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We show the existence of a general competitive equilibrium in an economy with exhaustible 
resources and an unbounded horizon. The model is a generalization of several equilibrium models 
already known in the literature. The method of proof uses a classical idea due to Negishi, extended to 
economies with an infinite-dimensional commodity space, brought about by the infinite horizon. 

Key words: Infinite-dimensional commodity space; General equilibrium; Negishi approach 

JEL classification: D51; Q30 

1. Introduction 

A major issue in the economics of natural exhaustible resources is the timing 
of the rate of extraction. The decision maker, be it an individual resource owner 
or a central agency, therefore faces a dynamic problem. Although there are 
models where the horizon is finite, for example when the resource stock is 
assumed to become valueless after a finite time because of the supposed emer- 
gence of substitutes [see Dasgupta and Heal (1974, pp. 175181)], the general 
formulation is one where the horizon is infinite or at least indeterminate. 
(Choosing for an indeterminate horizon allows for the optimal horizon to be 
infinite.) This observation raises serious questions with respect to the existence 
of optimal programmes, because most existence theorems relate to finite time 
problems. Moreover, existence theorems for unbounded horizons ‘only’ yield 
existence of measurable controls, whereas from an economic point of view this is 
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not a very appealing function space. The complexity of the problem is increased 
to a large extent if one is not only interested in the optimal decisions of a single 
agent, but also in the question whether the actions of an arbitrary number of 
agents yield a general equilibrium or not. This is the issue we address in the 
present paper: we consider an economy with an arbitrary number of consumers, 
producers, and resource extractors, who all face an infinite horizon and who 
take the market prices as given, and we show the existence of a general 
equilibrium in such an economy. 

There is a number of ways to tackle this problem. Since we are dealing with an 
economy having an infinite horizon, the commodity space is of an infinite dimen- 
sion. One could therefore hope to apply directly the by-now well-known existence 
results for this type of economies, due to, for example, Bewley (1972) Mas-Cole11 
(1986) Zame (1987) and others. Unfortunately, the model we have in mind does not 
allow for this application because we do not wish to make the assumption of 
boundedness of the production set of the economy nor assumptions like properness 
or boundedness of marginal efficiency, which seem crucial in their approach. An 
alternative line of attack which has proved successful in some circumstances is to 
consider first truncated economies (i.e., economies with a finite horizon), show then 
the uniform boundedness (uniform with respect to the horizon) of equilibrium 
allocations and some of the prices, and, finally, demonstrate that the limits of these 
allocations and prices constitute a general equilibrium of the infinite horizon 
economy. This approach is followed by van Geldrop et al. (1991) for a model in 
a discrete time setting, where the existence of an equilibrium in the finite time 
economy can be established using the standard Arrow-Debreu arguments. But it is 
not clear whether the approach simply carries over to continuous time models, since 
there even with a finite horizon the commodity space is infinite-dimensional. In the 
present paper we shall take a third route, which we do not claim to be superior to 
the ones outlined above, but which has in the case at hand the advantage of 
providing the desired result in a rather straightforward way. The basic idea is that 
a general equilibrium, if any, is Pareto-efficient so that it should be possible to find 
the general equilibrium from the set of Pareto efficient allocations. Clearly, this idea 
is not new: it has been introduced by Negishi (1960) and was fruitfully used by a.o. 
Arrow and Hahn (1971). More recently the idea was exploited by Mas-Colell(1986). 
Kehoe, Levine, and Romer (1990), Dana and Le Van (199 1 ), and Hadji and Le Van 
(1992) use this concept in an explicit intertemporal setting with discrete time. We 
employ a continuous time framework. 

The plan of the paper is as follows. The model and its assumptions are 
introduced and discussed in section 2. Section 3 states the problem of finding the 
set of Pareto-efficient allocations. Subsequently this problem is then solved by 
invoking an existence result from control theory, due to Toman (1985). Section 4 
elaborates on the necessary conditions for an optimum. Section 5 uses a fixed 
point argument to show that our model allows for a general equilibrium. Section 
6 discusses possible generalizations and concludes. 
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Finally, it should be stressed that we are presently interested in existence only. 
An important issue from an economic point of view is naturally also the 
characterization of the equilibrium. For this we refer to van Geldrop and 
Withagen (1991). 

2. The model 

In the economy there are n + 2 physically distinguishable commodities. The 
first commodity will be called the composite commodity. As a stock it serves as 
an input in the production processes and as a store of value (in this capacity it 
will be called capital); as a flow it is a consumer good. There are n stocks of 
natural exhaustible resources which are distinguished according to the costs 
that have to be made to exploit them. Finally, there is the extracted raw 
material, which is homogeneous. So the stocks differ in quality but the extracted 
commodity is physically the same for all resources. There are 1 consumers 
(indexed by h); m firms (indexed by i) produce the composite commodity; and 
n firms (indexed byj) are engaged in extraction, where the jth firm is identified by 
the capacity to exploit the jth natural resource. In the following outline of the 
model it will be assumed that all flow variables and prices are Lebesgue- 
measurable on [0, co), that all stock-trajectories are absolutely continuous, and 
that all integrals are well defined. 

Consumer h is endowed with a stock Kh > 0 of the composite commodity, 
stocks (St, . . . , Sf) 2 0 of the exhaustible resources, and shares (9:) . . . ,8:+,,) 
in the profits of the production sectors. The instantaneous utility function of 
consumer h is denoted by Uh and depends only on his rate of consumption. The 
rate of time preference of the consumer is denoted by Ph( >O). Given a consump- 
tion profile ch: [0, co) + lR+ total welfare of the consumer is 

s m 

w”[c,] := emPhf Uh( c,(t)) dt. 
0 

About U, we will assume 

u’) uh is continuous on R+ . 

uz) uh is strictly concave. 

