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We analyse optimal growth for an economy in the possession of an exhaustible resource when 
the economy’s non-resource output is produced by means of capital and the utilization of the 
resource. The optimal trajectories are sketched for the case where these factors of production are 
complements. 

1. Introduction 

As Stiglitz (1974) has pointed out ‘there are at least three economic forces 
offsetting the limitations imposed by natural resources: technical change, 
returns to scale and the substitution of man-made factors of production 
(capital) for natural resources’. Consequently the impact of each of these 
factors is analysed. It can however be doubted whether all these forces exist 
in reality. Returns to scale, especially in the case of energy and capital, are 
not likely to occur. The evidence on substitutability is mixed. In the Grit& 
and Gregory (1976) study capital and energy are found to be substitutes, 
whereas Magnus (1979) concludes that these factors of production are 
complements rather than substitutes. [See GritEn (1981) and Berndt and 
Wood (1981, 1979) for a discussion on the subject.] 

It is extremely difficult to make definite statements about the long run. 
Nevertheless it seems interesting to try to characterize optimal time-paths of 
the economy when substitution possibilities are ruled out, and this is the aim 
of the present article. In order to make the results comparable with Stiglitz’s 
conclusions, we shall use the same utility function. For simplicity labour will 
be neglected but all results can easily be generalized. 

The plan of this article is as follows. In section 2, Stiglitx’s model is briefly 
reviewed. Section 3 presents the model with complementarity and the 
necessary conditions for an optimum are given. It also prov&s sOme 
preliminary results. In section 4, properties of the optimum are derived. 
Finally, section 5 contains the conclusions. 

*The author is indebted to David Levhari and Claus Weddepohl for their stimulating 
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2. The Stiglltz model 

The model Stiglitz uses can be described as follows. The economy’s non- 
resource output (I’) is produced by means of three factors of production: 
capital (K), the withdrawal from the resource (E) and labour (J!). Production 
takes place according to a Cobb-Douglas technology, possibly exhibiting 
technical progress at an exogenously given rate 1. The time index t is omitted 
where there is no danger of confusion. Hence, 

ycehK"'LalE'3 
, a,+a,+a,=l. (1) 

Non-resource output is allocated to consumption (C) and investments 
(K = dK/dr). Depreciation is neglected. 

r=c+K. (2) 

The initial stock of capital is given: K(0) =K,. The initial size of the pool 
or the stock of the natural resource is denoted by S,, and it is given as well. 
Exploitation is assumed to be costless. The resource constraint reads 

$E(t)dt&. (3) 

The supply of labour grows at a rate n, 

L=e”‘L,. (4) 

The economy’s objective is to maximize 

I = $ e-“(C/L)‘/v dt, (5) 

where 6 is the constant rate of time preference and v is a constant with v < 1, 
v #O. Subsequently the optimal trajectories are characterized. The 
calculations are carried out for the special case of the logarithmic utility 
function (v=O). It is straightforward (but rather tedious) to generalize the 
results. They are summarized in Proposition 1: 

Proposition I. (1) A necessary and sufficient condition for the existence of a 
solution of the problem posed above is 

s+nv>(A+a,n)v/(l-a,). 
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(2) As t tends to infinity, Y/K, E/E and c/C approach, respectively, 

(6+nv)(l-a,)+(;I+aln)(l-v) 
a,(1 -aI -a3v) ’ 

(6+nv)(l-a,)+(IZ+a,n)v - 
a,(1 -ai -aav) ’ 

(6+nv)a,+(L+a,n) - 
1-a,-a,v ’ 

Proof: The proof will not be given here. It is a straightforward 
generalization of the proof in Stiglitz (1974). 

