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Abstract. We study a general preferential attachment and Pólya’s urn model. At each step

a new vertex is introduced, which can be connected to at most one existing vertex. If it

is disconnected, it becomes a pioneer vertex. Given that it is not disconnected, it joins an

existing pioneer vertex with probability proportional to a function of the degree of that vertex.

This function is allowed to be vertex-dependent, and is called the reinforcement function. We

prove that there can be at most three phases in this model, depending on the behavior of

the reinforcement function. Consider the set whose elements are the vertices with cardinality

tending a.s. to infinity. We prove that this set either is empty, or it has exactly one element,

or it contains all the pioneer vertices. Moreover, we describe the phase transition in the case

where the reinforcement function is the same for all vertices. Our results are general, and in

particular we are not assuming monotonicity of the reinforcement function.

Finally, consider the regime where exactly one vertex has a degree diverging to infinity. We

give a lower bound for the probability that a given vertex ends up being the leading one, i.e.

its degree diverges to infinity. Our proofs rely on a generalization of the Rubin construction

given for edge-reinforced random walks, and on a Brownian motion embedding.
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1 Introduction

1.1 Setting and motivation

We study the following model. Given finitely many classes (or groups) each containing a

given initial number of members, new members arrive one at a time. For each new member

arriving at time n, with probability sn ≥ 0 we create a new class in which we place the

member; with probability 1− sn, we place the member in an existing class. We assume that

each existing class attracts new members with probability proportional to a certain positive

function of the cardinality of the group, called the reinforcement or weight scheme f . If the

groups are allowed to have different reinforcement schemes, then we show that looking at the

asymptotics as time tends to infinity we have exactly three different regimes: one group is

infinite and all the others are finite; all groups are infinite; all groups are finite. Our main

result, Theorem 1.4, shows that in the first regime the process will eventually create a unique

infinite group: this happens when each group is reinforced quite a bit, but not too much

with respect to the other groups. In the second regime, the cardinality of each group goes

to infinity. Finally, in the last regime, all the groups will be finite; what happens is that the

process creates various peaks: in the beginning one group dominates the others, but sooner

or later another group will start dominating, and this change happens infinitely many times.

In this way, no group dominates definitively the other groups. This is a kind of ’there is

always a faster gun’ principle.

Our model is a generalization of two models from two different classes: one model from

the class of preferential attachment models, as introduced in [13] and in [17], and one model

from the class of reinforcement processes, as introduced in [5].

The first main model we are generalizing was introduced and studied independently in [13]

and in [17], and later studied in more detail in [21] and [26]. This model is part of the class of

preferential attachment models, which are models of growing networks, and which were first

proposed in the highly-influential papers [1] and [2]. In [1] new vertices arrive at the network

one at a time and send a fixed number m of edges to already existing vertices; the probability

that a new vertex is linked to a given existing vertex is proportional to the in-degree of the

respective existing vertex. Here, the in-degree of a vertex is the number of children of that

vertex.

The model studied in [13], [17], [21] and [26] is as follows: consider a model of an evolving

network in which new vertices arrive one at a time, each connecting by an edge to a previously

existing vertex with a probability proportional to a function f of the existing vertex’s in-

degree. This function f is called attachment rule, or weight function, and it determines the

existence of two main different regimes. The first regime corresponds to f(j) = j + 1 and

it was studied in [1], [2] and [26]; the second regime corresponds to for γ < 1 and it was

studied in [26]. The third regime corresponds to f(j) = (j + 1)γ for γ > 1, and it was

studied in [21]. In the first two regimes, it is shown that the degrees of all vertices grow to

infinity; in the third regime there is a second phase as one vertex eventually dominates all
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other vertices. In the first regime, which is a generalization of Polya urn, the urn process is

exchangeable. The exchangeability disappears when non-linear reinforcement is introduced

(see [15]). (For more results on preferential attachment models, see the survey [3].)

Preferential attachment models have been motivated by real-life problems, especially in

regards to network and internet applications. One important example of growing networks

is the World Wide Web, in which the more popular a page (or vertex) is the more hits it

receives; a similar principle applies to social interaction or to citation networks. Another

example is the one of users of a software program who can report bugs on a website. Bugs

with the highest number of requests get priority to be fixed. If the user cannot find an

existing report of the bug, they can create a new report. However, it could be that there are

duplicate reports, in which case the number of requests is split between the reports, making

it less likely that the bug the user found will get fixed. Since bugs that have more requests

appear higher up the search results, the user is more likely to add a request to an existing

report than to a new one.

This can be explained by the fact that such networks are built dynamically and that new

vertices prefer to attach themselves to existing popular vertices with high in-degree rather

than to existing unpopular vertices with low in-degree.

The second main model we are generalizing is studied in [5], [20] and [28]. It is known as

the generalized Pólya’s urn process, it belongs to the class of reinforcement processes, and can

be described as follows. Given finitely many bins each containing one ball, new balls arrive

one at a time. For each new ball, with probability p ≥ 0 we create a new bin in which we place

the ball; with probability 1−p, we place the ball in an existing bin. The probability that the

ball is placed in an already existing bin is proportional to f(j) = jγ , where j is the number

of balls in that bin. The case with p = 0 and γ = 1 is the well-known Pólya’s urn problem.

For p = 0 and γ > 0 no new bins are created, and the process is called a finite Pólya process

with exponent γ. If p > 0 then the process is called an infinite Pólya process. Similarly to

the preferential attachment models, for generalized Pólya urn processes with f(j) = jγ , it is

known that for γ ≤ 1 the number of balls in all bins eventually grows to infinity, whereas for

γ > 1 one bin eventually comes to dominate all other bins. (A detailed review of a number of

other interesting results on Pólya’s urn processes and on reinforcement processes in general

is provided in the survey [22].)

The generalized Pólya’s urn process has applications to many areas. We briefly mention

one such application to biology; for an extensive overview of other applications of generalized

Pólya urn processes to reinforced random walks, statistics, computer science, clinical trials,

biology, pshychology and economics, see for example Chapter 4 in [28].

The generalized Pólya’s urn process with p = 0 is used in [9] and [27] to study a real-life

application; the reinforcement scheme used in these papers is set to f(j) = jγ , with γ > 0,

and real-life data are compared against different values of γ and initial configurations. More

precisely, the authors study a colony of ants, which explores a chemically unmarked territory

randomly, starting from the nest. The exploration is done on a fixed number k of paths of
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various lengths. Each ant passes along one of the k paths leaves a pheromone mark and in

this way infuences the following ant’s decision in choosing a particular path. This decision is

also influenced by whether the paths of various lengths are discovered at the same time, or

whether they are discovered at different times. In the real-life experiment it is noticed in the

case of paths of equal lengths that, after initial fluctuations, one of the paths becomes more

or less completely preferred to the others.

We will show in our paper that the above two models, belonging to these two different

areas, are in fact closely related because they are both special cases of our much more general

model. The first of our results, Theorem 1.1, proved for our general model, unifies the

two above-described phase transition results for a very general class of weight functions f ;

the result holds in particular both for preferential attachment processes and for generelized

Pólya’s urn processes. It is worth noting that our condition on the weight function is much

weaker than all previously-proved results for the models we generalize. Moreover, in our

main result, Theorem 1.4, we show, under no assumptions on the weight function, that we

can have only three possible phases; in the third phase, all groups (respectively vertices, bins)

stay finite as time tends to infinity. To the best of our knowledge, this is the first time when a

third regime as described in our Theorem 1.4, has been proved for any model of preferential

attachment or Pólya’s urn type. In the case of weight functions f which give rise to the

second phase, we devise in our Theorem 1.6, and respectively in Corollary 1.7, a test for

obtaining an upper bound, and respectively a lower bound, on the probability that a given

group ends up being dominant.

The motivation for our model comes from the class of species sampling sequences, to which

class our model belongs. Species sampling sequences are models for exchangeble sequences

(Xn) with a prediction rule, that is, a formula for the conditional distribution of Xn+1 given

X1,X1, . . . ,Xn for n = 1, 2, . . . , n.More precisely, given the first n terms of the sequence (Xn),

Xn+1 equals the i-th distinct value observed so far with probability pn+1,i, for i = 1, 2 . . . n,

and otherwise Xn+1 is a new value with distribution ν for some probability measure ν.

Species sampling sequences were first introduced and studied in [23], [24] and are now used

extensively in Bayesian nonparametric statistics. (See for example [14], [16] or [18] for more

on species sampling sequences or for their applications to statistics.)

We next introduce precisely our model.

1.2 The main model

We consider the following model where at each step a new vertex and at most one new edge

appear according to the following rules. The probability that the new vertex is disconnected

is positive and may change in time. When a vertex is disconnected from the existing ones,

it becomes a pioneer vertex. We label the pioneer vertices in order of appearance. Given

that the new vertex is connected to an existing one, the latter is chosen with probability

proportional to a reinforcement scheme of its degree. The graph formed with this procedure
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is the union of trees. Each tree has a pioneer vertex as a root. The tree with root i observed

at time n, is called the i-th group (or i-th component) by time n.

More formally, fix a collection of positive functions fk : N → R+ with fk(0) = 0 and fk(i) > 0

for all i, k ≥ 1, and a sequence {sn} which takes values in [0, 1]. Set A1(1) = 1 and Aj(1) = 0

for all j ≥ 2. Set L1 = 1. We define the random variables Ai(n+ 1) and Ln+1 recursively as

follows

P
(
Ak(n+ 1) = Ak(n) + 1 | Ln, {Aj(n),with j ∈ N}

)
=

(
1− sn

) fk(Ak(n))∑Ln

s=1 fs(As(n))
, for i ≤ Ln,

P(ALn+1(n+ 1) = 1 | Ln, {Aj(n),with j ∈ N}
)

= sn,

while Aj(n+ 1) = 0 for all j > Ln + 1. Moreover,

Ln+1
def
= max{j ≥ 1: Aj(n+ 1) ≥ 1}.

Notice that Ai(n+1)−Ai(n) ∈ {0, 1} and exactly for one index i this difference equals 1.

The random variable Ai(n) is the cardinality of the i-th group by time n. We call the process

{Ai(n), i, n ≥ 1} a generalized attachment model whose parameters are the sequence {sn} and

the reinforcement functions {fk}, abbreviated with GAM({fk}, {sn}). We emphasize the fact

that we do not make any assumptions on the update functions {fk}, other than positiveness,

and {sn} is allowed to be random. As shown in Theorem 1.4, some of our strongest results

hold for a group-dependent deterministic reinforcement scheme {fj}, that is, where each

group j follows its own reinforcement scheme fj, independently of the other groups. From

the point of view of applications, this allows one to take into account the case where different

groups have different update schemes, which is what would be expected in many real-life

situations. We use the symbol GAM(f, {sn}) to denote a generalized attachment model

where the update functions fk are equal to the positive function f for each k ≥ 1.

