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Abstract

This paper aims to demonstrate that the strategic approach of network formation can ge-

nerate networks that share the main structural properties of most real social networks. We in-

troduce a spatialized variation of the Connections model (Jackson and Wolinski, 1996) in which

agents balance the benefits of forming links resulting from imperfect knowledge flows through

bonds against their costs which increase with geographic distance. We show that, for inter-

mediary levels of knowledge transferability, our time-inhomogeneous process selects networks

which exhibit high clustering, short average distances and, when the costs of link formation are

normally distributed across agents, skewed degree distributions.
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1. Introduction

There is an increasing consensus in the economic literature to recognize that network struc-

tures significantly influence the outcomes of many social and economic activities. Such networks

are often strategically shaped by the participating agents, as recently highlighted by the theo-

retical economic literature (Jackson and Wolinski, 1996 ; Bala and Goyal, 2000). Models of such

kind encompass various contexts such as job-contact networks (Calvó-Armengol, 2004), oligo-

polies and R&D collaborations (Goyal and Moraga, 2001 ; Goyal and Joshi, 2003), buyer-seller

networks (Kranton and Minehart, 2000), etc. Nevertheless, this literature has not yet dedicated

much attention to the full characterization of the endogenous networks and most importantly to

the strategic conditions that may lead to the emergence of more complex networks that might

resemble real networks.

At the same time, the structural properties of real networks have been extensively explo-

red and characterized by some recent contributions in the field of Statistical Physics. In short,

this (still highly active) literature has shown that in most social networks, the average distance

between any two nodes (computed as the minimal number of inter-individual connections) is

remarkably short1 while the agents remain highly clustered. Networks that simultaneously share

those two structural properties are said to be small worlds à la Watts and Strogatz (1998)2. Mo-

reover, most real networks also exhibit a skewed (right-asymmetric) distribution of connections

among agents (Albert and Barabási, 1999) which means that few agents have many links while

most agents are weakly connected3.

In this paper, we demonstrate that the strategic approach to network formation can lead to

the emergence of networks that share such structural properties4. For that purpose, we introduce

a strategic model of network formation built on a simple variation of the Connections model

of Jackson and Wolinski (1996). Myopic self-interested agents form costly links to benefit from

agents with whom they are directly or indirectly connected in a network. The longer the dis-

tance in the relational network the weaker the positive externality. Moreover, the costs of direct

connections increase linearly with the geographic distance separating agents (in a close manner

as Johnson and Gilles, 2000). The model typically applies to knowledge flows in interpersonal

connections between inventors for instance. Indeed, it has been repeatedly argued that invention

activity is far from being the outcome of isolated agents efforts but of interactive and collective

processes (e.g. Allen, 1983 ; von Hippel, 1989) in which networks of interpersonal relations play

a key role by improving and facilitating information and knowledge transfers5.

1This idea can be traced back to the “six degree of separation” experiment of Milgram (1967).
2Such properties have for instance been evidenced for web sites links or coauthorship of scientific papers (see

Barabási and Albert, 1999 ; Newman, 2001).
3Survey papers on this literature are Strogatz (2001) and Albert and Barabási (2002).
4This aim is shared by Carayol and Roux (2004), Jackson and Rogers (2005) and Galeotti et al. (2006).
5Several previous theoretical works focus on how some fixed network structures affect information, knowledge

or technology diffusion (for example, David and Foray, 1994 ; Valente, 1996 ; Cowan and Jonard, 2003 ; Young,

2002).
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We study, in a dynamic time-inhomogeneous process of networks formation, how the degree

of knowledge transferability in networks, which may be related to its relative degree of tacitness

vs. codification, generates qualitatively different network architectures. In particular, the model

provides a theoretical ground for the relative density of invention networks depending on the

nature of knowledge : emergent networks are less dense when knowledge is either mostly tacit

or mostly codified. The model also provides an economic rationale for why connections between

inventors are mainly established in the local space and thus why knowledge mostly diffuses

locally (Almeida and Kogut, 1999 ; Breschi and Lissoni, 2006). Our most striking result is that,

for a large region of intermediary levels of knowledge transferability, the stochastic process leads

to emergent networks that share the small world properties : they are highly clustered and

exhibit a low average distance thanks to some distant connections (Granovetter, 1973). The

latter are strategically formed while such shortcuts are usually thought as randomly attributed.

Lastly, when we introduce a normal (Gaussian) heterogeneity among agents on the costs they

bear for their direct connections, then emergent networks also exhibit skewed distributions of

neighborhoods, that is some few agents tend to play more central roles in the population.

