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STABLE OUTCOMES FOR MULTI-COMMODITY
FLOW GAMES

Jean J.M. DERKS and Stef H. TIJS, Nijmegen, The Netherlands

ABSTRACT

Multi-commodity flow situations and flow games are considered with
convex arc capacity sets and with a unique source and a unique sink for
all commodities. It is shown that for all flow games of this type there
exist stable outcomes. For two classes of flow situations, namely
separable and uniform flow situations, it is proved that the bottle-neck
set coincides with the flow value set.

1. INTRODUCTION

The theory of single-commodity flows in networks started with the

pioneering work of Ford and Fulkerson [2]. The (im)possibility to extend
their main result, the max-flow min-cut theorem, to the case of multi-
commodity flows has been discussed by many researchers (cf. [1], [31]-
[51, [8]-[11]).

One of the purposesof this paper is to give extensions ot the Ford-
Fulkerson theorem for certain classes of multi-commodity flow situations
(MCF-situations).

The main purpose is to consider controlled multi-commodity flow
situations (CMCF-situations) where the arcs in the network are possessed
by different owners, and to tackle the question whether there exist

stable outcomes for the corresponding game. The obtained theorem extends
the result of Kalai and Zemel [6] of the non-emptyness of the core for
flow games, arising from controlled single-commodity flow situations
(CSCF-situations).

We will consider MCF-situations on directed networks where

(i)  there is a unique source and a unique sink for all commodities,
(ii)  the capacity set of each arc is a comprehensive, compact and
convex subset of the commodity space.
Such situations will be called, in view of (i11), convex MCF-ﬁituations.



494

We recall that in many MCF-papers one presupposes:

there 1s for each commodity a source and a sink,

(ii)** the capacity set of each arc & is described by a number c(2),
denoting that per unit of time only those commodity bundles can
pass that arc, for which the sum of the amounts of each commodity
does not exceed c(%).

*

Although (1) is stronger than (i) , in many practical situations
condition (i) is valid. Condition (ii) is weaker and also more realistic

than condition (11)*, because in all kind of material flow problems and
also in communication problems 'contraction effects' can occur i.e. one
can often increase the flow possibilities through arcs, by mixing the
commodities in an appropriate manner.

The organization of the paper is as follows. In section 2 a formal

description of the models and the necessary definitions are given.
Section 3 is devoted to extensions of the max-flow min-cut theorem and
in section 4 we prove that there always exist stable outcomes for flow
games, arising from convex CMCF-situations.

2. PRELIMINARIES

In the following we consider a directed network with »node set

P 2= {1s25.4:55) 8nd ave set L := {1,2,...5t}. In addition,

N := {1,2,...,n} denotes the set of owners (player set) of arcs and

G := {1,2,...,m} the set of commodities, which are involved in controlled
transportations from the source 1 ¢ P to the sink s ¢ P. The ownership
functzon 0 : L - N assigns to each arc 2 < L, its controller or owner
0(2) € N. Fimally, ¢ o' L AA-IRT 1S the capacity correspondence, which
assigns to each arc £ the non-empty subset c(2) of the commodity space
Hﬂ?. Here each u ¢ c(%) represents a feasible commodity bundle, which
can be transported in one unit of time through arc 2, if the owner 0(%)
allows this. Concluding, a controlled multi-commodity flow situation

(CMCF-situation) is described by the six-tuple
I = <P,L.;6,C,N,0>

The classical single-commodity (single owner) flow situation (SCF-
situation) corresponds to the case |G| = 1, [N| = 1 and can be denoted
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by <P LsC>.

The multi-commodity (single owner) flow sttuatzon (MCF-situation) can be
denoted by <P,L,G,c> and the single-commodity multi—owner flow situation
(CSCF-situation),as studied in [6],by <P,L,c,N,0>.

Let us call a non-empty subset T of Dﬂr suttable 11

(S.1) T 1is compact,

(S:2) T s convex;

(S.3) T is a comprehensive set i.e. y e T 1f 0 <y <z for some z ¢ T.
For many practical situations it is natural to suppose that the capacity
set c(2) of each arc ¢ is suitable. Condition (S.3) then corresponds to
the fact that if a commodity bundle z can pass an arc per unit of time,
then also a smaller commodity bundle can pass the arc in such a time
interval. Condition (S.2) corresponds to the fact that if the bundles
Z4 and Z, Can pass an arc £ in the time interval [0,1] and o« ¢ (0,1),
then also azl-r(l-u)z2 1S a suitable commodity bundle e.g. by sending
aZ 4 through 2 in time interval [0,a] and sending (1—a)z2 through 2 1in
time interval [a,l]. Condition (S.1) needs no explanation.