We briefly discuss next the link of our work to the recent literature. The two main models

that we generalize were studied in detail in the particular case with reinforcement scheme

proportional to f(j) = jγ , where γ > 0.

Let us look first at the literature on preferential attachment models connected to our

generalized attachment model. The preferential attachment model studied in [13], [17], [21]

and [26] is just GAM(f, {sn}) for the particular case of sn = m(n)c/
(∑Ln

s=1 f(As(n))+m(n)c
)
,

where we denoted by m(n) ≤ n the number of groups (respectively vertices) with no children

at time n, and where c > 0. Then in the growing network, Aj(n) ≥ 1 represents the

in-degree at time n of existing vertex j with strictly positive in-degree, that is, vertex j

has Aj(n) children. With probability f(Aj(n))/
(∑Ln

s=1 f(As(n) + m(n)c
)
, a new arriving

vertex attaches to an existing vertex j with strictly positive in-degree Aj(n); with probability

m(n)c/
(∑Ln

s=1 f(As(n))+m(n)c
)
, a new arriving vertex attaches to one of the existing m(n)
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vertices with 0 in-degree. For the case where the reinforcement function f is linear or super-

linear, {sn} is bounded away from 1, so we can apply our results to the case of preferential

attachment models.

In [21] the authors look at the preferential attachment model with reinforcement scheme

f(j) = (j +1)γ , γ > 1, for which they prove a similar result to our Theorem 1.1 by using the

original Rubin construction. In [4] and [19], respectively in [26], the authors give the limiting

degree distribution for a wide range of linear, respectively sub-linear, weight functions.

A different preferential attachment model was studied in [10] and [11]. In this model a

new vertex arrives at each step and attaches to every existing vertex independently with a

probability proportional to a concave weight function f of the existing vertex’s degree. In [10]

the authors prove in Theorem 1.5 the same type of phase transition as in our Theorem 1.1,

and they study the degree distribution. In [11] they study the existence of a giant component,

that is, of a connected component containing a positive fraction of all vertices.

We turn now to the literature on the generalized Pólya’s urn model. This model corresponds

to GAM(f, {sn}) in the particular case with sn ≡ p for all n ≥ n0, for some fixed n0 ∈ N. In

[5] the authors consider both the generalized Pólya’s urn model with p = 0, when the number

of bins is fixed, and with p > 0, and they prove by combinatorics techniques a similar result

to our Theorem 1.1 for the case of power functions. The case with p > 0 and γ < 1 is studied

in [5] under two additional assumptions involving the power function f(j) = jγ , assumptions

whose validity is left as an open problem in that paper.

The generalized Pólya’s urn model with p = 0 was also the main object of study in [20]

and [28]. In [20] the author studied the case of two fixed bins under a number of technical

assumptions on the function f , which exclude for example the (super)-exponential functions,

and which assumptions are stated in Section 4 of that paper. Theorem 3.3.1 in [28] proves a

result similar to our Theorem 1.1 i) for the case of a fixed number m of bins and under the

assumption of monotonicity on the super-linear function f .

Last, we provide below a definition of species sampling sequences and why GAM(f, {sn})
is such a sequence. Consider a Polish space X and let µ(·) be a diffuse probability measure

on X , i.e. µ({x}) = 0, for all x ∈ X . Denote with 1lA the indicator function of the event A.

A sequence of random variables Xn, with n ≥ 1, on X which has the following distribution

P(Xn+1 ∈ B | X1, . . . ,Xn) =

n∑

i=1

pn+1,i1l{Xi∈B} + rn+1µ(B), (1.1)

is called a species sampling sequence whenever rn +
∑

i pn,i = 1, rn, pn,i ≥ 0, and rn, pn,i
are Fn−1 measurable, where Fn = σ{X1,X2, . . . ,Xn}. It corresponds to GAM(f, {sn}) for

the case with pn,i = fi(Ai(n))/
∑Ln

s=1 fs(As(n)) and rn = sn for all n ≥ 1. In particular,

the Blackwell-MacQueen urn scheme, also known as Chinese restaurant process, is a species

sampling sequence with the choice sn+1 = pn+1,i = 1/(1+n); it corresponds to GAM(f, {sn})
with f(j) = 1/j and sn = rn = 1/n for all n ≥ 1.
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In this paper we give a complete characterization of the existing phases for a very general

class of update functions, for the case fj ≡ f and for all non-negative random sequences

(sn)n∈N, with sn ≤ p < 1 for all n ≥ 1. In particular we do not assume any monotonicity on

f , and our only assumption on f is for Theorem 1.1 i), and it controls the oscillation of the

reinforcement function. Moreover, we prove in Theorem 1.4 that for any group-dependent

deterministic reinforcement scheme {fj}, where {fj} are only assumed to be positive, we can

only have three possible phases. We prove the existence of a third phase, by an example. We

emphasize the fact that exactly three phases are admitted for this model.

1.3 Results

The following are our main results

Theorem 1.1 Consider a GAM(f, {sn}). Suppose that sn ≤ p, for some p < 1 and all

n ≥ 1.

i) If
∞∑

n=1

1

f(n)
< ∞, and

∞∑

n=1

exp
{
− c

(
min
j≥n

f(j)
)}

< ∞ ∀c > 0,

then there will be, a.s., exactly one group whose cardinality tends to infinity, all the

other groups being finite.

ii) The cardinality of each (created) group tends to infinity a.s. if and only if

∞∑

n=1

1

f(n)
= ∞.

Remark 1.2 If we remove the hypothesis that sn is bounded away from one, and suppose

that
∑∞

n=1(1− sn) < ∞, then by Borel Cantelli’s Lemma there exists a random time N such

that for any time n ≥ N a new group is formed. Hence the cardinality of each group will

remain finite, and only finitely many groups will end up having a cardinality larger than 1.

We do not study the case of lim supn→∞ sn = 1 and
∑∞

n=1(1− sn) = ∞.

The following result is a corollary to the proof of Theorem 1.1 i). It generalizes the results

contained in [21] about the degree of vertices in the preferential attachment model.

Corollary 1.3 If the hypothesis of Theorem 1.1 i) hold, then limn→∞Ai(n) > 1 for only

finitely many i.

The following theorem establishes that GAM({fj}, {sn}) can have only three possible phases.

The Theorem holds true if the fj are random functions independent of sn satisfying the

conditions of the Theorem almost surely.
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Theorem 1.4 Consider a GAM({fj}, {sn}). Suppose that sn ≤ p < 1, for some p < 1 and

all n ≥ 1.

i) If
∞∑

n=1

1

fj(n)
< ∞, for at least one created group j ∈ N,

then there will be, a.s., at most one group whose cardinality tends to infinity, all the

other groups being finite.

ii) If
∞∑

n=1

1

fj(n)
= ∞, for all created groups j∈ N,

then either the cardinality of each (created) group tends to ∞, a.s., or each of them will

be eventually finite, a.s..

We show in Example 4.1 that for the collection of update functions fj(n) = e(j
3+n), the

cardinality of each group remains finite, a.s.. The third phase seems to arise only when for

fixed n, j → fj(n) is an unbounded sequence.

The previous two theorems rely on a novel modification of a well-known tool used in

reinforced random walk processes, the Rubin construction, which embeds GAM({fj}, {sn}).
We believe that such a generalized Rubin construction as introduced in our paper could have

wider applicability to other preferential attachment models.

In the second part of the paper we are going to estimate the probability that a given group

is the leading one. Our first result concerns a reinforced urn model . Consider an urn with k

white balls and 1 red ball and with reinforcement scheme f . Then if we pick a ball at random,

it is white with probability f(k)/(f(k) + f(1)), and red with probability f(1)/(f(k) + f(1)).

Suppose that by the time of the n-th extraction we picked j white balls and n− j red ones.

The probability to pick a white ball becomes f(k+ j)/(f(k + j) + f(n+1− j)). We call the

urn with these initial conditions and dynamics a reinforced urn model with parameters k and

f (abbreviated RUM(k, f)). Denote by P(k) the probability measure referring to RUM(k, f).

We have the following estimate.

Theorem 1.5 Fix any k ≥ 1 and consider a RUM(k, f) with
∑∞

j=1 1/f(j) < ∞. We have

P(k)
(
only a finite number of white balls are picked

)
≤ 1

2

k−1∏

ℓ=1

f(ℓ)Fk

1 + f(ℓ)Fk
, (1.2)

where Fk
def
=

∑∞
j=k+1 1/f(j).
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The above theorem sheds deeper insight on the evolution of RUM(k, f) and on Theorem 1.1 i):

it shows that the leading side in the beginning has a great probability to stay the dominant

side. As an example of the power of our bound, take f(j) = j2. In this case, a simple

computation gives that

P(k)
(
only a finite number of white balls are picked

)
≤ 1

2
exp

(
− (k − 1) +

π

2
√
k + 2

)
.

Hence for large initial weights k the white has an overwhelming chance to be the one

with cardinality tending to infinity. The estimate in (1.2) improves Theorem 3.6.2 in [28].

Theorem 1.5 should be also compared with Theorem 3 in [20], which is proved under the

technical assumptions on the update function f stated in Section 4 of that paper. Note also

that the bound above is an improvement on the upper bound which could be obtained in

(1.2) by means of a similar reasoning to the one in Proposition 2.1 and Proposition 3.1 from

[6]. The cause for this is that the lower/upper bounds in [6] are rough for large initial weights.

This is one main reason why the methods there only work for finite graphs and not also for

infinite graphs. Our proof is based on an embedding of RUM(k, f) into Brownian motion,

and gives robust estimates for all initial weights.

Next we turn again to GAM(f, {sn}). Suppose that
∑∞

j=1 1/f(j) < ∞. Theorem 1.1 i)

guarantees the existence of a unique group whose cardinality goes to infinity. We call this

the leading group. Denote by Lead the label of the leading group. In other words, Lead = j

if and only if the leading group is the j-th one. Our goal is to test if a given group, which

has a certain advantage on the others, is the leader. We start by giving an upper bound for

the tail of Lead.

We give the following construction of GAM(f, p). Suppose we have two sequences of

random variables, bn and t(n), satisfying the following. The variables bn are i.i.d. Bernoulli

with mean p, while the variables t(n) are described recursively. We define A∗
1(1) = 1, and

A∗
i (1) = 0 for all i ≥ 2. Moreover, set L∗

1 = 1. Denote by Fn the σ-algebra generated by{(
bi, t(i)

)
, with i ≤ n

}
. Suppose we defined A∗

i (n), which is Fn−1-measurable. The random

variable t(n) can be chosen to have the following distribution

P(t(n) = k | Fn−1) =
fk(A

∗
k(n))∑L∗

n

s=1 fs(A
∗
s(n))

.

