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Determinateness of Two-Person Games.

R. LuccHETTI - F. PATRONE - S. H. Twys (¥)

Sunto. — Viene discussa la determinalezza per giocht a due persone, con fun-
ziont quadagno non necessariamente limitate. I/ ben moto che le estensioni
miste dei giochi bimalrici m X oo, qualora la mat.ice guadagno per il se-
condo giocatore sia superiormente limitala, sono determinali. In questo
lavoro vengono provali vari teoremi che garanliscono Uesistenza di equi-
libri approssimati per le estensiont c-miste di giochi bimatrici m X oo,
con matrice quadagno per il secondo giocatore inferiormente limitata. Viene
anche mostrato che tutte le estensioni miste di giochi bimatrice semi-infiniti
sono determinate, purché le matrici guadagno siano swperiormente o infe-
riormente limitate.

1. — Introduction.

Game theory started with the fundamental paper of John von
Neumann [4], in which he proved that mixed extensions of finite
matrix games are completely determined i.e. they have a value and
both players possess optimal mixed strategies. Semi-infinite ma-
trix games were considered for the first time by A. Wald [11].
He proved that mixed extensions of bounded semi-infinite matrix
games are (weakly) determined i.e. they possess a value, but an
optimal mixed strategy for the player with an infinite number
of pure strategies not necessarily exists. He also gave an example
of an oo ¥ co matrix game which is not weakly determined. Tijs [9]
proved that also e¢-mixed extensions of unbounded seml-infinite
matrix games possess a value. In his papers|[2],[3], J. Nash 1n-
troduced finite bimatrix games and proved that they have an equi-
librium point in mixed strategies. This extended the von Neumann
result for finite zero-sum games to general non-cooperative finite
two-person games. Here a natural question arises, which 1s until
now not completely solved. Are semi-infinite bimatrix games
(weakly) determined? For semi-infinite (m X co)-bimatrix games,

(*) This work was done when the last author was visiting professor
of CNR at the Mathematical Department of the University of Pavia.
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where the second player has an upper bounded payoff matrix an
affirmative answer is given in Tijs [7] (Cf.[6]). The main aim of
this work 1s to consider this question in more detail. In section 3
we first tackle the problem: what is precisely the meaning of weakly
determinateness for non zero-sum games if we allow unbounded
payolf functions? The reason of considering unbounded payofi
functions is llustrated together with the definition 3.4 below, which
gives an answer to the previous question. In section 4 many suf-
ficient conditions are given for the weak determinateness of e-mixed
extensions and i section 5 it is proved that all full mixed extensions
of one sided (m < oo)-bimatrix games are determined. In section 2
we recall some definitions and well-known facts.

2. — Preliminaries.

For surveys of minimax theorems, concerning determinateness
of zero-sum games, we refer the reader to [12] and to the chapter 5
of the book [5]. A survey of e-equilibrium point theorems for
n-person games is given in [10] and a systematic study of all kind
of mixed extensions for semi-infinite and infinite two-person games
can be found in [7]. Semi-infinite zero-sum games are also considered
in (1], where sufficient conditions can be found for the existence of
conservative strategies. Finally motivations to introduce approxi-
mate equilibria are discussed in [6].

A two-person game (in normal form) is an ordered quadruplet
(X, Y, K,, K,), where X and Y are the non-empty strategy sets
of the players 1 and 2 respectively, and where K,: X XY —- R
15 the payoff function of the player ¢, which assigns to a strategy
palr (z,¥y) an extended real number K,x,y). Such a game is
played as follows: player 1 chooses a strategy x € X and player 2
a strategy y € Y. Then the payoft to player 7 is K2, ). In the
case H,= — K, we have a zero-sum game. A pair (Z,7)e X XY
15 a (Nash-Cournot) equilibrium for the game if K, (T, 7) —
= max K,(», ), K,(%, ¥y) = max K,(Z,y). We shall indicate by

v

oL
E(X, Y, K,, K,) the (possibly empty) set of the equilibria of the
game. For a zero-sum game the existence of an equilibrium is
equivalent to the following facts:

1) the values exists: namely

(&, Y, K, K,) 1= supinf X (2,y) = infsup (@, )

£ ] Y &®
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2) the sets of optimal strategies

O0,(X, Y, K,, K,): o(X, Y, K,, K,))

