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Abstract

Our aim is to analyze the link between optimism and risk aversion in a subjective ex-
pected utility setting and to estimate the average level of optimism when weighted by risk
tolerance. This quantity is of particular importance since it characterizes the consensus be-
lief in risk-taking situations with heterogeneous beliefs. Its estimation leads to a nontrivial
statistical problem. We start from a large lottery survey (1,536 individuals). We assume that
individuals have true unobservable characteristics and that their answers in the survey are
noisy realizations of these characteristics. We adopt a Bayesian approach for the statistical
analysis of this problem and use an hybrid MCMC approximation method to numerically
estimate the distributions of the unobservable characteristics. We obtain that individuals
are on average pessimistic and that pessimism and risk tolerance are positively correlated.
As a consequence, we conclude that the consensus belief is biased towards pessimism.

Keywords: Bayesian estimation, MCMC scheme, importance sampling, pessimism, risk
tolerance, risk aversion, consensus belief.

1 Introduction

Optimism is usually conceived as a personal trait leading to overestimate the likelihood of
good outcomes and to underestimate the likelihood of bad outcomes. Previous work related to
this issue includes psychological surveys as well as empirical studies on professionals’ economic
forecasts (see, e.g., Fried and Givoly, 1982, O’Brien, 1988, Francis and Philbrick, 1993, Kang et
al., 1994, Dreman and Berry, 1995, Giordani and Séderlind, 2005).

Risk aversion in decision making intuitively corresponds to the fact that when facing choices
with comparable returns, agents tend to choose the less risky alternative. This feature has
been largely studied in particular in relation with other personal characteristics like gender,
age, income, education (see, among others, Binswanger, 1980, 1981, Palsson, 1996, Barsky et
al., 1997, Eisenhauer and Halek, 2001, Eisenhauer and Ventura, 2003, Felton et al., 2003, Guiso
and Paiella, 2001).

In the setting of a Subjective Expected Utility (SEU) model, risk aversion is measured by
the curvature of the utility function and optimism is characterized by the individual subjective
probability. Risk aversion and individual subjective probability completely determine the indi-
vidual decision-making behavior, at least locally. The SEU model is particularly well adapted
to the aggregation problem and recent papers show how individual risk aversions and subjective
probabilities are aggregated at the collective level in such a setting (Calvet et al. 2002, Gollier,
2007, Jouini and Napp, 2006, 2007, Li, 2006).
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From an empirical point of view, these two notions are hard to disentangle. For instance, in
the context of lotteries, which is often used to measure the risk aversion level, the reservation
price of a risk averse (resp. risk tolerant) and unbiased individual is empirically indistinguishable
from the reservation price of a risk neutral and pessimistic (resp. optimistic) individual; there
is here an identification problem that confounds data interpretation.

In this paper, we start from a lottery survey, in which data on both risk aversion (reservation
price) and subjective beliefs (subjective probabilities) is available in the same context. In the
setting of a SEU model, this survey enables us to disentangle both notions and to infer about
the individual levels of optimism and of risk aversion. Our aim is then to determine and to
understand the nature of the link between optimism and risk aversion. More precisely, we
want to estimate the average level of optimism weighted by the risk tolerance' as well as the
unweighted average.

The estimation of these quantities is important for both following reasons. First, since the
difference between the weighted average and the unweighted average of the individual level
of optimism is precisely given by the covariance between risk tolerance and optimism, the
estimation of these averages will give us the nature of the correlation between risk tolerance
and optimism. The determination of this correlation should shed some light on the determinants
of the level of optimism and/or risk aversion at the individual level. Second, the estimation
of the weighted average of the individual beliefs is of particular importance at the collective
level. Indeed, in the setting of collective risk-taking decisions with heterogeneous beliefs (and
SEU), this average subjective belief represents the consensus of the group (see Gollier, 2007).
Analogously, in CCAPM?2-like equilibrium models with heterogeneous beliefs (and SEU), the
weighted average of the individual beliefs® represents the belief of the representative agent (see
Rubinstein, 1976, Detemple and Murthy, 1994, Calvet et al., 2002, Abel, 1989, Zapatero, 1998,
Jouini and Napp, 2006, 2007, Li, 2006). This consensus belief plays a crucial role on the
Pareto optimal risk sharing rules and on the equilibrium properties. In particular, a pessimistic
consensus belief might help in explaining the risk premium and risk free rate puzzles?.

