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In machine scheduhing the first problem s 1o find a tmetable that s optiimal with respect 1o some ethciency critenon.
[t the Jobs come trom different chents the soluntion of the opuimizaton problem is not the end of the story. In addition,
we have to decide how the minimal total cost must be distnibuted among the partics involved. 1n this note, cost allocation
problems will be considered to anse from one-machine scheduling problems with an addiove and weakly increasing coslt
function. We will show that the cooperative pames related to these cost allocation problems have a nonemply core.
Furthermore, we give a rule that assigns a core element of the associated cost saving game to each scheduling problem

of this kind and an initval order of the jubs,

! I raditionally, a scheduling problem is the task 10

find a umetable that 1s optimal with respect,

to some efliciency criterion. An efficiency critenon
dehines an order on the set of teasible timetables and
the problem is to find an optimal one. The eficiency
criterion 1s usually given by a function of the job
completion times and the timetable 1s better if the
function value s lower.

In practice, the jobs to be processed often come
from diffierent clients, and they are only interested in
an ¢thcient processing of their own jobs. Hence, there
IS 4 controversy between social benefit und individual
benefits. in this note, we deal with the problem of
reconciling these two visions.

More concretely, we are going to investigate the
following:

a. there are 2 jobs to be processed on one machine;
cach job can start at time ¢ = 0;

b. different jobs come from different clients;

C. each client s using an efficiency criterion

represented by a weakly monotonic function of the
completion time of Ay job;

d. the total efficiency function is the sum of the eth-
ciency funcuons of the chents;

¢. there 1s an imtial order o, N — {l, ..., n} and
client ¢ can derive from this order the righr to be
processed in the o, (4)th ame slot, e, in the ume
period (¢, ¢, + p,Jwithe, = 2, .., P,

An efhciency tunction that satisties properties c and d
Is called an additive and regular ethciency tuncuon.

The problem 1s the distribution of the cost savings
that can be made by changing the mitial order into
another order. One could avoid the problem and pro-
pase an cqual split of the benetits. We will, however,
follow a more sophisticated approach, taking into
account the “‘virtual cost savings that coalitions of
chients could have made.”

Su, we have a set N of n clients each having one job
to be processed on one and the sume machine. The
type of chient: 1s determined by the weakly monotonic
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ctheiency funcuon f iR, — R and the processing
ttme p, > U of the job. There is an iniual order
o, N = {1, ..., n} which gives each client a rank-
ing number. Any order o: N — {§, ..., n} deter-
mines a, what is called semi-active timetable v =
(F10 oov sy 1) wherein ¢, 1= 210 L,y P, I8 the time
that job ¢ can start. Then, assuming no pre-emption or
interruption, the completion time of job i is C, =
(, + p,. As the ethciency ftunctions f, are weakly
monotonic 11 makes no sense 10 look at other (not
semi-active) iimetables.

If we consider a coalition of chients S C N, this
group of chents can also generate cost savings by
changing their processing order. In this paper we
gssume:

f. coalitions § are only allowed to change posiuon
within groups that are connected in S with respect
to the inital order oyy; if there are. for example, five
clients and the mmtual order is 1 < 2 < -+ < 5,
coahition (1, 2, 4, 5) can only switch the position of
jobs 1 and 2 or jobs 4 and § (or both), but a switch
2« 4 15 not dllowed.

Now we can define v(.S) as the maximal cost sav-
ings that coalition $ can produce by changing posi-
ttons within g,-connected groups (= o,-components).
Then we have a cooperative game v:2° — R with
5 — v(§). Notice that the game v depends on the
inilitl order o, that v(N)} 1s the total benett to be
distributed among the chents and that one-person
coalitions cannot generate any cust Savings, 1Le.,
vif) = O forallr € N,

A natural gquestion s whether the total cost savings
1{AV)} can be distributed among the chients in such o
way that each coalition a1 least obtains the benctit
they can gencrate by themselves. A distribution s
facking in stability if this is not the case. A coalition
that obtains less than the profit they can produce by
themselves may be tempted to spht oft and follow
their own way of action. Therctore, the questionis: Is
there a vector x € R” such that

E x, = (N} and z x, 2v(y) ftorall § CN?

LY e

In the theory of cooperative games such a distribution
x is called a core allocation of the cooperative game
v 2™ — R,

In this note we show that the cost saving games
generated by scheduling problems of the type we
described before have core allocations, or more pre-
ciscly, we will give a simple rule which assigns a core
allocation of the associated game 1o each scheduling
problem of this type. As turns out, it will only be
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necessary to compute the values of 20 — 1 coatitions
to find this core allocation.

