwise. Then

there exist f, g, h ∈ F such that the acts

f ′ ≡
[
f(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
and g′ ≡

[
g(ω), if ω ∈ A
h(ω), if ω 6∈ A

]
are not indifferent. Fix some ω̃ /∈ A. Since f ′ ∼ f ′ ◦ γω̃, g′ ∼ g′ ◦ γω̃ and

f ′ ◦ γω̃(ω) = g′ ◦ γω̃(ω),∀ω, then f ′ ∼ g′, which is a contradiction.

(3)⇒ (1): If ϑ−1(Θ \Θ) is <-null, then f ∼ f ◦ γω, ∀ω ∈ ϑ−1(Θ).

B.3 Proof of Theorem 3

Although the assumption u(∆(C)) = R rules out C finite, this is not a

problem for this and related results. See Theorem B.1.

(2) ⇒ (1): Since there exists a map ϑ̃ : Ω → ΘΓ such that (ΘΓ, ϑ̃) is a

sufficient parametrization of < and P ϑ(·) ◦ γ−1 = P ϑ(·), ∀γ ∈ Γ,

f ◦ γ ∼
∫

(f ◦ γ) dP ϑ̃(·) =

∫
f d(P ϑ̃(·) ◦ γ−1) =

∫
f dP ϑ̃(·) ∼ f,

which establishes (1).

(1)⇒ (2): By Theorem 2, it is enough to establish that A ≡ ϑ−1(Θ\ΘΓ)

is <-null. Let Aγ ≡ {ω ∈ A : P ϑ(ω) 6= P ϑ(ω) ◦ γ−1}. Then, A = ∪γ∈ΓAγ.

Since Γ is countable, it is enough to prove that Aγ is <-null for each γ.
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Fix γ ∈ Γ and denote Θγ ≡ {θ ∈ Θc
Γ : P θ 6= P θ ◦ γ−1}. Observe that

Aγ = ∪θ∈Θγϑ
−1(θ) = ϑ−1(Θγ). For each θ ∈ Θγ, let Bθ ⊂ ϑ−1(θ) be such

that αθ ≡ P θ(Bθ) 6= P θ(γ−1(Bθ)) ≡ βθ.

We will first prove that the set Ãγ ≡ ∪θ∈ΘγB
θ is <-null. For an absurd,

assume that Ãγ is not <-null, that is, there exist f, g ∈ F such that

f ′ ≡
[
f(ω), if ω ∈ Ãγ
g(ω), if ω 6∈ Ãγ

]
and g

are incomparable. Since (Θ, ϑ) is sufficient, we can assume that f, g ∈ Fϑ.

This means that ϑ(ω) = ϑ(ω′)⇒ f(ω) = f(ω′) and a similar condition hold

for g. Since αθ 6= βθ, for each θ ∈ Θγ, we can find xθ and yθ such that:{
αθu(xθ) + (1− αθ)u(yθ) = u(f(ω))

βθu(xθ) + (1− βθ)u(yθ) = u(g(ω))

for every ω ∈ ϑ−1(θ).

Define h ∈ F as follows:

h (ω) =


xθ, if ω ∈ Bθ, θ ∈ Θγ

yθ, if ω ∈ ϑ−1(θ) \Bθ, θ ∈ Θγ

g(ω), otherwise

Therefore, if ϑ(ω) = θ ∈ Θγ,∫
u(h) dP ϑ(ω) = u(xθ)P θ(Bθ) + u(yθ)P θ(ϑ−1(θ) \Bθ)

= αθu(xθ) + (1− αθ)u(yθ)

= u(f(ω)).

If ϑ(ω) = ϑ(γ(ω)) = θ ∈ Θγ,
24∫

u(h ◦ γ) dP ϑ(ω) = u(xθ)P θ(γ−1(Bθ)) + u(yθ)P θ
[
γ−1

(
ϑ−1(θ) \Bθ

)]
= βθu(xθ) + (1− βθ)u(yθ)

= u(g(ω)).

24 Recall that ϑ is Γ-invariant.
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On the other hand, if ϑ(ω) = θ /∈ Θγ, then P θ = P θ ◦ γ−1, which implies

that: ∫
h ◦ γ dP ϑ(ω) =

∫
h d
(
P ϑ(ω) ◦ γ−1

)
=

∫
h dP ϑ(ω).

Also, in this case,∫
h dP ϑ(ω) =

∫
g dP ϑ(ω) = g(ω) = f ′(ω),

because we chose g ∈ Fϑ.

Then h ∼
∫
h dP ϑ(·) = f ′ and h ◦ γ ∼

∫
(h ◦ γ) dP ϑ(·) = g, but yet f ′

and g are incomparable, which contradicts h ∼ h ◦ γ. The contradiction

establishes that Ãγ is <-null.

The above argument can now be applied to Aγ\Ãγ = ∪θ∈Θγ

[
ϑ−1(θ) \Bθ

]
to conclude that Aγ \ Ãγ is also <-null. Since Aγ is the union of two <-null

sets, it is <-null. This concludes the proof.

B.4 Proof of Proposition 4.1

Given a decomposition map ϑ, we identify the parameter-based acts with

acts FΓ ⊂ F that are measurable with respect to EΓ as follows.25 Define

Mϑ : F → FΓ by:

Mϑ(f)(ω) =

∫
Ω

f dP ϑ(ω). (30)

Since the decomposition map defines a universal conditional expectation,

the map Mϑ acts as an identity in FΓ. Notice that if we have ϑ(ω) = θ,

then Mϑ(f)(ω) = Ψ(f)(θ). That is, we have Mϑ(f)(·) = Ψ(f)(ϑ(·)) and,

conversely, Ψ(f)(·) = Mϑ(f)(ϑ−1(·)). Therefore, when restricted to FΓ, the

map Ψ : FΓ → F can be seen as one-to-one (up to functions that differ on

<-null sets). Therefore, the inverse Ψ−1 : F→ FΓ is given by:

Ψ−1(F )(ω) = F (ϑ(ω)).

25This proof is written in terms of a Γ-parametrization, but it can be easily adapted for
a parametrization without reference to semi-groups.
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Since Mϑ(f)(·) = Ψ(f)(ϑ(·)), Ψ(f)(·) = Mϑ(f)(ϑ−1(·)), f ∼Mϑ(f) is equiv-

alent to (7).

Given an aggregator <<< satisfying assumptions 1-5, define < on FΓ by

(7). Imposing that (Θ, ϑ) is sufficient for <, this defines < uniquely. It

is easy to see that assumptions 1-5 hold (continuity holds by the dominated

convergence theorem and the above definition).

Conversely, given <, define <<< by:

F <<< G ≡ Ψ−1(F ) < Ψ−1(G).

Given that Ψ is one-to-one up to null sets, (7) also holds. Again, it is easy

to see that <<< satisfies assumptions 1-5.
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