{xeX: inf K,(Z, y)
v

(A, Yo Ky o Ky {g e Y :sup K,(x, y) v(4X, Y, K, Kﬂ)}

are both non-empty. We call a zero-sum game (weakly) determined
1f 168 value exists. In the next section se introduce determinateness
for non zero-sum games. A game 1s called semiinfinite if one of
the strategy spaces 1s a finite set and the other one a countable
infinite set. It X consists of m elements and the payoff functions
are real valued, then the game can be described by two real
(m X co)-matrices 4 = [a Yimpg=1y B = Dgling = =1 by numbering
the trategies. If X = {my, ...,2,} and ¥ = {y,,...}, then a;;=
= K,(®;, v,), bi;= Ky(x;, y;), for 1€ {1,...,m}, j€ N. Given such
a bimatrix game, the ec-mixed oxtensiou of (A, B) 15 the game
(8™, 8¢, H,, Bg), so defined:

Sm . — {pERm » >0, pr;-—- }

1=1

D= {QER“": ¢G50, > gi=31,4;=0if 7 i8 l:;u'ge}

j=1

1

Eip, q) := 2. Epauq.;—pfiq

1=197=1

and

Eg(p, q) := pBq for all (p, q) € S™ X 8°.

An (m < oo)-matrix A is called upper bounded (lower bounded) if
there exists a ke R such that a;<k (a;>k) tor all (z,7). A 18
called one-sided bounded if it is upper or lower bounded. If A4
and B are both one-side bounded then the full mixed extensions
(Sm, 8°, B,, Bg) can be defined. Here

R e {QER“’:’: >0, > q,= 1}

- Rt |

and E,(p, q) = pAq, Exz(p, q) = pBq for all p e 8™, q€ S”.
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3. — Determinateness of general two-person games.

In sections 3 and 4 we shall assume that the payoff functions
of the games are real valued.

Aim of this section is mainly to arrive to a suitable definition
of determinateness for general (non necessarily zero-sum) games:
to do this we seek inspiration at zero-sum games. Namely the-
orem 3.3 below shows the equivalence between determinateness
of zero-sum games (i.e. the existence of the value) and the non
emptiness of the sets of «approximate equilibria ». This seems
to be a reasonable way to define determinateness for general games,
about which we cannot speak of value. In general for a two-person

came a point (T, 7) is called an (&, &) equilibrium point, &,>0, 1

K (z; ) <K,(Z,y) +¢& for all zedX,
K.z, y)<K,(x,y) +e forallyelk.

A Nash-Cournot equilibrium point represents a stable pair of
strategies in the sense that no one player i1s motivated to change
his choice, if the other one plays his fixed strategy. So an & equi-
librium point can be viewed as a pair that every player has only
a small (for small €) incentive to unilaterally deviate. And, as usual,
the introduction of approximate solution concepts is motivated,
also in this setting, by the difficulties to practically compute the
actual solutions. (See also [6]).

In the sequel we shall denote by E*-*(X, Y, K,, K,) the set
of (e,e,) equilibria of the game (X, Y, K,, K,). For zero-sum
games we have the following proposition, for which the proot
can be found 1in [8].

ProrosiTIioN 3.1. — Let (X, Y, K,, K,) be a zero-sum game. Then
the following assertions are equivalent:

(i) The game has a finite value.

(i1) For each e,,e, >0 the game possesses an (&, &) equilr-
brium point.

For zero-sum games with a finite value and for >0 the sets
of e-optional strategies of the players are given by

04X,Y,K):="{ZeX: inf K(Z, y)>v—e¢},
i
04X, Y,K):="{ge Y:sup K(x, j) <v-+ &} .

*(H(‘-l‘{‘- K = Kl — — -KE)*
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The following proposition describes relations between e-optimal
strategies and (&, &) equilibria for zero-sum games with finite
value. The proof is straightforward and it 1s left to the reader.

PROPOSITION 3.2. — Let €, >0, ¢,>0 and (X, Y, K) be a zero-sum
game with a finite value. Then

(i), O3 X, ¥ JCY O2K 5, X K)oy patitta (X ¥, Iy == i)
(i) B*(X, Y, K, — K) c 05*(X, Y, K) X0p**(X, ¥, K);
(i) DX, ¥, K)= [ O(X, X, K] jor 2 = 1;2;

>0

(iv) BX,Y,K,—E)= [ E+%ZX,Y,K,—K)

£,>0,e,>0
Let now look at a zero-sum game with value » = sup int K(z, ) =
£ Y

— -+ oco. Then for each k€ R and £ > 0 there is a pomnt (x,y) €
e X xY such that k< K(Z, y)<K(x,y) + ¢ for all ye Y.