U3) U, is strictly increasing on IR, . 

u”) uh is c2 on R++. 

qh(c) := Uic/Uh < qh < 0 for some constant q#, and all c > 0. 

U5) u;(o) = cc. 

(2.1) 
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Here 

R, := {XERIX 2 o), lR++ := int lR+ 

The composite commodity serves as the numCraire. It will turn out below that 
this choice is warranted. Let Y : [O, co) -+ lR+ denote the gross interest rate or the 
rental price of the composite commodity. Define 

where p > 0 is the constant depreciation rate of the capital stock. So, n(t) gives 
the present value at time 0 of one unit of a numtraire commodity held at time t, 
which yields a gross interest of r(T) at instant of time t (0 < z I t), but depreci- 
ates at a rate ,u. With a perfect capital market the budget constraint of consumer 
h then reads 

s 03 

n(t)Ch(t)dt I Kh + i PojS: + s cm 

n(t)Ph(t)dt , 

0 j=l 0 
(2.2) 

where P”(t) stands for the total profits accruing to the consumer h at instant 
of time t and p. := (pal , po2, . . , po,) are the initial prices of the resource 
stocks. So the budget constraint simply requires that total discounted income 
is sufficient to cover total discounted expenditures. Note that we do as if 
all resource stocks are sold at the outset. In view of the supposed existence 
of a perfect capital market and in the absence of uncertainty this is obviously 
warranted. 

Production of the composite commodity requires the input of capital and the 
raw material. Production takes place according to neoclassical production 
functions Fi: IR: + lR+ (i = 1,2, . . . , m), satisfying: 

F’) Fi is continuous on lRt . 

F2) Fi is strictly concave on lR$ + . 

F3) Fi is strictly increasing on lR$+ . 

Fi(O, R) = Fi(K,O) = 0 for all (K, R)EIR:. 

F4) Fi is C’ on lR$ + 

Let p: [O,oo) + lR+ denote a price trajectory of the raw material and Kf: 
[0, co) + lR+ and Ri: [0, co) + lR+ input trajectories of capital and the raw 



J.H. van Geldrop and C.A.A.M. Withagen. A general equilibrium model 1015 

material, respectively. Then total discounted profits in sector i are 

s m 

Pi := n(t)CFi(Kr(t), R,(t)) r(t)KY(t) p(t)Ri(t)] dt . 
0 

(2.3) 

Resource extraction is carried out by means of capital. The input of capital in 
resource sectorj is denoted by KT. Extraction is denoted by Ej. Total discounted 
profits in resource sector j are then 

00 

P ._ 
m+j.- ~(t)CP(t)Ej(t) - r(t)KT(t)l dt - Poj$ 2 (2.4) 

0 

with 

K;(t) = Gj( E,(t)) . (2.5) 

Here Gj describes the extraction technology and Sp is the amount of resource 
stockj the sector initially buys. We assume 

G’) Gj is continuous on lR+ . 

G’) Gj is strictly convex. 

G3) Gj is strictly increasing. 

Gj(0) = 0, G;(a) = 00. 

G4) Gj is C’ on lR+. 

A condition that must be satisfied in resource sector j is that 

Sj(t) = -E,(t), E,(t) 2 0, Sj(t) 2 0, Sj(0) = S:. (2.6) 

We are aware of the fact that G’ is superfluous in view of G4, and that also some 
assumptions on the U,‘s and Fls intermingle. But, for some of our results 
differentiability is not needed. This is the reason for mentioning continuity and 
differentiability separately. 

A general equilibrium is then a set of prices (p, r): [0, 00) -+ IR’, and po~lRY+, 
a set of input-output functions in the production sectors of the economy 
(KY, R):= (K;, . . . , K;, R,, . . . , R,), (K’, E, Sd) := (K’,, . . . , K;, El, . . . , E,, 
s”,, . . . , Si), and consumption trajectories C = (C,, . . . , C,) such that 

9 for all i, (Kr, Ri) maximizes (2.3), 

ii) for all j, (KT, Ej, Sy) maximizes (2.4) subject to (2.5) and (2.6), 
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iii) for all h, Ch maximizes (2.1) subject to (2.2) where Ph consists of the 
maximized profits, 

iv) 1 Ri(t) I C Ej(t), p(t) 

i j ( 

C E,(t) - 1 R,(t) = O, tECov co) 3 (2.7) 
j i > 

j = 1, 2,, . . . , n, = 0, 

h 
(2.8) 

7 Fi(Kf(t)2 Ri(t)) = T ch(t) + S(t) + K(t)~ tacos a) > (2.9) 

where 

K(t) := c K;(t) + 1 K;(t), E[O, co) ) (2.10) 
I j 

K(0)=xKh. (2.11) 
h 

The model presented here is a generalization of a number of models in the field 
of exhaustible resources, e.g., Dasgupta and Heal (1974), Chiarella (1980), Kemp 
and Long (1980), and Elbers and Withagen (1984). Toman (1986) deals explicitly 
with the existence problem in a similar but less general model. The generali- 
zation refers to the number of consumers (countries), extractors and producers 
of the composite commodity, the introduction of non-unilateral ownership of 
the exhaustible resources and the functional form of the technologies involved. 

