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1. Introduction

The linear complementarity problem with data q e R"  and

M e R consists in finding two vectory s and z din R" such

that

(1.1) s =Mz +q,

(1.2) s, z >0,

(1.3) s,z, =0, i=1, 2,..., n .

i1
We denote this problem LCP or LCP(q,M). We only consider vectors

(s,z) satisfying (1.1). Two vectors s and =z are said to be
feasible if they are nonmegative (1.2) and are said to be comple~
mentary 1f they satisfy (1.3).

The LCP is an important problem in mathematical programming
[see, e.g., Garcia and Gould (1980) for references]. Lemke (1965)

first presented a solution for this problem. His ideas were later
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exploited by Scarf (1967) in his work on fixed point algorithms.
The relationship between the LCP and the fixed point problem is
well described by Eaves and Scarf (1976) and by Eaves and Lemke
(1981).

Recently, Van der Laan and Talman (1979, 1981) proposed a
class of variable dimension restart algorithms for approximating
fixed points. These methods allow a start at an arbitrary point
in the domain of the fixed point problem. One among several
directions is followed to leave the starting point. These direc~-
tions define a collection of cones of variable dimensions in which
the search for an approximate fixed point takes place. Properties
of the function govern the movement of the procedure between the
conical regions. In each region movement occurs through simplicial
pivoting, but continuous path~following could be applied too [see
Allgower and Georg (1980)].

The intimate relation between the fixed point problem and the
LCP raises the question of the significance of Van der Laan and
Talman's work for the LCP. We show that the ideas behind their
variable dimension fixed point algorithms yield an interesting
class of LCP algorithms. An important feature of these algorithms
is that they can be initialized at any nonnegative point zo
When zO = (0 , the algorithms reduce to Lemke's original algorithm
(Lemke, 1965). Similar ideas can be used to modify other LCP algo-
rithms, like the variable dimension algorithm of Van der Heyden
(1980) [see also Yamamoto (1981)], to accept an arbitrary starting
point. Flexibility in the choice of the starting point is desirable,
e.g., in using prior information on the solution, in sensitivity
analysis, and when solving nonlinear complementarity problems via a
succession of approximating LCP's [Josephy (1979)].

Several authors have presented LCP algorithms which allow an
arbitrary starting point. Eaves (1978) and Garcia and Gould (1980)
present procedures based on homotopies., Reiser (1978), in an ap-

pendix to his dissertation, states two ways to transform an LCP
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with arbitrary starting point into one to which Lemke's algorithm
can be applied. Our approach unifies the two Reiser algorithms in
that the first Reiser algorithm becomes a specilal case in our frame-
work, while another instance in our class of algorithms is very
close to Reiser's second algorithm. This relationship with Reiser's
work mirrors the similarity that exists between the Reiser and the
Van der Laan and Talman fixed point algorithms [Reiser (1981)1.

The paper is organized as follows. In section 2 we motivate
our algorithm by interpreting the artificial variable in Lemke's
algorithm as a measure of infeasibility. We then define the posi-
tions of our algorithm and the line segments which are followed to
reach successive positions and which form a piecewise linear path
leading to a solution. The procedure itself is explained in section
3, where we deal with convergence issues. In section 4, we discuss
implementation and show that our algorithm can be seen as applying

Lemke's algorithm to a transformed problem.

2., Movements and positions

We only consider pairs (s,z) satisfying (1.1) with =z
feasible. Let us take a starting point (so,zo) . We define t0
as
(2.1 tO = max (tj : 3 e Lintk) )
where, for any positive integer h , I(h) denotes the index set

{1,2,...,h} , and where

L, = =S, for i e I(n) ,
= ZSj for i = mnth, h e I(k) ,
JEPh
{Ph : h e I(k)} being an arbitrary partition of the set
i+(n) = { ie I(n) : zg >0 } . The quantity to measures the
0 .
the infeasibility of the starting point (so,z ) by checking for the
. . 0 .
nonnegativity of SO and for its complementarity with z0 . z 1is
a solution for the LCP if and only if tq <0. to is negative at
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(so,zo) only if (so,zo) = (q,0) is a solution and q > 0 . The

largest infeasibility at zO defines the initial value of t0 .