If player 1 wants at least a payoft k, and ¢ is small, then such a
point (T, 7) weakly guarantees that, because the incentive for
player 2 to unilaterally deviate from % is small as he can only
increase his payoff by at most . For a general two-person game
we define now the set of (k, e) equilibria by

::k,[-f(_‘\f? .‘)ﬂ? El . "Kl) . — {(ﬁ_', ?7) - ..l' X ]-f: _Kl(f, ﬂ) :h"“ ;{,
K,(Z, i) > sup K, (&, y) — et
v

(where we think to k as a number large enough).

If E»¢X, Y, K,, K.)# 0 for all ke R and for all ¢ > 0, then
the players can reach a weakly stable agreement.

Similarly, we define

Eex(X, Y, K,, K,):= {(Ea y) e X X Y: K,(Z, y)> Kk,
I (

|

) > sup Ky(@, i) — e -
4 r

as the set of the (k, ¢) equilibra.
In the next theorem we give a characterization of determi-
nateness of zero-sum games.

THEOREM 3.3. — Let (X, Y, K) the game. Then the following as-
sertions are equivalent:

(1) The game s determined
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(11) One of the following properties holds:
(D.1) H*ss( X, ¥, K20 Jor all &..8; >0.
(D.2) Ex¢(X, Y, K) =0 for all ke R, ¢ > 0.
(D.3) Eeo¥(X, Y, K) =0 for all e >0, ke R.

Proor. — At first we note that, by proposition 3.1, property
(D.1) 18 equivalent to the fact that the games has a real value.
Now suppose that (D.3) holds. Then for every nelN and ¢ = 1
we can take (x*, y*) e Be"(X, Y, K). From

— K(z", y*)>n, Kz, y*) >sup K(x, y?) —1
H rl

it follows that, for each ne N,

inf sup (., y)<sup K(r,y")<—mn |1,
.

7 oL

which implies that the value inf sup K(v, y) equals — oo, If the
) &£

value 18 — oo, then (D.3) holds and i a simmilar way v = -+ oo
1s equivalent to (D.2).

Observe that, from the proof of theorem 3.3, 1t follows that at
most one of the properties (D.1) holds. This 1s no longer the case
for general two-person games. It we look at the (2 < oco)-bimatrix
came (A4, B) with

A e [l) U ) wie ] nd B _ l:(! 0 0 - ]
) O Q) #s= 01 9 «+

then (e', e') = ((1, 0), (1,0, ...)) € 82 X S8°¢ is an element of K% (8?2,
Se¢, B, Hg) for all &, >0 and (e?, e*) € B=¥(§3, 8¢, E,, Hg) for all
¢e>0 and ke R. Hence for this game (D.1) and (D.3) both hold.
Some general two-person games have another property of at-
tractive outcomes for both players, which lacks all zero-sum games.
If, for instance, the players have the same unbounded payoft
function, then for the game the set E**(X, Y, K,, K,) of (k., k,)
equilibria is non-empty for each k,, k, € R, where we set

Bk X, YV, Ky, K,) := {(Z,5) e XX Y: KT, §) >k, K.(T, 7) > k) -

We are now ready to introduce the following

DEFINITION 3.4. — Let (X, Y, A,, K,) be a two-person game.
Then the game is called determined it at least one of the following
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four properties holds:

(D.1) B X ¥, Ky K.~ 9 for all gy 8.0
(D.2) B*(X, Y, K, K,) #0 for all ke R, &> 0
(D.3) B**X, Y, K;, K,) #=0 for all e>0, ke R

(D.4) EB(X, Y, K,, K,)# 0 for all k,, k. € R.

There is an important motivation for the definition 3.4. Starting
from a game (X, Y, K,, K,) we can construct equivalent games
X, Y, LK, f,K) if f,: R— R are strictly increasing functions.
The games are equivalent because the underlying preference strue-
tures, for the outcomes, of the two players are the same: and ob-
biously the sets of the Nash-Cournot equilibria coincide. This
fact at first further motivates the introduction and the study of
the case of unbounded payvoff functions; consequently the pos-
sibility for the value (of a zero-sum game) to be -+ oo and finally
the definition 3.4. It can be in fact easily proved that if a game 1s
determined in the sense of definition 3.4, then an equivalent game
with bounded payoff functions has (&,é&) equilibria for every
g, &> 0. Conversely, if (X, Y, f,K,, [.K,) has (e,¢&,) equlibria
for every e,,e >0, and the K, are lower bounded, then
(X, Y, K,, K,) is determined in the sense of definition 3.4.