The paper is organized as follows. Section 2 presents basic formal definitions. Section 3 is

devoted to the static features of the model and to the presentation of some analytical results on

pairwise stability and efficiency. In Section 4 we introduce the dynamic stochastic process and

the methodology we use. The results obtained for the dynamics are presented in Section 5. The

last section concludes.

2. Basics on graphs and network formation

We begin with some basic notions on graphs and next turn to formal definitions on networks

stability and efficiency.

2.1. Graphs

Consider a finite set of n agents, N = {1, 2, ..., n} with n ≥ 3, and let i and j be two

members of this set. Agents are represented by the nodes of a non-directed graph the edges of

which represent the links between them. The graph constitutes the relational network between

the agents. A link between two distinct agents i and j ∈ N is denoted ij. A graph g is a list

of non ordered pairs of connected and distinct agents. Formally, {ij} ∈ g means that ij exists

in g. We define the complete graph gN = {ij | i, j ∈ N} as the set of all subsets of N of size 2,

where each player is connected with all others. Let g ⊆ gN be an arbitrary collection of links on

N . We define G =
{
g ⊆ gN

}
as the finite set of all possible graphs between the n agents.

Let g′ = g + ij = g ∪ {ij} and g′′ = g − ij = g\ {ij} be respectively the graph obtained by

adding ij and the one obtained by deleting ij from the existing graph g. The graphs g and g′ are

said to be adjacent as well as the graphs g and g′′. For any g, we define N(g) = {i | ∃j : ij ∈ g},

the set of agents who have at least one link in the network g. We also define Ni(g) as the set
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of i’s neighbors, that is : Ni(g) = {j | ij ∈ g} . The cardinal of that set ηi(g) = #Ni(g) is called

the degree of node i. The total number of links in the graph g is η(g) = #g.

A path in a non empty graph g ∈ G connecting i to j, is a sequence of edges between distinct

agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. A cycle is a path such that

i1 = ik. A network is acyclic if it does not contain any cycles. The length of a path is the

number of edges it contains. Let i ←→g j be the set of paths connecting i and j on graph g.

The set of shortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, then

k ∈ i ←→g j and #k = minh∈i←→gj #h. We define the geodesic distance between two agents

i and j as the number of links of a shortest path between them : d(i, j) = dg(i, j) = #k, with

k ∈ i←̃→gj. When there is no path between i and j then their geodesic distance is conventionally

infinite : d(i, j) =∞.

If agents have fixed positions in a given space, representing for example their geographic loca-

tion, one can define a new distance operator denoted l(i, j). In our model, we consider that agents

are equidistantly located on a circle (or a ring) with unitary intervals. Without loss of generality,

agents are ordered according to their index, such that i is the immediate geographic neighbor of

agent i+ 1 and agent i − 1 but agent 1 and agent n who are neighbors. As a consequence, the

geographic distance between any two agents is given by l(i, j) = min {|i− j| ;n− |i− j|} .

Several typical graphs can be described. First of all, the empty graph, denoted g∅, is such

that it does not contain any links. The ring g◦ is a network in which all agents are connected

and only connected with their two closest geographic neighbors. The chain gc, is defined as a

connected subset of the ring, that is gc ⊂ g◦ and ∀i, j ∈ N(gc), i ←→gc j �= ∅. If #gc = #g◦

then gc = g◦. Let gmc be a maximally connected chain such that #gmc = #g◦ − 1. If gc is such

that #gc � #gmc, there is always one and only one path between two connected agents i and

j (the set i ←→gc j is a singleton). The covering chain of the graph g is a chain gcc such that

for all i, j ∈ N : i←̃→g◦j ⊂ gcc iff ij ∈ g. The double ring denoted g2◦ is a network such that

all agents are only connected with their four closest geographic neighbors. In the triple ring,

denoted g3◦, all agents are only connected with their six closest neighbors. Finally, a (complete)

star, denoted g⋆, is such that #g⋆ = n− 1 and there exists an agent i ∈ N such that if jk ∈ g⋆,

then either j = i or k = i. Agent i is called the center of the star. It should be noted that there

are n possible stars, since each node can be the center.

2.2. Networks stability and efficiency

We consider a network formation game in which pairs of agents meet and decide to form,

maintain or break links. The formation of a link requires the consent of both agents but not its

deletion which can emanate from one of them unilaterally. Moreover, agents are myopic : they

take their decisions on the basis of the immediate impacts on their current payoffs. Formally,

let πi :
{
g | g ⊆ gN

}
→ R, the payoffs received by i from his position in the network g, with

πi(∅) = 0.