Moreover, we can choose t(n) to be independent of bi with i ≥ n + 1. Denote by

L∗
n
def
= max{j ≥ 1: A∗

j (n) ≥ 1}. We define

A∗
j(n+ 1)

def
=





0 ∀ j > L∗
n + 1,

1 if bn = 1,

A∗
j(n) + 1l{t(n)=j} if bn = 0.

Finally, let L∗
n+1

def
= max{j ≥ 1: A∗

j(n + 1) ≥ 1}. We have that {A∗
i (n), i, n ∈ N} is

distributed like the process {Ai(n), i, n ∈ N} described in section 1.2. At time n, bn will
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determine if the new vertex is disconnected, and t(n) will determine to which of the existing

vertices the new arrived will adhere if it is not disconnected. Notice that t(n) is defined also

in the case that bn = 1, i.e., in the case that the new vertex is disconnected. We denote

by ξ1 = 0 and ξi
def
= inf{n > ξi−1 : bn = 1}. In words, ξi is the time when the i-th group is

formed. We say that the i-th group is generated by the u-th group if t(ξi) = u, i.e. if we

flipped the value of bξi into 0, then the new arrival would have joined the group u. In this

case we say that u is the parent of i. Notice that there exists exactly one parent for each

integer different from one. We build a random tree G, whose root is one, joining each integer

to its parent. We say that a vertex is at level n if its distance from the root is n. Denote by

gn the vertices at level n. Let Gn = ∪j≥ngj . We have

Theorem 1.6 Suppose that the assumptions of Theorem 1.1 i) hold. Then

P(Lead ∈ Gn) ≤ inf
r,M≥1

[
mne−cn(r,M)n + r−n + C1 exp

{
−MC2

}]
,

where the sequence cn(r,M) → ∞ as n → ∞, for fixed value of r ≥ 1 and M ≥ 1, and

m,C1, C2 > 0. The quantities C1, C2 and m are computable. The functions cn(r,M) are

computable for fixed values of r and M .

The following result is a direct consequence of Theorems 1.6 and 1.5.

Corollary 1.7 Suppose that the assumption of Theorem 1.1 i) hold. Then

P(Lead = 1) ≥ 1−
( ∞∑

k=1

1

2

k−1∏

ℓ=1

f(ℓ)Fk

1 + f(ℓ)Fk

)
− inf

r,M≥1

[
m2e−2c2(r,M)+ r−2 −C1 exp

{
−MC2

}]

where the quantities cn(r,M), m and C1 and C2 are the same as Theorem 1.6.

The rest of the paper is structured as follows: in Section 2 we introduce our generalized

Rubin construction and give the proof of Theorem 1.1 (i), in Section 3 we give the proof of

Theorem 1.1 (ii). In Section 4 we prove our main result Theorem 1.4 and present an example

where the third phase occurs, in Section 5 we introduce our Brownian motion embedding

and provide the proof of Theorem 1.5. In Section 6 we give the proofs of Theorem 1.6 and of

Corollary 1.7. Finally, in the Appendix we give a brief introduction to the Rubin construction,

as introduced in [7].

2 Proof of Theorem 1.1 i)

We introduce a modified version of the Rubin construction which fits our model. For a

detailed explanation of the original Rubin construction, see for example [6] and [7].
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Fix a parameter p < 1. We first focus on the case sn ≡ p < 1, i.e. GAM(f, p), then we

extend to the more general case sn ≤ p using a coupling. For any set A ⊂ R+, let

A[n] = inf{x : #(A ∩ [0, x]) ≥ n+ 1},

where the infimum of an empty set is ∞. In words, A[n] is the n+1-th element of A, ordered

from the smallest to the largest. For example, if A = {2, 8, 6, 9}, then A[0] = 2 and A[1] = 6,

A[5] = ∞. Notice also that for the example A = {1/j : j ≥ 1}, is not possible to identify the

n+ 1-th element. In fact, in this case, we have that A[n] = 0 for all n ≥ 0.

Notice that A[n] is always a non-decreasing sequence, hence limn→∞A[n] exists, possibly

infinite. For each i ∈ N, let {W (i)
n , n ≥ 1} be a sequence of independent exponential(1)

random variables, with n ∈ N. Moreover let {R(i)
n , n ≥ 1} be a sequence of i.i.d. Bernoulli

such that P(R(i)
n = 1) = p. We are going to use these sequences to generate a GAM(f, p).

The Bernoullis will be used to create new groups, while the exponentials play a central role in

the allocation of new individuals into existing groups. We are assuming that all the variables

involved are independent of each other. Set Nm(1) = 1, for all m ≥ 1. Then, for n ≥ 2, let

Nm(n)
def
= 1 +#{j : j ≤ n− 1 such that R(m)

j = 0},

Ξ1
def
= {0} ∪

{ n∑

i=1

W (1)

i

f
(
N1(i)

) : n ≥ 1
}
⊂ R+.

In words, for each m ≥ 1, the processes Nm
def
= {Nm(n), n ≥ 1} are independent processes

with the property that Nm(n) − 1 are distributed like binomial with parameters n − 1 and

1 − p, while Ξ1 is a random subset of R+ composed by 0 and all the partial sums of the

sequence
{
W (1)

i /f
(
N1(i)

)
, with i ≥ 1

}
. To each element Ξ1 we associate a corresponding

Bernoulli as follows. Let g1 : Ξ1 → {0, 1} be a random function defined by g1(Ξ1[n])
def
= R(1)

n .

The elements in Ξ1 with corresponding Bernoulli equal to one, are used to generate new

groups for GAM(f, p). The other ones will potentially belong to the first group and will be

labelled one. We will clarify the last sentence at the end of the construction. Define

Ξ̃1
def
= {0} ∪

{ n∑

i=1

W (1)

i

f
(
N1(i)

) : n ≥ 1 and R(1)
n = 0

}
,

i.e., Ξ̃1 is composed of {0} and all the points in Ξ1 \ {0} with Bernoulli equal to 0. These

are the points which do not generate other groups. We label the points in Ξ̃1 with 1. Set

τ1 = 0 and define

τ2
def
= inf{n ≥ 1: R(1)

n = 1}.

The random variable τ2 is the time when the second group is formed. Given τ2, let

Ξ2
def
= Ξ1 ∪

{
Ξ1[τ2] +

n∑

i=1

W (2)

i

f(N2(i))
: n ≥ 0

}
,
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and

Ξ̃2
def
=

{
Ξ1[τ2] +

n∑

i=1

W (2)

i

f
(
N2(i)

) : either n = 0 or both n ≥ 1 and R(2)
n = 0

}
.

We label the elements of Ξ̃2 using 2. Define the function g2 : Ξ2 → {0, 1} as follows. If

Ξ2[n] = Ξ1[j], for some j ∈ N, then g2(Ξ2[n]) = R(1)

j . The latter is well-defined because

all the elements of Ξ1 are a.s. distinct. If Ξ2[n] = (Ξ2 \ Ξ1)[j] for some j ∈ N, then

g2(Ξ2[n]) = R(2)

j . Notice that Ξ̃1 and Ξ̃2 are disjoint and their union is a proper subset of Ξ2.

Let us describe in words the variables defined so far. The reinforcement plays no role up to

time τ2. The latter random variable is geometrically distributed with mean 1/p. At time τ2,

the first group has cardinality τ2, because we count also the point 0, and a second group is

formed. The random point Ξ2[τ2] is labelled 2, in fact it belongs to Ξ̃2, and it is the smallest

point belonging to this random set. The next point on the line, i.e. Ξ2[τ2 +1] can have label

1, 2 or no label at this stage. If the latter happens, we label this point with 3. If it belongs to

Ξ̃1, respectively Ξ̃2, its label will be 1, respectively 2. Notice that by the definition of these

sets, if Ξ2[τ2 + 1] ∈ Ξ̃1 ∪ Ξ̃2 then g2
(
Ξ2[τ2 + 1]

)
must be equal to zero. On the other hand,

in the case that g2
(
Ξ2[τ2 + 1]

)
= 1 then a new group is formed, which is labelled 3. The

probability that this happens is p. Next we want to compute the probability that Ξ2[τ2 + 1]

has label 1. We have the following equality

{Ξ2[τ2 + 1] ∈ Ξ̃1} =
{
Ξ1[τ2 + 1]− Ξ1[τ2] < Ξ̃2[1]− Ξ1[τ2]

}
∩
{
g2
(
Ξ1[τ2 + 1]

)
= 0

}
. (2.1)

Note that Ξ2[τ2] = Ξ1[τ2]. Given τ2, the two events appearing on the right-hand side of

(2.1) are independent, because the first one depends on the exponentials while the second is

determined by the Bernoullis. The probability of the second event, conditionally on τ2, is

1− p. If the random variable Ξ2[τ2+1] was labelled 1, then it would belong to Ξ̃1 and would

be equal to

Ξ̃1[τ2 + 1] =

τ2+1∑

i=1

W (1)

i /f
(
N1(i)

)
= Ξ1[τ2] +W (1)

τ2+1/f
(
N1(τ2 + 1)

)
.

If Ξ2[τ2 + 1] was labelled 2, then it would belong to Ξ̃2 and would be equal to Ξ̃2[1] =

Ξ2[τ2] +W (2)

1 /f
(
1
)
. Hence

Ξ2[τ2 + 1] = Ξ2[τ2] + min
( W (1)

τ2+1

f
(
N1(τ2 + 1)

) , W
(2)

1

f
(
1
)
)

= Ξ2[τ2] + min
(W (1)

τ2+1

f
(
τ2
) , W

(2)

1

f
(
1
)
)
,

where we used N1(τ2+1) = τ2. This last equality comes from the fact that among R(1)

i , with

i ≤ τ2, the only Bernoulli taking value one is R(1)
τ2 . As N1(τ2+1) equals one plus the number
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of zeroes among the first τ2 Bernoulli, it is equal to τ2. The first event on the right-hand

side of (2.1) can be rewritten as
{W (1)

τ2+1

f
(
τ2
) <

W (2)

1

f
(
1
)
}
. (2.2)

Given τ2, the random variable W (1)
τ2 /f

(
τ2
)
is exponentially distributed with mean 1/f(τ2).

By a simple integration, we can argue that the probability that, among two independent

exponentials, a given one is the smallest is equal to its parameter divided by the sum of the

parameters. Hence the probability of the event in (2.2), conditionally on τ2, is f(τ2)/
(
f(τ2)+

f(1)
)
. The probability of the event described in (2.1), conditionally on τ2, is

(1− p)
f(τ2)

f(τ2) + f(1)
.