We conclude this section with the following remark. Suppose
we have two games (X, Y, K,, K,) and (X, Y, K,, K,) such that
K, (z,y) = K,(z,y) -+ ¢, K.(z,y) = K.(z,y) + ¢, for all z,y and
for some real constants ¢, and ¢,. Then one of the two games 18
determined if and only if the other one is determined. This fact
will be often used in the following sections.

4. — Determinateness of c-mixed extensions of semi-infinite games.

In this section we concentrate our attention to (m < oo)-bima-
trix games. We shall give nine theorems containing suflicient
conditions for the determinateness of the c¢-mixed extensions
(S™, 8¢, By, Ey) of an (m X oo)-bimatrix game (4, B). For such a
came we denote by E¢%(A, B), E=* A, B), E*¢A4, B), E**:(A, B)
the corresponding approximate equilibrium sets of the game
(S™, 8¢, B, E;) and we say that (4, B) is determined if (8™, S, E,, £/3)
15 determined.

a9
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At first we recall two well known theorems: in the proois the
theorems of von Neumann and of Nash, respectively, for finite
games play a role.

TaeorREM 4.1 (cf.[9], theorem 4.5). — Let (4,— A) be an
(m x oo)-(bi)matriz game. Then the game s c-determained.

THEOREM 4.2 (Cf. [8], corollary 3.2). — Let (4, B) be an (m x o0)-
bimatriz game with B wupper bounded. Then for each & > 0 the set
E¢(A, B) is non-empty.

Now we start with a string of new almost equilibrium theorems.
In most of those theorems the payoft matrix B of player 2 15 lower
bounded, contrary to the condition in theorem 4.2, and one or more
conditions are also laid on A, the payoft matrix ot player 1.

THEOREM 4.3. — Let A and B be both lower bounded (m » co)-
matrices. Then (A, B) s c-determined.

Proor. — Without loss of generality we suppose that B =0
and a;;>1 for all 1€ 4{1,2,...,m}, j€N.
We distinguish three cases.

Case 1. — B 1s also upper bounded
Case 2. — B and A are not upper bounded

Case 3. — B 1s not upper bounded, A 1s upper bounded.

In case 1 property (D.1) holds in view of theorem 4.2, In
ase 2 we prove that (D.4) holds. Take k,, k,€ R. Let row e’ A
be unbounded for matrix A4 and let row e¢* B of B be unbounded.
Let player 1 play 9§ = le' 4 lei € 8™, which corresponds to play-
g rows 2 and " with probability 4 if the rows are different, and
“which corresponds to the pure strategy 2" if +'=1". Take 3',9"€e N
such that a; ; >4k, by ;->4k, and let player 2 play strategy
g =4 el 1 el

Due to the non-negativity of A and B we have E,(p, ¢) =k,
Ey(p, §) = k..

Hence, (9, §) € E*»*(A, B). Thus, (D.4) holds in case 2. In
the third case we prove that (D.3) holds. Let 0 <e< 1, ke R.

Take (¢',9") such that a; ; >sup a,; — Se.
iy
Then we can find 6 € (0,1) suech that (1 —0)*a; ;>sup a; ; —e¢.
i,9

Let ¢' B be unbounded and take j”e€ N such that b, >k 02

il *
Define a*:= de*" 4+ (1 —0)é’ and y*:= d¢° + (1 —3J)e’. Then, ob-
viously, (x*, y*) € Eo*(A, B).
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In the following theorem B is lower bounded and there is a
weak condition on A.

THEOREM 4.4. — Let B be a lower bounded (m X co)-matrixz. Let A
be not an upper bounded (m <X oo)-matriz. Then (A, B) 18 c-determaned.

PrROOF. — W.l.o.g. we suppose b,;;>1 for all (z,7). We consider
two cases.

Case 1. — There is an 7€ {1, ..., m} such that

Sll].)a;”--*s g?bfj: o (=

JFI

Case 2. — For each non-upper bounded row of A the cor-
responding row of B 1s bounded.

For case 1 we prove that (D.4) holds. Take k,, k, € R.