3. Pareto efficiency 

The first step in the existence proof is to consider the set of Pareto-efficient 
allocations. To that end each of the consumers is attributed a nonnegative 
weight ah. It will turn out to be convenient to take CI = (a,, . . . , al) on the unit 
simplex A. Then the aim is to find the allocations which maximize the weighted 
sum of social welfare taking into account the technological and feasibility 
constraints. So, the Pareto problem can be stated as follows. Maximize 

s f xClhe -Ph’&(Ch(t))dt, 

subject to (2.5)-(2.11) with the second parts in (2.7) and (2.8) omitted. Strictly 
speaking, feasibility does not require equalities in (2.9)-(2.1 l), but since capital is 
perfectly malleable with the consumer commodity and the Uh)s are strictly 
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increasing, there is no loss in generality to depart from (2.9)-(2.11) as they stand. 
Let us introduce the following additional notation. For (KY, R”)E~R:, F is 
defined as 

F(ZTY, IT) I= max f Fi(Kr, Ri), 
i=l 

subject to 

iEiKi<RY, i$iRi<R. 

So, the function F describes the maximal output of the composite commodity 
given the totally available inputs. By virtue of the same argument as used above, 
the left-hand side of (2.9) can be replaced by F(ifY, l?), where 

R := 1 Ej and KY := K - 1 Gj(Ej) . 

j j 

In theorems on the existence of solutions of optimal control problems boun- 
dedness of the state variables and instruments plays an important role. We shall 
deal with that issue first. Boundedness of the state variables and the rates of 
extraction shows up quite naturally, but the rates of consumption present 
a difficulty. 

Since the resources are not replenishable there obviously exists s such that 

OISjIS, j= 1,2,. . .) n and for all t . (3.3) 

Since 1 KY I K and K; I K for all j and Ri I C Ej for all i, we have from (2.9) 

For K > 1 we have from the concavity of the Fis that 

Since G>(oo) = cc and by virtue of F3 we have k/K I -p if K + CO [cf. Hadji 
and Le Van (1992) who employ a discrete time setting and assume 
K 1+1 - K, I - pK1 for large feasible capital stocks]. Hence there exists i? such 
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that for K > I?, ti I 0. Take K > max [K(O), K”]. Then, along any feasible 
programme, 

0 < K I R for all t . (3.4) 

As a consequence of the fact that R 2 K 2 K; = Gj(Ej) for all j there exists 
I? such that 

0 < Ej I IT, j=l,2,..., n and for all t . (3.5) 

In a discrete time analogue of our model, boundedness of the state variables is 
a sufficient condition for boundedness of the rates of consumption. With time 
considered continuous, this is obviously not the case. There is no a priori upper 
bound on the rates of consumption. Therefore, for the moment the rates of 
consumption will be forced to lie in a bounded set. Obviously C,, 2 0 for all h. 
We take some C > 0 and add as a condition 

0 I Ch I c, h=l,2,..., 1 and for all t . (3.6) 

For the readers’ convenience the optimal control problem is now cast into the 
format of an existence theorem due to Toman (1985). Define 

x:=(S1,.,., S,,K), u := (C, E), 

f. (x, u, t) := C aheePht Uh(Ch), 
h=l 

fj(X, U, t) I= - Ej, j = 1,2, . . . , n, 

K-CGj(Ej)vCEj -_K- i ch, 
h=1 

A := {(t, X)ElR+ x lR:+’ IKIR;SjIS,j=1,2,...,n}, 

ulOIChICallh;OIEj~Eallj;K- i G,(E,)>O 
j=l 

B = ((t,x)54(t = 0; x = x0}, 

where U(t, x) is defined for (t, X)EA and x0 := (C St, 2 S”,, . . . ,I S,“, 1 Kh). 
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The constrained Pareto problem [P(c) is then defined as follows: 

subject to 

i = f(& 4 t), 

=U(t, 4, (4 X@))EA, (0, X(O)W. 

It would go too far to outline in detail that Toman’s Theorem 2 applies to this 
problem. The essential issues to note are that A and U(t, x) are compact sets, 
that f is continuous, that all functions involved satisfy the concavity require- 
ments, and that U(t, x) is an upper semi-continuous correspondence. Therefore 
the following holds: 

Theorem 3.1. Under assumptions U’ - U3, F’ - F3, and G’ - G3, there exist 
absolutely continuous 2 and measurable li which solve problem P(c). n 

Note that the differentiability assumptions on U,,, Fi, and Gj are not needed in 
this theorem. They will however play a role in the sequel. 

4. Characteristics of the solution of the Pareto problem 

The objective in this section is twofold. First, it will be shown that the 
upper-bound C? imposed on the rates of consumption can be chosen such that it 
is never binding, i.e., not binding for any tE[O, co) nor for any a in the unit 
simplex. Second, we will prove that the solutions satisfy some continuity proper- 
ties. 

Our first concern is the upper bound on the rates of consumption. The second 
part of assumption U4 says that the elasticities of marginal utility are bounded 
from above. It covers a large class of instantaneous utility functions, including 
Bernoulli-type functions. We may then define 

y := min Ph . 
h qh 

Define F by 

F := KmKayxR (F(Ky, R) - pK) , 
1 1 

subject to 
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Now fix some tl > 0 and choose c such that 

” (f - CeY')dt < - Z? . 
0 

The idea behind this construction is as follows. Irrespective of the upper bound 
that is put on the rates of consumption in the constrained Pareto problem P(c), 
the maximal net output of the composite commodity is F, which is finite. 
Therefore, along an optimum, c cannot be maintained forever. So, the rates of 
consumption will eventually decrease in view of the feasibility of optimal 
programmes. But, getting ahead of the story, the rates of decline are bounded: if 
a rate of consumption is interior it must satisfy the well-known Keynes-Ramsey 
rule 

and, therefore, d,/C, L y. So it would take too long to get the rate of consump- 
tion to a sustainable level, if any. Now the Pareto problem is reconsidered with 
c defined above as the upper bound (with tl fixed throughout). 