We will call the CMCF-situation (the MCF-situation) convex if c(2)
is a suitable set for each 2 < L. Note that single-commodity flow
situations are always convex.

Now we give a sequence of definitions, which play a role in the
paper.

(i) A flow in T (from source 1 to sink s) is amap f : L » Eﬂﬂ with the
following properties:

(F.1) f(2) € c(2) for each & ¢ L (Feasibility property).

(F.2) =z{f(2) : & starts in node p} = £{f(2) : & ends in node p}

for each p € P\{1l,s} (Conservation property).

(F.3) z{f(2) : & ends in the source 1} = 0 (Source property).

(F.4) zt{f(&) : & starts in the sink s} = 0 (SZnk property).

(11) The value v(f) of a flow f in T is the amount of commodity, entering
the sink s per unit of time. Hence,

v(f) := 2{f(2) : 2 ends in the sink s}.

(iii) The flow value set F(I') of I is the set of all possible flow values,
thus
F(r) := {a e R} : a = v(f) for some flow f in T}.
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(1v) A cut of T is a subset C of L such that if the arcs in C are deleted,
the flow value set of the resulting iiCF-situation is equal to {0}.

(V) The capacity set of a cut C is defined by
c{C) = Z{c(2) ¢ Hwe: CFs

[Of course, the sum on the right hand side is an algebraic sum of subsets
of Hﬂf.]

(vi) The bottle-neck set BN(T') of I is defined by
BN{T) - = e (C)" 25C1s "aticlt‘of T},

(vii) Let S < N be a non-empty coalition of owners. Then the MCF-situation,
controlled by S, is the CMCF-situation Ce s which we obtain by deleting in
the original directed network all those arcs, which do not belong to one
of the members of S. Hence, [ey® <P,LS,G,CS,S,OS} and T = PN’ where

Lg := {2 < L : 0(2) « S} and where O¢ : Lg + S and cg : L = R are
the restrictions to LS of the maps 0 and ¢ with domain L.

(viii) The correspondence Vr : 2N — Dﬂr, which assigns to each non-empty
coalition S « ZN, the flow value set F(FS) of the CMCF-situation L s 1S
called the flow game arising from T'. It is a game, where the payoff set
VF(S) of a coalition S consists of all those commodity bundles, which

can be sent by the coalition S per unit of time from source 1 to sink s,
without using arcs in the original network which are owned by agents out-
s1de the coalition.

(1X) A stable outcome of the game Vr is amap X : N - Hﬁz satisfying

(C.1) ZiENx(i) € vr(N),
(C.2) for each coalition S and each b « VF(S) with b > . Sx(i),

e
we have b = 21ESX(1).

A stable outcome x corresponds to a distribution of the value of a
feasible flow for the grand coalition N among its numbers, where owner
1 1s allowed to send a commodity bundle x(i) from the source to the
Sink per time unit. In view of (C.2) there is no subset of owners,
which can make a feasible transportation plan, where each member of that
subset isbetter off. So stable outcomes correspond to stable transportation
sharings among the owners and it is interesting to know whether there
ex1st stable outcomes for flow games. In section 4we prove that convexity of
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I is asufficient condition for the existence of stable outcomes for Vl,.

3. FLOW SITUATIONS

In a single commodity flow situation I = <P,L,c>, the sets c(C) for a cut
C, BN(T) and F(T) are all closed intervals of the form [0,b] < R. In our
notation, the main results for single-commodity situations read as follows:

(FF.1) the capacity set c(C) = [0,y(C)] of each cut contains the
flow value v(f) ¢ R of each flow f, so

F(T) < BN(T) (3.1)

(FF.2) there exists a (maximal) flow f and a (minimal) cut C such

=

that c(C) = EO,V(?)], or equivalently:
F(r) = BN(T). ' (3.2)

What can one say for MCF-situations about the validity of the expressions
(3.1) and (3.2), which make also sense for such situations?

Copying a one-commodity proof (cf. [2], lemma 4.1) it is immediately
clear that

F(T) < BN(T) for each MCF-situation T. (13::3)

Now example 3.1 below shows that (3.2) not necessarily holds for all convex
MCF-situations.

txample 3.1. Let T = <P,L,G,c> be the convex MCF-situation with s = 4,
t=5andm

2 and with underlying network as drawn in figure 1.