Each component of the vector t = (tj 1§ e I(n+k)) dis associ-
ated with a direction that can be followed to leave z0 . The
directions associated with the first n components of t are the
unit directions:

i i .
d” = u for i ¢ I(n) ,
i . n .
u denoting the ith unit vector in R~ . These also are the direc-

tions that can be followed to leave the starting point in Lemke's

algorithm (zO = 0) . Leaving zO along dl amounts to increasing
z. . With ¢t , h g I(k) , we associate direction dn+h where
i n+h

nth _ 0 .

di = -z for 1 e Ph s

= 0 for i e I(n)—Ph .

uth . .
A movement along d amounts to decreasing all coordinates of

z with indices in Ph . The directions are 1llustrated in figure 1.
Figure 1 shows that the directions D = (dl 1 e I(nt+k))

3

when drawn through zo , partition R into relatively open conical
regions C(P) = {z : z = zo + Dy, vy e Rn+k s yj >0 for j e P} .

To maintain the feasibility of 2z we require that
(2.2) yj <1 when j >n .

A vector y ds said to be feasible if it is nonnegative, satisfies
(2.2), but does not meet yj >0 for all j e Phu {nt+h} , h e T(k) .
The latter condition ensures that the correspondence between y and
2z 1s one~to-one. In what follows, we equivalently refer to 2z or
to its unique representation in terms of a feasible y .

The algorithm maintains a generalized form of complementarity
between leading infeasibilities in maximand (2.1) and directions.

Except for boundary issues, Eﬂ—complementarity between the vectors
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= {1}, p, = {2}, Py = {3}

2
FIGURE 1. The directions 4’ » 1 £ j <ntk , in three special

cases of our algorithm (n =3 ; k =1, 2, and 3).
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t and y requires
yv. =0 or t,=¢t,, je I(ntk)

3 N 0
The algorithm thus moves in cones defined by directions associated

with leading infeasibilities. We now motivate the definition of
to—complementarity on the boundary of the nonnegative orthant in
z-space,

Assume that tO =t is the unique leading infeasibility
at zO . The only movement allowed by to—complementarity is to

nt+h

move along direction d by increasing vy As soon as in

nt+h °

this movement another infeasibility, say tj , ties tn+h as the

leading infeasibility (t, =t = t,) , further movement along
nth 0 n+h j

d is infeasible for it would lead to points (t,y) verifying
tj = t0 > tn+h with Yo+h > 0 . These points would not be to—

complementary. The only movement consistent with to—complementarity

is to then move in to—complementary fashion into cone C({n+h,j})

by increasing yj while maintaining tO = tn+h = tj . The latter

restriction removes the degree of freedom introduced by moving into
a higher dimensional region. Another possibility arising when

leaving zO along dn+h is. that tn+h remains the unique leading

infeasibility so that, for all O j_yn+h <1 and for all j e I(ntk)-

{nth} , t, =¢t > tj . Once the boundary vy 1 1is reached,

0~ ‘nth i nth
further movement along d generates infeasible vy's . The al-

Yoth = 1 and allows tn+h to differ from tO

by removing tn+h from maximand (2.1) . The definition of tO

on the boundary of the feasible y-region is then completed as

gorithm then keeps

follows:

(2.3) t0 = max (tj : j e I(ntk) , y1 <1 when j > n)

In order to maintain to—complementarity during the movement of the

algorithm, we need to generalize the notion of tO—complemeutarity by

) t,.—-complementary when Yoth = 1.

also calling the pair 0

(tn+h’ Y ath

(2.4) Definitions. A component tj is said to be nonbasic if
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tj = t0 . tO is said to be nonbasic when tO =0 . y, is non-

basic when yj =0 or when yj =1 and j > n . The vectors ¢t

and y are said to be EG—complementary when for each j ¢ I(ntk)

either yj or tj is nonbasic.

to—complementarity is one of two properties which will be
shown to define a piecewise linear path to a solution. The second
property constrains the components of t which are not involved
in the computation of to , namely those associated with components
of y assuming their upper hound. We motivate the second property

by returning to a situation discussed earlier. Let us imagine that
. - 0 , . +
the algorithm leaves the initial point =z along direction a- h

and that this movement is pursued until .y 1 . During this

nth

movement tO—complementarity requires that tn+h remains the

largest component of t . Upon reaching the boundary, tn+h dis~

appears from maximand (2.3) and to decreases discontinuously if

the second largest component of t is strictly smaller than tn+h

Assuming this to be the case, t then verifies tn+h > t0 = tj R

j e I(ntk) - {n+h} . If we like the algorithm to terminate with a

solution when t0 = 0 , we must require that the inequality

tn+h > tO be maintained while yn+h =

tn+h again becomes equal to to , then the algorithm continues in

to—complementary fashion by decreasing Yt from 1 while main-

1. If at a later stage

taining t4h tO . We now formally introduce the lines followed

by the algorithm.