We wish to work within the framework employed by Cesari (1983). He 
provides necessary conditions for the case where the solution of an optimal 
control problem has measurable (rather than piece-wise continuous) instru- 
ments and absolutely continuous (rather than piece-wise differentiable) state 
variables. Cesari deals with a fixed control region, i.e., a control region U not 
depending on time or the state variables. It is also required that the optimal 
trajectory is interior. Finally, Cesari works within finite time. So, the problem we 
started with has to be modified in these respects. 

Take T > 0 fixed and large enough and let i(T) be the optimal state corre- 
sponding with the Pareto problem P(c) at instant of time T. Take some E > 0 
and redefine 

A := ((t,x)dR+ x IR”+’ lOIKIK+E;-EESjIS+E,j=l,..., n>, 

U:=fulOICh<~allh;OIEj IEallj}, 

B:= {(t1,x(t1), tl,X(tZ))ETR2(“+l)+21tl = 0; 

x(t,) = x0; t2 = r x(t2) = i(T)}. 

Consider now problem P’(C): 

max s :/,(x. u, t) dt , 
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subject to 

1 =f(x, u, t) 

This problem obviously has a solution. It will be denoted by (a=, tiT). Evidently 
(AT(t), tir(t)) = (A(t), h(t)) for 0 < t d T. We shall deal next with the necessary 

conditions. 
One of the prerequisites in Cesari’s necessary conditions is that 

fi (i=O,l,..., n + 1) are defined and continuous in the set A x U, as well 
as their partial derivatives with respect to t and x. In the model at hand this 
is obviously not the case. There is of course no problem with t and 
SjG= 192,. . .) n) because for these variables the above conditions are trivially 
satisfied. It is the stock of the composite commodity that poses a problem. 

However, this problem can be dealt with as follows. k(t) > 0 for all t, because 
otherwise consumption would be zero from some moment in time on, which 
cannot be optimal in _view of U”. Moreover, along a solution (2, ti) of P(c) it 
cannot be true that K - C Gj(Ej) = 0 for a set of t’s with positive measure, 
because then a reduction of extraction along t’s belonging to this set would 
increase total output and thereby consumption, which would then yield more 
aggregate welfare than in the presupposed optimum. The differentiability 
problem can then get rid of by making the assumption that F is C’ on IR:+ . 
It should be noted that merely assuming that Fi is C’ on lR’, + does not 
entirely solve the differentiability problem because F may then still exhibit 
kinks where a transition takes place from producing according to one produc- 
tion function to producing according to another (this could actually occur 
when the individual production functions display constant returns to scale). 
However, at the cost of quite some cumbersome calculus it can be shown that 
also in that case the problem can be circumvented. Fi being C’ on IR:, (rather 
than on its entire domain of definition IR:) suffices because Z? - 1 Gj(E^j) > 0 
a.e. So F4 virtually solves the differentiability problem. In view of these prelimi- 
nary observations we can now proceed with the Cesari necessary conditions. 
Define the Hamiltonian 

WG 4 4 &, 4 cp) := 43 i 
n 

txhe-PhrUh(Ch) + C lj(-Ej) 

h=1 j= 1 

+CP F 
u 

K-i Gj(Ej), t Ej 
> 

-PK-~ oh . 
j=l j=l h=l 
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Lemma 4.1. Let (aT, uT) solve PT(C). Then the following holds: 

1. There exists an absolutely continuous vector function (If, XT, 4’) which is 

never zero on [0, T] with i,’ ( 20) a constant and 1’ 2 0 such that 

-“;‘=i3H/as;T=O, j= 1,2,. ..,n, a.e., (4.1) 

-tj’= aH/al?, a.e. (4.2) 

2. H is maximized a.e. with respect to (C, E) in U. 

3. ~~[s;(T)-S:a:(S)d,]=O, j= 1,2 ,..., n, 

@T(T)[k(T) - Z?=(T)] = 0. 

Proof: See Cesari (1983, pp. 1966198). n 

Formally, one has to deal with the possibility that 2,’ = 0. This is handled in: 

Lemma 4.2. 1, > 0 and gT(t) > 0 for all te[O, T]. 

Proof Suppose 2: = 0. If there exists tE[O, T] such that e=(t) = 0, then GT(t) 

= 0 for all tE[O, T], because it follows from (4.2) that -~$~(t) = cjT(t)(FK - p). 

Let J be the subset of (1,2, . . . , n> such that 1; > 0 f0rjE.J. It follows from 
the maximization of the Hamiltonian (with eT = 0) that, for jEJ, I?:(t) = 0 a.e. 

Next consider problem PT(c) with resources je.J omitted. This problem has 
virtually the same solution as the original problem. But that implies that in the 

modified problem 17 = 0 for j $J if I:(O) = @T(O) = 0. This is not allowed. 
Therefore, if xl = 0, then eT(t) > 0 for all te[CJ T]. But then the maximiza- 

tion of the Hamiltonian with respect to C yields CT(t) = 0 a.e., which cannot be 
optimal. Hence 1: > 0. Then e’(t) > 0 follows immediately, because otherwise 
CT(t) > f? for all h and all t. n 

As a consequence of this lemma we can safely put 2: = 1. Due to the structure 
of the problem at hand, it can be shown that there exist continuous controls that 
solve P’(c). This will turn out to be rather helpful in the sequel. 