In the literature there are two papers dealing with
the issues we are talking about. In Tijs et al. (1U84) the
cost for job i to be processed on the jth place is given
and coalitons are allowed to make any switch ol
position. The cost saving games arising trom such
permutation situations have been proved to have core
allocations. In Curiel, Pederzoh and Tis (1Y849) the
cthiciency functions are hnear in the completion time
and a rule s given (the equal gain sphitttng rule) which
ass1ens to cach sequencing sttudtion a core allocation
ol the associated cost saving game. The allocation rule
we give 1in this paper 1s an extenswon of the EGS
rule to more general situations. The sequencing srames
of Curniel, Pederzoh and Tys are convex games, 1.e.,
S+ (7Y (S UT) + (S N Ty tor all coalitions
S, T C N. The existence of core allocations is implicd
by this tact. The games we are going to consider are,
In general, not convex.

et us complete this Introducton with an example.

Example. Let N consist of three clients with the ef-
ficiency functions:

Si{C) :=0.5C, f.(C) =4
[-(C) =0 of C = 3,
JA(C) := max (0, C — 4).

O >3,

So client 1 1s paying half of his completion ime, client
2 is paying a penalty ot 4 1f his job 1s completed atier
¢ = 3, and chent 3 has due date 4 and 1s paying his
tardiness. Let the processing uimes be (p, 2. pa) =
2.2, 2)and a0} < 2 < 3. The cost saving game has
the values v(123) = 4, v(12) = 3, and v(23) = 2.
This game 1s not convex as v(i2} + v(23) >
vi123) + v(2). The B-rule (as we will debine below)
gives the core allocauon (1, 2.5, (L5).

1. THE g RULE

1T (N, v)as a cooperative game and o N — {1, ...,
n} is an ordering of the players, the 8 rule 18 defined
by the formula

B,0v) = L [v(Prii, on)) = v(Prii, o))
+ v(FU, oy)) — vIFU, oo,

where Pr(i, o). Prii. oy). Fli. a,), and F{i. )
are the coalitions {j € Nlow(j) € auli)}, {J €
Nlowtj) < o)}, {j € Nlaylj) 2 aolf)}, and
{] € Nl|oytj) > myi)}, respectively. Every coordi-
nate B,(v) is the average of the marginal of 7/ n the
coalition consisting of the players preceding ¢ and in
the coalition of players following ¢ with respect to the
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initial order ;. In general, the B rule does not give a
core allocation of the game, but it does for games that
arise from one-machine scheduling problems satisfy-
ing conditions ¢c-f.

Theorem. [f (N, v) is a cooperative game generated
hy a one-machine scheduling problem with an addi-
tive and regular efficiency criterion, the B rule gives a
core allocation of the game.

The proof follows from the next two proposinons.
The first proposition gives conditions for a coopera-
tive game that guarantees that the 8 rule gives a core
element. The second proposition states that one-
machine scheduling problems (with additive and reg-
ular efficiency criterion) generate games with these
properties.

Proposition 1. The B-rule gives a core element of a
cooperative game (N, v) if

a. the game 1s superadditive (t.e., v(S) + v(T) s v
(S U T) whenever S 0N'T = ),

b. the game s oy,-component additive (1.e., v({S) =
21e s, V{T) where Sty is the collection of com-
ponents of S under the order ).

Proof. Take any o,-connected coalition 7 and sup-
pose that T = {{ € Nl|a < o,u(i} < b}. Wriling Pr(i)
instecad of Pr(i, ), the 8 rule gives for coalition T

2 Y B,(v)= 2 [v(Prli)) — v(Pr(i))

i tC T
+ v(F(i)) — v(F({i)}]
["‘(F"(”'u I(b]}) = 1'(PF(UUIIIH}}}

+ ‘-“’(F(U'u I(ﬂ}})

— v(F(oq'(P))] 2 2v(T).

The second equality 1s obtained by canceling equal
terms from the first expression and the inequalhty
follows from superadditivity, and

Priag (@)U T = Pr(cy (b))

and

TU Flay (b)) = Flog'(a)).

If T = N{a =1 and b = n) we obtain:

2 2 B.(v)=v(Prioy'(n)) + viFlay (1))
- = 2v(N).

For non-g,,-connected coalitions the core inequalities
follow from g -component additivity.

Proposition 2. tvery one-machine scheduling prob-
lem with an additive and regular cost critenon gives
rise to a cost saving game that is superadditive and
o,-componernt additive.

Proof. If § and T are disjoint coalitions we can com-
btne any action of § with any action of 7 to a feas-
ible action of § U T. The cost savings of the combined
action 1s the sum of the profits yielded by the action
of $ and T. This gives the superadditivity of (N, v).
From the definition of v it follows immediately that
the game s o,-component additive.

The proof of the thecorem follows from Propositions |
and 2.
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