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INTERNATIONAL ECONOMIC REVIEW 
Vol. 33, No. 1, February 1992 

OPTIMAL LOCALIZED PRODUCTION EXPERIENCE AND 
SCHOOLING* 

BY CHARLES VAN MARREWIJK, CASPER G. DE VRIES, AND CEES WITHAGEN1 

Three factors of economic growth, i.e., physical capital accumulation, 
schooling and learning by doing, are investigated. The special relationship 
between the first factor and the other two is modeled through adjustment costs 
in production experience accumulation whenever the production technique 
changes. This generates a nontrivial two state variable control problem. 
Necessary and sufficient conditions for optimality are given. The steady state 
and the path to it are unique. It is shown that, among others, technique 
changes deter whereas learning by doing enhances the speed of convergence to 
the steady state. 

1. INTRODUCTION 

A recent article, Lucas (1988), discusses three (neo-)classical models of eco- 
nomic growth. The first model emphasizes physical capital accumulation and 
technological change, the second human capital accumulation through schooling 
and the third human capital accumulation through learning by doing. The aim of this 
paper is to investigate these issues simultaneously within one growth model. 

This is accomplished by extending the standard neoclassical growth model as in 
Solow (1956), to one with three inputs: capital, labor and production experience. 
The latter input represents the endogenous technical change induced by human 
capital accumulation, compare Nordhaus (1967), which is arrived at by either 
investing in schooling or through learning by doing. Schooling is now widely 
recognized as a prime factor of economic growth, see e.g. the discussion in Becker 
(1981). Before the issue of schooling came into focus, economists realized the 
importance of on the job training as an alternative channel for accumulating 
production experience; compare Wright (1936) and Alchian (1963). Here we follow 
Bardhan (1971), Rosen (1972) and Woodland (1982, Ch. 15) in modeling the learning 
by doing process. Killingsworth (1982) is the first to study schooling and learning by 
doing simultaneously in a model of human capital accumulation. (The difference 
between the two being that one can choose no education, while learning by doing 
is unavoidable.) In this study we extend Killingsworth's analysis by linking the two 
human capital growth factors with the third growth factor, i.e. standard physical 
capital accumulation. This is done as follows. In general the stock of production 
knowledge is tied to the specific production techniques that are employed. 
Atkinson and Stiglitz (1969) therefore argue that learning by doing effects are 

* Manuscript received September 1989; revised June 1990 and January 1991. 
1 We are grateful to P. Braunerhjelm, P. Broer, D. Furth, G. Heal, J. van Geldrop, S. Hu, M. Peeters, 

M. van de Sande Bakhuyzen, T. ten Raa, J. Verbeek, T. Vorst, and the anonymous referees for their 
stimulating, detailed and valuable comments. 
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localized. That is, if a firm changes its production technique it incurs a loss in 
productivity due to a lack of experience with the new production process. 
Empirical evidence on this matter is presented in the study by Gulledge and Womer 
(1986). One way of thinking about such localized technical progress is in terms of 
adjustment costs. See, specifically, Uzawa's (1968) discussion of the Penrose effect 
and, more recently, the Prescott and Visscher (1980), and Becker (1983) contribu- 
tions on administrative and managerial adjustment costs. In summary, schooling 
and learning by doing are considered alternative means for endogenous production 
experience accumulation, while technique changes retard this process. 

The above ideas are formalized and analyzed within an optimal growth model. 
The various aspects of economic growth imply a two state variable optimal control 
problem. Despite the complexity of the model due to the simultaneous modeling of 
the different growth factors, the properties of the model in terms of steady state 
values and adjustment speed can be characterized. Frequently the integration of 
different strands of literature into one model leads to ambiguity. With a few minor 
exceptions this is not the case in our model. For example, we establish existence 
and uniqueness of the steady state and obtain stability. This allows one to 
investigate how the steady state consumption is affected by population growth, 
forgetfulness, learning by doing and schooling expenditures. The importance of 
schooling is assessed by comparing the economy with another economy which has 
the same stock of steady state knowledge but no schooling possibilities. Localized 
learning affects the speed of convergence towards the steady state negatively. In 
the next two sections the growth problem is formalized and sufficient conditions for 
optimality are given. Section 4 analyzes the properties of the steady state, Section 
5 investigates stability, and Section 6 studies the speed of convergence. 

2. PROBLEM STATEMENT 

In this section we sketch the model and list the assumptions. Time indices are 
omitted if there is no danger of confusion. Aggregate production Y is a linearly 
homogeneous function of production experience P, capital K and indispensable 
labor L: 

(2.1) Y=F[P,K,L]. 

Inclusion of a human capital element in the production function alongside physical 
capital is now a standard procedure, but frequently human capital replaces labor as 
an independent argument. Here we add human capital for the sake of generality, 
and because this is common practice in the literature on learning by doing, see e.g. 
Bardhan (1971) and Woodland (1982). The specification is also in line with the 
recent empirical evidence on the absence of externalities to the capital input and the 
importance of a third factor, see e.g. Benhabib and Jovanovic (1991) and Mankiw 
et al. (forthcoming). But production experience may not be a necessary input. 
Therefore we assume that while labor is indispensable for production, the other two 
factors are not indispensable. The motions of capital and labor are standard: 

(2.2) K= I - IK, K(O) > 0 given, 
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(2.3) L = ITL, L(O) > 0 given. 