We analyze answers to a large survey (1536 individuals). The main problem we encounter
in this survey is related to the fact that some observations correspond to risk neutral or even
risk seeking behaviour. Note that the presence of risk seeking or risk neutral individuals in the
panel is not surprising. Similar results have been obtained in the literature (Guiso and Paiella,
2001, Eisenhauer and Ventura, 2003, Hartog et al., 2002). However, these observations are not
compatible with the standard assumptions of decision theory and of CCAPM-like equilibrium
models nor with the existence of an equilibrium with positive risk-premia since at such an
equilibrium, agents are, at least locally, risk averse. Since our aim is to estimate the risk tolerance
weighted average of the individual levels of optimism at the equilibrium, these observations
require a specific analysis. It is not possible to simply reject these observations, since they are
associated with high levels of risk tolerance and their rejection would have a strong impact
on the quantities to be estimated. We can not keep them without a specific treatment since,
for these individuals, the risk tolerance level is infinite or negative, and with such infinite or
negative weights, an average weighted by the risk tolerance becomes meaningless. We propose
then to interpret both risk neutrality and risk seeking as noise and we adopt the following
approach; we assume that individuals have true unobservable characteristics that respect the
assumptions of decision theory, and we interpret the answers in the survey as noisy realizations
of those characteristics. This is not an original treatment of the data and it is in the spirit of
the Quantal Response Equilibrium model of McKelvey and Palfrey (1992) where it is assumed,
in a game theoretic framework, that with some probability, and for reasons that are completely

'Risk tolerance is defined as the inverse of risk aversion.

2Consumption-based Capital Asset Pricing Model.

3When agents are assumed to have log utilities, this corresponds to the wealth weighted average belief.

*As shown by Mehra and Prescott (1985) and Weil (1989), standard models of financial markets equilibrium
predict risk-premia (resp. risk-free rates) that are too low (resp. too high) to fit observed data.



orthogonal to the model, a player might choose actions that are not in accordance with the
predictions of the model: agents do not select systematically their best-responses, but they
play these strategies with a higher frequency. This approach has been shown to be powerful to
organize behavior in numerous experimental settings.

The aim is then to estimate the distribution of the unobservable characteristics and to derive
the value of the average level of optimism weighted by the risk tolerance. We follow a Bayesian
approach for this purpose and use an MCMC approximation method for computational reasons.
We emphasize that we do not pretend to compute a precise level of optimism of the consensus
belief in a general setting but rather to determine whether there is a clear spread between
the weighted and unweighted averages, which would indicate a behavioral correlation between
optimism and risk aversion and a pessimistic bias at the collective level.

The paper is organized as follows. Section 2 presents the data as well as the measures of
individual optimism and risk aversion. Section 3 presents the statistical estimation. Section 4
concludes.

2 The data

We first describe the survey, then we present the adopted risk aversion and optimism measures.
The last subsection deals with data consistency results.

2.1 The survey instrument

We start from answers to a survey conducted face-to-face in the field by professional interviewers.
The sample is made of adults, between 22 and 55, that are randomly chosen, and yielded 1,536
responses. The questionnaire consists of essentially five parts®.

In the first part, the participant is asked about his reluctance to take part in a game of chance
for religious grounds. Only those who do not have such interdict go on with the questionnaire.

In the second part, the participant is offered the opportunity of entering a head and tail
game for ten rounds. More precisely, a coin is being flipped ten times; each time head occurs, the
participant is supposed to get 10 Euros. The participant is then asked for his own estimation
of the number of times head will occur. The participant is also asked to reveal the maximum
amount he is willing to pay in order to take part in this game. The aim of this second part is to
obtain, in the same setting, measures of the individual levels of optimism and of risk aversion.

The third part deals with questions similar to those in Barsky et al. (1997) which lead to
the elicitation of the level of individual relative risk aversion. This part will enable us to verify
that the data on absolute risk aversion is consistent with the data on relative risk aversion at
the individual level. The fourth part deals with optimism questions as in Wenglert and Rosen
(2000) while the fifth part deals with personal questions, such as gender, age, marital status,
employment status, education and income.

These last three parts will make it possible to compare the results obtained on our sample
with those usually obtained in the literature in terms of Risk aversion, optimism and their
determinants.

2.2 Risk aversion and optimism measures

We derive individual measures of risk aversion and of optimism from the answers to the survey.

As in Ben Mansour et al. (2006), we derive a measure of the degree of optimism from the
answers to the first question of the second part of the questionnaire "Imagine that a coin will
be flipped 10 times. Each time, if head, you win 10€. What is your own estimation, according
to your experience and your luck, of the number of times head will occur, i.e. how many times

°Tt is available at http://www.ceremade.dauphine.fr/jouini.



(out of ten) do you think you are going to win (and get 10€)?" This measure of optimism® is
directly given by the number of times z; that the individual ¢ thinks he is going to win. An
optimistic individual is characterized by a value of z; above the objective value of 5 and the
distance to 5 measures the intensity of his optimism.

This measure is obviously compatible with the definition of optimism as a transformation
of the objective distribution into a more favorable one. Indeed, the subjective probability of
individual 7 associated to the favourable event “head occurs” is approximated by m; = {j and
an optimistic individual is characterized by a m; strictly higher than 0.5. We will use this
measure of individual subjective probability when determining a measure of risk aversion in the
framework of Subjective Expected Utility. Notice that the introduction of a ten times head-tail
game is intended to provide the individuals with a simple framework, helping them to reveal
their subjective probability associated with the event “head occurs”.