(2.5) Definition. A line of our algorithm consists of a set of

to—complementary points such that

a. exactly one variable in each pair (tj,yj) is nonbasic;

b. tj > tO when yj =1, 3>n;

Note that by definition of ty > tj f_to when yj = 0 , while
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the algorithm requires that t, Z_to when yj =1, 3>n. Inall
other cases (0 < yj and yj <1 when j > n) , tj = t0 . The
algorithm thus imposes various types of constraints on the t-vari-
ables in different regions of z~-space. Figure 2 illustrates these
. 0
constraints for the case n =2 and z >0 .
In order for the set of points satisfying (2.5) to form a line,

we need to impose the following nondegeneracy assumption.

(2.6) Assumption. At most mntk+l among the 2(nt+k)+1 variables

(to, t, y) are nonbasic at any given point (t,y) .

We indicate in section 4 that this assumption 1s similar to a
nondegeneracy assumption in linear programming and thus can be sat-
isfied with the usual perturbation techniques. One component of t
is nonbasic by definition of tO . tO—complementarity imposes
ntk-1 additional restrictions on the vector (t,y) so that one
degree of freedom remains. The set of points (if any) satisfying
definition (2.5) with a fixed set of nonbasic variables do form a
line segment.

Let us examine the endpoints of the lines of our algorithm.

An endpoint is reached when a basic variable becomes nonbasic. If

there is no discontinuity in the value of t0 and if t0 is still
basic, there is by nondegeneracy exactly one pair of variables which
are both nonbasic. This gives rise to two types of position for the

algorithm. At a position of type a we have that, for some

je I(ntk) , yj =0 and tj =ty 0 . At a position of type b

we have that, for some j > n , yj =1 and tj = tO >0 . If an

endpoint is reached where to is nombasic, then it will be shown

to be a solution. The latter is also true if tO becomes nonpos~

itive during a discontinuous decrease at the endpoint. If after a

discontinuous decrease tO is still positive, there is one nonbasic

pair (yh’th) with th = to >0 and Yy = 0 for some h e I{(nt+k) .

The endpoint is a position of type a . This completes our
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ted the inequalities that are implicit in the definition of t

We have omit-
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classification of endpoints into positions of type a or b and

t . —complementary points with t. < 0

0 0

We now prove the important fact that if t0 becomes nonpos-
itive at an endpoint, then a solution has been found. Since
tO > max(ti = -5, i £ I(n)), it is clear that s > 0 at such an

endpoint. We still need to argue that s; = 0 whenever zy >0 .
We distinguish two cases. If i ¢ Ph and yn+h < 1, then si =0
follows from the fact that O 2ty 2t =.Z s, > 0. If
1ePh

Yo4n = 1 , then the positivity of zy requires the positivity of
Yy along the line leading to the endpoint. Hence, ti is nonbasic
along the line: -8, = ti_i 0 (since tO > 0 along the line).
This inequality is still walid at the endpoint and implies s, = 0.

We illustrate the incidence between positions and lines of our
algorithm in Figure 3. The algorithm leaves the initial position
along the unique line incident to it. Every other position, which
is not a solution, has two lines incident to it. If the position
is reached along one line, then the algorithm leaves it along the
other line. Solutions can be shown to be incident to only one line

of our algorithm.

3. Convergence issues

The previous section set the stage for an application of the
well-known Lemke-Howson argument. The initial position is incident
to one line of the algorithm. Every other position which is not a
solution is incident to two lines of our algorithm. The Lemke-
Howson argument proves that 1f lines are followed without turning
back no position will ever be visited twice. The number of lines
is finite, hence, so is the number of positions. The algorithm
thus either stops at a solution for the LCP or follows an unbounded
line. Following Lemke (1965), we present a class of matrices—-
characterized by Garcia (1973)-~for which the algorithm finds a
golution for any right-hand side vector q . We then show that for

copositive plus matrices [Lemke (1965)] the existence of an un-
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> =
Y. 0 yj 0 Yoah < 1 |
tj = tO
ii. Position of type a: all y-variables are nonbasic. Let
nth = argmin(t :y ,.=1) . Discontinuous increase in

n+j n+j

value of t. when leaving position along line drawn at the

0
right of the position.

y, =1
vy, <1 i t, > t0
Yj =t
iii. Position of type b: j > n . No discontinuity in value of ¢t

FIGURE 3. The incidence between positions (with tO

> 0) and lines

of our algorithm. Notice that in case ii, the line drawn at the

right of the position is defined only if {ot+i : Yo

empty. If the set is empty, we are at the initial position.