Here I denotes gross investments, while ju and iT are the rates of depreciation and 
population growth. 

The specification of production experience accumulation, however, merits 
discussion. While there is some literature dealing with production experience 
accumulation in the aggregate, most literature deals with this process on the 
individual's level. Therefore we decided to model this process on the per capita 
level. For any variable X write x: = X!L, to denote per capita levels. The aim of 
the paper is to integrate two distinct accumulation factors, learning by doing and 
schooling, previously treated separately in the macro economics literature, as well 
as to consider the effects of physical capital accumulation on production experi- 
ence. On the basis of empirical evidence, see e.g. the comprehensive studies by 
Conlisk (1967, 1970) and Gulledge and Womer (1986), learning by doing is 
commonly represented through output y. The training of labor and process specific 
research activities also improve the operation of the production process. Outlays 
for schooling s are considered as a main contributor to this type of learning, see e.g. 
Shell (1966), Ben-Porath (1967), Becker (1975), Heckman (1976) and Moreh (1980). 
Thus we model schooling as an expenditure allocation problem, i.e. national 
income is divided over investment in physical capital, educational expenses and 
consumption.2 Note that schooling in this setting is a decision variable, whereas the 
learning by doing effect is endogenous. Both, learning by doing and schooling are 
enhanced by the amount of existing production experience p, see Ben-Porath 
(1967), Bardhan (1971), Rosen (1972), Becker (1975) and Lucas (1988). As time 
passes by some experience is lost due to, for example, retirement. An empirical 
study by Kipps and Kohen (1984) estimates this loss in the order of 4 to 10 percent 
per year; see also Benhabib and Jovanovic (1991). The latter two effects are 
combined into one term mp, where m is the rate of net forgetfulness. Finally, the 
effectiveness of schooling and learning by doing is reduced if new production 
techniques are introduced, see e.g., Gulledge and Womer (1986), and therefore the 
accumulation process becomes localized as is argued in Atkinson and Stiglitz 
(1969). We model this effect by means of an adjustment cost A, A = A(k), i.e. for 
k = 0 some experience is lost. The technique changes are identified by capital labor 
ratio changes, as suggested by Atkinson and Stiglitz. 

All these factors together influence P in the following way: 

(2.4) P = ay(p, k) + bs - nmp - A(k), 

where a is the coefficient of learning by doing, the schooling coefficient b captures 
the marginal efficiency of schooling expenditures and y is the per capita format of 
the production function F.3 

2 Alternatively the decision to educate is sometimes modeled as a time allocation problem, see e.g., 
Becker (1975), Killingsworth (1982) or Lucas (1988). Ben-Porath (1967) and Heckman (1976) combine the 
two approaches on the individual level, while van de Sande Bakhuyzen (1991) provides a combination on 
the aggregate level. 

3 In van Marrewijk, de Vries and Withagen (1988), a somewhat more general nonlinear specification 
is considered. Additivity of the different components which generate the production experience is 
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Gross aggregate output in the economy is allocated to consumption C, invest- 
ment I and schooling costs S. Hence, the national income identity reads4 

(2.5) Y = C + I + S. 

We investigate a plan economy employing a Benthamite utilitarian welfare 
functional, see e.g., Arrow and Kurz (1970, ch. 1), 

(2.6) f e-P' LU(C!L)dt, 

where p' (> 0) is the constant rate of time preference. The homogeneity 
assumption enables one to write the entire model in per capita terms. The 
optimization problem then reads 

(2.7) max e -t U(c)dt 
chis Jo 

subject to 

(2.8) j=ay(p, k) + bs - mp - A(k), p() > 0 given, 

(2.9) k= i- nk, k(O) > 0 given, 

(2.10) y(p, k) c + i + s , 

(2.11) c ? 0, 

(2.12) k > 0 P ?0 

where n = jL + 7T, p = p' - 7T. Without loss of generality, the size of the initial 
population is set equal to unity. With respect to the functions involved some 
additional assumptions are made in order to deal with a manageable problem. 

A.]. Let F = [o0 M1] x [0, M2], with M1 and M2 finite but arbitrarily large 
(large enough to comprise the steady state introduced in Section 4 below). Then y 
is defined on F and twice continuously differentiable on int(F), y(p, k) is strictly 
concave, Yk(P, k) > 0, yp(p, k) > 0, Ypk ? 0, VP > 0 Yk(P, k) -- co as k -> 0, 
Vk > 0 yp(ps k) -> oo asp -- 0. 