Define CT := (CT, . . . , Cr): [0, T] + Rt+ as the solution of 

max C cche-““‘U,(C,(t)) - c$‘(t)Ch(t) , 
c (0 
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subject to 

0 5 C,(t) I C, h=l,2 )..., I. 

CT is well defined on [0, T] and continuous, because $T is absolutely continu- 
ous and the Uh’s are strictly concave. 

Define ET := (ET, . . . , ET): [0, T] + lR’!+ as the solution of 

iT(t) - i Gj(Ej(t)), i E,(t) - i iTEj(t), 

j= 1 j= 1 j=l 

subject to 

0 I E,(t) I E, j= 1,2,. . .,n. 

ET is well defined on [0, r] and continuous, because 4’ is absolutely continu- 
ous and the Fi’s and -Gj’s are strictly concave. Define also 

f ST(t) := 1 s; - s E;(s) ds, j=l,2 ,..., n, 
h 0 

and KT(t) by 

KT(t) = ET(s) - f: Gj(ET(s)), i ET(s) 
j= 1 j= 1 

- pkT(s) - i C;(s) ds + K(0). 
h=l 1 

Then the following lemma holds: 

Lemma 4.3. (i) xT(t) = z?(t) fir all t~[0, T]; am = a(t) for almost all 
t~[0, T]. (ii) (xT, uT) solves PT(C). (iii) xT is dz@rentiable and uT is continuous. 

Proof. (i) aT(t) = 6(t) for almost all t~[0, T] and uT(t) = tiT(t) for almost all 
te[O, r]; xT(t) = 2(t) follows from the construction of xT(t). (ii) This is evident 
view of(i). (iii) This is so by construction. n 

Now define (x(r), u(t)) for all &CO, co) by 

(x(0, 40) = (XV), u’(t)). 

So, (x(t), u(t)) is the solution of P’(c) at instant of time t. 
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Lemma 4.4. (i) x(t) = z?(t) for all te[O, co); u(t) = t.?(t) for almost all t~[0, co). 
(ii) (x, U) solves P”(c), with 0 I Ch < c omitted. (iii) x is differentiable and u is 
continuous. 

Proof: The proof of (i) and (iii) is straightforward and will not be given here. 
With regard to (ii) it has to be shown only that the upper bound C will never be 
binding. This follows from the construction of C and the continuity of the vector 
function C. n 

Summarizing thus far, we started from the Pareto problem for an arbitrary C, 
needed to establish the existence of a solution. Next it has been shown that for 
any C the Pareto problem has continuous instruments as a solution. This 
continuity property has been used to show that there can be found a C which 
turns out to be never binding. Let us now return to the original Pareto problem 
with disaggregated production. Define (KY(t), R(t)) as the solution of 

max f Fi(KY(t), R,(t)), 
i=l 

subject to 

m ” 

C K:(t) + C Gj(Ej(t)) 5 K(t) > (4.3) 
i=l j= 1 

(4.4) 

whereKandEj(j=1,2,..., n) are optimal. It is immediate that this problem 
has a piece-wise continuous solution. So the following theorem can be stated. 

Theorem 4.1. Dejine u := (C, KY, R, E). Then: 

(i) (x, u) is a Pareto-ejicient allocation in the economy described in section 2. 
(ii) x is diferentiable and u is piece-wise continuous. n 

5. General equilibrium 

The final step is to consider the set of Pareto-efficient allocations and 
to search for the one that constitutes a general competitive equilibrium. The 
set of Pareto-efficient allocations can be found by solving the Pareto problem 
for all weights CI in the unit simplex A. Consequently z(t; cc) will henceforth 
denote the optimal value of variable z at instant of time t when the vector 
of weights is IX 
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For UEA we define the excess of shadow income of consumer h over his 
shadow expenditures along the Pareto trajectory corresponding with LX: 

s 30 

Jh(a) := - VChdt + q(0)Kh + i AjSi 
0 j= 1 

q [Fi(K:y Ri) - rKr - pRi] dt 

+ i $+j 

00 

~p[pEj - rGj(Ej)] dt - lj i S: . 

j= 1 0 h=l 

Here the arguments t and c( have been omitted in the right-hand side since there 
is no danger of confusion. Furthermore, cp and lj (j = 1,2, . . . , n) are the 
co-state variables arising from the necessary conditions and r and p are the 
Lagrangean multipliers associated with the constraints (4.3) and (4.4), respec- 
tively. It is easily seen that Jh(~) is defined for all CSA. Of course Ch(t; (x) = 0 if 
c(h = 0. The interpretation of Jh(u) is as follows. The first part is the present 
shadow value of expenditures. The second and third term represent the shadow 
revenues from selling the initially held stocks of capital and resources respective- 
ly. The final parts are the shadow profits accruing to the consumer from the 
composite commodity producing sectors and the raw material sectors respec- 
tively. Jh will play a crucial part in the sequel because it will be shown that there 
exists BEA such that Jh(&) = 0 for all h. To that end we construct a fixed point 
mapping. Before doing so, some properties of Jh(a) will be listed. 