= 1} is non~

This

position is the only position (with t0 > 0) incident to one line

of our algorithm.
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bounded line implies that the LCP is not feasible. The point
behind both results is that they hold for any starting point ZD
in Ri . [Garcia and Gould (1980) discuss the possibility of com~

vergence for a particular set of starting points.]

(3.1) Theorem. Let M satisfy the property that LCP(q,M) admits

the unique solution = (0 both when q =0 and when q = e ,

2
where e = (l,l,...l)t . Then no line of our algorithm 1s unbounded.
Proof. An unbounded line of our algorithm implies the existence of

a (2ntl)-directional vector (Eb, s, E) verifying the following

conditions:
(3.2) a, s =Mz with z > 0 ;
. if —51 > 0 then —El =?O ;
c. if =z, =0 then -s, < t ;
i— "0
d. t 0.

[Notice that the directional vector ; associated with z always

has yj =0 for j >n, for we can't leave the nonnegative orthant
in z-space. Hence, ;& = E; for i ¢ I(n).] It is clear that z
is nonzero. If Eb =0 then s is nonnegative and complementary

with z , which itself is nonnegative. =z represents a nontrivial
solution for LCP(0,M), which is impossible. If Eb >0 , we rescale
s and =z so that tO =1 . 2z sgatisfies the inequalities

Mz + e > 0 , where the ith inequality is an equality if ;i >0 .
LCP(e,M) thus admits a nonzero solution, which again contradicts

our assumption.

(3.3) Theorem. Let M be copositive plus: utMu >0 when u>0,
with u™Mu = 0 implying (MHT)u = 0 . If the algorithm generates

an unbounded line then the LCP is infeasible.
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Proof. The LCP is infeasible if s =Mz +q, s and =z >0, . is
an infeasible linear system, By Farkas's lemma this infeasibility
is equivalent with the existence of a nonnegative vector u such

that utMi 0 and utq <0 .

The arguments of Theorem (3.1) show that an unbounded line

implies the existence of a vector (t., s, z) verifying (3.1). If

— _t —— T —— — .
tO >0, then z Mz = zts = —(zte) tO < 0 since =z is nonzero.
This contradicts the copositive plus character of M . Hence
T, =0 .
tO B o

A zero value for to implies that thz = 0 and, hence,
t— — . — - - . .
Mz=-Mz <0, since -Mz = -s < t.e =0 . z is our candidate

0
Farkas direction. To conclude our proof, we only need to show that

;tq <0 .

Consider the unique endpoint of the unbounded line, say
(t;, s*, z*) , where
s*=Mz*+q, 2*30 and t;>0.
Premultiplication with Et yields

-t

—t * —t %
z s z Mz + z q

t % —t
=~s 2z + 2 q.

* *
Because of t_ -complementarity at (s , z ) and along the unbounded

0
* * —
line we have —s; = tO whenever zg > 0, for even if nonbasic at
) i A —t % —t *
z 5 ¥y is basic along the line. Hence, 2z s = ~(z e)tO <0

implying that

t * —
-5 2z +th<0

—t %
If we can argue that stz = (Q , then our result is obtained.

If s; > 0= ——EO , then vy is nonbasic along the unbounded

line (;i =z; = 0) . At the same time,

) s.>s,>0=r¢t
. 2 5, 0 °
Lo 3 i

Jeh
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where 1 € Ph . The first inequality follows from the nonnegativity

of s . Inequality ) Eh > Eb implies that 1 along the

JEPh

*
unbounded line, and thus at its endpoint =z . Since yn+h = 1

yn+b =

and vy 0 along the line, we have z, = 0 along the line, and

*
hence z, = 0 at the endpoint. This concludes the argument

—t %
establishing that stz =0

4. Implementation

We introduce the matrix E = (Ehj) to identify the partition
the I(k)I:

Ehj

{ry

1 if je®

0 otherwise

I

t can then be written in matrix form as

-8 -M ~q

]
It
N
+

(4.1) t

We introduce nonnegative vectors to represent the deviations of t

from tO:

[
[y}
1
e
+

l — -
e” and t & Ri , e2 , t2 and t2+ € Ri , ei (i=1,2) re-

presenting a vector of ones. We partition y = (y ’yz)t ’
1 2

y € R: , ¥ € R, , and introduce the corresponding partition

1 2

for D=(D", D We write the feasibility constraint on y2 as

v2 + y© o= e2 s V2 and y2 >0,

I
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and append it to (4.1) . The latter system can be written

- 1
- B R I e q°
- 0
(4.2) £2 = ~eMp* —EMD2 I y2 + o2 tg * ~Eq
v 0 -I 0 2t 0 | &2

where qo = Mzo+q . t.—complementarity between t and y is

0
equivalent with the ordinary complementarity between (tl_, tz_, vz)
and (yl, y2, t2+) . The starting point is (yl, yz, t2+) =0 .