Note that A.1 resembles the familiar Inada conditions. One of its implications is 
that along an optimal trajectory p > 0 and k > 0, so that essentially the problem 

assumed by several authors in the area, see e.g., Moreh (1980) and Killingsworth (1982). Note, however, 
that linearity does not necessarily imply that learning by doing and schooling are perfect substitutes, 
compare Theorem 4.2 below. 

4 We allow negative schooling to take place. This is analogous to the possibility of negative 
investment, whereby part of the installed capital stock is consumed. If one wants to dispense with 
negative schooling an additional constraint, S - 0, has to be taken into account. 
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contains no pure state constraints, compare Arrow and Kurz (1970, p. 48). Thus 
restraints (2.12) can be dropped. 

A.2. A is defined on DR, is twice continuously differentiable, and A(O) = 0, 
A'(0) = 0, A'(oo) = oo, A" > 0. 

Adjustment costs are convex and there are no adjustment costs when the 
production technique does not change. 

A.3. U is defined on OR+ and twice continuously differentiable on OR++, U' > 0, 
U'(c) - ooas c - 0, U" < 0. 

This assumption implies that along the optimal trajectory consumption is strictly 
positive, i.e., (2.11) can be omitted. 

A.4. p + m > 0, p + n = p' + bt > 0, p> 0. 

This last assumption ensures existence of a steady state. 
Mathematically our model is a two state variable optimal control problem. In 

order to invoke the Pontryagin maximum principle the class of admissible functions 
is to be restricted. The state variables (p, k) are continuous and the control 
variables (c, i, s) are piecewise continuous. 

Before turning to the analysis, it is useful to discuss the relation between the 
problem in equations (2.7) through (2.10) and the literature. Shell (1966) formulates 
a two state variable problem similar to ours except for the learning by doing and 
localization effects; no in depth treatment is provided. Conlisk (1967, 1970) models 
the learning by doing effect, and is able to reduce the system to a single state 
variable problem. Heckman (1976) formulates a growth problem taking both 
educational expenses and schooling time into account, but no physical capital 
accumulation or learning by doing is considered. Killingsworth (1982) obtains a two 
state variable problem by modeling learning by doing and schooling as a time 
allocation problem, i.e. time on the job and time in school, without the localization 
effect and a simple single input production function; implications are derived in a 
cursory manner. Some recent empirical evidence for the three factor constant 
returns to scale specification is given by Mankiw et al. (forthcoming). Given this 
state of the art, the problem (2.7) through (2.10) is of interest as it considers the 
three factors of economic growth simultaneously. The analysis below is greatly 
facilitated by the analytical analogy between our problem and the analysis of 
heterogeneous capital accumulation in Cass and Shell (1976), see Section 5 below. 

3. CONDITIONS FOR OPTIMALITY 

Define the current value Hamiltonian H(k, p, A, y, c, i, s, c, t) = U(c) + 
A[i - nk] + y[ay(p, k) + bs - mp - A(i - nk)] + w[y(p, k) - c - i - s]. 
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The following theorem is a straightforward application of Pontryagin's maximum 
principle (see e.g., Takayama 1974 or Arrow and Kurz 1970). It gives necessary and 
sufficient conditions for the optimum policy.5 

THEOREM 3.1. Suppose that [p(t), k(t), c(t), i(t), s(t)] is a solution to the 
problem (2.7) through (2.10). Then there exist continuous y(t) > 0 and A(t) > 0, 
and w(t) - 0, possibility discontinuous at points of discontinuity of [c(t), i(t), 
s(t)], such that (2.8) through (2.10) hold and 

(3.1) U' (c(t)) = W (t) 

(3.2) A (t) - y(t) A'(i(t) - nk(t)) = w (t), 

(3.3) by(t) - w(t) = 0, 

(3.4) A(t) = (p + n) A(t) - [y(t)a + @(t)] yk(p(t), k(t)) 

- y(t) n A '(i(t) - nk(t)) , 

(3.5) zy(t) = (p + m) y (t) - [ y (t) a + co (t)] y p (p (t), k(t)) 

If there exist [p(t), k(t), c(t), i(t), s(t), y(t), A(t), w(t)] such that (2.8) through 
(2.10) and (3.1) through (3.5) hold, and in addition 

(3.6) e-pt A(t) k(t) 0 as t oo , 

(3.7) e-pt y(t) p(t) 0 as t oo , 

then [p(t), k(t), c(t), i(t), s(t)] is optimal. D 

The set of necessary conditions consists of the four differential equations (2.8), 
(2.9), (3.4), (3.5) and four other equations (2.10), (3.1) through (3.3). There are two 
state variables (p and k), two costate variables (A and -y), three control variables (c, 
i and s) and one multiplier (co). The control variables cannot be chosen indepen- 
dently: choosing any two of these implies the third by the budget constraint. 
Therefore co, the budget constraint multiplier, is always positive, as equation (3.1) 
shows. The set of sufficient conditions consists of the set of necessary conditions 
and in addition the two transversality conditions (3.6), and (3.7). 

There is a convenient way to reduce the system of necessary conditions. 