As far as risk aversion is concerned, we recall that absolute risk aversion is defined by the

quantity A (c) = — ,(( )) whereas relative risk aversion is defined by R (c¢) = —c¢ ((C)) , where u

denotes the agent’s utility function. Adopting an approach similar to Guiso and Palella (2001),
we will use the answers to the question "What is the maximum amount that you are willing
to pay to take part in the game?" to derive a measure of the individual level of absolute risk
aversion. The answer of individual ¢, denoted by y;, corresponds to his reservation price, which
leaves him indifferent between his initial wealth and the expected gain from the game. This
means that if we adopt the SEU model and if we let X denote the random payoff associated
with the head-tail game, the answer y; satisfies

ui (w;)) = E' [uz (wi +X - yz>:|

= Z Cloﬂ' 1 — ﬂ,)lo_k Uq (wi + 10k — yi) s

where u; denotes the utility function of agent 4, w; his initial wealth and E? the expectation
operator under his subjective probability. In the case of exponential utility functions’, a measure

for (corrected) absolute risk aversion of individual 4 is then given by the nonzero solution a; of

1= Z Chorf (1 — 7)) F expa; (y; — 10k) .
It is easy to obtain through a simple factorization that this equation is equivalent to

1l=miexpa; (% - 10) +(1—m) expaily—(l). (1)

We denote by C'A; the nonzero solution, obtained by numerical approximation, of Equation (1).
We refer to it as Corrected absolute risk Aversion because we take into account the subjective
probability 7r; in order to determine the individual level of risk aversion. For example, a pessimist
who believes m = 3 and chooses y = 10 has an absolute risk aversion of a = 0.35, whereas an
optimist who believes m = 3 and yet chooses y = 10 has an absolute risk aversion of a = 1.2.
This approach is different from the classical approach in experimental or empirical literature
on risk aversion in an expected utility framework, where the possibility of subjective beliefs is
usually not taken into account. For instance, in Guiso and Paiella (2001), when the individual
is told to have a chance of 1 over 10 of winning, one does not take into account, both in the
interpretations of the results and in the inferred levels of risk aversion, the fact that some

5Ben Mansour et al. (2006) provide a rationale for this measure as well as an analysis of its main features.

"The choice of exponential utility functions amounts to assuming constant absolute risk-aversion. It permits
numerical computations of the level of absolute risk-aversion without information about the individual level of
wealth.



people believe that they are lucky and overweight their probability of winning while others do
the opposite. The same remark holds for empirical approaches. For instance, Eisenhauer and
Halek (2001) estimate the level of risk aversion using life insurance data. The underlying model
assumes an age based estimated probability of mortality, i.e. assumes that all people in the
same age class share the same objective estimation of their probability of mortality, whereas
it is intuitive that the estimation of one’s probability of mortality is subjective and highly
dependent upon one’s optimism.

2.3 Consistency of the data

In this section we verify the consistency of our data from different points of view.

First, the answers of our sample seem consistent with previous surveys. As far as relative
risk aversion is concerned, we find that women are more risk averse (as in Eisenhauer and Halek,
2001, Barsky et al., 1997, Cohn et al., 1975, Palsson, 1996, Jianakoplos and Bernasek, 1998,
Hariharan et al., 2000) and that relative risk aversion increases with age (as in McInish, 1982,
Morin and Suarez, 1983, Riley and Chow, 1992, Palsson, 1996, Schooley and Worden, 1996,
Wang and Hanna, 1997, Barsky et al., 1997).

The answers about optimism in the fourth part are also consistent with previous surveys. We
obtain on our sample the same results as Wenglert and Rosen (2000) about personal optimism.
Indeed, Wenglert and Rosen (2000) obtain an average level of "personal optimism" equal to
0.596 and we obtain a value of 0.536 (using the same methodology).

The consistency with previous surveys is also confirmed by the data on reservation prices.
Let us denote by OA; the nonzero solution of Equation (1) for m; = %, i.e. the nonzero solution
a; of

1 Ui 1 Yi
1= iexpai (ﬁ - 10) + §expaiﬁ.

In other words, O A corresponds to the absolute risk aversion under the objective probability as
it is usually computed in the literature. We obtain that O A is higher for women, increases with
age and decreases with income as in Guiso and Paiella (2001), Donkers et al. (2001), Hartog et
al (2002), Powell and Ansic (1997), Eisenhauer and Ventura (2003).