Jackson and Wolinski (1996) introduce the notion of pairwise stability which departs from the

Nash equilibrium since the process of network formation is both cooperative and non cooperative.
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A network is said to be pairwise stable if no incentive exists for any two agents to form a new link

or for any agent to break one of his existing links. The formal definition of the pairwise stability

notion follows. A network g ⊆ gN is pairwise stable if : i) for all ij ∈ g, πi(g) ≥ πi(g − ij) and

πj(g) ≥ πj(g − ij), and ii) for all ij /∈ g, if πi(g + ij) > πi(g) then πj(g + ij) < πj(g).

As regard network efficiency, we use the ‘strong’ notion introduced by Jackson and Wolinski

(1996). It relies on the computation of the total value of a graph g given by : π (g) =
∑
i∈N πi (g).

A network g is then said to be efficient if it maximizes this sum on the set of all possible graphs{
g | g ⊆ gN

}
, that is : π(g) ≥ π(g′) for all g′ ⊆ gN . It should also be noticed that several networks

can lead to the same maximal total value. For example, if we consider strictly homogeneous

agents, any isomorphic graph of an efficient network is also efficient.

3. The spatialized connections model

In this section, we present our model which is a simple variation of the Connections model

introduced by Jackson and Wolinski (1996) and present some new analytical results we obtain

on the structure of pairwise stable and efficient networks.

3.1. The model

In this model, agents benefit from knowledge that flows through bilateral relationships. Ne-

vertheless, the communication is not perfect : the positive externality deteriorates with relational

distance. Formally, there is a decay parameter which represents the quality of knowledge transfer

through each bilateral connection. In a given network, agents can not strategically control the

circulation of knowledge. Moreover, agents bear costs for maintaining direct connections. Re-

lying on Debreu’s (1969) hypothesis according to which closely located players incur lower costs

to establish communications, we let links costs linearly increase with the geographic distance

between agents on the circle6.

The net profit received by any agent i is given by the following expression :

πi (g) =
∑

j∈N\i

δd(i,j) −
∑

j:ij∈g

cij , (1)

where d(i, j) is the geodesic distance between i and j and cij the costs borne by i for a direct

connection with j. δ ∈ ]0; 1[ is the decay parameter which gives the share of knowledge effectively

transmitted through each edge. It may be associated with the characteristics of knowledge :

communication quality is likely to decrease with the degree of tacitness of knowledge while

it would increase with the codification of knowledge. Thus, δd(i,j) gives the payoffs resulting

from the (direct or indirect) connection between i and j. It is a decreasing function of the

geodesic distance since δ is less than the unity. Notice that if there is no path between i and

j, d(i, j) = ∞ and then δd(i,j) = 0. Thus, the first part of the right side of (1) expresses the

6Johnson and Gilles (2000) first introduced such costs but consider a linear world.

5



gross payoffs obtained by i thanks to the knowledge flows he receives through all his direct and

indirect connections (assuming no time lag for simplicity). The second part describes the costs

of direct links. We assume that the cost of a direct connection between i and j is proportional

to the geographic distance separating them cij ∝ l (i, j), with l(i, j) computed on the external

metrics (the circle) considered. As a normalization device and in order to account for an inverse

relation between the costs and the size of the population, we assume that the costliest connection

costs unity : maxi,j∈N cij ≡ 1, which is also the upper bound of a positive externality. In the

ring metric we have maxi,j∈N l(i, j) = ⌈n/2⌉ , the smallest integer higher than or equal to n/2.

Thus, it comes :

cij = l(i, j)/ ⌈n/2⌉ . (2)

3.2. Some analytical results

The analytical results obtained on networks efficiency and stability in the model described

above are summed up in the following two propositions.

Proposition 1. Efficiency.

i) The empty network g∅ is the only efficient network when δ + (n−2)
4 δ2 < ⌈n/2⌉−1 .

ii) If δ2 − δn−1 < ⌈n/2⌉−1 , the value of any acyclic graph g is less than its associated

covering chain gc.

iii) Consider three chains gc, gc′ and gc′′, if gc′ ∩ gc′′ = ∅ and #gc = #gc′ +#gc′′, then

π(gc) > π(gc′)+π(gc′′). Moreover a maximal chain gmc (a chain such that #gmc = n− 1) is the

most efficient positive value chain.

Proofs. See Appendix.