LEMMA 3.1. Consider the set of equations (2.10), (3.1) through (3.3). To any 
[p(t), k(t), y(t), A(t)] there corresponds a unique [c(t), i(t), s(t)]. 

PROOF. The proof exploits the monotonicity of the functions as is implied by 
A.1 through A.3. After substitution of w(t) from (3.1) into (3.2) and (3.3) and by 
A.3, one sees immediately that c(t) only depends on -y(t). Given A.2, which implies 

5 For the proof of Theorem 3. 1, exploiting the strict concavity of U, y, -A, and the transversality 
conditions, the reader is referred to van Marrewijk (1988). 
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that A'(-) is monotonic, i(t) follows from (3.2) and (3.3) as a function of y(t), A(t) 
and k(t). Using these results in (2.10) together with A. 1 yields the lemma. D 

Comparative statics for the instruments with respect to the state and costate 
variables are given in the Appendix, part 1. Lemma 3.1 enables us to reduce the set 
of necessary conditions to four differential equations in four variables. This system 
is analyzed further in the next section. 

The costate variables A and Ay can be interpreted as the shadow prices of 
investment and schooling respectively. Therefore, the Hamiltonian gives the 
shadow profits in terms of total welfare. The partials aH/8A and aHa y, given by 
(2.8) and (2.9), indicate the optimal investment and schooling levels. The partials 
aHiak and aH8ap, given in (3.4) and (3.5), represent the marginal value of capital 
and production experience. 

The intuition behind the system (2.8) through (2.10), (3.1) through (3.5) can be 
developed further by the following economic interpretation. Differentiate equations 
(3.1) and (3.3) with respect to time and rewrite equation (3.5) 

(3.8) (a + b)yp - m = p + q (c) Hlc, 

where 7(c) is the elasticity of marginal felicity. The first term on the left-hand side 
of equation (3.8) is the sum of the marginal productivity of learning by doing and 
schooling expenditures. The entire left-hand side is the net marginal productivity. 
For example; a currently low stock of production experience, and hence high 
marginal productivity, calls for accumulation of p. This requires initially high 
schooling expenditures and low consumption levels. Over time, however, as 
production experience accumulates the consumption level can rise, i.e., Hlc > 0. 

4. THE STEADY STATE AND ENDOGENOUS HUMAN CAPITAL ACCUMULATION 

In this section the steady state is characterized and comparative statics results on 
the effects of learning by doing and schooling are derived. The case of endogenous 
human capital accumulation is compared with the case of an exogenously given 
human capital level. We start with a definition of the steady state. 

DEFINITION 4.1. A steady state is defined by constant per capita levels of capital 
and production experience: p = k = 0. 

LEMMA 4.1. In a steady state c, i, s, y, A, -y and w are constant. 

PROOF. Recall that A'(0) = A(0) =0. Then c = i = 1 = 3 = 0 follows directly 
from (2.8) through (2.10) and Definition 4.1. Differentiating (3.1) through (3.3) with 
respect to time establishes io = A = y = 0. D1 

In the sequel x denotes the steady state value of the variable x. 

THEOREM 4.1. The steady state is unique on r. 
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PROOF. Using Lemma 4.1 and equations (3.1) through (3.3) it follows that (3.4) 
and (3.5) can be written as 

(4.1) (p + n)b - (a + b) Yk(P, k) = O 

(4.2) p + m - (a + b) yp(5, k) = O. 

Given A. 1 it follows that the Jacobian of this system is positive definite and thus it 
is a P-matrix. Hence, by Theorem 4 of Gale and Nikaido (1965) the map defined by 
the left-hand sides of equations (4.1) and (4.2) for (p, k) E r is globally univalent. 
So 

- 
and k are unique. Uniqueness of c, i, s is then straightforward. D1 

Equations (4.1) and (4.2) are extensions of the neoclassical "golden rule." The 
marginal product of physical capital should, after correction for the learning by 
doing and schooling coefficients, equal the rate of time preference and depreciation 
(recall p + n = p' + u). The same holds, necessary changes being made, for the 
marginal product of production experience. 

THEOREM 4.2. The per capita steady state levels of consumption, capital and 
production experience are declining functions of the rates of depreciation, net 
forgetfulness and time preference; increasing functions of the learning by doing 
coefficient; the population growth rate affects capital and production experience 
positively, but the effect on consumption is indeterminate. The effect of an increase 
in the schooling coefficient is ambiguous. 

PROOF. Differentiation of equations (4.1) and (4.2) gives the desired results for 
p and k. Differentiating equations (2.8) through (2.10) and using the above, yields 

_ 1 _ 1 1 1 
(4.3) d- = pdk + b- pd - kdn - - -dm + b- da + - sdb. 

The consumption effects follow directly from (4.3) D1 

These results are intuitively appealing. If the costs of capital or production 
experience go up through an increase in depreciation, or net forgetfulness, or if 
consumers become less patient, the capital and production knowledge levels 
decline. An increase in productivity through learning by doing, increases p and k. 
The ambiguity of schooling expenditures is readily explained by the fact that 
schooling is costly; thus the marginal benefits of extra schooling have to be weighed 
against the extra costs, while learning by doing is a positive externality. An 
example may clarify the situation. Suppose that y is of the Cobb Douglas type 

(4.4) y =pO kg , where + ,3 < 1 . 