(source) 1 i o .

Let further; c(l) = ¢(3) := {(u,0) e ]RE: u < 4},
c(2) = A(0:v)s-€ ]RE: v.<4}, c(4) := {(u,v) ¢ ]RE: u<1,v <4} and

ci(9)' =1 (U,v) e ]RE: u+v < 4}.51nce each cut of I'has a subset one of the
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cuts C1 s {640 o2 C2 = {4,5}, 63 = {2,3,4}, 64 =41.5},; meobtain:
BN(T) = n{c(C;) : i §l:2:38F) = C(Cl). Thus
BN(T) = [(u,v) € Re: u < 4, v < 4). We prove that BN(T) # F(T) by
showing that (4,4) ¢ F(T). Suppose, for a moment, that there exists a
flow f with v(f) = (4,4)

(xl’yl) = (4,0), (x ’ )

XatXy = Xq = 4, and Ye'= Yo = 4. But then Xctyp 2 7 > 4, which implies
that f(5) = (xs,yS) ¢ c(5) and that is impossible.
Hence, (4,4) ¢ F(T). The example also shows that not necessarily

F(r) = ¢(C) if C is a cut with c(C) = BN(T).

If we denote f(2) by (X o 37 ) then, necessarily:

Vo) = (0,4). Then Xg = Xg 2 3 because Xq < < 1 and

Now we introduce two subclasses of convex MCF-situations, for which
the bottle-neck sets turn out to coincide with the flow value sets as we
see in the theorems 3.3 and 3.4.

Definition 3.2. Let T be a MCF-situation and 4 a suitable subset of Dﬁr
Then
(i) T is called a separable MCF-situation if for each 2 ¢ L there is a
vector u(%) = (ul(ﬁ),...,um(i)) e Hﬁﬂ such that

c(e) = {a ¢ Hﬂ?: 0 <a < u(e)) [O5UwA2) ]

91 g

(ii) T is called a uniform MCF-sztuation with standard set A, if for each
% ¢ L there is a non-negative number &(2&) (the diameter of c(&) such
that c(&) = §(2)A.

In a separable situation the amount of commodity g, which is trans-
portable in a unit time interval through an arc, does not depend on the
amounts of the other commodities which are sent through the arcs in the
same time interval. One can expect, that such a separable MCF-situation
behaves as if it consists of m independent parallel SCF-situations, for
each commodity one. Hence, it will not be difficult for the reader to
find a proof of the following theorem.

Theorem 3.3. Let T = <P,L,G,c> be a separable MCF-situation. Then
BN(T) = F(T) .

We deal with a uniform MCF-situation if e.g. the arcs consist of
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pipelines which all have the same possibilities with respect to mixtures
of the commodities, but where the diameters of the various pipelines may
differ.

Theorem 3.4. Let I = <P,L,G,c> be a uniform MCF-situation with standard
set A. Then BN(T) = F(T).

FProof. Since each cut in T has a capacity set of the form §(C)a, there
exists a (smallest) cut C* with C(C*) = n{c(C)..: .C dsa cut in T} = BN(T).
We have to prove that c(C*) c F(T), knowing by (3.3) that F(T) < c(C™).
Consider the single-commodity flow situation Iy = {P,L,{l},cl} with

capacity correspondence
C (&) = [056(2)]-iF c(®) = &(8)A.

Then C* is a minimal cut in 'y with capacity set [0,5(C™)]. By [(FF2)
there exists a flow f : L~ R_ in 1y such that c'(C*) = [0,v(F)]. Let
a ¢ 5. Define ¥ : L~ R by f(2) = f(2)a. Then ¥ is a flow in T with
v(f) = v(f)a.

This implies that v(f)a c F(r). Since v(f)a = 6(C*)& = c(C*) we have

*

proved c(C*) < F(T'). Hence, c(C" ) = F(T) = BN(T). [

Let us call a flow f : L +-Dﬂr untform 1f each f(£) is a multiple of the
same vector. From the above proof the following result is immediate.

Corollary 3.5. For a uniform MCF-situation it is sufficient to consider

only uniform flows, because we have:

F(r) = {v(f) : f is a uniform flow}.

We note that one can find a flow with value equal to the unique
Pareto optimal point in the flow value set of a separable flow situation
by solving m single-commodity flow problems. For a uniform flow situation
the problem of finding flows, corresponding to all Pareto points of the

flow value set, is simpler. One only needs to solve one SCF-problem for

all these Pareto points.