3. Complementarity 

Here we modify the previous model in some respects. Firstly, labour will 
not be mentioned explicitly. This is done for notational simplicity. Nothing 
essential is lost in doing so. More importantly, it is now assumed that capital 
and the resource good are complements in production. This is expressed by 
introducing a constant elasticity (a) of demand for the resource good with 
respect to capital use. Heating of buildings, petrol for transportation 
purposes are obvious examples of this interrelationship, although the 
constancy of the elasticity is clearly a far-going assumption made for 
expository purposes. The economy’s technology is now described by 

Y =elrK’ , (6) 

E = &Ku, (7) 

where 12 0, 0 <a < 1, 4 > 0, (T 2 1. Furthermore, eqs. (2) and (3) should hold. 
Finally the objective functional (5) prevails. We wish to apply Pontryagin’s 
maximum principle [see e.g. Takayama (1974)]. In defining the Lagrangean 
there is no problem except possibly with respect to the resource constraint. 
But this constraint can be written as 

for some b>O. Hence the Lagrangean can now be written as follows: 

+p3(e”‘Ku- Y)+p,(E-+K”). 
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Obviously in an optimum all variables will be positive. Hence non- 
negativity constraints are not taken into account in the Lagrangean. pi 
corresponds to eq. (2) and is continuous, pz corresponds to the resource 
constraint and is constant. The meaning of p3 and p4 is clear. The necessary 
conditions evolving from the application of the maximum principle are 

iW/aK= -P1je’tp3aK’-1-p4~bKa-1= -fji, (10) 

(11) 

(12) 

After substitution the system is reduced to 

P1=e , -dry-l (13) 

(14) 

We first show that Stiglitz’s results on convergence do not hold in the 
present model. 

Suppose Y/K is constant. Then e”K”- ’ is constant and K/K=A/(l -a). It 
follows from (7) that g/E= a(@K). Upon substitution it follows that 
g/E = on/( 1 -a) > 0. This is incompatible with the resource constraint. 

Suppose d/E is constant and equals /I ( < 0). Then, from (7), x/K =/3/a and 
P/Y=n+( a e /3/ ) f rom (6). Substitution into (2) yields 

Hence if the economy would choose /I close enough to zero a growing rate 
of consumption would be realized in the case of the presence of technical 
progress. It is however straightforward that the conditions (13) and (14) are 
not satisfied. To see this, remark that in the case at hand C is eventually 
behaving as 

since /I<0 and a< 1. It follows that pl/pl approaches a constant. But 

goes to infinity if t goes to infinity and this occurs at a rate different from the 
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rate at which p2~aK”-‘/p, will eventually behave. Hence we have obtained 
a contradiction. 

Suppose finally that c/C is constant. Then fi,/p, is constant from (13) and 
the argument used above can be repeated. 

A few final remarks are in order. Mirrlees (1967) has studied this type of 
model for the case of no natural resource or, if one wishes, of an abundant 
natural resburce. He has found that 622~ is a necessary and sufficient 
condition for the existence of an optimum. It will be shown below that if a 
trajectory fulfils the necessary conditions and if 6 >Lv this trajectory is 
optimal. Non-existence of an optimal solution in the model Mirrlees studied 
is caused by possible profitability of postponing consumption to infinity. This 
profitability arises when the rate of time preference is too small relative to 
technical progress. It is easily seen that the existence of a natural resource 
does not remove this difficulty. Hence we conclude that the condition 6>lv 
is a necessary condition in our case too. Therefore it will be assumed to hold 
throughout. 

4. The optimal path 

In this section some properties of the optimal path are derived. 
Unfortunately, the necessary conditions look rather complicated. We can 
however make some positive statements. In aid of the propositions to be 
made the following lemma turns out to be useful. 

Lemma I. For any two paths (K, C) and (R, c), satisfying 

I(=&‘K”-C, k=eAtRa-~ , 

andfor any interval [a, b], where K(a)=R(a), 

ie-6’(u(C)-u(C))dtt $eedru’(C)(K-R) 

x (ae’*Kor-l -6-(1 -v)C/C)dt 

-(K(b)-R(b))e-d’u’(C(b)), 

where 

u(C) = c/v and u’(C)=du/dC. 

Proof The proof is straightforward, using strict concavity of the functions 
involved and integrating by parts. 
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Proposition 2. Define 

If(R, e) is optimal, then R iOjor all t such that R(t)>R(t). 