Using the above framework the following inequalities can be derived in the steady 
state 

(4.5) akl/b 5 0 as 4/(1 - 4) 5 alb, 
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and 

(4.6) aplab 5 0 as (1 - ,3)1,X3 alb. 

Three types of regimes can be discerned. For low returns to learning by doing, i.e. 
"aa" low, an increase in the marginal efficiency of schooling expenditures b raises 
both capital k and production knowledge p. The converse is true for high levels of 
a, when schooling is a relatively inefficient means of learning. There is an 
intermediate range where p (or k) rises and k (or p) falls as (1 - ,3)/13 > 4/ 
(1 - 0)(or <). Thus a rise in schooling efficiency decreases or increases the steady 
state capital stock and production knowledge depending on whether learning by 
doing is a relatively effective or an ineffective alternative means for production 
knowledge accumulation. 

It is of interest to investigate the endogeny of schooling and learning by doing for 
the steady state welfare level. Consider two economies that are identical except for 
the aspect of human capital accumulation. The first economy possesses the 
schooling and learning by doing possibilities for production experience accumula- 
tion which were described above, whereas the production experience level is 
exogenously given to the second economy. How do the two economies compare 
with respect to their steady state values? To make a fair comparison the second 
economy is given the first economy's steady state production experience j. Its 
steady state capital stock k* can be derived from the well known rule 

Yk(P, k*) = p + n. 

Since by (4.1) 

b 
Yk(P, k*) = p + n > (p + n) + = Yk(P, k), 

we have k* < k. So the second economy has less capital in the steady state and 
therefore its aggregate output is less. This does not imply, however, that aggregate 
consumption is also lower. Consider e.g. the case with almost no learning by doing, 
i.e. as a -> 0 then k* -> k, but because schooling is costly, it follows that c < cO. 
The economy possessing the schooling technology will have to invest in production 
knowledge through schooling whereas the other economy does not. If the outlays 
on schooling are low or if the rate of net forgetfulness is small, one would expect 
the economy possessing the schooling technology to be better off. To illustrate this 
consider again the Cobb Douglas case, i.e. equation (4.4). 

Use upper bars and stars to denote the steady state values of the variables from 
the first and the second economy respectively. Some straightforward but tedious 
calculations give 

a+b[ no(3 MO 1 
c= b p +n p+m J 
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(a + b ( n[ 

Thus the economy with endogenous human capital accumulation is better off if and 
only if 

(4.7) 1- nf m > b 1/(1-) 1 

p +n p +m 'a + b p + - 

So, if the rate of net forgetfulness is small, the economy with endogenous human 
capital accumulation is better off. Because learning by doing is a positive external- 
ity to production, a reduction in the coefficient a, holding b fixed, may tip the 
balance to the other side. Similarly, if schooling is a relatively efficient means of 
experience accumulation, i.e. bla is high, and because schooling is costly as it 
reduces the feasible consumption set for the economy with endogenous learning, 
the economy with the fixed experience level may be better off. 

5. STABILITY AND EXISTENCE 

The aim of this section is to investigate the local and global stability properties of 
the steady state of our system. Control problems with more than one state variable 
are generally hard to handle analytically, see Pitchford (1977). In our case the 
problems are surmountable. 

Define x = (xI, x2, X3, X4) as follows: xl = k - k, x2 = p - p, x3 = A - A, 

X4 = y . Since i = i(x) and s = s(x) by Lemma 3.1, the system (2.8), (2.9), 
(3.4), (3.5) can be rewritten as (using (3.3) as well): 

(5.1) xl = i(x) - n[x1 + k]-. 

(5.2) X2 = ay(j + X2, k + xl) - A(i(x) - n[x1 + k]) + bs(x) - m[X2 + p], 

(5.3) x3 = [p + n] [X3 + A]-[X4 + 71[a + b] Yk(X2 + ?,xl + k) 

-n[X4 + My] A'(i(x) - n[xx + k]), 

(5.4) X4 = [p + m] [X4 + '1 - [X4 + 7] [a + b] yp~K + X2, k+ xl), 

or, in shorthand, 

(5.5) x=g(x) . 

Let x(t; x(O)) be defined as the solution of (5.5) when the initial state is x(O). 
Stability is investigated according to the following two definitions. 

DEFINITION 5. 1. The steady state x = 0 is locally asymptotically stable (LAS) 
if there exists some open neighborhood of (O, 0) such that for all (xl (0), x2(0)) in 
this neighborhood there exists (X3(0), X4(0)) such that x(t; x(O)) -> 0 (IS t -> x. 
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DEFINITION 5.2. The steady state x = 0 is globally asymptotically stable (GAS) 
iffor all (k(O), p(O)) E int(F) there exists (X3(0), X4(0)) such that x(t, x(O)) -O 0 

as t -> x. 