We infer that the conditional probability that Ξ2[τ2+1] is labelled 2 is (1−p)f(1)/(f(τ2)+

f(1)). This is consistent with what happens in GAM(f, p).

Suppose we defined
(
τ2,Ξ1, Ξ̃1, g1, . . . τm−1,Ξm−1, Ξ̃m−1, gm−1

)
. Define

τm
def
= inf{n > τm−1 : gm−1

(
Ξm−1[n]

)
= 1},

i.e. the time when the m-th group is formed. Given τm let

Ξm
def
= Ξm−1 ∪

{
Ξm−1[τm] +

n∑

i=1

W (m−1)

i

f(Nm(i))
: n ≥ 1

}
, (2.3)

and

Ξ̃m
def
=

{
Ξm−1[τm] +

n∑

i=1

W (m−1)

i

f(Nm(i))
: either n = 0 or both n ≥ 1 and R(m)

n = 0
}
. (2.4)

The elements of Ξ̃m are labelled m. Moreover let gm be defined as follows. If there exists j

such that Ξm[n] = Ξm−1[j] then gm
(
Ξm[n]

)
= gm−1

(
Ξm−1[j]

)
. If Ξm[n] = (Ξm \Ξm−1)[j] for

some j, then set gm
(
Ξm[n]

)
= R(m)

j .

Denote by Ξ
def
=

⋃∞
s=1 Ξs. Each point x ∈ Ξ belongs, a.s., to exactly one Ξ̃s for some s ≥ 1,

i.e. Ξ
def
=

⋃∞
s=1 Ξ̃s. In our construction, we label the point x with s if and only if x ∈ Ξ̃s.

Define the random function g : Ξ → {0, 1} as follows. If Ξ[n] = Ξ̃j[s] for some (a.s. unique)

pair (j, s) ∈ N2, then g
(
Ξ[n]

)
= R(j)

s . Notice that Ξ can be used to generate a generalized

attachment model, as follows. Denote by

Ãi(n) = {j : j ≤ n, Ξ[j] has label i}.

Then {Ãi(n), with i, n ≥ 1} is distributed like the process {Ai(n), with i, n ≥ 1} introduced

in subsection 1.2. To see this, suppose that in the set {Ξ[i], with i ≤ n} there are exactly ℓi
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points labelled i, with
∑m

i=1 ℓi = n for somem ∈ N satisfying also ℓi ≥ 1 for all i ∈ {1, . . . ,m}.
Given this, the probability that Ξ[n+1] is labelled m+1, i.e., the probability that g(Ξ[n+1])

equals one, is exactly p. Given that Ξ[n+ 1] is not labelled m+ 1, then the probability that

it is labelled j, with j ≤ m, is exactly

f(ℓj)∑m
i=1 f(ℓi)

, (2.5)

where we used the memoryless property of the exponential random variables. In fact, using

this property, given that Ξ[n+ 1] is not labelled m+ 1, the random variable Ξ[n+ 1]− Ξ[n]

is distributed like the minimum of m exponentials with parameters f(ℓs), for 1 ≤ s ≤ m.

The probability that the j-th exponential is the minimum is given exactly by (2.5) through

a simple integration. Summarizing, given that in the set {Ξ[i], with i ≤ n} there are exactly

ℓi points labelled i, with
∑m

i=1 ℓi = n and
∑m−1

i=1 ℓi < n for some m ∈ N, the probability that

Ξ[n+ 1] is labelled j, with j ≤ m, is

(1− p)
f(ℓj)∑m
i=1 f(ℓi)

.

Define

x∗m
def
= Ξm−1[τm] +

∞∑

i=1

W (m)

i

f(Nm(i))
, (2.6)

and for any integer j ≥ 1, set

Ξ∗
j
def
=

{
Ξ[τj] +

n∑

s=1

W (j)
s /f

(
Nj(s)

)
: n ≥ 0

}
. (2.7)

In the next result, we prove that x∗m is a.s. finite, for any m ≥ 1. This, together with (2.3)

and (2.4), implies that x∗m is an accumulation point for Ξm and Ξ̃m. We say that a vertex

u is generated by j if Ξ[τu] ∈ Ξ∗
j . Notice that each vertex (different from 1) is generated by

exactly one other vertex. Our proof of Lemma 2.1 relies on the construction of a random

tree T , built by connecting each vertex to its parent. Notice that this random tree shares

the same distribution with G, introduced before Theorem 1.6. Suppose that τu = t. If we

switched g(Ξ[t]) from 1 to 0, we would have that Ξ[t] would have been a point of Ξ̃j, hence it

would have had label j. Fix j, n ∈ N. Notice that even if the Bernoulli associated to the point

Ξ∗
j [n] equals 1, this point might not be able to generate a child in T using the exponentials

and Bernoulli that have been defined so far. This is the case if #
(
Ξ∩ [0,Ξ∗

j [n]]
)
= ∞, when

infinitely many vertices have already been generated by the time we reach Ξ∗
j [n] and all the

(W (i)
n , R(i)

n ) have already been used. This is going to be an important point in the proof of

Lemma 2.2.

Lemma 2.1 The random variables x∗m, with m ≥ 1, are almost surely finite.
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Proof. Fix m ≥ 1. Set Zm(0) = 0 and let Zm(i) = inf{n : Nm(n) = i}. Then Zm(i) −
Zm(i − 1), with i ≥ 1 are geometric(1 − p) and are independent of the W (m)

i , with i ≥ 1. If

Zm(i) ≤ k < Zm(i+ 1), then f
(
Nm(k)

)
= f(i). Hence

x∗m = Ξ[τm] +

∞∑

i=1

Zm(i+1)−1∑

j=Zm(i)

W (m)

j

f(Nm(j))

= Ξ[τm] +

∞∑

i=1

1

f(i)

Zm(i+1)−1∑

j=Zm(i)

W (m)

j

As the series in the latter expression is composed by non-negative random variables, it is a.s.

finite if its mean is finite. Its mean is exactly

1

1− p

∞∑

i=1

1

f(i)
< ∞. (2.8)

To see this, notice that Zm(i), i ≥ 1, is independent of W (m)

j , j ≥ 1, which implies

E[

Zm(i+1)−1∑

j=Zm(i)

W (m)

j ] =
1

1− p
.

Moreover, we have that Ξ[τm] is stochastically smaller than

1

mini f(i)

τm∑

s=1

W (s)

1 . (2.9)

This is because Ξ[n]−Ξ[n− 1] is stochastically smaller than an exponential random variable

whose mean is smaller than 1/(mini f(i)). Moreover, the random variable τm is negative

binomial with parameters m and p. This can be checked by induction, in fact τ1 is geomet-

rically distributed with mean 1/p. Suppose this is true for τm−1, then we have to wait an

independent geometric(p) to create the next group. Combining this fact with (2.9) we have

that Ξ[τm] < ∞ a.s.. This, together with (2.8) implies the Lemma. ✷

In the next result we establish the link between the behavior of the generalized attachment

model and the quantity inf i x
∗
i .

Lemma 2.2 The infimum inf i x
∗
i , is a.s. attained, i.e. it is actually a minimum. The

minimiser is a.s. unique. Moreover

lim
n→∞

Ξ[n] = inf
i
x∗i , a.s.. (2.10)
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Proof. We select a random subtree of T , denoted by T1, as follows. The root of this tree is
1 (i.e., it is identified with the first group). Given that a vertex j belongs to T1, its offspring
will be those vertices u such that

Ξ[τu] ∈ Ξ∗
j , and Ξ∗

u[1] < x∗j . (2.11)

Recall that Ξ[τu] = Ξu−1[τu] = Ξ∗
u[0]. We are going to prove the following statement.

For any fixed M , only finitely many of the vertices u of T1 satisfy Ξ̃u[1] > M . (2.12)

Before we prove (2.12) we argue that this statement would imply the Lemma. We need only

consider the vertices of T1. In fact, if j is not a vertex of T1 then there exists a vertex u such

that Ξj[1] > x∗u, which implies that x∗j > x∗u. Hence x∗j 6= inf i x
∗
i .

If (2.12) holds, then for any M there are only finitely many vertices u in T1 such that

x∗u < M . Hence, as each x∗u is a.s. finite, we have that infi x
∗
i is actually a minimum. Next

we prove that the minimizer is a.s. unique. To prove this last statement, we prove that for

each i > j, we have that x∗i and x∗j are a.s. different. To see this, notice that x∗i − Ξ[τi] only

depends on {W (i)
n , R(i)

n , with n ≥ 1}. Hence x∗i − Ξ[τi] is independent of x∗j − Ξ[τi] which

is determined by a disjoint collection of exponentials and Bernoullis. The probability that

x∗i −Ξ[τi] and x∗j −Ξ[τi] are equal is 0, as they are continuous independent random variables.

This is exactly the probability that x∗i = x∗j . As the set of x∗i , i ≥ 1, is countable, x∗i are all,

a.s., distinct.

Next we show that (2.12) implies (2.10). As already mentioned, the sequence Ξ[n] is a.s.

non-decreasing, i.e. Ξ[n+1] ≥ Ξ[n], a.s.. Hence limn→∞ Ξ[n] a.s. exists. Notice that for each

i, x∗i is the limit of an increasing sequence taking values in Ξ. To see this, notice that

Ξ[τi] +
n∑

j=1

W (i)

j

f(Ni(j))
< x∗i , ∀n ≥ 1,

by the definition of x∗i . Hence infinitely many points labelled i are smaller than x∗i , yielding

#
(
Ξ ∩ [0, x∗i ]

)
= ∞. This implies that limn→∞ Ξ[n] ≤ x∗i for each i ≥ 1, i.e. limn→∞ Ξ[n] ≤

inf i x
∗
i . Now we turn to the proof of the other inequality which implies (2.10). Fix ε > 0. It

is sufficient to prove that (2.12) implies

#(u : Ξ̃u[1] ≤ inf
i
x∗i − ε) < ∞. (2.13)

In fact, if (2.13) holds, only finitely many u satisfy #
(
Ξ̃u ∩

[
0, inf i x

∗
i − ε

])
> 1. Denote the

set of labels of these groups by B. For each element u of the finite set B, there are only

finitely many points of Ξ∗
u which are smaller than infi x

∗
i − ε, for otherwise we would have

x∗u ≤ inf i x
∗
i − ε which would yield a contradiction. Hence, for each element u of B, the set

Ξ∗
u ∩

[
infi x

∗
i − ε

]
is finite. For each j /∈ B we have that there exists a u ∈ B such that

Ξ̃j[0] ∈ Ξ∗
u. This implies that

Ξ ∩
[
0, inf

i
x∗i − ε

]
=

⋃

u∈B

Ξ∗
u ∩ [inf

i
x∗i − ε

]
,
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and the latter is a finite set. Notice that infi x
∗
i − ε could take a negative value, but this is

not a problem for our reasoning, as then the set appearing in (2.13) would be empty, and

there would be nothing to prove. Next, we prove that (2.12) implies (2.13). Fix a vertex

u of T1. Denote by u(0) = 1, u(1), u(2), . . . , u(n) the ancestors of u in T1, i.e. the vertices

lying on the unique self-avoiding path connecting u to the root 1. Notice that we do not

consider u ancestor of itself. If u satisfies Ξ̃u[1] ≤ inf i x
∗
i − ε, then u belongs to T1. In fact,

Ξ̃u[1] ≥ Ξ∗
u(i)[1] while inf i x

∗
i − ε < x∗u(i−1), for all i ≤ n+ 1. Hence, Ξ∗

u(i)[1] ≤ x∗u(i−1), where

we set u(n + 1) = u. As we are assuming that (2.12) holds, the random tree T1 has only

finitely many vertices j satisfying Ξ̃j[1] > M . As infi x
∗
i < ∞, a.s., we have that (2.13) holds.