Our algorithm can thus be seen as a projection of Lemke's algorithm
applied to an enlarged problem. Notice also that assumption (2.6)
is satisfied when linear system (4.2) is nondegenerate. Classical
perturbation techniques applied to (4.2) ensure nondegeneracy.
Finally, the discontinuity of t0 , as described in figure 3 (case
ii), reduces to a trivial pivot step in the enlarged system. In

the pivot step that corresponds in figure 3 (case ii) to a movement
along the line appearing at the right-hand side of the position,

t0 igireaées by an amount equal to tgi samllest positive component
of t . All basic components of t are decreased by that amount
whereas all basic components of (tl—, tz—) are increased by a
similar amount. The components of (yl, yz) are not affected by
this pivot step.

It is clear that the last k equations in (4.2) can be
handled implicity as they represent upper bounds on y2 . We now
indicate that a similar implicit treatment can be given to the
middle k equations. Adding appropriate sums of the first n
equations to these middle k equations, they can be written

2- 2+

(4.3) Bt 4+ 127 - 2 - (el + &) £y =0 .

These equations are of the GVUB type [Schrage (1978)] since every
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variable with a positive coefficient appears only once in (4.3) .
2+

At a position ty > 0 and t° >0, so that at least one among

h
that the basis matrix, after suitable permutation of its columns,

the variables tz— and (t;* t je Ph) is basic. This implies

contains an identity submatrix of order k . This property allows
an implicit treatment of these equations so that every pivot step
in system (4.2) involves the updating of a basic submatrix of
order n , rather than n+2k in an explicit treatment of (4.2)
There may exist instances of the LCP where the freedom to
arbitrarily choose a partition of I+(n) could be exploited. One

such instance occurs when the matrix M presents the special

structure
A, 0
0 A )
M= : 2 . .
Bl B2 [P Ak
L -

Every submatrix Ah could then be associated with a partition set

Ph . However, in the absence of special structure, it is reasonable
to expect the algorithm to treat all coordinates symmetrically.
This points us to the two extreme cases, k=1 and k = }I+(n)
+
When %k = |1 (n)l , every set Ph is a singleton. If zO >0
(4.2) can be written
tl~ M -M 0 yl e q0
2
(4.4) t = -M M I y2 + | e tO + —qO .
2 +
v 0 -1 0 t2 0 zO
0 . : . . 2 2
If z; = 0 , feasibility in row 2n+i sets V=Y, s 0 , so that

equation n+i can be eliminated, as indicated in (4.2) . This
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case is analogous to one of Reiser's algorithms [Reiser (1978)].

When k = 1, (4.2) becomes

tlu M —-Mz0 0 yl e qo
(4.5) t2 = -e M e+MzO 1 y2 + 1 tO + —e+qO

u? 0 1o || 0 1
where tz—, t2+, u2 , and y2 are scalars, and where e+ = (e;)

+
with ez =1 if z? >0 , and ei = () otherwise. The second

Reiser algorithm considers only the first n equations of (4.5)
That algorithm corresponds to movements along to—complementary
lines where to = max(—sl, —52,...,-sn, 0) as compared with
tO = max(—sl, =SgsesesT8 s Z si) for our algorithm. The comple-
.
iel (n)

mentarity conditions along a line in Reiser's algorithm are

(4.6) (tl—)t yl =0 and toy2 =0

In this setting tO = 0 no longer identifies a solution. The
algorithm termimates either when yz reaches its upper bound of 1
or when tO and tl_ are all nonbasic. In the first case, tO =0

by complementarity along a line so that the first n equations of
(4.5) can be written tl— = Myl + q . Since (tl~ , yl) is also
complementary it is a solution for the LCP. In the second case,
(to, tlu) = 0 and it is easily seen that (s,z) = (0, yl +(l—y2)zo)
is a solution for the LCP.

We conclude with examining the special case where zO =0 .
Equation (4.2) then becomes

tl_ = Myl + el tO + q .

Our algorithm requires 1" and yl to remain complementary and

this special case thus reduces to Lemke's original algorithm.
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