Local asymptotic stability is dealt with first. 

THEOREM 5.1. The steady state is LAS. 

PROOF. What we wish to show is that x = 0 is a regular saddlepoint. To this end 
we first show that there exists a two dimensional manifold M, containing the origin, 
such that for any x(O) on M x(t, x(O)) -> 0. Coddington and Levinson (1955, Ch. 
13, Th. 4.1) prove that such a M exists if g(x) can be written as Ax + f(x) where 
A is a constant matrix with two eigenvalues that have negative real parts and two 
that have positive real parts, f(x) is continuous for small x, and f'(x) = o(1) as 

x || 0. Define f(x) = g(x) - g'(0)x. Then, g(x) = g'(0)x + f(x). Evidently 

(x) =g'(x) - g'(0) -> 0 as || x -|> 0 . 

In the Appendix, part 2, it is shown that g'(0) has two positive and two negative real 
eigenvalues. Hence, there exists a stable two dimensional manifold M. Even 
though M exists, it may not be possible to find an open neighborhood of (0, 0) such 
that for all (xl(0), x2(0)) in this neighborhood there is an (X3(0), X4(0)) on M. To 
conclude the proof, we therefore show in the Appendix, part 3, that the desired 
open neighborhood does exist. D2 

The main implication of Theorem 5.1 is that it shows that the problem (2.7) 
through (2.10) has a solution in some small neighborhood of x = 0, compare 
Theorem 3.1. To appreciate the last part of the proof, note that in control problems 
with one state variable it is usually straightforward to verify that the stable branch 
is not orthogonal to the state space. 

Global stability of a solution holds as well if the discount factor is sufficiently 
small. 

THEOREM 5.2. The steady state is GAS provided p is "small." 

PROOF. By Theorem 3.2 of Brock and Scheinkman (1976) x = 0 is globally 
asymptotically stable if the "curvature matrix" Q is positive definite and two 
additional conditions concerning the trajectories are satisfied as well. The matrix Q 
is defined as 

[HI, - 1I 

Q = - H22 where HI, and H22 are given by 

-PI - 2 
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~~ 1 AAl+b 

yA" yAi Ykk Ykp 

HI1 = A' + b (A' + b)2 b2 H22 = yp(a + b) 

[ yA" yA" Ul H 

and I is the 2 X 2 identity matrix. As the diagonal elements and determinants of HI I 
and -H22 are positive (by A.1 through A.3), these submatrices are positive 
definite. Therefore, for any (k, p) E int(F), there exists a p sufficiently small such 
that Q is positive definite. In addition the following two conditions are needed. 
First, we want the value function to be differentiable. It is easily verified that the 
conditions for this to hold as stated in Benveniste and Scheinkman (1979) are 
satisfied. Second, the transversality conditions (3.6) and (3.7) do hold. It follows 
from Brock (1977, fn. 12) that x = 0 is globally asymptotically stable. D 

6. LOCALIZED PRODUCTION EXPERIENCE AND SCHOOLING 

In the steady state the capital labor ratio is constant, hence there can be no loss 
in production experience due to learning by doing cum adjustment costs. The effect 
of localized production experience manifests itself only on the path toward the 
steady state. Therefore the interesting question is: what is the effect of an increase 
in the adjustment costs on the speed of convergence? In Section 5 it was shown that 
the matrix g'(O) has four distinct and real eigenvalues, say Xl1, ..., (4, such that (Pi 

< (2 < 0 < (3 < (4. The time to stationarity along the stable manifold in a 
neighborhood of the steady state is dominated by 0P2. Suppose we parameterize the 
adjustment cost function A by introducing the parameter 6: 

(6.1) 6 A(i-nk). 

An increase in 6 then signifies an increase in the adjustment costs. The effect this 
has on the characteristic polynomial is simply to replace A" by CA". Hence one 
might, instead of this parametric approach, just as well look at the effect a change 
in A" has on 02. Thus identify an increase in A" with a parametric increase in the 
adjustment costs. Similarly, identify an increase in U"f with a parametric increase in 
felicity. 

THEOREM 6.1. A parametric increase in adjustment costs decreases the local 
speed of convergence in a neighborhood of the steady state. 

PROOF. From the Appendix, part 2, we know the characteristic polynomial 
reads 

(6.2) All) = q 4-2 pq+ + [p -T(A") - 8]q)2 + 

+ p [T(A ") + 8 ](P + iT(A "), 

where 13, T and -r are positive, and qf has real roots (P < (2 < 0 < 03 < (4. By 
the implicit function theorem 
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(6.3) 02IdA" = -[da4()2; A")IdAA"]I[aq()2; A")IaO2]. 

The denominator is positive as may be seen from the slope of the graph of qf at 42 
in Figure 2, see the Appendix, part 2. Hence a02IdAt" is positive if and only if, the 
numerator is negative. The numerator can be written as: 

1 2 
(6.4) aqf(02; A"l)/dA" =l [T 02 - PT4)2 - V] 

From the functionf(o) introduced in the Appendix, part 2, it is immediate that the 
term in between the square brackets is negative. D 

Two opposing forces are at work in the two state variable model. To illustrate 
this, consider first the one sector neoclassical growth model with adjustment costs: 

(6.5) k = i - nk - A(i - nk), 

(6.6) y(k) = c + i. 