Next, we are going to prove (2.12). For any vertex j in T1, denote by σj the number of

its offspring. Notice that the σj are neither independent nor identically distributed and T1 is

not Galton-Watson tree. To see this, fix j, n ≥ 1. If there is an infinite number of elements

of Ξ to the left of Ξ∗
j [n], i.e.

#
(
Ξ ∩

[
0,Ξ∗

j [n]
])

= ∞, (2.14)

then already infinitely many groups have been created. Hence Ξ∗
u[0] < Ξ∗

j [n] for all u ∈ N.

This implies that Ξ∗
j [n] cannot generate any new group in T1 using the exponentials and

Bernoullis defined so far, because they have already been used. To overcome this problem,

we create a new tree, larger than T1, by introducing new random variables which allow also

the observations Ξ∗
j [n] satisfying (2.14) to create a new group. To this end, we should attach

to each of these observations a new sequence of independent exponentials and independent

Bernoullis. For example, if Ξ∗
j [n] satisfies (2.14), and the associated Bernoulli equals one,

a new group, that we label ν, is created (notice that we cannot use any of the integers

as a label, because they are already all taken). In this case, we set Ξ̃ν [0] = Ξ∗
j [n]. We

denote the associated sequence of i.i.d. exponentials with mean 1 by W (ν)
n , and let R(ν)

j be

the Bernoulli associated to group ν. We define Ξ∗
ν and Ξ̃ν using these random variables,

as we did in (2.7) and (2.4). If the group ν satisfies the second requirement in (2.11), i.e.

W (ν)

1 /f(1) < x∗j − Ξ∗
ν [0], then ν belongs to the new tree T2 that we are going to define.

But then, we would have to allow that ν is able to generate groups as well, in the same

fashion. This approach would require that we introduce new sequences of exponentials and

Bernoullis, and the notation would be quite awkward. Hence we prefer a different approach.

Before we proceed in a formal description of T2 , notice that for this tree the number of

offspring per vertex are independent and identically distributed. In fact, on the set {ν is

generated by j}, we have that Ξ̃ν [0] 6= Ξ∗
j [0], because the latter belongs to Ξ̃j. This implies

that Ξ̃ν [0] ≥ Ξ∗
j [1]. Hence x

∗
j−Ξ̃ν[0] is independent of Ξ

∗
j [1]. In fact, the former is determined

by the exponentials and Bernoulli attached to j excluding W (j)

1 , while Ξ∗
j [1] is determined

by W (j)

1 and exponentials and Bernoullis attached to vertices different from j. Moreover,

analyzing the event {W (ν)

1 /f(1) < x∗j − Ξ∗
ν [0]}, one can easily argue that it does not depend

on the exponentials and Bernoullis attached to vertices different from u and j. Summarizing,

the number of offspring of j in this new tree depends only

• on the exponentials attached to j, with the exception of W (j)

1 ,
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• on the Bernoullis attached to j,

• and on W (ν)

1 , if ν = Ξ∗
j [n] for some n and R(j)

n = 1.

This implies that the number of offspring per vertex are i.i.d..

Now we are ready to give a formal construction of T2. Suppose that to each x ∈ Ξ∗
1 we

associate an extra exponential random variable Θx. Let

η1
def
= #{x ∈ Ξ∗

1 : Θx/f(1) < x∗1 − x and g(x) = 1}.

The previous random variable counts also the n satysfying #
(
Ξ ∩ [0,Ξ∗

1[n]]
)
= ∞, hence η1

is stochastically larger than σi for any i. Then the Galton-Watson tree T2 whose offspring

distribution is the same as the one of η1 is stochastically larger than T1. We assume that T2
is built on the same probability space of T1. In other words, we can assume, and we will,

that T1 is a subtree of T2. Next we prove that the average number of offspring is bounded by

a finite constant m. Define

Ωk,j
def
=

{
W (k)

1 /f(1) <

∞∑

s=k+1

W (j)
s /f

(
Nj(s)

)}
. (2.15)

Notice that we should have used different exponentials(1) instead of W (k)

1 , but the two share

the same distribution and are independent of the right-hand side, and this notation is easier

to handle. Of course, we are allowed to do that because we are interested only in estimating

the probability of this event.

We have that

E[ηj] ≤ E[

∞∑

k=1

1lΩk,j
] =

∞∑

k=1

P(Ωk,j). (2.16)

In order to prove (2.16), notice that on the left-hand side we count the number of elements

in Ξ∗
u with Bernoulli equal to 1, and which satisfy an extra condition. The right-hand side

counts only those vertices which satisfy the extra condition. Hence we only need to prove

that P(Ωk,j) is summable. Notice that P(Ωk,j) is independent of j.

Set ak
def
= mins≥k f(s) and define

Γ
def
= {k ∈ N : (1− p)2ak+1 < f(1) or

∞∑

s=k+1

1/f(s) > 0.05(1/f(1))}.

The set Γ is finite. This is implied by the facts that ak → ∞ and
∑∞

s=k+1 1/f(s) → 0. For

k ∈ Γ we use the trivial bound P(Ωk,j) ≤ 1. In the following, we fix k /∈ Γ, i.e. we assume that

k satisfies (1 − p)2ak+1 ≥ f(1) and
∑∞

s=k+1 1/f(s) ≤ 0.05(1/f(1)). We prove the following

bound,

P(Ωk,j) ≤ e−C1ak+1, for k /∈ Γ, (2.17)
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where C1 = 0.15(1 − p)2(1/f(1)). Denote by Yk =
∑∞

s=k+1W
(j)
s /f

(
Nj(s)

)
, and Z =

W (k)

1 /f(1) . Set θ = (1− p)2ak+1. We have

E[eθYk ] =

∞∏

s=k+1

∞∑

j=1

( f(s)

f(s)− θ

)j
pj−1(1− p)

=
∞∏

s=k+1

( f(s)

f(s)− θ

)
(1− p)

1

1−
(
pf(s)/(f(s)− θ)

)

=

∞∏

s=k+1

f(s)(1− p)

f(s)(1− p)− θ

=

∞∏

s=k+1

1

1−
(
θ/(f(s)(1− p))

)

≤ exp{3θ
∞∑

s=k+1

1/f(s)},

(2.18)

where we used that θ/((1 − p)f(s)) ≤ (1 − p) < 1 for s ≥ k and our choice of θ, and the

inequality 1− x ≥ e−3x, for x ∈ (0, 1). Moreover

E[e−θZ ] =
f(1)

θ + f(1)
≤ e−0.3θ/f(1),

where we use that k /∈ Γ (hence θ/f(1) < 1), and the inequality 1 + x ≥ e0.3x, still valid for

x ∈ (0, 1). This implies that

P(Ωk,j) = P
(
Yk − Z > 0

)
= P(eθYke−θZ > 1)

≤ exp
{
− θ

(
0.3/f(1) − 3

∞∑

j=k+1

1/f(j)
)}

≤ exp
{
− θ

(
0.15/f(1)

)}
,

(2.19)

where in the last step we used that
∑∞

s=k+1 1/f(s) ≤ 0.05(1/f(1)) which holds because we

picked k /∈ Γ. The last inequality in (2.19) proves (2.17) for our choice of θ.

Hence

E[ηj ] ≤ E[

∞∑

k=1

1lΩk,j
] ≤

∑

k∈Γ

1 +
∑

k/∈Γ

e−C1ak+1
def
= m < ∞, (2.20)

where, for the finitess of m we used the second assumption in Theorem 1.1 i), and the fact

that Γ is a finite set.

For each vertex u in T2, recall that we denote by Ξ∗
u[0] the time when this vertex was

generated and by Ξ∗
u[n] = Ξ∗

u[0]+
∑n

j=1W
(u)

j /f(Nu(j)). This is consistent with our definition

given in (2.7), but now it is defined for indices which are not necessarily integers. Next we
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prove that each vertex u at level n+1 has a probability to satisfy Ξ̃u[1] < M which decreases

faster than e−cn for any c > 0. For any vertex u ∈ T2 we denote by |u| its distance from

the root of the tree. Recall that the set of vertices at distance k from the root is called level

k. Fix a large parameter M . A vertex u of T2 is good if the element which generates u

is smaller than M . A path is a (possibly finite) sequence of vertices u(i), i ≥ 1, such that

u(i+ 1) is generated by u(i). We say that a path connects vertex a to level n+ 1 if the first

element of the path is a and the last lies at level n+1. We build the following random path

u. We start from 1 = u(0) and if this vertex has at least one offspring in T2, we choose one

at random assigning the same probability to each offspring. We denote its label as u(1). If

u(1) has at least one offspring, we choose one of them at random and denote its label by u(2).

We follow this procedure until we either reach level n+ 1 or find a vertex with no offspring.

The event {the path u connects 1 to a vertex at level n + 1} equals the event that each of

the u(i) has at least one offspring. Hence

{
the path u connects 1 to a vertex at level n+ 1

}
=

n⋂

i=0

{
ηu(i) ≥ 1

}
.

Notice that each event
{
ηu(i) ≥ 1

}
is independent of Ξ∗

u(i−1)[1] and is independent of each

W (ℓ)

k with ℓ < u(i− 1), and k ≥ 1. Moreover the events
{
ηu(i) ≥ 1

}
are independent. Define

Ψ(n, k)
def
=

{ n∑

i=1

1l{ηu(i)≤k} ≥ 0.5n
}
.