4. FLOW GAMES

First we present a proof of the fact that flow games, which correspond
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to convex CMCF-situations, possess stable outcomes and then we give an

example, showing that convexity is not a superfluous condition.

Theorem 4.1. Let T = <P,L,G,c,N,0> be a convex CMCF-situation. Then there

exists a stable outcome.

Proof. We exclude the trivial case F(r) = {0}. For S e 2N, let es c R"
be the vector with e? =1 11 e §and e? = 0 otherwise.
(i) Let X 3 2N > [0,=) be a map with the balancedness property 1.e.
N S
e’ = Ig_oN A(S)e” s (4.1)

We prove that Lg N A(S)VF(S) c VF(N). For each S « 2N, take aS € VF(S)

and Tet £5 be a flow in T with f2(¢) = O for each £ with 0(2) ¢ S and
v(£2) = a>. Then, trivially,

f := ESeZN A(S)fS . L > ]RT satisfies the flow properties (F.2),

(F.3) and (F.4). Since fs(ﬁ) e c(e2) for each 2 ¢ L, it follows from

ESaO(a) A(S) = 1 that
S S

f(e) = Zg 0N XS )FT{L) = 2530(1) A(SYET(R) e convic(e)) = c(r).

So also (F.1) holds. Then f is a flow in T with value Zg N A(S)as, which
proves that

Lo _oN MSIVL(S) < VL(N). (4.2)

(ii) Take an a ePar(F(r)) for which there is a supporting hyperplane
through a for the compact and convex set F(TI), which possesses a normal
p with only positive coordinates. So we have

<p,a> = max{<p,a> : a € F(T)}, p > O. (4.3)
With the aid of the normal p we define the side payment game W : ZN - H{F
by

w(S) := max{<p,a> : a ¢ VF(S)} for each S ¢ ZN. (4.4)

N, take b> ¢ V_(S) with w(S) = p,b>>.

From (4.2) we conclude that Lg_oN A(S)bS ¢ VF(N) i il R
satisfies (4.1). This implies that

For each S € 2

\ e [O,m)

S
w(N) 2 <Pslc_oN AM(S)b™> = Zg oN A(S)W(S).
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Hence, w 1s a balanced side payment game. By the Bondareva-Shapley
theorem (cf. (7], p.157), we may conclude that w possesses a core
element 1.e. there exists a function £ : N = H{* with

w(S) for each S « g

Vv

LN (i) = w(N), Lis E(1) (4.5)

(111) We now define x : N » EQ by X(1 ) 5(1)( (N)) 15 for each i € N
and show that x is a stable outcome y4( %5
property (C.1). To prove (C.2), we take S e 2

y 2 Li ¢ X(1)s ¥ # Li g XL ).
Because p > 0, we obtain in view of (4.3), (4.4) and (4.5):

x(1) = a, so x has

N, y € ]Rm with

<P.y> > Li ¢ <Pox(i)> = I ¢ £(1) = W(S).

Then, by (4.4), y £ VF(S). This proves (C.2).

Example 4.2. Let T
t =6, m=2 and n

<P,L,G,C,N,0> be the CMCF-situation with s = 3,
3 and with underlying network as in figure 2.

1.2 o

Let further 0(1) = 0(4) =1, ( ) = 0(5) = 2, 0(3) = 0(6) = 3, and let
c(1) := {(uv) ¢ RE: u<1,vs<l)if Le(l,2,3),
(1) = {(u,0) € RZ :u <2} u{(0,v) e RS, v <2} ifte (4,56

Then c(4) is not convex. For the corresponding game we have for each
1 ¢ N:

V({i}) = ((u,0) ¢ RE: u <1} u {(0,v) ¢ RS: v < 1)
VF(N\{i}) = {(u,Vv) ¢ IRE: U < 25 VS 2} (4.6)
VA(N) = {(u,v) e RE: u<2, vs3hu{(uv)eR:us3,vs2).