The characteristic polynomial of the linearized system reads 

(6.7) q(4); A,) = )2 - p) -o(A") 

where 

o-(A") = U'Ykkl(U" - UVA") > 0 - 

Clearly qf(0; A") = -o-(A") < 0 and a q(0; A")Iad = - p. The situation is depicted 
in Figure 1. Let 4) < 0 < 02, and qf'(41) = 0 (02) = 0. It follows that aq(41; 
A")Idao1 < 0, and aqf(o1; A"l)/dA"l = -ao-(A"1)IdAA" > 0. Hence, ao1IdAA" > 0. 
This is caused by an increase in - o- (A"), while the slope remains constant at (0, 
- cr). 

In the two state variable model a0(02; A")Ia 2 > 0, but this time there is not 
only a reduction in q/(O; A"), but also a spillover effect from one "sector" to the 
other, i.e., a change in the slope of aqf(O, A")Ia4. This spillover effect tends to 
increase the convergence speed, but, as Theorem 6.1 shows, is dominated by the 
"one sector" effect. 

The local speed of convergence depends on other factors as well; the results are 
given in Theorem 6.2.6 

THEOREM 6.2. The following will reduce the local speed of convergence: 
(i) an increase in felicity, 
(ii) an increase in the rate of time preference, 
(iii) a decrease in the learning by doing coefficient. 

The effect of a change in the schooling coefficient is, however, ambiguous. D 

6 For a proof of Theorem 6.2, which is similar to the proof of Theorem 6. 1, the interested reader is 
referred to van Marrewijk (1988). 
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FIGURE 1 

THE ONE SECTOR MODEL 

The results are intuitively appealing. If agents are more patient, for instance, one 
expects the rate of convergence to increase because the agents are willing to defer 
some consumption and increase investment or schooling. The ambiguity of the 
schooling effect b derives from the presence of the factors 2b Ykp and -b2ypp in 
the coefficient X-of the characteristic polynomial (6.2). Apart from these two factors 
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all effects go into the same direction as changes in the learning by doing coefficient 
a, as expected on the basis of equation (2.4). But because schooling lays a claim on 
the budget, while learning by doing is a positive externality to production, it may 
not pay to increase the accumulation speed as it retards consumption during the 
transition phase. 

7. CONCLUSION 

The paper unifies three factors of economic growth, i.e. physical capital 
accumulation, schooling and learning by doing, into one growth model. The latter 
two factors contribute to production experience accumulation. This production 
experience is specific to the techniques which are in operation such that technique 
changes induce adjustment costs on part of the human capital accumulation. This 
localization effect links the three growth factors. The formalization gives rise to a 
two state variable optimal control problem. The steady state and the path to it are 
unique and, provided the discount factor is sufficiently low, the steady state is 
globally asymptotically stable. The results of economic interest concern the steady 
state welfare effects of human capital accumulation and the speed of convergence 
to the steady state. Among the first set of results are the decrease in the per capita 
steady state levels of consumption, production experience and capital following an 
increase in either the rates of depreciation, forgetfulness, time preference or a 
decrease in the learning by doing effect. The second set of results shows that the 
speed of adjustment close to the steady state reduces through increases in either the 
adjustment costs, the rate of time preference or felicity or a decrease in the learning 
by doing effect. In both cases the effects of changes in the marginal efficiency of 
schooling expenditures are ambiguous because schooling is costly, while the 
learning by doing effect is determinate because it arises as a positive externality 
from production. 

We investigated a closed plan economy and more research into an open economy 
with private decision makers is needed. The model developed here, however, is the 
first to incorporate several different aspects of economic growth due to human 
capital and physical capital accumulation into one model. It can serve as a 
benchmark for future research into the interaction of schooling, learning by doing, 
optimal investment and localized growth. In particular, we have generated a set of 
predictions on learning by doing and schooling expenditures that warrant empirical 
evaluation. 

Erasmus Universiteit Rotterdam, The Netherlands 
Katholieke Universiteit Leuven, Belgium 
Technische Universiteit Eindhoven, The Netherlands 

APPENDIX 

Part 1. Comparative Statics. In this part of the appendix we perform a 
comparative statics analysis for c, i and s around the steady state. The set of 
equations (2.10), (3.1) through (3.3) can be written as 
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- U' +by= O, 

A - yA - U' = 0, 

c+i+s-y(p, k)=O. 

Due to Lemma 3.1 we may write c = c(k, p, A, y), s = s(k, p, A, y), and i = i(k, 
p, A, y). Comparative statics yield 

Ck = Sk = Yk - n ik n > O, 

Cp =0 sp = yp > 0 ip =0 , 

CA 0 SA = -/^yA" < 0 iA = /yA" > 0, 

cy= b/U"t < 0 sy = (b + A')/yA" - b/U" iy =-(b + A')/yA". 