A possible drawback of our approach is that we use essentially two simple questions only
to elicit individual risk attitudes. In fact, the survey contains various questions that involve
risk aversion or optimism. In order to elicit one of these characteristics, the classical procedure
would be a regression based on all the questions related to that characteristic. However, our
aim is to determine both characteristics in the same context in order to disentangle the two
notions and to obtain a measure of risk aversion that is corrected by the level of optimism.

For this reason, we have chosen to determine a measure of the individual levels of optimism
and risk aversion from the answers to the head and tail questions only and then to verify their
consistency with the answers to other questions in the survey.

We verify that the answers about the reservation price are compatible with those about
relative risk aversion. By definition, relative risk aversion is equal to the product of absolute
risk aversion by individual wealth. We consider individual income as a proxy for individual
wealth. Since the level of relative risk aversion derived from our survey is a qualitative variable
(individuals are sorted into seven groups), we establish the consistency between relative and
absolute risk aversion measures through a comonotonicity test between relative risk aversion
and the product of absolute risk aversion by the mean of the income band (see Table 1).

Finally, as far as the data on the subjective probabilities are concerned, three questions
in the questionnaire on personal pessimism have attracted our attention since intuitively, they
should have a link with our notion of pessimism : (Q1) You have no chance to win at a lottery
game, (Q2) You have no chance to be selected for a television game and (Q3) You will win one
day at the Promosport. As expected, we have obtained a decreasing relationship between (Q1)



(resp. Q2) and our measure of optimism and an increasing relationship between (Q3) and our
measure of optimism.

3 Statistical estimation

In this section we adopt a Bayesian approach (see, e.g., Robert, 2001) for the estimation of
the average of the subjective probabilities weighted by the risk tolerance. We also estimate the
unweighted average of the subjective probabilities.

The estimation of these quantities is interesting at the individual level, and can help to
understand the nature of the link between risk aversion and optimism. Indeed, the correlation
between risk aversion and optimism is easily deduced from the difference between these two
quantities.

Moreover, the estimation of the weighted and unweighted averages of the individual beliefs
is of particular importance at the collective level. Indeed, in the setting of collective risk-taking
decisions with heterogeneous beliefs (and SEU), this average subjective belief represents the
consensus of the group. Analogously, in CCAPM-like equilibrium models with heterogeneous
beliefs (and SEU), the weighted average of the individual beliefs represents the belief of the
representative agent. The determination of the consensus belief, or more precisely of the extent
to which it differs from the unweighted average of the subjective beliefs, is then particularly
interesting.

We do not pretend here to be able to compute precise and reliable individual and collective
levels of risk aversion or of optimism. We are interested in observing whether there is a clear
spread between the weighted and unweighted averages, which would indicate a behavioral cor-
relation between optimism and risk aversion and a pessimistic bias at the collective level. In
particular, it is well-known that willingness-to-pay questions are biased but this bias should not
induce by itself a correlation between optimism and risk aversion.

3.1 Descriptive statistics

The results on the measure of optimism introduced in Section 2 have been studied in Ben
Mansour et al. (2006). We recall here the main features of this analysis. Figure 1 provides
the distribution of our measure of optimism among individuals and shows that there is a great
heterogeneity in the level of optimism among agents. For the considered sample of 1,536 in-
dividuals, the mean value for the number of times the individual thinks he is going to win is
equal to 3.93. It is significant and quite striking to observe that when asked about the number
of times he is going to win at a head and tail game for ten draws, an average individual does
not answer 5 times as he should if thinking under the objective probability, but answers slightly
less than 4 times. This result is in favor of the existence of a behavioral bias towards pessimism
in individual beliefs.

Regarding risk aversion, the average announced price is 11.96€ which, as expected, is lower
than the average subjectively expected payoff. However some agents announced a reservation
price higher than their subjectively expected gain hence have a negative corrected risk aversion.
This can be shown if we focus on the probabilities and prices that we denoted respectively by x;
and y; and if we represent them on a diagram. Figure 2 contains a jitter® representation of this
diagram. There are 55 points such that y/100 = z/10 and 40 points such that y/100 > x/10.

Based on Figure 2, it appears that there is a negative link between non corrected risk
aversion and optimism, leading us to conclude that risk aversion (in the usual sense) decreases
with optimism. Indeed, the average announced price for a given level of optimism clearly
increases with the level of optimism. This correlation is confirmed as statistically significant by

8The jitter representation is used to improve the rendering on samples on grids by introducing a slight per-
turbation that exhibits the number of points at each location on the grid.



Pearson, Kendall and Spearman tests. This is clearly understandable since the more optimistic
an individual, the lower his non-corrected risk aversion. In other words, the non-corrected
measure of risk aversion contents a great dose of pessimism. This negative correlation does not
hold for corrected risk aversion. On the contrary, we verified through Spearman’s and Kendall’s
tests that the average of the corrected risk aversion for a given level of optimism significantly
increases with the level of optimism (see Table 2). This is in favor of a positive correlation
between risk aversion (in our sense) and optimism.