Lemma 5.1. (i) ah = 0 * Jh(a) > 0, h = 1, 2, . . . , 1. (ii) C Jh(oz) = 0 fir all 
CXEA. (iii) Jh is continuous on A. 

Proof: (i) is trivial, because ah = 0 implies C,(t) = 0 for all t, q(0)Kh > 0, and 
all other terms in the right-hand side are nonnegative. (ii) and (iii) are proven in 
the appendices. n 

Now consider the mapping g: A + A defined by 

max {Jh(u), 0) + a,, 

gh(U) = T max{Jh(a), 0} + 1 ’ 

The mapping g is the fixed point mapping alluded to above. See also Negishi 
(1972). By standard arguments we obtain: 
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Lemma 5.2. There exists bi~A such that J”(&) = 0 for all h. n 

We are now ready to state the main theorem of this paper: 

Theorem 5.1. Let the economy satisfy U’-U5, F’-F4, G’-G3. Then the econ- 
omy has a general competitive equilibrium. 

Proo$ Let (x(a), u(k)) correspond with oi defined above. Define in a similar way 
r(a) and p(8). Define also poj(&) := j”,{~?)/cp(@, &). 

1) It is trivially true that the allocation corresponding with & is feasible. 
2) Take some hE{ 1,2, . . . , 1). Since Jh(&) = 0 and ~(0; oi) > 0, we have, 

omitting t and oi where there is no danger of confusion, 

+ f q 
i=l s y 2) [Fi(Kr, Ri) - r’K; - pRi] dt 

,” s [pEj - rGj(Ej)] dt - $ i S; . 

h 1 

Now recall that r and p are the shadow prices corresponding with (4.3) and (4.4), 
respectively, in the problem of maximizing total output given the available 
inputs. Therefore r = aFi/ar<y if Fi > 0. Moreover, there exists i with Kr > 0 
and r = aF,@KY, where F is defined in section 3. So, we have from (4.2) that 

cPWcP(O) = exp t (p - r(z))dT = n(t). 
0 

From the definition of r and p it is clear that (KY, Ri) maximizes profits in 
nonresource sector i. It is also clear that Ej maximizes total discounted profits in 
resource sector j. That Ch maximizes utility subject to the budget constraint 
easily follows from the concavity of I!,,,, h = 1,2, . . . , 1. n 

6. Discussion and extensions 

In summary, the analysis has been conducted along the following line. 
Continuity, concavity/convexity, and monotonicity of the functions describing 
consumers’ tastes and the economy’s technology together with an (artificially) 
imposed upper bound on the rates of consumption were sufficient to guarantee 



J.H. van Geldrop and C.A.A.M. Withagen, A general equilibrium model 1027 

the existence of a restricted Pareto-efficient allocation in the infinite horizon 
economy. Since these assumptions are commonly made in the growth literature 
including exhaustible resources and are plausible indeed, no further discussion is 
required. 

One might ask, however, how important it is to assume a positive rate of 
depreciation. It is well-known that with a positive rate of depreciation, no 
extraction costs, and Cobb-Douglas specification of the aggregate composite 
commodity production function, consumption will necessarily approach zero 
eventually [see Stiglitz (1974)]. And, indeed, also in the model at hand a positive 
rate of depreciation makes it easy to find upper bounds on the stock of capital 
and the rates of extraction. However, it may be shown that this is not essential 
for the existence of a restricted Pareto-efficient allocation, because the capital 
stock will be exponentially bounded anyhow. It is our strong conjecture that 
a redefinition of all variables involved would then imply that the analysis needs 
no substantial alteration. 

One might also wonder how the analysis would change when the remaining 
resource stocks enter into the extraction technologies, so as to cope with the 
widely accepted view that marginal extraction costs are larger the smaller the 
stocks are. Obviously this would not cause any problem in the proof of the 
existence of Pareto-efficient allocations, because it would enhance boundedness. 
One is tempted to argue that consequently the existence of a general equilibrium 
poses no problem. However, a formal analysis of this issue should be subject to 
further research. 

The second step has been the characterization of the set of Pareto-efficient 
allocations. Theorems on the necessary conditions for optimal control problems 
with an infinite horizon generally depart from the existence of piece-wise 
continuous controls, whereas existence theorems ‘only’ provide us with measur- 
able controls. Therefore we have resorted to necessary conditions for a finite 
horizon economy with the final values of the state variables equal to the 
corresponding values in the infinite time Pareto problem. In order to state the 
necessary conditions we had to make some differentiability assumptions. How- 
ever, in our opinion it would be too restrictive to assume differentiability over 
the entire domain of the functions involved. For that reason we have limited 
ourselves to the assumption of differentiability on the interior of the domain. 
The purpose of assuming unbounded marginal utility at zero was to prevent the 
stock of capital from becoming zero in finite time. However, with bounded 
marginal utilities only a slight modification of the analysis is needed to reach the 
same goal in terms of the characterization of the set of Pareto-efficient alloca- 
tions, i.e., piece-wise continuous controls. One simply observes that in that case 
the stock of capital might become zero within finite time, implying that the 
economy ‘ends’ at the moment where capital becomes zero. But then we have 
just an ordinary optimal control problem with a finite horizon, with capital 
strictly positive before doomsday. If the stock of capital is not becoming zero 
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within finite time, the analysis naturally remains unchanged. Therefore the 
assumption of unbounded marginal utility is only made for expository purposes. 