Fix k ≥ 1. We have

P(u(n+ 1) is good | the path u connects 1 to a vertex at level n+ 1)

≤ P

( n∑

i=1

Ξ∗
u(i)[1]− Ξ∗

u(i)[0] ≤ M
∣∣ the path u connects 1 to a vertex at level n+ 1

)

= P

( n∑

i=1

Ξ∗
u(i)[1]− Ξ∗

u(i)[0] ≤ M
∣∣

n⋂

i=1

{
ηu(i) ≥ 1

})

≤ P
( n∑

i=1

(
Ξ∗
u(i)[1] − Ξ∗

u(i)[0]
)
1l{ηu(i)≤k} ≤ M

∣∣
n⋂

i=1

{
ηu(i) ≥ 1

})

≤ P

( n∑

i=1

(
Ξ∗
u(i)[1] − Ξ∗

u(i)[0]
)
1l{ηu(i)≤k} ≤ M

∣∣
n⋂

i=1

{
ηu(i) ≥ 1

}
∩Ψ(n, k)

)
+

+ P

(
Ψc(n, k) |

n⋂

i=1

{
ηu(i) ≥ 1

})
.

(2.21)

In the last step we used that for any triplet of events A, B, C we have

P(A | B) ≤ P(A | B ∩ C) + P(Cc | B).
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Next, we bound the last probability in (2.21).

P

(
Γc(n, k) |

n⋂

i=1

{
ηu(i) ≥ 1

})

= P
( n∑

i=1

1l{ηu(i) ≤ k} ≤ 0.5n |
n⋂

i=1

{ηu(i) ≥ 1}
)

= P

( n∑

i=1

1l{ηu(i) > k} ≥ 0.5n |
n⋂

i=1

{ηu(i) ≥ 1}
)
.

(2.22)

Let ξu(i), i ≤ n, be i.i.d. random variables taking values in N, with distribution

P(ξu(i) ≥ k) = P(ηu(i) ≥ k | ηu(i) ≥ 1) =
P(ηu(i) ≥ k)

P(ηu(i) ≥ 1)

def
= qk, for k ≥ 1.

The sequence qk is independent of u(i) because the random variables ηi are i.i.d.. Moreover, as

the ηu(i) are independent,
∑n

i=1 1l{ηu(i) > k} is, conditionally on ∩n
i=1{ηu(i) ≥ 1}, binomially

distributed with mean nqk. If X is a binomial with parameters (n, q) then

P(X ≥ 0.5n) ≤ exp
{
−

( 1

2q
ln(

1

2q
) +

1

2(1− q)
ln

1

2(1 − q)

)
n
}
, (2.23)

by a simple exponential bound (see, for example [8] pages 27 and 35).

Fix r > 1. We can choose K∗
r such that qK∗

r
< 1/2 and

P

( n∑

i=1

1l{ξu(i) > K∗
r } ≥ 0.5n

)
≤ exp

{
−
( 1

2qK∗

r

ln(
1

2qK∗

r

)+
1

2(1 − qK∗

r
)
ln

1

2(1− qK∗

r
)

)
n
}
≤ 1

(rm)n
,

where m has been defined in (2.20). We can choose such K∗
r because

limk→∞(1/(2qk)) ln(1/(2qk)) = ∞. Notice that for any k ≥ K∗
r , we have qk ≤ qK∗

r
< 1/2.

Moreover if k ≥ K∗
r then

exp
{
−

( 1

2qk
ln(

1

2qk
) +

1

2(1− qk)
ln

1

2(1− qk)

)
n
}
≤ 1

(rm)n
.

This fact is due to the monotonicity of qk and the convexity of the function 2x ln(2x)+2(1−
x) ln 2(1−x), for x ∈ (0, 1), and the fact that this function attains its minimum at 1/2. Next,

let (ei) be a sequence of i.i.d. random variables with distribution

P(ei ≤ x) = P

(
W (2)

1 /f(1) ≤ x
∣∣ W (2)

1 ≤
∞∑

t=K∗

r+1

W (1)

t /f(N1(t))
)
.

In words, ei is distributed like an exponential with mean 1/f(1) conditioned to be smaller

than YK∗

r
. We claim that the first probability in the last equation of (2.21) is smaller or equal

to

P
( ⌊0.5n⌋∑

j=1

ei ≤ M
)
. (2.24)
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To see this, notice that by a simple exchangeability argument we have that

P

( n∑

i=1

(
Ξ∗
u(i)[1]− Ξ∗

u(i)[0]
)
1l{ηu(i)≤K∗

r }
≤ M

∣∣
n⋂

i=1

{ηu(i) ≥ 1} ∩Ψ(n,K∗
r )
)

= P

( n∑

i=1

(
Ξ∗
u(i)[1]− Ξ∗

u(i)[0]
)
1l{ηu(i)≤K∗

r }
≤ M

∣∣
⌊0.5n⌋⋂

i=1

{1 ≤ ηu(i) ≤ K∗
r }

)

≤ P

( ⌊0.5n⌋∑

i=1

(
Ξ∗
u(i)[1]− Ξ∗

u(i)[0]
)
1l{ηu(i)≤K∗

r }
≤ M

∣∣
⌊0.5n⌋⋂

i=1

{1 ≤ ηu(i) ≤ K∗
r }

)

Again, notice that the events {1 ≤ ηu(i) ≤ K∗
r }, with i ≤ n + 1, are independent. Given

{1 ≤ ηu(i) ≤ K∗
r }, the random variable Ξ∗

u(i)[1] − Ξ∗
u(i)[0] is stochastically larger than ei, as∑∞

s=k W
(1)
s /f(N1(s)) is a.s. decreasing in k. This proves the relationship between (2.24) and

the first probability in the last equation of (2.21). Next a simple exponential bound, which

uses the fact that ei are independent, yields

P
( ⌊0.5n⌋∑

j=1

ei ≤ M
)
= P

( 1

0.5n

⌊0.5n⌋∑

j=1

ei ≤
1

0.5M

)

= P

(
exp

{
− θ

1

0.5n

⌊0.5n⌋∑

j=1

ei
}
≥ exp{−θ

1

0.5M
}
)

≤ exp{−cn(r,M)n},

where cn(r,M) → ∞ as n → ∞. For each n, cn(r,M) is the Fenchel-Legendre transform (i.e.

we minimize the exponent on θ) of ei in the point 1
0.5M . Hence, the number of good vertices

in T1 at level n is smaller or equal to

mn
(
exp

{
− cn(r,M)n

}
+

1

(rm)n
)
. (2.25)

Hence only finitely many vertices in T2 are good. This implies that only finitely many vertices

in T1 are good, and this, in turn, implies (2.12). ✷

Proof of Theorem 1.1 i). First suppose that sn ≡ p < 1. The minimum of infi x
∗
i is a.s.

unique, and we denote it by J∗. By Lemma 2.2 limn→∞ Ξ[n] = x∗J∗ , hence the cardinality of

group J∗ tends to infinity, while the cardinality of each of the other groups is finite.

Now we reason for general sn ≤ p, using a simple coupling. Let {Si, i ≥ 1} be a sequence

of independent Bernoullis with P(Si = 1) = si/p = 1 − P(Si = 0). We use these random

variables to relabel the points in Ξ as follows. If S1 = 0 then we set Θ1 = Ξ2[τ2] ∪ Ξ \ Ξ̃2.

If S1 = 1 then Θ1 = Ξ. Define τ̃3
def
= inf{n > τ2 : g(Θ1[n]) = 1}. Suppose we have defined

Θm−1 and τ̃i, for i ≤ m. On the event {∑m−1
i=1 Si = k}, if Sm = 0, respectively Sm = 1,

set Θm = Ξk+1[τ̃k+1] ∪ Θm−1 \ Ξ̃k+1, respectively Θm = Θm−1. We set τ̃m+1
def
= inf{n >
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τ̃m : g(Θm[n]) = 1}. Let Θ =
⋂

iΘi. The process Θ[n], with n ≥ 1 is a GAM(f, {sn}). Let

κ(n) =
∑n

j=1 Sj. Denote by h(i) = inf{n : κ(n) = i}. This implies that the i-th group in Θ

is the h(i)-th group in Ξ. Let Ui
def
= Ξ̃h(i), and

u∗i
def
= x∗h(i). (2.26)

This implies that infj{u∗j : j ≥ 1} is actually a minimum and has a unique minimizer. Fol-

lowing the same reasoning given in the previous paragraph we conclude that the only group

whose cardinality grows to infinity is K∗
r . ✷

Proof of Corollary 1.3. We first assume that sn ≡ p. For any i, denote by E(i) the set

of groups which are generated by i. In virtue of (2.20), we have that

V (u)
def
= {Ξ̃i[1] < x∗u for only finitely many i ∈ E(u)} holds a.s.. (2.27)

Notice that for u which is not a vertex of T1 we have that Ξ̃u[1] > infi x
∗
i = limn→∞ Ξ[n].

Hence, we do not have to consider such u. Recall the definition of GN given before The-

orem 1.6. As for each N , there are only finitely many good vertices in T1, we get

limN→∞ P(Lead ∈ GN ) = 0. Combining the latter limit with (2.27) we have that

P( lim
n→∞

Au(n) > 1 for only finitely many u)

= P(Ξ̃u[1] < inf
i
x∗i for only finitely many u)

= lim
N→∞

P({Ξ̃u[1] < inf
i
x∗i for only finitely many u} ∩ {Lead /∈ GN})

≥ lim
N→∞

P

( ⋂

u∈T1 : u/∈GN

V (u) ∩ {Lead /∈ GN}
)

= lim
N→∞

P(Lead /∈ GN ) = 1.

For the general case sn ≤ p, apply the same coupling we used at the end of the previous

proof. ✷

3 Proof of Theorem 1.1 ii)

We first deal with the case sn = p. Repeat the construction given in the proof of Theorem 1.1

i), under the hypothesis of Theorem 1.1 ii). Recall the definition of Ξ∗
u, Ξ̃u and x∗u. Recall

also the definition of T . The random variables x∗u , for u ≥ 1, are a.s. infinite, because the

infinite sum of independent exponentials is finite if and only if its mean is finite. We prove

next that for any fixed M > 0,

lim inf
u→∞

Ξ̃u[1] > M, a.s.. (3.1)

22



Fix a vertex un of T , and denote by ui, with i ≤ n− 1 its ancestors: i.e. Ξuj
[τuj

] ∈ Ξ∗
uj−1

, for

all j ≤ n. Then Ξun [1] is stochastically larger than a sum of n − 1 i.i.d. exponentials with

parameter f(1). Hence limn→∞ Ξun [1] = ∞, a.s.. Now notice that Ξ∗
s ∩ [0,M ] is a.s. finite

for each s ≥ 1. Hence, as u grows to infinity, the number of its ancestors grows to infinity,

proving (3.1). Since it is easy to adapt the above reasoning to the case sn ≤ p, we will leave

this task to the reader.