3.2 The Bayesian model

We now want to estimate the average level of optimism weighted by the risk tolerance. The
problem is that there is a non negligible number of individuals for which /100 = z/10 (i.e. zero
corrected risk aversion and infinite corrected risk tolerance) or even y/100 > x/10 (i.e. negative
corrected risk aversion and risk tolerance). The presence of such individuals raises some specific
problems since with such negative or infinite weights, the weighted sum is not a weighted
average any longer. Furthermore, we can not simply eliminate these observations; indeed, the
individuals for which y/100 is near x/10 are those for which the corrected risk tolerance level
is high, hence they are heavily weighted in the considered average. Finally, such observations
are incompatible with the classical assumptions of decision theory and CCAPM-like equilibrium
models.

For all these reasons, a specific treatment of the data needs to be undertaken. One should
bear in mind the fact that any slight modification of an observation such that y/100 is near
x/10 has a strong impact on the risk tolerance level and then on the weight in the considered
average.

Note that the presence of risk seeking or risk neutral individuals in the panel is not surprising.
Similar results have been obtained in the literature (Guiso and Paiella, 2001, Eisenhauer and
Ventura, 2003, Hartog et al., 2002). However, our aim is to provide a proxy for the risk aversion
at the equilibrium where at least locally, the agents are necessarily risk averse. For this reason,
we propose to interpret both risk neutrality and risk seeking as resulting from noise.

More precisely, we adopt the following approach. We assume that individuals have true un-
observable characteristics (;, p;), where m; corresponds to the subjective probability of success
at each draw and p; corresponds to the price that the individual is willing to pay for the ten
draw game normalized to one (i.e. divided by 100). The answer (z;,y;) is then interpreted as a
noisy realization of (m;, p;).

More precisely, we assume that (x,y) = ((z1,41),-.., (Zn,yn)) is a set of independent real-
izations such that

(21, 5) | (mis i) ~ B(10,m;) ® B(100, ),

where n is equal to 1536.
We now follow a Bayesian strategy to infer about the parameter (m;,p;), first defining a
prior distribution on this parameter as

a—1 b—1,¢c—-1 d—1 e
m (L =m)" (L= i) (i = pi)
f(ﬂ',p) (ﬂ-iapi) = g(a7 b,c.d, 6) ]I0<pi<7ri<1 (2)

where a, b, ¢, d, e are positive constants and
g(a,b,c,d,e) = B(a+c+e,b)B(c,e+1)
X (=d+1)x...x (=d+1)

Bla+c+e+1i,b)B(c+i,e+1).

is the normalizing constant of the probability density (2).



We have then
f((xlaylaﬂ-l?pl)v ) (xna Yn,s 7Tn7pn)|aa bv ¢, da 6) =

[Clam (1 = m) " " ilgo, 10y () Clioop? (1 — pi) ¥ 1 1003 (12)
1

n

)

T 1 — ) i (1 — pi) (i — py)©
g(a7 b7 c, d7 6)

which is a joint distribution on the data (x,y) and on the parameter. The Bayesian estimation
is based on the so-called posterior distribution of the parameter, which simply is the conditional
distribution of this parameter given the data, f(; (71, p1, .., Tn, PulX,y,a, -+ ,€).

The sample (m,p) = ((71,p1),- - -, (7n, Prn)) is not observed and, in addition, we first assume
that the so-called hyperparameters a, b, ¢, d, e are also unknown and thus need to be estimated
from the data (x,y) (using similar Bayesian principles).

Once (a,b,c,d,e) is estimated, we want to estimate the average subjective probability
weighted by the risk tolerance as well as the unweighted average subjective probability. For
a given pair (m,p), the associated level of risk aversion z(7,p) is defined as the solution in z of

o, 1p(7i)To,r, [ (i)

mexp(z(p—1))+ (1 —m)exp(zp) —1 =0

which is the analog of Equation (1). Hence, based on the data (x,y), we want to estimate the
ratio E[n/z(m, p)]/E[1/z(m, p)], which is given by

1 u a—1 —1,c—1 -1
/ (/ [ u ]u (1 — )Pl H(1 — v)? (u—v)edv>du
0 o Lz(u,v) g(a,b,c,d,e) I3
1 u a—1 — — - '
/ (/ [ 1 ]u (1 — )P~ 1o~ (1 — v)? 1(u_v)edv>du 74
0 0 Z(uvv) g(avb) ¢, da 6)
The natural Bayes estimate of this ratio is then the posterior expectation, E[Z3/Z4|x,y]| (see
Robert, 2001, Chapter 2).

The unusual prior distribution for (7, p) given in (2) is inspired from Beta distributions that
are the conjugates of binomial distributions, the additional term (w; — p;)¢ being chosen for
integrability reasons. Indeed, near the diagonal, we have that z(m,p) ~ m — p and thus the
nature of the integrals 73 and Z; depends on the position of e with respect to zero.