The third step was to define the pseudo-budget constraints of the consumers, 
i.e., the value of excess supply of each consumer. Without any additional 
assumptions we have shown a.o. the continuity of this function in the unit 
simplex from which the weights in the Pareto problem were taken. This allowed 
for the construction of a mapping having a fixed point, which then gave us the 
general equilibrium. 

Which conclusions can be drawn? First of all, under mild assumptions we 
have established the existence of a general equilibrium for a rather broad class of 
models with exhaustible resources, including models known from the literature. 
Perhaps more importantly, we have presented a rigorous application of the 
original idea due to Negishi of searching for a general equilibrium in the set of 
Pareto-efficient allocations to an infinite horizon, continuous time economy. 
This might open perspectives also for a fruitful equilibrium analysis of other 
types of models, for example taking into account environmental aspects together 
with exhaustible resources. So it is likely that the analysis can be extended to 
a set of presently actual models. 

Finally, one could argue that it is intuitively clear that in the economy under 
consideration a general equilibrium exists, so that it is not worthwhile to put so 
much effort into the analysis. Apart from the fact that such a statement is at 
variance with accepted methodology, the line of attack has some merits on its 
own. Moreover, there are numerous examples of economies which have an 
equilibrium in finite time but not in infinite time [see, e.g., Zame (1987)]. 
Therefore, one has to be very careful with intuitive reasoning here and a formal 
approach, however tedious, is required. 

Appendix A 

Define x := (S,, S2, . . . , S,, K), u := (C,, . . . , C,, KY,, . . . , K;, R,, . . . , R,, 
E I,..., E,). Fix some acd. It has already been shown that there exist differenti- 
able xn and piece-wise continuous U’ solving the following problem: 

max 
s 

z $, a,,eePh’ U,,(G) dr , 

subject to 

Sj = -Ej, j = 1,2, . . . , n, Sj(0) = C S1) 
h 

~ = ~ Fi(KY, Ri) - ILK - ~ Ch, K(0) = c Kh, 
i=l h=l h 



J.H. van Geldrop and C.A.A.M. Withagen. A general equilibrium model 1029 

izl KY + i Gj(Ej) I K . 
j=l 

Define 2 := (A,, . . . , A,) and the Lagrangean: 

._ .- i aheePhtUh(Ch) + f Aj(-Ej) 
h=l j=l 

Fi(KY, Ri) - /AK - i Ch 
h=l > 

K - f Kr - i Gj(Ej) 
i=l j=l 

Now the following holds (the suffix c1 is omitted when there is no danger of 
confusion). There exist 1 which is constant a.e., cp which is absolutely continu- 
ous, and (A I”) which are continuous except possibly where u is discontinuous, 
such that 

-@= -q(pcL+r”, (A.1) 

L is maximized a.e. with respect to u , 64.2) 

lim cp(t)K(t) + i ljSj(t) = 0. 
t-m j=l 

(A.3) 

(A.l) and (A.2) are straightforward applications of the Pontryagin maximum 
principle; (A.3) is proven in appendix B. It has been shown in the main text that 
q(t) > 0. We define p = p(p, r” = rep. 

Now let (X, U) solve the problem when the weights are given by Cc. Let 
(I, Cp, p, F) be the corresponding co-state variables and (modified) multipliers. It 
follows from the maximization of the Lagrangeans that, for all h, all i, allj, and 
almost all t, 

(ah - ~h)e-““‘(uh(ch) - uh(c,,)) - (q - @)(ch - chh) 2 0, (A.4) 

(@f - cpr)K’ - KY) + (cpp - VP)(R~ - I&) 2 0, (A.5) 

(4’P - cPFl(Ej - Ej) - (or - @f)(Gj( Ej) - Gj( Ej)) 

-(nj-ilj)(Ej-_j) 2 0. (‘4.6) 
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By virtue of the necessary conditions and the properties (i.e., concavity/convex- 
ity) of the functions involved, we also have 

v; := s YZ ahempht U,(C,) - ahe- phtUh(ch)] dt 
0 

2 s TX cthe-ph'Ub(Ch) (C, - C,)dt 
0 

m 

2 (PC (C, - c,ddt 
0 

s co 

= (P[ 1 Fi(Kj’, Ri) - PK - R - C Fi(Kf, Ri) + ,uK + k] dt 
0 

s m 

2 vCrC (KP - Kr) + ~2 (Ri - Ri) + p(K - K) + (k - k)] dt 
0 

=j~~[rZ(KI-~I)+~~(Ri-L)+r(~-K)]dt 
0 

s m 

2 ~p[pC (Ri - Ri) + rC (Kj’ - Rje)] dt 
0 

s 30 

2 ~p[pC(Ej - Ej) - r~ G)(Ej)(Ej- Ej)]dt 
0 

= s m C ~j( Ej - Ej) dt 
0 

= C nj(sj(co) - Sj(c0)) = 0 . 

The same inequalities can be written for Vi. 