Part 2. Eigenvalues. In Section 5 of the paper we analyze the system of 
differential equations, x = g(x). Here it is shown that the matrix g'(0) has two 
positive and two negative real eigenvalues. Elementary calculations lead to the 
following g'(0) matrix, where h = a + b, and all functions are evaluated at x = 0: 

~0 0 1/yA"l -b/yA"t 

pb P -b/yA" b2/yA" - b2/U 
g' (O) =. 

-y h Ykk -y h Ypk P -pb 

- yh Ypk - hypp 0 0 

Some tedious algebra then gives the characteristic polynomial: 

+(+) = ?4- 2p q3 + (p2 2- T - - )2 + p( + 3)0 + ir, 

where 

T = (a + b) [2bypk - Ykk - b2 ypp]/A", > 0, 

13 = y b2 (a + b)ypplU" > 0, 

ir = -yb2 (a + b)2 [Ykk Ypp - YPk]/AU > 0. 

The inequalities directly follow from A. 1, A.2 and A.3. We now show that q(p) =0 
has four real roots, two of them being positive and two being negative. First note 
that q(0) = T > 0. Consider f: R --> lR defined by 

f(qt) = 'T'>2 
- 

pT4_ 
- T 

Clearly there exist real f5 and 06 such that 45 < 0 < 06 and f(45) = f(46) = 0. 
Note that for i = 5,6: p7 = ppi + 17T, p0 = pp7 + (WrI)Oi, 4i = poi + 

(7/Tr)4j2. Using this, it follows that 
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because (ir - EgT) = -b2 (a + b)2 y [2b YpkYpp - YPk -b2 y1p]/A"U" < 0. 
Clearly, see Figure 2, there exist real (1, 42, 43 and 04 such that 01 < I5 < 42 
< ? < 0 3 < 46 < 04 and 0(A) = 0 for i = 1, ..., 4. 

Part 3. A Surjective Map. We show that the two dimensional manifold M of 
Theorem 5.1 is not orthogonal to the (x1, X2) plane. Loosely speaking this ensures 
that (xl, x2) will change as (X3, X4) change, because otherwise for some (x1(0), 
x2(0)) in this neighborhood there may be no pair (X3(0), X4(0)) on M. Write g'(0), 
which is given in part 2, by 

G GI G2l 
G G3 G4lL 

where Gi is a 2 x 2 matrix, i = 1, 2, 3, 4. Note that G is square but not symmetric. 
Given that all four eigenvalues are distinct, it follows by result vii a in Rao (1973, 
p. 43) that there exists a nonsingular matrix P such that p 1 G P = D, where D 
is the diagonal matrix with the eigenvalues of G on the diagonal and the negative 
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eigenvalues are in the upper left-hand corner while the positive eigenvalues are in 
the lower right-hand corner, and P is the matrix with the corresponding eigenvec- 
tors of G. Partition P as follows 

p PI, P? 
LP3 P4] 

Thus [P2 P4T] is the matrix with eigenvectors that are associated with the positive 
eigenvalues. 

Define y = P x. According to Theorem 4.1 in Coddington and Levinson (1955, 
ch. 13) there are continuous functions h3(yI, Y2) and h4(y1, Y2) defined for small 
IYII and IY21 such that y3 = h3(yI, Y2) and y4 = h4(y1, Y2) constitute a two 
dimensional manifold in y space. Our two dimensional manifold M in x space is now 
obtained as 

x = P(yI, Y2, h3(yI, Y2), h4(yI, Y2))T. 

In the proof of Theorem 5.1 it was shown that f(x) = g(x)-g'(O)x is 
differentiable. Therefore, see Coddington and Levinson (1955, Th. 4.2, ch. 13), 

dhjlayi = 0 at yj = 0 for j = 3, 4 and i = 1, 2. Thus to ensure that the two 
dimensional manifold M is well defined for all state variables (xI, x2) in some 
neighborhood of (0, 0) it is sufficient to show that the upper left-hand 2 x 2 
submatrix PI of P is nonsingular. In that case we are ensured that variations in (Y I, 
Y2) imply two dimensional variations in (xI, x2). 

Straightforward but tedious calculations show that any eigenvector e - (w, x, y, 
z) satisfies 

(w, x, y, z) = (eI(4)x, x, y, z), 

where el, is a well defined function of the eigenvalues 4. (To achieve this 
manipulate the first, third and fourth equations of the system Ge = Oe, and show 
that the denominator of e 1 is nonzero for any negative eigenvalue 4.) Recall 0 1, i2 
are the two negative eigenvalues. Hence PI is nonsingular if 

det PI = x2[e I (41 1) - e I (4 2)] 

is nonzero. Evidently, by the above expression for e, x cannot be zero as P is 
nonsingular. Moreover, after some tedious but simple calculations it can be shown 
that e I (4 I) = e 1 (02) cannot hold when 0 < 0. 
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