We will also estimate the unweighted average level of optimism Z; as well as the unweighted
average level of risk aversion Zs, respectively given by

AT ““jl(“fb;;;,;,g,d,z;‘;jvidv) .
U1 — )bl (1 = 0) T (0 — v)©
/01 </0u - g9(a, b,bi,ld,ci)l - dv> deu
/0 </0 ) e b,c(,ld,_e;]) =) dv) o
UL )

3.3 Parameter estimation and numerical results

I:

To complete the definition of the prior distribution, we also introduce the following exponential
prior on the hyperparameters:

a,b,c,d, e i Exp(l).



Once the prior and the sampling distributions selected, we can formally draw inference about
the true parameters (m;, p;) by computing their posterior distribution, that is, their distribution
conditional on the observations, and using this distribution as a complete summary of the
information available on the (7;, p;)’s (Robert, 2001). In practice, it is however quite complex
to derive exactly the posterior distribution of a pair (m;,p;), given that this derivation implies
the integration of all the other parameters conditional on the whole sample (x,y). We therefore
need to resort to an approximate method, based on the simulation of Markov chains, namely the
Markov Chain Monte Carlo (MCMC) method (Robert and Casella, 2004). Gibbs sampling is
one of the most popular MCMC schemes. Its principle is quite straightforward: when faced with
the simulation of a multivariate distribution g(61,...,0,) (p > 1), generate instead successively
from the full conditionals ¢;(0;|0_;) and let the corresponding Markov chain converge to the
limiting distribution 7(6). In our case, the implementation of this principle translates into the
generation of the (m;,p;)’s given (a,b,c,d,e) and (x,y), and of (a,b,c,d,e) given the (m;,p;)’s
and (x,y). More precisely, the conditional independence relations imply that we simulate
successively from (1 < i < n)

_ i i—1 i
o flpmy(mispil ..) oc w1 — ) bHL0mmm et (] ) 00=ui L (7 — ) €llg e <t

falal . .) o gaptaeys exp (—(1 — 1y log(m))a) Tig cef(a);

o Folbl..) % sptae X (—(1 = Y1y log(1 — m:))b) g oo (B);

o Jelel ) o gy exp (—(1 = S0y 10g(pi))e) g0 (0):

o Fald]-.) o s iaem exp (—(1 = X0y log(1 — p))d) Tg,oe)(d);
o felel...) o m exp (—(1 - 22;1 log(m; — p;))e) H}o,oo[(e)-

Note that the dataset (x,y) only appears in the conditional distribution f; »y. This is due
to the hierarchical nature of the model that implies that (a,...,e) is independent of (x,y) given
the (74, p;)’s.

These distributions are moreover far from standard and their simulation requires another
level of MCMC technology, namely the replacement of the exact simulation with a Markov step
which guarantees convergence to the proper distribution. The corresponding algorithm is called
hybrid MCMC and works as described in the Appendix.

We however abstain from reporting the full simulation experiment corresponding to this
setting as it provides a non-identifiability conclusion on the parameter e. Indeed, the chain is
always converging to a value of e very close to 0. This is particularly worrying because the
parameter e has been introduced in order to ensure the finiteness of Zs and Z,. A value of e =0
would have been more natural for the distribution of (7, p) given the choice of binomial distri-
butions for (x;,y;) |(7, pi). In order to examine this problem, we study instead the sensitivity
of the model to changes in e. More precisely, we will fix different small values for e hoping that
the ratio % will remain stable when e goes to zero even if we know that Zs and Z4 will diverge.

When setting the value of e to 0.1, 0.05, and 0.01, running an hybrid MCMC algorithm
leads to a highly stable estimation of the other parameters. The results of this simulation for
e = 0.01 are presented in Figures 3 and 4 while the Bayesian estimates of a, b, c,d are given
in Table 3 for the different chosen values of e. The estimates are quite close and the mixing
behavior of the MCMC chains seems to be fairly impervious to changes in e. We are therefore
satisfied with this proxy to the full parameter estimation scheme and in the next we will retain
a value of 0.01 for e.



Now, for a given sample (x,y), we want to estimate the quantity
1 u a—1 b—1,,c—1 d—1 e
1— 1— -
/ / u w1 —w)’ " (1 =) (u — v) 2o du
0 0 z(u,v) g(aab) ) da 6) o 13

P el === ™

Since this ratio depends on the unknown parameters (a, b, ¢, d), e being fixed, the natural esti-
mator is the Bayes posterior expectation conditional on the sample (x,y), E[Z|(x,y)]. There is
however a difficulty in that both integrals Zs and Zy are not available in closed form. We thus
resort to separate evaluations of both integrals, with Zs and Z4 estimated by importance sam-
pling in order to ensure finite variance estimates (Robert and Casella, 2004). The importance
distribution we use is a Dirichlet D(¢,e — €, \) with ¢» > 0, e — e > 0 and A > 0, and density