(A.7) 

A.1. Ch and cp 

It follows from (A.7) that 

s 
“(cp-(P)C(C,,-C,,)dt>O. 
0 
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Combining this with (A.4) yields 

s -x 

0 = lim 1 (CQ - &,)e-ph’(U,(C,) - U,(C,))dt 
U’ti 0 

= lim 
s 

m((p-@)I(C&%d~. 
n-a IJ 

Take some F > 0 and define 

z:= (t~[0, co)llimsup IC(C, - C,)l > E). 
a’& 

If the measure of T, is larger than zero, then we obtain a contradiction because 
(cp - @)(C, - c,,) 2 0. Therefore, for almost all t and all h, 

lim C,(t) = Ch(t), lim q(t) = q(t). 64.8) 
ol-ti a+oi 

A.2. Kf, Ri,p, and r 

Sum (A.5) over i, sum (A.6) overj, add the resulting inequalities, and integrate 
to obtain 

s m 

o (~‘-_r)(K-K)dt+ 
s 

m~(~j-r.j)(Ej-E,)dt 
0 

s co 

= (@r - v)(K - K)dt 2 0, o (A.9) 

in view of (A.7). By virtue of (A.8) we have 

lim V% = lim Vi = 0. 
a-a a-6 

This, together with (AS) and (A.9), implies 

s m 

lim C(cp’ - cp’)C (KY - its) + (~pp - Cpp)C (Ri - pi)] dt = 0. 
a’@ 0 

Hence, by (A.5), 

(A.lO) 

lim (@F - cpr)C (Kf - Rf) + ((pjj - cpp)C (Ri - Ri) = 0 a.e. (A.11) 
a+@ 
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Define, for some E > 0, 

liminf cpr I @F - E, liminf (pp I @ji - E , 
a’8 a-roi I 

limsup ‘pr 2 q?F + 6, liminf cpp I (pp - 6 , 
a-d a+ol I 

The strict concavity of the Fi’s implies that higher (lower) input prices call for 
smaller (larger) inputs. Therefore the measures of Tf and Tf are zero. 

In view of (A.1 1) there cannot be a subset of T: with nonzero measure where 
C KY > 1 KY and C Ri > C l&. Nor can there be a subset of T,” with nonzero 

measure for which 1 Kr > C Kr and C Ri > C Ri. Now assume that there exists 

a subset F’,” c T,” with nonzero measure such that 1 Kf > C Kf and C l?i > 1 Ri 

for all tei$. Then 1 Ej > C Ej for almost all te F,“, and there exists 
j*E(l, 2, . . . , n} such that 

Then it must be the case that Xjzj* < ;lj*. And, in fact, 

Since ~j, > ;lj*, we must have 

But this is ruled out by (A.6). Therefore the measure of ?,” equals zero. Along the 
same lines it can be shown that the subset of Tz, for which C Kr > C Kf and 
1 Ri < C Ri , has zero measure as well. In view of the strict concavity of the F~s 

there exists no subset of Tf with nonzero measure such that C Ky = 1 Kr or 
C Pi = C Ri. Therefore the measure of T,” equals zero. 
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The same argument applies to show that the measure of Tf equals zero. 
This proves that 

lim cp(t)r(t) = cp(t)F(t), lim @(t)r(t) = cp(t)F(t) a.e. 
@-toi a*oi 

It then follows immediately from the maximization of Fi - rKY - pRi that 

lim R,(t) = R,(1) a.e., 
n-oi 

lim KY(t) = ET(t) a.e. 
a.‘@ 

A.3. KT , Ej, and 1.j 

Since KT = Gj( Ej), we confine ourselves to Ej and lj. It follows from (A.6) and 
the fact that cpr and (pp are continuous a.e. that 

limsup (& - ~i)( Ej - Ej) 2 0 a.e. 
(I+(r 

On the other hand, we have from (A.7) 

J m (Xi - A,)( Ej - E,)dt = 0 . 

0 

If lim,,, Aj > ~jzj, then lim,,, Ej > Ej, which yields a contradiction. The other 
way around the proof is similar. Hence, 

lim Aj = I,, lim E,(t) = E,(t) a.e. 
a-+or a+a 

A.4. K 

lim K(t) = K(t), 
a-a 

because K(t) = C K;(t) + 1 K;(t). 
Taking A.l-A.4 together and using the Lebesgue dominated convergence 

theorem, we have shown the continuity of Jh(~) in c( for all h. n 

Appendix B 

It will be shown first that q(t)K(t) + 0 as t -+ 00. 
Take some C(EA fixed. Assume, without loss of generality, that ~1~ > 0. Define, 

for &CO, co), 

dt) := c ch(t) . 
h=2 
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Define, for K 2 0 and t~[0, co), 

K - i Gj(Ej(t)), 1 E,(t) - /LK if K 2 i Gj(Ej(t)) 
j=l j= 1 

Define 

._ .- - ,uK otherwise. 

T:= {(K, k)\ KEIR+, ZhR} . 

Define, for (K, ~)ET and tg[O, cc), 

u( K, k, t) := e- ‘~‘UI(H(K, t) - g(t) - k) if H(K, t) - g(t) - I( 2 0 

.- - .- cc otherwise. 

Consider the following problem: 

s 

aa 
max o(K, k, t) dt , 

0 

subject to 

(K, I()ET, K(0) = Ko. 

Economically the problem is to maximize agent l’s welfare given the optimal 
consumption profiles of the other agents and given the optimal extraction rates, 
where the expression ‘optimal’ refers to the Pareto-efficient allocation corres- 
ponding with the fixed CI we started with. This problem has a solution, namely 
(K(t), k(t)), which of course coincides with the overall Pareto problem. It is now 
easily checked that the conditions of Theorem 3.A of Benveniste and Scheink- 

man (1982) are satisfied, so that 

lim cp(t)K(t) = 0 
f’rn 

is a necessary condition. 
To show that lim,,, ,IjSj(t) = 0 for all j, the same type of argument can be 

used. The optimal control problem to be considered is then 

s m 

max (P(PEj - rGj(Ej))dt 2 o 

with Sj = -Ej, and (cp, p, I) are the optimal values arising from the necessary 
conditions for the problem stated in appendix A. 
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