Proof Suppose the proposition is false. However, there is a moment at 
which R(t) =R(t) in view of the limited availability of the resource. Now 
construct an alternative path (K, C) in the following way (illustrated in fig. 1). 

a b t a b t 

Fig. 1 

From t =a on the alternative capital stock is kept constant at the R(a) 
level. We consider two cases: 

(1) l?(u)=If(t) for some t=b and R(b) >R(a). In this case follow the 
constant path R(u) until time b and from b on the alternative path is 
set equal to R until I?(t)=R(t). As long as K is constant, ae’*K”-’ - 
S-(1-v)c/C is negative because K(t)>R(t). If K(t)=R(t), then this 
expression is also negative as can be verified by straightforward 
calculations. Now it is easy to apply Lemma 1, substituting R(t) for K(t) 
and realizing that R(t) >K(t). Finally, the alternative path uses less of 
the resource. 

(2) R(u)=K(b) for some b and I?(b)>R(b). In this case, keep K constant up 
to time b and follow R from b on. The same argument as used in case 1 
now applies. 

Hence in both cases the optimal path can be overtaken by an alternative 
path that uses less of the resource. This contradicts optimality of R. 0 
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The necessary conditions (2), (6), (13) and (14) can be written as 

245 

k=e”‘K”-C 1 

(1-v)~/C$-6=ae’fK”-‘-p,~aed’C’-‘K”-’. 

(1% 

(16) 

At first sight nothing in these necessary conditions seems to exclude the 
possibility of having ‘bulges’ in the optimal time-path of the stock of capital. 

A solution K(t) of the system of differential equations (13) and (14) shows 
a bulge if there is an interval [a, b], where K(a) = K(b) and K(t) 2 K(a) for all 
a 5 t I b, with K(t) > K(a) for at least one t in the interval. For the case of no -- 
technical progress it is easy to show that only one bulge can occur and that, 
if it occurs, this only happens in the very beginning of the planning period. 

Proposition 3. If I=O, a bulge can 
planning period. 

Pro05 In fig. 2a a bulge is sketched. 

t? (a) 

only occur in the beginning of the 

< 6-9 

yLp-& 
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I 
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I I I 
a c-b+a c t 

Fig. 2 

Suppose the optimal path can be depicted as in lig.2a. Then an alternative 
path (K,C) can be constructed that is better. This is shown in lig.2b. In 
fig.2b the optimal path is copied but on different segments. Both paths are 
identical up to time a and from time c on. 

After reaching a we copy the optimal path from [b,c] on the interval 
[a, c- b +a] and from c-b + a to c we take the optimal path of interval 
[a, b]. Total utility on both paths is compared. By ti we denote the utility 
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of the optimal path obtained between a and c and by u the utility of the 
alternative path. In the subsequent proof the resource good does not play a 
part because both paths require the same amount of it. 

cl= jePd’u(C)dt+ femd’u(e)dt, 
a b 

c-b+a 
ll= eedtu(C) dt+ j eVd’u(C) dt. 

c-b+a 

For astsc-b+a, K(&)=R(ttb-a), &(t)=k(t+b-a), and for c-b+a 
stsc, K(t)=R(t-c+b), It(t)=&-c+b). 

For astsc-b+a put t’=t+b-a. Then t=a implies t’=b, and t= 
c-b+a implies r’=c. For c-b+ast$c put t’=t+b-c. Then t=c-b+a 
implies t’ = a, and t = c implies t’= b. It follows that 

u= j,-dcrcc-b)u(C(r+c-b))dt+ ce-dc’-b”)u(C(t-b+a))dr, 
a d 

and 

u-ti=je-df(l/v){( e(d/v)(c-b)~_e(-d/v)(c-b)~)v-(~-~)v}d~ 
a 

Hence 

u-i= -(1 -em d(‘-b))~e-dtu(C)dt-(l-e-d(c-b))je-dtu(C)dt. 
a 

From the optimality of e we know that 

iemd’u(c) dt> ie- d’~(C)dt= -(l/c5)u(C)(e-dc-e-db), 
b 

where C corresponds with a I? that is constant from b to c. Secondly we 
have 

%esdtu(e)dt< %e-“u(C)dt= -(l/6)u(C)(e-db-e-d4). 