Let 2* be such that Sup Qe ; = SU 1? bie.; = -+ o9,

jeN
Choose 9' € N such that b;. ; f,,.,?‘.%kg and let j2€ N be such that
Qe 2 = 2( gt \at R !) o |
Then (ef, e + 3¢') is a (k,, k.)-equilibrium point.
For case 2 we prove that (D.2) holds. Let ke R, € (0,1).

Take ¢ € {1, 2, ..., m} with .sup a,;— -+ oco. Let j'e N be such
that b =supb; — te.  Let (3 € (0,1) be such that (1—0)
‘E- J

(sup b:i— %¢) > Sup b.,—e. Let j2e N be such that a;:=0(k +

- |a,,-,-1| (1 — 9)). Thon (ef, (1 —d)e’ + d¢) is a (k, )-equilibrium
1)0i11t|.
In the next theorem we put only conditions on the payott
matrix of player 2.

THEOREM 4.5. — Let (A, B) be an (m X oo)-bimatriz game with B
lower bounded. Then we have

1) If all rows of B are unbounded, then (A, B) s c-determined.

(i1) If ome row of B is bounded, then (A, B) 1is c-determined.

Proor. — Without loss of generality we suppose that b;;>1
for all (z,9).

(i) Suppose that all rows of B are unbounded. Let ke R.
We prove that E®*(A, B) = 0. For each i€ {1,2,...,m; we take

m

j(t1) € N such that b, ;;>mk. Let § = m-1-> e;s. Then §e S

i=1
and pBd>k for all p e 8™. Let peS™ be a best response to ¢ 1.e.
pAJ = sup pAgd. Then (9, §) € E**(A, B).

peESM
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(i) Suppose that exactly one row of B is bounded, say the
m-th row. Take 0 < e <1 and ke R. We will show that at least
one of the sets E%¢(A, B) and E**(A, B) is non empty. Let o be
such that 0 < 0<1 — (f — 1)U (p —¢), where p = e bmi >1.

For each i€ {1,2,...,m —1} we take j(z) € N such that b, ;i»>
>(m—1)ko-*. We take j(m) € N such that b, ;.)>p — ¢

m—1
Let ¢ = (1 —0)e™ + (m —1)"1Y dei™. Then

=1
6'B§>b, jndin>k if 1€{1,2,...,m—1;j

e BG= b somrom > (f — Le)(1 — 0)>f —e>em By —

for all ¢ e S,
If emA§ = sup pAq, then (e™, §) € (A, B).

ﬂEST"
If ¢t A§d= sup pAqd and i = m, then (e, §) € E**(4, B).
:I?ES”I

Now we consider the pairs (e, k) with ¢ =1, k=1 for 1€ V.
We have proved that, for each t€ N one of the sets E%" (A4, B)
and E%Y(A, B) is non-empty. If there is a subsequence of non-
empty sets of the sequence

BY(A, B), E°*'(A4,B),..

then (D.1) holds. Otherwise, (D.3) holds.
We are now ready to prove that all (2 < co)-bimatrix games
with one-sided bounded B are e-determined.

THEOREM 4.6. — Let (A, B) be a (2 < oo)-bimatrixz game and let B
one-sided bounded. Then (A, B) is c-determined.

Proor. — If B is upper bounded, then (D.1) is satisfied by
theorem 4.2. Hence, suppose B>0. If both rows of B are un-
bounded, then (A4, B) is e-determined by theorem 4.5 (i) and 1n
the case that one row is unbounded the e-determinateness follows
from theorem 4.5 (11).

In theorem 4.5 (ii) we found a proof of the c-determinateness
of a bimatrix game, where one of the rows of the lower bounded
matrix B was bounded. One cannot adapt the proot of that
theorem to settle determinateness of a bimatrix game where B
has two or more bounded rows: every bounded row requires that
we look for a column to play with probability near to 1 (in the
proof 1 —¢). In the next two theorems more rows of B may be
bounded but then also a condition is required for the correspond-
Img rows of A.
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THEOREM 4.7. — Let (A, B) be an (m < co)-bimatriz game with
lower bounded B and for all 1€ {1,2,..., m} we have:

1) 1f row e;B 1s bounded, then row e, A wupper bounded but
not bounded.

(11) 2f row e;B 1s unbounded, then row e, A is lower bounded.
Then (A, B) is c-determaned.