7=

v;pfl(ui — )M 1 — )M I (Y + e — e+ A) /(D)L (e = e)T(N)),

due to the similarity with the target distribution and the warranty of a finite variance. The
importance sampling estimates of both integrals are therefore

7 1 N u?_i(l — )P NS — 0B (wy — 0)¢ [ g(ai, biy ¢, i, €) |
N & 2w, vi)o) ™ ui = 0)e (1 = u) T + e — e+ A) /()T (e — T (A)
and
7 1 N u;-”:l(l — ui)bflvfi_l(l —v3) 5wy — vi)e/g(ai, bi, ci,d;,€) ’
N = aui, 0o (ui = 0) (1= w) AT + e — e+ A) /(DT (e — )L'(N))
where ((u1,v1),...,(un,vn)) is an iid. sample from D(¢,e — €, A) and the (a;,b;, ¢, d;)’s

constitute the MCMC sample from the posterior distribution of (a, b, ¢, d) given (x,y).?

The Bayes estimate of 7 is therefore approximated by the ratio of both importance sampling
Bayes estimates, i.e. Z3/Zy.

The corresponding estimations of 7y, 7Zs, 73,74 and Z are given in Table 4, based on 200, 000
MCMC iterations. For e = 0.1 and e = 0.05, we used the last 190,000 MCMC iterations in the
summation and ¢ = 0.01. For e = 0.01, we used only the last 150,000 MCMC iterations in the
summation and € = 0.001. The estimates of Z;,7Zo and 7 are very stable with respect to the
variations of e even if Z3 and Z4 diverge when e goes to zero.

Recall that the objective probability is 0.5. As shown in Table 2, the average subjective
probability which is given by Z; is around 0.37. The average subjective probability weighted by
the risk tolerance, which is given by Z5, is much lower than 7; and is around 0.3. As far as the
link between optimism and risk aversion is concerned, these results indicate the presence of a
positive correlation between optimism and risk aversion: more risk averse individuals are more
optimistic.

4 Conclusion

In this paper, we have adopted a Bayesian estimation approach in order to analyze the link
between risk aversion and optimism and to estimate the risk tolerance weighted average of
subjective probabilities (which represents the consensus probability of the group) as well as
the unweighted average. In the analyzed survey, while the objective probability is 0.5, the

Tt may sound surprising to mix (ui,v;)’s simulated from the importance function with (as, bi,¢;, d;)’s sim-
ulated from the posterior distribution, but the average Zs (resp. Z4) is converging to the double expectations
E{E[r/z(m,p)]|(x,y)} (vesp. E{E[1/2(m, p)]|(x,¥)})-
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estimated (equally-weighted) average subjective probability reveals to be around 0.4 and the
estimated average subjective probability weighted by the risk tolerance reveals to be around
0.3. It appears then, on our sample, that the group is pessimistic and more pessimistic than
the average individual.

We do not pretend that 0.3 represents the collective subjective probability in a general
setting, nor that % = —0.2 represents the average level of optimism in all risk-taking
situations in a [—1, 1] scale. We only claim that the difference between the unweighted and the
risk tolerance weighted averages of subjective probabilities is substantial enough to conclude
to a behavioral correlation between optimism and risk aversion. Analogously, the difference
between the objective probability and the unweighted average of subjective probabilities is
substantial enough to conclude to a behavioral bias toward pessimism at the individual level.
As a consequence there should be a bias toward pessimism at the collective level. The impact
on the equilibrium characteristics should then be towards an increase of the risk premium and
a decrease of the risk free rate, which is interesting with regard to the risk premium and risk
free rate puzzles.

To identify the origin of the elicited pessimism and correlation between optimism and risk
aversion is a delicate question. The observed pessimism might result from an individual learning
process, where individuals overestimate bad experiences (see Taylor, 1991) and the intensity of
this effect might be related to the individual level of risk aversion. Besides, people seem to be
disappointment averse in their choices (Bell, 1985). Disappointment avoidance may reflect a
self deception mechanism designed to protect self esteem about decision making ability, i.e. a
calculated avoidance of unpleasant future feelings (Joseph et al., 1996, Gollier and Muerman,
2006). The elicited pessimism could be interpreted as defensive pessimism, an anticipatory
strategy that involves setting defensively low expectations prior to entering a situation so as
to defend against loss of self esteem in the event of failure and here again the intensity of this
effect might be related to the individual level of risk tolerance. This would require a deeper
analysis of the process of belief formation.
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Appendix
Let us first define
1
fa(ylr) = 1 (faora.00) W) + Fa(23.00) Y) + fa (653,89 Y) + a0 W) -

The hybrid MCMC algorithm we used in our simulation is described by the following steps:

Hybrid MCMC algorithm

e Initialization: Simulate (a(?),5(©), ¢, d®) from @} ,Ga(1,1)
For i € {1,...,n}, simulate (WEO),pEO)) from

Be (xz +a,10 — z; + b(o)) © Beyy o (yz +¢9,100 — y; + d(o))
(truncated Beta distribution)

e Fort=1,...:
1) Fori e {1,...,n}, simulate (7;, p;) from

Be (ajZ +a® V10 — 2 + b(tfl)) ® Be (yZ + D100 — g + d(t71)>

o]
and take
<7T(t) (t)) ) (i pi) with probability pg’r’p)
i P (Wgt_l),pl(-t_l)> with probability 1 —pl(.”’p)
where
- o (t=1) 3
(™P) — min (Ti = P1)" Fheet-04y,.dt =) +100-y,.0,1) (73 1
S (0D ) (2D
i Pi Be(c(t=1+y;,dt=D+100—y;,0,1) \Ti

2) Simulate a from fg <~|a(t_1)) and take

; - " A atal) /e (@la)
OIS B with probability p® = min

fo (a"V1.) Jfe (a®Va) :

a1 with probability 1 — p®

3) Simulate b from fg (-|b(t_1)) and take

p(®) — b with probability p® = min Jo (E| - ) /fa (l~)|b(t*1))~ B
= fo (b(t_1)| B ) /fe (b(t‘1)|b)

b(*=1)  with probability 1 — p®

4) Simulate ¢ from fg (-\c(t_l)> and take

; , o , fe@..) /fa <g|c<t—1))
o — c with probability p° = min 1

fo (9]0 ) e (<)

=1 with probability 1 — p°
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5) Simulate d from fg (-\d(t_l)) and take

) faldl...) /fe (d|a®=V
e e T

d®1  with probability 1 — p?

6) Simulate é from fg ('|e(t_1)) and take

i . N L@ /o (el )
ROND B with probability p¢ = min ) 1

fo (V] ) Ve (47Dl

et~ with probability 1 — p¢

After some experimenting, we found that the scales §; = 1, d = 10, 3 = 100 and 4 = 1000
ensure a good behavior of the hybrid MCMC algorithm.
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Figure 1: Distribution of pessimism. This figure represents the distribution of “pessimism”
across our sample. A value of -1 (resp. 1) corresponds to people who think that they will never
(resp. always) win at the head or tail game. The value of -0.1, which is endowed with the
largest frequency of individuals, corresponds to people who think that they will win (or head
will occur) 4 times out of ten.

E[OA; x w;|i € (]
515.8272

703.077

608.1076
951.7348
758.1568
1218.167
1206.866

N O TR W N RO

Table 1: This table reports for each class ¢ of relative risk aversion the average level over the
individuals in that class of the product of absolute risk aversion (under the objective probability,
OA;) by the mean of the income band w;. Kendall’s Tau is equal to 0.71, Spearman’s Rho is
equal to 0.89 and Pearson’s correlation coefficient is equal to 0.89. There is then a positive
relationship between the elicited levels of absolute and relative risk aversion.
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Figure 2: JITTER representation of the dataset. This figure reports on the horizontal axis the
maximum price individuals are willing to pay in the game with ten draws and on the vertical
axis the number of times they think that they will win.

&

0.7732720
0.8224625
0.7881803
0.8831758
1.1054212
0.9278274
1.4897416
1.0668114
5.1140936

© 00 O T i W N~

Table 2: Average level of corrected risk aversion for a given level of x (number of times the
individual thinks he is going to win). Kendall’s Tau is equal to 0.78 and Spearman’s Rho is
equal to 0.9 which indicates a positive link between optimism and corrected risk aversion.

~ A~
A~ A~

e ‘ a b ¢ d
0.1 | 4.6305 | 8.5007 | 0.7207 | 3.1777
0.05 | 4.5005 | 8.2155 | 0.7142 | 3.2730
0.01 | 4.7623 | 8.5973 | 0.7283 | 3.6653

Table 3: MCMC estimates of a,b,c,d (empirical means over the last 190,000 points in the
MCMC sample out of 200,000 iterations).

e L| L] I3 I I

0.1 |0.3770 | 0.1161 | 1.2458 | 4.1281 | 0.3018
0.05 | 0.3755 | 0.1166 | 3.4904 | 11.7605 | 0.2968
0.01 | 0.3735 | 0.1153 | 22.1699 | 74.6999 | 0.2967

Table 4: MCMC estimates of 77 ,Z5, Z3,Z4 and Z based on 200, 000 iterations. It is immediate
to see that 73 and Z, diverge when e goes to zero while their ratio Z remains stable.
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Figure 3: e = 0.01 : evolution of the hybrid MCMC sample over 150, 000 iterations
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Figure 4: e = 0.01 : histograms of the last 150,000 MCMC iterations
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