It follows that u-u < 0 by straightforward calculations. This contradicts the 
optimality of C 0 
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Proposition 3 is easily interpreted. In the absence of technical progress a 
bulge such as the one depicted in fig. 2a in the interval [b,c] will benefit 
consumption. But in view of the positive rate of time preference more utility 
is obtained when such a bulge occurs earlier. In the presence of technical 
progress however this is not true in its generality since in the interval [b,c] 
the economy receives also the benefits of larger technical progress compared 
with technidal progress at earlier dates. But we can prove the following 
proposition: 

Proposition 4. There exists T > 0 such that K < 0 for all t > T. 

Proof. Suppose the proposition is false. Consider fig. 3. 

K 

1 

; I 
I I 
I I 
I I 
I I 
I 
I I 

a b t 

Fig. 3 

In a and b, I(=O. Hence C=e”K” for t =a and t = b. It follows from (15) 
that 

C = e”‘K”(L + c&/K) -K. 

K > 0 in a, and hence CJC < 1. For b we have C/C > 1. Consider the function 

f(t)=ae’ltK”-’ ~e~d+A~l-Y~~t~u-l+(I(l--Y)p~~~ 
, 

where K(t) fultils the necessary conditions (15) and (16). For t =a, x=0, 
C=e”‘K” and f(a) =(l -v)C/C+6. This also holds for t= b. It follows that 
f(a)<(l-v)L+6 and f(b)>(l-v)L+& Hence for at least one. t in the 
interval [a, b] where the stock capital is increasing, f(t) must have a positive 
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f’(t)=(a(a- 1)e”K’-’ 

The first term is negative (since v < 1,~ 2 1). Hence, for at least one t the sum 
of the final two terms should be positive. This condition amounts to having 
at least one t for which 

~<(~~/~~~~(8-~~+~)2))11(~-“V)~-(d-~~)f/(”-~’~). (17) 

Since in the interval [a,b] the stock of capital is increasing we have 
C<e”‘K”. Using this inequality and (17), (15) and (16), it is found that 

where 

7c={Aa/pZ&7(6+A(l-v))}. 

The trajectories of K and C/C are depicted in fig. 4. 
The downward sloping curve in fig. 4a is the representation of the right-hand 
side of (17). The upward sloping curve in fig. 4b is the right-hand side of (18). 
This expression is positive and unbounded since r~ > 0, 6 > Iv, (r 2 1 > v. It has 

K (4 C/C 

Fig. 4 
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been assumed that k >O for an infinite series of times. Hence there are 
infinitely many points such as a. At such points (17) holds and (18) holds as 
well. But we must also have c/C<1 at points like II. Eventually this will 
contradict (18). 0 

Knowing that the stock of capital is eventually decreasing, we can easily 
prove the Tollowing propositions. It has already been noted that the 
necessary conditions look rather complicated so that one cannot expect to 
obtain explicit solutions. However, it is possible to calculate upper and 
lower bounds of some of the variables. In the sequel (-6 + Iv)/(a-crv) and 
(Aa- aS)/(o-av) will be denoted by ~1 and II/, respectively. 

Proposition 5. For all fi>p there exists T such that, for all t > ?: K(t) <e*. 

Prooj Denote the right-hand side of (16) by f(t) and differentiate with 
fespect to time, 

f’(t)=Le”‘K”-‘@+(a-1)X/K) 

- PbJC 1-YK0-1edr(6+(1-v)C/C+(a-1)~/K). 

x/K is negative eventually. Hence f’(t) > 0 if c/C 5 -S/( 1 -v). Therefore 
C/C> -d/(1- ) v eventually. Using the fact that eventually C>eY’K” and 
using (16) again the proposition is established. 0 

Proposition 6. For all JI < $ there exists T such that, for all t > T, C > 4’. - 

Proof: Suppose there exist $ < $ and to such that, for all t > to, C$e@. K is 
decreasing eventually. HenceTfor large enough t, 

e”*K”cCI&’ - . 

Substitution of K < e(*-‘)“’ and Cse** into (16) gives that c/C is 
unbounded, contradicting C 4 &‘. 

Therefore there exists for all $ <$ and for all to a t such that C>d’. If 
this inequality holds eventually &he proposition is proved. Suppose that there 
exists $ c$ such that for all t, there is a t such that C<k’. But as we have 
seen aLove, as long as C $ e*’ the growth rate of C is speeding up and hence, 
once C>et’, C will never get below et’. 17 

P;oposition 7. For all iii> J/ there exists T such that, for all t > T, C <eF. 