Proor. — We may suppose that there are bounded and un-
bounded rows in B. Otherwise, theorem 4.2 guarantees the e-deter-
minateness. Furthermore we may suppose that B0 and that
1t are precisely the first m; rows of B which are bounded. Also
we may suppose that a;; <0 for each 2<m, and je N. Take ke N.
We shall prove that 1]1(1.1 ¢ 18 a (0, k)-equilibrium point for (A4, B).
Let

e S T e B S =
« = 1nfja;;: my<i<m,je N} .

For i€ {l,2,...,m,} we take j(¢)e N such that a;,<m(x—1).
For 1€ ym, 4+ 1, ..., m; we take j(i) € N such that b, ;;, >mk. Let

I
) e -1 (K Uk
d:=m1 D ei®e S
k=1
Then, for all 7€ {1, ..., m;} we have

n
e AGd =m1 D a; jp<ma; ;<mim(e—1) = a—1.
k=1
For all te {m, 4+ 1, ..., m}: e Ad>c.
Let ¢ be such 111..111 ¢ A¢d = max ¢'A¢. Then ¥ >m, and then

i

6" BG>m—1b;e 0>k .

Hence, (e, ¢) is a (0, k)-equilibrium point.

A strong result is obtained in the following theorem. In the
rather complicated proot we make an essential use of theorem 4.2
and condition (11).

THEOREM 4.8. — Let (A, B) be an (m > oo)-bimatriz game, where
have:
(1) B s lower bounded

(1) there is at least one i€ {1,2,...,m} with ¢;A and ¢;B
bounded

(111) 2f @ row of B 1s bounded, then the corresponding row of A
s upper bounded.

Then (A, B) 1s c-determined.
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Proor. — W.l.o.g. we suppose that there are m,, m,e N with
1<m,<m,<m such that

(@) ¢¢A and e¢'B are bounded rows for 1<v<m,

(b) e¢'B is bounded, e'4 <0, ¢’ A 1s unbounded for m + 1 <
< 1< Mo

(¢) ¢! B is non-negative and unbounded for m, { 1<

/\

! << Mm.

If m,—= m, then the c-determinateness follows irom theorem 4.2.

So we suppose in the following that 1<m,<m, << m (where
we do not exclude the possibility that m, = m.).

Let ke N, e > 0. Let 0 be a real number such that

(4.1) < 0 < min {}a e, }f e, 1}
where

(4.2) oo =1 + sup {|a;|: 1<i<m,, ) €N}
(4.3) B=1 L sup {|by|: 1<<i<m,,jeN}.

For cach i€ {m,+ 1, m,+ 2,...,m} we take j(7)e N such that
(‘LLJ:) b.* i(i) = _1(7”’ . 7n’l) k

For each i€ {m; +1,m, + 2,...,m,} we take j(i) € N such that

(4.5) a, ; <<— o0 '(m—m,)«
m
Define ¢*:= (m —m,)"* > @, Let
t=m,;+1

Sni= {pe 8™ Pi= 0 il 2> my

and let (p, d) € 8% X 8¢ be such that

(4.6) PpAJ=>p A for all p e 8%
(4.7) pPBi=pBqg—1ie for all qe Se.

Such o pair (P, d) exists in view ol theorem 4.2 applied to the
(m, X co)-bimatrix game ([@;],%4 ;=1 [05104.,21)-

Let ¢**:= (1 —0) 4§ + dgq¥ € 8¢ and let 1““”1,_, ...,m} be such
that

(4.3) e * Ag** = maxerdq®*.

:
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By (4.2), for all 7€ -'1, 2y ..., My}: 6 A¢g**>1 —a and by (b) and
(4.5) for all ie{m,+ 1, m;+ 2,...,m,}: e*’Aq**“E‘:; (m—my)ta; jn<
<~ — . This 1mplies togethm with (4.8) that i*¢{m, + 1, ..., m,}.

Hence, we have to consider two cases: ¢*>m, and 1*<m,.

Case 1. — Suppose i* > m,. Then (e, ¢**) is a (0, k)-equili-
brium point because 1 view of (¢) and (4.4):

¢!" Bq** = 0(m — my) 1 0>k

and because (4.8) holds.