We prove that stable outcomes of this game do not exist. Suppose,
contrarily, that x is a stable outcome. Since Par(VF(N)) = :§(3,2):(2:3)}
we can suppose w.l.0.g. that

x(1l) + x(2) + x(3) = (3,2). (4.7)

et z(1) = x(2)#x(3); zl2) ri="%{1)Ex(3) s -Z(3) 5= X(2)+x[1) . Then Trom
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(4.7) we obtain
z(1)+z(2)+z(3) = (6,4) (4.8)
and from (4.6) it follows that {(2,2)} = Par VF(N\{i}), SO
z(i) = (2,2) or at least one coordinate is greater than Z. (4.9)

Using (4.8) and (4.9) one can easily prove that z(i) # (2,2) for each
i e N. Then w.1.0.g. there exist €q > 0, €y > 0, 61 2 0, Sy 2 0 such that

z(1) = (2+el,61), z(2) = (2+€2,62), z(3) = (2-51-52,4-61-62) (4.10)

Then

x(1) = (1-€7,2-81), x(2) = (1-e,,2-6

532=65) 5 X(3) = (L+e e, ,-2+67+6,).(4.11)

1

Since the first coordinate of z(3) is smaller than 2, by (4.9) we have
4—(61+62) > 2. But then it follows from (4.11) that the second coordinate
of x(3) is smaller than zero and that is in contradiction with the

assumption that x is a stable outcome.

In principle, the proof of theorem 4.1 indicates a method to find a
stable outcome for a flow game. One has to find a suitable Pareto-optimal
point of VF(N) and a core element of a side payment game. For the sub-
classes of separable and uniform CMCF-situations there is also an easy
method to find stable outcomes, based on the idea of Kalai and Zemel [6]
for single-commodity games.

We describe this in the following theorems, the proof of these theorems
we leave to the reader.

Theorem 4.3. Let T
a € Par F(T

N = <P,L,G,c,N,0> be a uniform CMCF-situation. Let

N)‘ Let C* be the minimal cut and f the flow as in the proof

of theorem 3.4. Let for each 1 ¢ N:

*

(i) := z{f(2) : 2 e C", O(2)

1|

Tk
Then x : N » H{E, defined by x(1) := (v(?))'lg(i)a is a stable outcome of
the flow game arising from Y with LN X{1) = @.

Let T = <P,L,G,c> be a separable MCF-situation and let f : L -» Hﬂr be
a flow in T with value the unique Pareto optimal point in the flow value
set of I'. In view of (FF.2) and theorem 3.3 it is obvious that for each
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g ¢ G there exists a cut Cg with property

(x ¢ R: xet9} ¢ c(Cq)} = [0,V ()]

g

Wwe now can state the next theorem.

Theorem 4.4, Let Ly be a separable CMCF-situation. Let f and Cg be as

above. For g ¢ G, let

xg(1) = Z{fg(ﬂ) : 2 e Cg, 0(g) = 1}.

Then x : N - Bﬂf with x(1) := (xl(i),...,xg(i),...,xm(i)) is a stable out-
come of the flow game corresponding to Iy
The following example may be illustrative.

Example 4.5. Let Tt = <P,L,6,cl,N,0> and 1% = <P,L,G,c%,N,0> be CMCF-

situations with s = 3, t =4, m =2, n = 4 and underlying network as 1n

Figure 3.

1 3=5S F19.3 -
2
> I=t
Yo 2 2 :
Let, further, 0(2) = 2 for each 2 e L and ¢c™ : L -+ D{+ and ¢~ : L +-H{+
be given by
cl(1) := 10,13 x 10,31, ct(2) := (0,21 x [0,63,
c1(3) := 10,37 x [0,21, c*(4) := [0,5] x [0,4].

and c2(9,) := 24 for all 2 ¢ {1,2,3,4}, where A := {(u,v) ¢ ]RE: u2+w.ur2

Then ! is a separable CMCF-situation, Cq = {1,2}, x;(1) = 1, x,(2) = 2,
C, = 13,4}, %,(3) = 2, X,(4) = 4. S0 x : N » RS, with x(1) = (1,0),
x(2) = (2,0), x(3) = (0,2), x(4) = (0,4) is a stable outcome of the game

V %
Fl

IA

1} .

The situation F2 is a uniform one with minimum cut C” = {1,2}. Then each
X : N~ IRE of the form x(1) = a, x(2) = 2a, x(3) = x(4) = 0 with
a§+a§ = ] 1s a stable outcome.

Since each subgame of a multi-commodity flow game is of the same type,
we have also proved that flow games, which correspond to convex CMCF-

L
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situations are totally balanced games. We do not touch here the question
whether, conversely, each totally balanced game V . 2Nﬁﬁ-HﬂE with V(S)
cuyitable for each S, can be obtained from a convex CMCF-situation. But we
finish with the remark that Kalai and Zemel [6] proved that all totally
balanced side payment games with non-negative worths, can be generated by
CSCF-situations.
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