Proof Suppose that the proposition does not hold and that there exists 
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$ > $ such that for all t> T, for some T, C> es’. Then the stock of capital 
will be eaten up in finite time, which cannot be optimal. This can be seen as 
follows: $ =JI+s for some s>O. K Kept eventually for all ,E>p. Hence j2 can 
be chosen such that E > ji-p. Then $ > c@ + 1. Since eLt Ku < e”‘e@’ and 
C>eih by assumption, K is unbounded from below and K will become 
negative, a contradiction. 

Therefore, if the proposition were not true, there is an infinite series of 
times such that C < e$‘. Consider fig. 5. 

1 I I 
a b t 

Fig. 5 

Somewhere in the interval [a, b] we must have C/C=@. By taking the 
interval far enough on the time axis one can ensure that at the point where 
C/C=@, 6+(1 -v)C/C+(a- l)K/K ~0. This implies that at such an instant 
of time (dC/C)/dt>O (see the proof of Proposition 5). Hence the inequality 
C > eSt will persist, a contradiction. 0 

Proposition 8. For all g<p there exists T such that, for all t> T 
K(t) > err. 

Proof. Suppose that the proposition is false. Then there exists p cp such 
that for all ‘I: K(t) se@ for some t > ?: 

I(=e”‘K”-C<e(“+“l!)‘-& , 

for an infinite series of times. Hence for each M>O there exists t such that 
g(t) < -M, since J/ can be chosen such that II/ > ,I +a~. At such instants of 
time we surely have g/K < ~1 and the inequality K s &’ will persist. Therefore 
K becomes negative, a contradiction. q 
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As for the economic interpretation of the previous propositions, we restrict 
ourselves to the asymptotic growth rate of consumption ($) since the 
growth’ rate of the stock of capital just guarantees that non-resource output 
suffices to sustain consumption. It is clear that a higher rate of technical 
progress will ensure that consumption grows faster, and that the rate of time 
preference has the opposite effect. This is in accordance with what classical 
economic growth theory tells us. This observation also holds for the elasticity 
of marginal utility. Then we are left with a/a. The asymptotic growth rate of 
consumption is a decreasing function of this ratio since 6>Lv. a is the 
elasticity of non-resource output with respect to capital, and o is the 
elasticity of resource demand with respect to capital use. Hence U/Q is 
approximately the percentage increase of production when resource use is 
increased by one percent. The larger this rate is the more this economy is 
benefited in all respects since the resource is a limiting factor. It is therefore 
obvious that the economy will in view of the relatively high rate of time 
preference prefer to have more consumption now and chose a smaller growth 
rate in the future. 

Finally we prove that the necessary conditions are also sticient 
conditions for an optimum provided that 6>r2v. 

Proposition 9. Let {R, C, 3, g}, where S(t) = SO -& e(t)dt, $lfil 
(21, (31, (61, (71, (13) and (14). Let 6>r2v. Then {R, e,S+,l.?} 
an optimum. 

Proof: Let {K, C, S, E} constitute an alternative feasible program, 

= ~e-dr~v-l(R-K)(edf~l-v~u-lp~~~)dt 

conditions 
constitutes 
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Since exploitation is costless, on an optimal trajectory the entire resource 
stock will be exhausted. Hence 

lim pz(S(T)-SI(T))=p,S(T)~O. 
T+CO 

It follows from Propositions 5 and 6 that 

lim IZ(T)e-dTC(T)V-l=O. q 
T-CO 

5. Conclusions 

In this article the impact on the theory of exhaustible resources has been 
considered of the introduction of complementarity between capital and a 
resource good as factors of production. The main aim was to characterize the 
optimal trajectories of exploitation, the rate of consumption and the stock of 
capital. Apart from this we have gained the insight that the shadow price of 
the capital stock (pl) is eventually decreasing, even if there is no technical 
progress. The future outlook is pessimistic in so far as all capital will be 
eaten up. However, in the presence of technical progress a growing rate of 
consumption is realizable and will indeed be optimal if technical progress is 
large enough. 
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