Case 2. — Suppose 7*<<m,. We prove that in this case (p, ¢*%)
is an (e, )-equilibrinm point.
Firstly, note that, in view of (4.2) and (4.1), for z e Sg:

(4.9) |xAJd—axAg**| = dlvA(d—q%)|<

<d(|lz A q| + |z A q*|) <20x< fe

and that by (4.3) and (4.1):
(4.10) pBJ—p DB gt <2p0<le

Using (4.8), (4.9) with = ¢, (4.6) and (4.9) with # = P, we ob-
tain for all p e 8™:

('1'1]) p 44 qﬂ::!': :: C"-- 4‘4. q:k:i: :: 8i' ...fj. ‘j "'l[_ :‘Ip & : jj ..a:"l. {? ";‘ ;13 & 'JT:: jﬁ ...,4 q::::';: : &

In view of (4.7) and (4.10) we obtain for all ¢e N

~

(4.12) PBg<PBJ + te<pBqg** +¢.

Then (4.11) and (4.12) imply: (P, ¢**) € E&¢(4, B).
So we have proved that for each pair (e, k):

Ee¢(A, B)=0 or E%(A, B)+=0.

In a similar way as at the end of the proofl of theorem 4.5 1t
follows that (A4, B) satisfies (D.1) or (D.3). Hence, (4, B) 1s
c-determined.

The next theorem deals with games where each row of 4
one-sided bounded and B is one-sided bounded.
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THEOREM 4.9. — Let (A, B) be an (m X oo)-bimatrix game with
the properties:

(i) B 18 one-sided bounded
(11) each row of A s upper bounded or lower bounded.

(111) at least one row of A s lower bounded and the correspond-
mg row of B 1s bounded.

Then (A, B) 1s c-determined.
Proor. — It B 1s upper bounded, theorem 4.2 implies the e-

determinateness. Hence, suppose w.l.o.g. that B > 0.
Let

VA {-i €11; 25« ymy: ¢4 and ¢'B 1)01111(1@(1} ;

= {-ie 1,2, ...,m|: e’ A upper bounded and not bounded, ¢'B
bounded}
L= {ie 1,2, ..,mp e’ A lower bounded and not bounded, ¢'B

bounded} ,
I,:= {ie {1,2,...,m}: ¢!B unbounded} .

o

If I,= 0, then the e-determinateness follows from theorem 4.2.
1t 1,0 and 1,740, the theorem follows from theorem 4.4. If
1,0 and I,= 0, condition (iii) implies that I,%0 and then
theorem 4.8 imphies the e-determinateness. This finishes the proof.

We do not know whether condition (ii1) in theorem 4.5 is super-
fluous. One can prove that this condition can be dropped out if
the answer to the following problem is ves.

ProBLEM 4.10. — Suppose (A, B) is an (m X oo)-bimatrix game
with 4 <0, B>0 and B possesses bounded and unbounded rows
while all rows of 4 are unbounded. Is (A, B) e-determined?

In the next section we will prove that all full mixed extensions
of semi-infinite bimatrix games with one-sided bounded pavoft
matrices are determined, so the problem 4.10 is solved with full
extensions,

No boundedness conditions are mnecessary to define e-mixed
extensions.  We found many sufficient conditions of e-deter-
minateness. Almost all have to do with one-sided boundedness.
Let us close this seetion with the problem, which we leave open.

PROBLEM 4.11. — Does there exists an (m < oo)-bimatrix game,
which 15 not e-determined?
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5. — Determmnateness of full mixed extensions.

In this section we need extended real valued payoil tunctions.
Furthermore, we take definition 3.4 as a definition of determinateness
also for this kind of games.

In section 2 we noted already that the full mixed extension
(8= S8®, B,, Ez) can be defined for the (m X oco)-bimatrix game
(4, B) if both payoff matrices are one-sided bounded. Much
work about determinateness of full mixed extensions is in fact
already done in section 4, if we note that the full mixed extension
is determined if the e-mixed extension is determined. DMore ex-
plicitly we have

Bty B)c B Ay ), E**(A, B) C EF’L-(A& B) ,
E&(4, 0)c B&%(4, B), BFok(A, B) C Bk(A, B)

where E*:%(A4, B) is the set of (e, €.)-equilibria of (8™, 8%, Hy, ),
ete.

We are able to prove that all full niixed extensions of one-sided
hounded (m < oo)-bimatrix games are determined.

We need the following lemma.