Proposition 2. Stability.

i) When δ > ⌈n/2⌉−1, the empty graph is never pairwise stable. When δ < ⌈n/2⌉−1,

the empty graph g∅ is the unique acyclic pairwise stable graph and no network containing a

peripheral agent (has only one connection) is pairwise stable. The empty graph is pairwise stable

when δ = ⌈n/2⌉−1 .

ii) The star g⋆ and the complete network gN are never pairwise stable.

Proofs. See Appendix.

4. The dynamic process of networks formation

This section is a self-contained presentation of our dynamic model. We first introduce the

standard perturbed stochastic process of network formation and next focus on the terms by

which our process differentiates.

4.1. The standard perturbed stochastic process of network formation

Let gt ∈ G denote the state of the social network at period t (with t = 1, 2, ...). At each time

period, two agents i and j ∈ N are randomly selected. If they are directly connected, they can
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jointly decide to maintain their relation or unilaterally decide to sever the link between them. If

they are not connected, they can jointly decide to form a link or renounce unilaterally. Formally,

those two situations are the following :

i) if ij ∈ gt, the link is maintained if πi(gt) ≥ πi(gt − ij) and πj(gt) ≥ πj(gt − ij).

Otherwise, the link is deleted.

ii) if ij /∈ gt, a new link is created if πi(gt + ij) ≥ πi(gt) and πj(gt+ ij) ≥ πj(gt),with a

strict inequality for one of them.

The evolution of the system at any time t only depends on the present state of the system

given by the graph structure gt. The stochastic process is thus Markovian. The evolution of

the system {gt, t > 0} can be described by the probability matrix (P) describing the one-step

transition probabilities between all possible states of the finite state space G.

Jackson and Watts (2002) introduce small random perturbations ε > 0 which invert agents’

right decisions in creating, maintaining or deleting links. These perturbations may be unders-

tood as mistakes or as mutations. For small but non null values of ε, it can be shown that the

discrete-time Markov chain associated to the transformed transition matrix P(ε) is irreductible

and aperiodic and has thus a unique corresponding stationary distribution µ (ε) which is the so-

lution of µ (ε)×P(ε) = µ (ε). Such perturbed stochastic process is ergodic. Intuitively ergodicity

occurs when it is possible to transit directly or indirectly between any chosen pair of states in a

potentially very long period of time. It allows the long run equilibrium (µ (ε)) of the system to

be unique and independent of the initial conditions.

Usually, the modeler computes µ∗ = limε→0 µ (ε) and a state g (a network here) is said to be a

stochastically stable state (Young, 1993) if it has a non null probability of occurrence in the limit

stationary distribution. Thus the set of stochastically stable states is G∗ =
{
g ∈ G

∣∣µ∗g > 0
}
.

In the network formation context, Jackson and Watts (2002) show that stochastically stable

networks are either pairwise stable or part of a closed cycle (of the unperturbed process).

4.2. A time-inhomogeneous process of network formation

In practice the precise computation of the stochastically stable networks requires the iden-

tification of all the recurrent classes of the unperturbed process (Young, 1998) which, in the

network context, are likely to be extremely numerous. To make that point clear, we shall recall

that there is a recurrent class for each pairwise stable network and that in models such as the

Connections model or the spatialized connections model presented in Section 3, possibly thou-

sands of networks are pairwise stable. Thus, the standard process described above is not well

designed for our purpose.

We propose to let the error term decrease in time according to the following simple rule :

εt = 1/ (t+ 1) + ε , (3)

with ε > 0. This rule ensures that a significant noise affects the dynamics in the beginning while

it decreases monotonically with time down to a small strictly positive limit : limt→∞ εt = ε.
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According to Robles (1998), the long run equilibrium ψ (ε) of such time-inhomogeneous Markov

chain exists, is unique and is equal to the equilibrium of the Markov chain perturbed by the

constant error ε : ψ (ε) = µ(ε) 7. It is then obviously ergodic. This property is interesting since

it renders numerical experiments more tractable in order to examine with good confidence the

long run behavior of the system (Vega-Redondo, 2006). Notice that the time-inhomogeneity of

noise assumption is more satisfactory than the time-homogeneity of noise one. Agents are likely

to make less and less errors through time while still a very small error probability persists in

the long run.

We label the networks on which the process stabilizes in the long run as emergent networks.

Formally the set of emergent networks is Ĝ =
{
g ∈ G

∣∣ψg(ε) > 0
}
. This set is broader than the

set of stochastically stable networks defined above which is included in Ĝ. That is, for all g such

that, if limε→0 µg(ε) > 0 then ψg(ε) > 0
8.