4 Proof of Theorem 1.4

Proof of Theorem 1.4 i). We first analyze the case sn ≡ p. We build a similar con-

struction as the one given in the proof of Theorem 1.1, the only difference being that we

place fi instead of f . We leave to the reader to check that this construction embeds our

GAM({fj}, p). In this setting

x∗i
def
= Ξi[τi] +

∞∑

j=1

W (i)

j

fi
(
Ni(j)

) .

Notice that x∗i is a.s. finite if and only if
∑∞

s=1 1/fi(s) is finite. Hence, we do not exclude

that x∗i = ∞, a.s., but we know that

there exists at least one j for which x∗j < ∞, a.s.. (4.1)

Denote by y∗ the smallest accumulation point of Ξ. This minimum accumulation point

exists because the set of accumulation points of Ξ is closed, and the set Ξ is a subset of R+.

Moreover y∗ is a.s. finite because of (4.1). If y∗ < x∗i for all i ≥ 1, then

lim
n→∞

Ξ[n] < x∗i , for all i ≥ 1. (4.2)

We need to prove (4.2) only for the case x∗i < ∞, because for the other cases the result is

implied by the fact that y∗ is an accumulation point which is a.s. finite and #Ξ∩ [0, y∗+ε] =

∞. Assume that x∗i is a.s. finite and notice that for fixed i, as y∗ < x∗i , then δi
def
= (x∗i+y∗)/2 <

x∗i . As y
∗ is an accumulation point for Ξ, then #Ξ∩ [0, δi] is a.s. infinite. In words there are

infinitely many points of Ξ smaller than δi. Hence

lim
n→∞

Ξ[n] ≤ δi < x∗i . (4.3)

The inequality in (4.3) holds for each i, yielding (4.2). Moreover, (4.3) implies that each

group will end up having finite cardinality. This is because #Ξ̃i ∩ [0, δi], as δi is strictly

less than x∗i which is the only accumulation point for Ξ̃i. The latter statement is a direct

consequence of the definitions of x∗i and Ξ̃i.

On the other hand, if y∗ = x∗i for some i, then using again that all the x∗j which are finite

are also a.s. distinct, we have that limn→∞ Ξ[n] = x∗i . To prove the latter inequality, suppose
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it is not true, i.e. limn→∞ Ξ[n] < x∗i . Then there would be an accumulation point smaller

than y∗, which would yield a contradiction.

Next we analyse the general case, i.e. sn ≤ p, for some p < 1 and all n ≥ 1. The problem

here is that the reinforcement function is group dependent. In the special case sn ≡ p we

had that the first point labelled i was Ξ∗
i [0]. We need to translate the points labelled i in

the new construction for the general case. Denote by v(i) the time when the i-th group is

created and denote by Υi−1 the union of the points labelled j, with j ≤ i− 1. We have that

the first point labelled i is exactly Υi−1[v(i)]. Set

U∗
i

def
=

{
Ξ∗
i [n]− Ξ∗

i [0] + Υi−1[v(i)] : n ≥ 0
}
,

u∗i
def
= x∗i − Ξ∗

i [0] + Υi−1[v(i)]. (4.4)

Hence Υi = Υi−1 ∪ U∗
i . Moreover, let Υ = ∪∞

i=1Υi. It is easy to check that Υ embeds

GAM({fi}, {sn}). We prove the theorem on the event {u∗j is a.s. finite for at least one

created group j}. Repeating the argument we gave for the case sn ≡ p, we see that either all

the groups remains finite or there exists exactly one dominating the others. ✷

Proof of Theorem 1.4 ii). First assume that sn ≡ p, for some p < 1. Under the

assumptions of this part of the Theorem, we have that each x∗j = ∞, a.s.. Hence infj x
∗
j = ∞.

By our construction, either limn→∞ Ξ[n] = ∞, in which case the cardinality of each group

is a.s. diverging to infinity, or limn→∞ Ξ[n] = Γ < ∞, a.s., in which case #Ξ̃u ∩ [0,Γ] < ∞,

a.s.. In words, in the latter case, the cardinality of each group will eventually remain finite,

for otherwise x∗j ≤ Γ < ∞ for some j, and this would give a contradiction.

For general sn ≤ p, we have that u∗i = ∞, where the u∗i are the random variables defined

in (4.4). Reasoning as in the previous paragraph we get the result for this more general case.

✷

4.1 An example when the third phase occurs

Next we show an example where a third phase occurs, i.e.

lim
n→∞

Ai(n) < ∞, a.s. for each i ≥ 1. (4.5)

In this example we pick fj(n) = e(j
3+n) and sn ≡ p ∈ (0, 1). Notice that τi+1− τi, with i ≥ 1,

is an i.i.d. sequence of geometrically distributed random variables, with mean 1/p. Hence,

by a standard exponential bound, we have

P

(
τn >

(
(1/p) − ε

)
n
)
= P

( n∑

i=1

(τi − τi−1) >
(
(1/p) − ε

)
n
)
≤ e−Cn.

This implies that
∞∑

n=1

P(τn > n2) < ∞. (4.6)
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Next, we use this fact to prove that

for each j ≥ 1 there exists an s > j such that x∗s < x∗j . (4.7)

The latter implies that infj x
∗
j is not attained. As this infimum is an accumulation point

for Ξ, this would imply that the smallest accumulation point of Ξ is smaller than x∗j , for all

j ≥ 1. Hence, (4.5) would hold.

Next we turn to the proof of (4.7). Fix j ∈ N. As Ξj ⊂ Ξ, we have that Ξ[τu] ≤ Ξj[τu].

Hence,

P

(
x∗u > x∗j

)

= P
(
Ξ[τu] +

∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) > x∗j

)

≤ P

(
Ξj[τu] +

∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) > x∗j

)

≤ P

( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) >
∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ))
∣∣ τu < u2

)
+ P

(
τu ≥ u2

)

(4.8)

The last inequality in (4.8) is justified as follows. For any pair of events A and B we have

that

P(A) = P(A | B)P(B) + P(A ∩Bc) ≤ P(A | B) + P(Bc).

Notice that {τu < u2} is measurable with respect to the σ-algebra

σ
{
R(t)

i : t < u and i < u2
}
.

In words, if we know the first u2 − 1 observations of each Ξ̃t, with t < u, and the associated

Bernoullis, we know if the event {τu < u2} holds. Hence the latter event is independent of

the pair
( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)),

∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ)
)
.

Hence the last expression in (4.8) equals

P

( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) >

∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ))
)
+ P

(
τu > u2

)
.

The last expression is summable. To see this, in virtue of (4.6), we just need to prove that

the first term is summable. Then our argument follows from an application of the first Borel-

Cantelli lemma. In fact, the summability implies that {x∗u < x∗j} for infinitely many u. Set
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γu,j = (1/j)e−j3−u2
, and recall that j is fixed. For any pair of random variables X and Y

and any constant a, we have that

P(X > Y ) = P(X > Y,X > a) + P(X > Y,X < a) ≤ P(X > Y,X > a) + P(Y < a)

≤ P(X > a) + P(Y < a).

We apply this fact to obtain

P

( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) >
∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ))
)

≤ P

( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) > γu,j

)
+ P

( ∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ)) < γu,j

)
.

Notice that
∞∑

n=1

1/fu(n) =
∞∑

n=1

e−u3−n = e−u3
∞∑

n=1

e−n = C1e
−u3

,

while, by a similar reasoning,
∑

n=u2 1/fj(n) ∼ C2e
−u2−j3 . Next we reason like in the proof

of (2.17), with minn≥k e
n+u3

= e+k+u3
. We have

P
( ∞∑

ℓ=1

W (u)

ℓ /fu(Nu(ℓ)) > γu,j

)
≤ exp{−(1− p)2(e1+u3

)(γu,j − C1e
−u3

)},

and the right hand-side is summable in u for fixed j. This is because for fixed j, γu,j > C1e
−u3

for all sufficiently large u. In a similar way, using Chebyshev inequality after applying the

function eθx to both sides and choosing θ = (1− p)2eu
2+j3 , we obtain

P

( ∞∑

ℓ=u2

W (j)

ℓ /fj(Nj(ℓ)) < γu,j

)
≤ exp{−(eu

2+j3)(C2e
−u2−j3 − γu,j}.

The last expression is summable in u, because, for fixed j, C2e
−u2−j3 is larger than γu,j for

all sufficiently large u.

5 Brownian motion embedding

Suppose that the positive function f satisfies the condition
∑∞

j=1 1/f(j) < ∞. Consider

an urn with k white balls and 1 red one. We pick a ball at random, and it is white with

probability f(k)/(f(k) + f(1)). Suppose that by the time of the n-th extraction we picked j

white balls and n−j red ones. The probability to pick a white ball at the next stage becomes

f(k + j)/(f(k + j) + f(n+ 1− j)). Let

D
def
= {only a finite number of white balls are picked},
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Denote by P(k) the probability measures referring to the urn with initial conditions and

dynamics described above.

Let F
def
=

∑∞
j=1 1/f(j) and recall that Fk

def
=

∑∞
j=k 1/f(j) . Let the process B := {Bt, t ≥

0} be a standard Brownian motion, which starts from the point F − Fk =
∑k−1

i=1 1/f(i).

Denote by Q(k) the measure associated with this Brownian motion. We use this process to

generate the urn sequence described at the beginning of this section, as follows. Set m0 = 0

and let

m1
def
= inf

{
t ≥ 0 : Bt hits either 1/f(k) or − 1/f(1)

}
. (5.1)

If Bm1 −Bm0 > 0 then set z1 = 1, otherwise set z1 = 0.

Suppose we defined mn and z1, z2, . . . , zn. Set φ(n) =
∑n

i=1 zi. On the event φ(n) = s, we

define

mn+1 = inf

{
t ≥ mn : Bt −Bmn hits either

1

f(s+ k)
or − 1

f(n− s+ 1)

}
.

Set

zn+1
def
=





1 if Bmn+1 −Bmn = 1/f(k + s)

0 if Bmn+1 −Bmn = −1/f(n− s+ 1)

.

By the ruin problem for Brownian motion, we have that

P (zn+1 = 0 | φ(n) = s) =
1/f(s+ k)

(1/f(s + k)) + (1/f(n− s+ 1))
=

f(n− s+ 1)

f(s+ k) + f(n− s+ 1)
,

which is exactly the urn transition probability.