LEMMA 5.1. — Let ©:= (¢, @, ...) € R® be an unbounded row.
(i) If @ is lower bounded, then there exists a q € S® such that
2 &;q;= + oo
j=1

(ii) If x is upper bounded, then there exists a q € 8™ such that

PRrROOF. — We need only to prove (i), because upper boundedness
of x implies lower boundedness of —x. Hence, suppose x lower
bounded. Then there is for each te N a j(t) such that x;, > 2,

where we may suppose j(1) < j(2) < .... Let g:= > 2~t¢’®. Then
oo t=1
¢ge S® and » x,q;,= -+ o°.
i=1
THEOREM 5.2. — Let A and B be one-sided bounded (m X oo)-

matrices. Then the full mixed extemsion (8™, 8%, B, E;) of (4, B)
18 determaned.

PROOF. — We consider 4 cases. In the first 3 cases the determi-
nateness follows from the corresponding ¢-determinateness of (4, B).
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Case 1. — Let B be upper bounded. Then theorem 4.2 does
the work.

Case 2. — Let A and B be lower bounded. The theorem 4.3
does the work.

Case 3. — Let B be unbounded and lower bounded, 4 upper
bounded and suppose that condition (ii1) of theorem 4.9 holds.
Then theorem 4.9 does the work.

Case 4. — Let B be unbounded and lower bounded, A4 upper
bounded and condition (ii1) of theorem 4.9 does not hold. Then
all rtows of 4 are unbmmded By lemma 5.1, for each i € {1, 2, ..., m!
we can talke e 8° such that e'Adqi=—oco. Let I: {ze

€{1,2,..,m}: c*‘B unbounded} .

Then I+ and by lemma 5.1, for each 2 € I we can take r'e 87

such that e¢*Bri= -} co. Now let

= (|I| + m) (Z q¢ -+ E?"') c S”.

‘=1 1]

Then p A §=—oco for all peS™ and ¢; BJ = -+ oo for each 1€ I.
This 1implies that (e?, q) 1s an equilibrium point for every 7€ I.

With the aid of Lemma 5.1, for many cases we can obtain
stronger results for full mixed extensions than for e-mixed exten-
sions. As an example we give here the stronger version of the-
orem 4.5 (1) for tull mixed extensions.

THEOREM b5.3. — Let (A, B) be a one-sided bounded bimaltrixz game.
Suppose that B 1s lower bounded and each row of B unbounded.
Then (8™, 8, E,, Hy) is completely determined.

PROOF. — With the aid of lemma 5.1 we find for each 1€
{1,2,...,m} a q'€ 8° with ¢'Bgi= + oo.
Then (c?,q") is an equilibrium point of {(S™, 8%, K., Eg>, where

g := m Zq and where k is such that e*Ad = supp A 4.

i=1 peES™
Although all one sided bimatrix games (A4, B) have a determined

full extension, not all such extensions are completely determined
as the following simple example learns.

ExXAMPLE 5.4. — Let A =1[0,0,...] and B =[—1,—%,——, ...].
Then e, e*) 1s a (0, 1/n)- ethbrlum point for each n e N. But
B(S™, 8¢ Hy, Bp) =0, B8, 8%, Ay, Hg)y = .
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6. — Conclusions and remarks.

In section 3 we have defined (almost) determinateness of general
two-person games. That this definition is suitable illustrates the-
orem 3.3, where the existence of the value of a zero-sum game
turns out to be equivalent to determinateness in the sense of
definition 3.4. Furthermore, we found in section 5, theorem 5.2,
an affirmative answer with respect to the determinatness of full
mixed extensions of all semiinfinite bimatrix games with one-
sided bounded payoff matrices. In section 4 the c¢-determinateness
for many classes of semi-infinite games was proved. In problem 4.10
we described the only class of one-sided bounded games for which
we do not know the answer. We concentrated 1in this paper on
(m % oo)-bimatrix games, but of course, similar theorems hold for
(co X n)-bimatrix games. Also, many results with respect to
c-determinateness of bimatrix games can be extended in a straight-
forward way to c-mixed extensions of two-person games (X, Y,
K,, K,) where X is finite and Y 1s arbitrary.

In a similar way as in [8] (and [10]) also results about c-deter-
minateness can be obtained for two-person games (and n-person
cames), where one of the strategy spaces (n —1 of the strategy
spaces) is (are) topologically small, if we put (equi-) continuity
conditions on payoff functions, The example of Wald [11] learns
that there exist non-determined games if both strategy spaces are
large.

Acknowledgments. — The authors are indebted with an anony-
mous referee for many useful comments.
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