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A Unified Approach to Approximate Solutions in

Games and Multiobjective Programming

Fs PATRDNE2 AND S.H. TIJS3

Abstract. Some consequences are derived from a theorem of Tij)s, which

in turn give results about approximate solutions in Nash equilibrium
theory and in multiobjective programming. Weak conditions are described
under which it is possible to replace an infinite strategy set, an
infinite alternative set or an infinite set of criteria by a finite
subset without loosing all approximate solutions of the problem under

conslderation.
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1. Introduction

Aim of this work is to show how it is possible to derive from
theorem 1.1 below by Tijs (Ref. 1) some consequences, which in turn
give results about approximate solutions, both in Nash equilibria problems

(Refs. 1 and 2) and in multiobjective programming (Refs. 3 and 4).

For X,V € Hlm, X < y will mean that the inequality holds coordinate-
wise: x. <y, for all i € {1,2,...,m}.

We say that V C Elm 1s upper bounded if there exists an a € Eim such that

Xx < a for all x € V. We denote by lm the’ vector (1.1, :c::4) € Hlm.

A starting point for the following is the next

Theorem 1.1. (Tijs, Ref. 1). Let V & R" be upper bounded. Then for each

€ > 0 there exists a finite subset W € V such that W e-dominates V, that

is VVEVEWEW[viw+E:1m]

: : : m :
One can reformulate this theorem by introducing on IR the semi-

metric 0 = R" x R + [0,®) (See Ref. 5, p. 61) defined by
o(x,y) = max{O,xl-yl,xz—yz,.--,xm-ym}

m
for all x,y € R". We say that V C R is o-bounded if there is an a € R

and an € > 0 such that V is a subset of the (o0,€)-ball

B_(a) = {x € R : d(x,a) < €}

with center a. Then V C E{m 1s o-bounded iff V is upper bounded. Now
theorem 1.1 can be read as follows:

m . :
If V is a o-bounded set of R , then V is o-precompact i.e. for each

: ) i m . .
€ > 0 there exists a finite number of (0,e)-balls in R with centers in

V, which cover V or



VST BE(W) for some finite W c V.
wEw

2. Consequences and applications

From theorem 1.1 it is easy to derive the following

Proposition 2.1. Let X be a set and Y a finite set.

Let ¢ : X X Y > IR be an upper bounded function. Then for each e > 858

there exists a finite subset Z — X such that

Vx€x Jz€z VQEY Le06 ), < 8 (8.) ¥ el

Proof. Let Y = {yl,yz,...,ym}. Define

v={veERrR"T. 3 [ (v

xEX ¥

(1 VpreeesV ) = (¢(x,y1).¢(x,y2)....,¢(x,ym))]}

and apply theorem 1.1. B

Corallarg_z.l. (Ref. 2, lemma 4.3). Let Y be a finite set and let F be

an upper bounded family of real functions on Y. Then, for each e > 0,
there exists a finite subfamily G © F such that G (e,Y)-dominates F. ‘that

1s
Veer agEG vy€Y [£(y) < g(y) + €]

Proof. 1In the previous proposition, take X = F and let ¢ : X X ¥ -+ R

be defined by ¢(f,y) = f(y). b

Application 2.1. For applications of the above result, to show the

existence of approximate Nash equilibria, see Tijs (Ref. 2), in particular

theorem 4.1.

Corollary 2.2. Let F be a finite family of upper bounded real functions,

defined on a set X. Then, for each £ > 0 there exlsts a finite subset



Z € X such that 2 (e,F)-dominates X, that is

Vv [£(x) < £(2) + €]

xEX azEZ VfEF

Proof. Still from proposition 2.1: take Y = F and let ¢ : X x Y >+ R be

defined as ¢(x,£f) = f(x). B

Application 2.2. The above result can be applied to multiobjective

programming, when we look at non dominated solutions (called also Pareto
solutions) . Given a set F = {fl'fZ""'fm} of m upper bounded criteria,
then we can reduce the set of possible alternatives X to a finite set 2Z,
if we are interested only in approximate maximization (up to €). Moreover,
if we remove from Z F-dominated points (if any), then we are left with a

non-empty set of e-optimal solutions for Pareto problems as considered

e.g. in Loridan (Ref. 4).

It is well known that often a finiteness hypothesis can be replaced
be a compactness-like hypothesis. So, along this line, we can prove the

following

Proposition2.2. Let (Y,d) be a pre-compact metric space, and let X be a

set. Let ¢ : X X Y - IR be upper bounded and equicontinuous in y with

respect to x, that is

v [da(y',y") < &6 = |o(x,y")-d(x,y") < €].

>0 7650 "y',y"EY "xEX

Then, for each € > 0 then exists a finite set Z € X such that

Yooy .64 VYEY [¢(x,y) < ¢ (z,y) + €] (1)

Proof. From equicontinuity, given € > 0 there exists a § > 0 such that

for all y',y" € Y with d(y',y") < § we have

|¢(x,y') - Q(x,y")l < %‘E for akl x € X (2)



The family of the {-balls Uﬁ(y') = {y"€ Y d(y,y") <6}, "as y"‘vartes,

1s a covering of Y, from which we can extract, by pre—-compactness a

m
finite one. Let Y% = AV, #¥-i+54:y.) € ¥ be such that U ©O (Y:) =2 ¥
Je 2 m W RS
and let ¢E be the restriction of ¢ to X x YE.

Apply to »° proposition 2.1 with %—s in the role of €. Then with the aid

of (2) we obtain the result. ]

Corollary 3.2. (Ref. 2, proposition 4.3).

Let (Y,d) be a pre-compact metric space. Let F be an equicontinuous and
upper bounded family of real functions on Y. Then, for each € > 0, there
exists a finite subfamily G € F such that G (e,Y)-dominates F.

Proof. Take X = F, let & (f,y) = £(y) and apply proposition 2.2. i

Corollary 2.4. Let X be a set. Let (F,d) be an upper bounded family of

real functions defined on X, pre-compact with respect to the metric 4,

and assume that d has the following property:
' " 1 — =
VE}O 36}0 Vf',f"EF vxEX la(e®,£") < § = |£' (x)-£"(x) | < €]

Then, for each € > 0 there exists a finite subset Z € X such that Z (g,F)-

dominates X.

Proof. Direct from proposition 2.2 with Y = F and ¢(x,f) = f(x). ]

Remark 2.1. The assumption on d in corollary 2.4 clearly means that it

is a metric of uniform convergence on X.

Application 2.3. For what concerns applications of corollary 2.3 for games

we still refer to Tijs (Ref. 2). From corollary 2.4 we can learn that a
finite subset of points in X is sufficient for e-dominance even in the
case of an infinite set of upper bounded criteria F if for each € > 0

this set of criteria can be divided into a finite number of groups of



criteria, where in each group the criteria are e-near to each other.

Remark 2.2. Without the hypothesis of pre-compactness as in proposition

2.2, in general we do not obtain e-dominance.
As an example, let X and Y be the canonical (Hilbertian) basis in 52,

let ¢ be the inner product and € < 1. Then there is no finite set

Z € X such that (1) holds.
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