In this way we embedded the urn into Brownian motion. In fact, the process φ(n), with

n ≥ 1, is distributed like the number of white balls withdrawn from the urn associated to the

reinforcement scheme described at the beginning of this section. Notice that

Bmn =

k+φ(n)∑

j=1

(1/f(j)) −
n−φ(n)∑

s=1

(1/f(s)), with n ≥ 0. (5.2)

Define

S
def
= lim

n→∞
mn. (5.3)

This limit exists because the sequence of stopping times {mn} is increasing. For this reason

S is itself a stopping time. Define

D1
def
=

{
∃n ≥ 1: BS =

k+n∑

j=1

(1/f(j)) −
∞∑

j=1

(1/f(j))
}
=

{
BS < 0

}
,

D2
def
=

{
∃n ≥ 1: BS =

∞∑

j=1

(1/f(j)) −
n∑

j=1

(1/f(j))
}
=

{
BS > 0

}
.
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Moreover, in virtue of Theorem 7.1 we have that exactly one of the collection of events{
{zi = 0}, i ≥ 1

}
and

{
{zi = 1}, i ≥ 1

}
holds finitely many times, a.s.. This implies that the

event D1 ∪D2 holds Q(k)-a.s.. By our embedding, we have that

Q(k)(D1) = P(k)(D),

where D was defined at the beginning of this section.

Proof of Theorem 1.5. In order to prove our result we only need to prove the following

Q(k)(D1) ≤
1

2

k−1∏

s=1

f(s)Fk

1 + f(s)Fk
.

Let

T
def
= inf

{
n ≥ 1: φ(n) =

n− k

2

}
. (5.4)

This stopping time can be infinite with positive probability. Notice that on {T < ∞}, by
(5.2), we have that the urn generated by the Brownian motion contains, at time T , an equal

number of white and red balls, and BmT
= 0. Viceversa, if we let

H
def
= inf{t ≥ 0: Bt = 0},

then we have that

{H < S} = {T < ∞}. (5.5)

To prove (5.5), notice that for k ∈ N, with k > 0, the random sequence

n →
k+φ(n)∑

j=1

1

f(j)
−

n−φ(n)∑

j=1

1

f(j)
,

cannot switch sign without becoming 0. So if Bmj
> 0 and Bmt < 0, for some j < t, then

there exists an s, with j < s < t, such that Bms = 0. In this case, by time s we have a tie.

We use this fact throughout the proof.

Recall that under Q(k) the Brownian motion B starts from F − Fk. For j ≤ k, let

Hj
def
= inf{t ≥ 0: Bt = Fj − Fk}.

Notice that Fj − Fk ≥ 0 for j ≤ k. Moreover, by time Hj, with j ≤ k − 1, on the event

{Hj < S}, at least j red balls have been extracted. To see this, we first focus on H1, and

prove that by this time, on the event {H1 < S}, at least one red ball has been picked.

Suppose that this is not true, i.e. suppose that we picked 0 red balls by time H1. The reader

can check from our embedding that this implies that

min
0≤t≤S

Bt > F − Fk − 1/f1 = F1 − Fk.
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This would imply that H1 > S contradicting our hypothesis. By reiterating the same rea-

soning we get that the statement holds true for any j ≤ k.

Define

Mj
def
=

{
after time Hj−1, the process B reaches Fj before it hits Fj − Fk

}
.

On Mj the Brownian motion, after time Hj−1, will hit Fj before there is a tie in the urn,

because Fj − Fk ≥ 0, for j ≤ k. Next we prove that for any j ∈ {1, 2, . . . , k}, if Mj holds

then only a finite number of red balls are extracted, i.e. Mj ⊂ D2. We split this proof into

two parts, we first prove that Mj ∩ {S ≤ Hj−1} ⊂ D2 and then Mj ∩ {S > Hj−1} ⊂ D2.

In order to prove the first inclusion, recall that under Q(k) the Brownian motion starts at

F −Fk. This implies that if S ≤ Hj−1, then infinitely many balls will be extracted before the

Brownian motion hits Fj−1 − Fk. As F − Fk > Fj−1 − Fk > 0, we have that infinitely many

balls will be extracted before B hits 0, i.e. before a tie. This implies that BS > 0, which in

turn implies Mj ∩ {S ≤ Hj−1} ⊂ D2.

Next we prove that Mj ∩ {S > Hj−1} ⊂ D2. On the set Mj ∩ {S > Hj−1}, by time Hj−1

the number of red balls extracted is at least j − 1. This implies that

BS ≤
∞∑

j=1

(1/f(j)) −
j−1∑

t=1

(1/f(t)) = Fj , ∀k ≥ n. (5.6)

This is a consequence of (5.2) and the fact that n−φ(n) is a non-decreasing random sequence,

and if n− φ(n) = j − 1 for some n then limn→∞ n− φ(n) ≥ j − 1. Let

V1
def
= inf{mn : mn > Hj−1, and Bmn −Bmn−1 > 0},

i.e. the first time after Hj−1 that a white ball is extracted. The stopping time V1 could be

infinite. Next we prove that on Mj the random time V1 is a.s. finite. Recall that Hj−1 is the

first time that the process B hits Fj−1 −Fk, and that 0 < Fj−1 −Fk < F −Fk. This implies

that by time Hj−1 the number of white balls generated by the Brownian motion, plus the

initial k, overcomes that of the red ones. On Mj , after time Hj−1, the process will hit Fj

before it hits 0. This implies that V1 < ∞ a.s. on Mj. In fact if no white balls are extracted

after time Hj−1 the process would hit 0 before it hits Fj giving a contradiction. Moreover on

Mj , we have that BV1 > 0, hence by time V1 the white balls are still ahead with respect the

red ones. We can repeat the same reasoning with

V2
def
= inf{mn : mn > V1, and Bmn −Bmn−1 > 0},

to argue that V2 is a.s. finite and by time V2 the white balls are still in advantage. By

reiterating this argument we get that only finite many red balls will be extracted, because

each Vi occurs before a tie, a.s.. Hence D2 holds when Mj holds. This implies that Dc
2 ⊂ M c

j

for each j ∈ {1, 2, . . . , k−1}. If ∩k−1
j=1M

c
j holds, then either {BS > 0} holds or {H < S} holds.
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If the latter event holds, independently of the past, the probability that only finitely many

white balls are picked is exactly 1/2, by symmetry. Moreover, the events Mj are independent,

because they are determined by the behavior of disjoint increments of the Brownian motion.

By the standard ruin problem for this process, we have that

Q(k)(Mj) =
1

1 + f(j)Fk
. (5.7)

We get

Q(k)(D1) = Q(k)(Dc
2) ≤

1

2

s∏

j=1

(
1− 1

1 + f(j)Fk

)
.

✷

6 Proofs of Theorem 1.6 and Corollary 1.7

Proof of Theorem 1.6. Notice that Lead must be a vertex of T1. Under the assumptions

of the Theorem, the probability that inf i x
∗
i > M is smaller or equal to the probability that

x∗1 > M . The latter probability is bounded as follows

P(

∞∑

j=1

W (1)

j /f
(
N1(j)

)
> M) ≤ exp{−(1 − p)2a1(M − 3F )}.

We set C1 = exp{3(1 − p)2F} and C2 = (1 − p)2a1, where a1 = infk≥1 f(k). In virtue of

(2.25), the probability that all the vertices at level n are good is at least

1−mn inf
r>1

e−cn(r,M)n + r−n,

where cn(r,M) were introduced at the end of the proof of Lemma 2.2 and m was introduced

in (2.20). Recall that gn is the set of the vertices of G at level n. Moreover, recall that

Gn = ∪j≥ngj . We have

P(Lead ∈ Gn) ≤ P
(
{inf

i
x∗i > M} ∪ {at least one vertex in gn is not good}

)

≤ C1e
−C2M +mn inf

r>1
(e−cn(r,M)n + r−n).

✷

Proof of Corollary 1.7. Set i(1) = τ2 and define recursively i(n) = inf{j > i(n −
1): R(1)

j = 1}. Notice that i(k) ≥ k. If a vertex ν of G belongs to g1 then we have that

τν = i(k) for some k. We have

P
(
Lead = 1

)
≥ 1− E[

∑

j∈g1

1l{x∗

j<x∗

1}
]− P(Lead ∈ G2).
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We bound the last probability in the previous expression using Theorem 1.6. Order the

groups at level one, starting from the smaller. As i(k) ≥ k, we have that by the time the k-th

group at level 1 is created, there are at least k balls in urn 1. Hence, using Theorem 1.5, we

get

E[
∑

j∈g1

1l{x∗

j<x∗

1}
] ≤

∞∑

k=1

1

2

k−1∏

ℓ=1

f(ℓ)Fk

1 + f(ℓ)Fk
.

✷

7 Appendix

Fix two real numbers r and w, and two sequences of positive real numbers {W (k), k ≥ w}
and {R(i), i ≥ r}. Suppose we have an urn with w (resp r) white (resp. red) balls. If at step

n ≥ 0 there are exactly j white balls, with n− j ≥ 0 ≥ w − j, then the probability to pick a

white ball is
W (j)

W (j) +R(n− j + w)
.

If a white (resp. red) ball is picked, at time n+ 1 the composition of the urn becomes j + 1

(resp. j) white balls and n− j + w (resp. n− j + w + 1) red ones. Denote by

Ac
R

def
= { the number of red balls in the urn goes to ∞ as n → ∞},

Ac
W

def
= { the number of red balls in the urn goes to ∞ as n → ∞}.

Let Q be the measure describing the dynamics of this urn. We have the following result, due

to Herman Rubin (see the Appendix in [7])

Theorem 7.1 [H. Rubin] We have the following 3 cases

i) If
∑∞

k=w

(
W (k)

)−1
= ∞ and

∑∞
k=r

(
R(k)

)−1
= ∞, then both the number or red balls

and the number of white balls in the urn goes to ∞, a.s., as n → ∞.

ii) If
∑∞

k=w

(
W (k)

)−1
< ∞ and

∑∞
k=r

(
R(k)

)−1
= ∞, then

Q(AR) = 1.

iii) If
∑∞

k=w

(
W (k)

)−1
< ∞ and

∑∞
k=r

(
R(k)

)−1
< ∞, then

Q(AR) +Q(AW ) = Q(AR ∪ AW ) = 1,

and both Q(AR) and Q(AW ) are strictly positive.

Acknowledgement. We thank two anonymous referees for their suggestions. A.C. and

C.C. thank IAS-Technische Universitaet Muenchen for financial support.

31



References

[1] A.-L. Barabasi and R. Albert (1999), Emergence of Scaling in Random Networks, Sci-

ence, N 286, 509-512.

[2] R. Albert and A.-L. Barabasi (2002),Statistical mechanics of complex networks, Review

of Modern Physics, N 74, 47-97.

[3] S. Bhamidi (2011), Universal techniques to analyze preferential attachment tree and

networks: Global and Local analysis , Probab. Surveys, to appear.
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