5. Results : The structural properties of emergent networks

In this section we study the emergent networks selected by the stochastic process described

in the preceding section. We use Monte Carlo experiments to generate networks that are on

the support of the unique limiting stationary distribution ψ(ε) (of networks) of the perturbed

dynamic process presented above. The limit error term is ε = 10−4. The size of the network is

arbitrarily set to n = 20 agents. All experiments are stopped at T = 20, 000, period after which

the process is proven to have almost surely stabilized on a given pairwise stable state9. We shall

focus on the characterization of the structural properties of emergent networks depending on

the knowledge transfer parameter δ. For this purpose we ran 1,500 experiments performed with

randomly drawn values of δ over its value space ]0, 1[.

5.1 How density is affected by knowledge transferability ?

In order to provide a first synthetic characterization of the structural properties of networks,

we compute the average neighborhood size or average degree as it is usually referred to in the

literature of the network as follows :

η̂(g) = η(g)/n. (4)

7See Proposition 3.1 of Robles (1998, p. 211).
8This can be easily proved by recalling the Freidlin and Wentzell (1984) theorem that states : ∀g, ψg(ε) = µg(ε)

is of the form : ψg(ε) = υg(ε)/
∑

g′
υg′(ε) with υg(ε) a polynomial in ε.

9 In average, non pairwise stable networks are rarely found after 20,000 periods (less than 4%). Let us precise

that emergent networks are not necessarily pairwise stable. They can also be part of a closed cycle in the associated

time-homogeneous unperturbed process (εt = 0). We also can not exclude that some non pairwise stable networks

are just emergent networks since ε > 0. Nevertheless, in practice, when such a non pairwise stable network was

found, it is because an error recently affected the system. Thus, we dropped these experiments to ensure that

the results are not contingent to recent arbitrary changes. Thus, our approximations of the emergent networks

distributions restrict to the emergent networks that are pairwise stable.
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Let first examine how the average degree η̂(g) is affected by δ. As shown in Figure 1, the average

degree is null when δ � ⌈n/2⌉−1 = 0.1 : the process converges to the empty graph which is

pairwise stable for such values of the parameters (see Proposition 2). However when δ becomes

close to 0.1, some non empty networks begin to be selected. These networks are somehow in a

phase transition between the empty graph and networks for which agents have in average two

connections (average degree equal to unity). This configuration appears to be mostly selected

for 0.1 � δ � 0.2. The average degree of the network then increases up to nearly η̂(g) = 3 for

δ ≈ 0.55. From δ ≈ 0.6, average degree decreases down to a value slightly below unity when δ

reaches its maximum.

0
1

2
3

0 .2 .4 .6 .8 1
delta

Figure 1. Average degree η̂(g) of emergent networks for 1,500 simulations with randomly

drawn values of δ ∈ ]0; 1[.

Let us remind that the transferability of knowledge δ can be associated with the characteris-

tics of knowledge : the quality of communication is likely to decrease with the degree of tacitness

of knowledge while it would increase with the codification of knowledge. Our model thus pro-

vides an explanation of how the nature of knowledge affects the density of emergent networks.

We find that both when knowledge is mainly tacit (δ close to 0) or mainly codified (δ close

to 1), the emergent networks are weakly connected. In both cases, the marginal returns from

direct distant and/or local overlapping connections do not overbalance their associated costs.

Thus, only local minimally connected networks emerge (when knowledge is extremely tacit, no

connection is formed). It is when the knowledge has balanced codified and tacit parts that such

private returns are sufficiently high for the network average degree to increase.

5.2 When do small worlds emerge ?

Behind the dots of Figure 1, one can find networks with many different structures. This

diversity calls for a statistical analysis of the structural properties of emergent networks. For

that purpose, we compute two dedicated indexes. The former is the average distance (or average

path length) of (directly or indirectly) connected agents. It is given by :

d (g) =

∑
i

∑
j �=i d (i, j) × 1 {i↔g j �= ∅}

#{i, j |i �= j ∈ N, i↔g j �= ∅}
, (5)
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if η (g) > 0, with # {·} denoting the cardinal of the set defined into brackets and 1 {·} , the indi-

cator function that is equal to unity if the condition into brackets is verified and zero otherwise.

This index allows us to appreciate the extent to which directly or indirectly connected agents

are “relationally” distant.

The second index is the average clustering (or average cliquishness as it is often referred to

in Physics). It indicates the extent to which neighborhoods of connected agents overlap. It is

given by :

c (g) =
1

n

∑

i∈N ;ηi(g)>1

# {jl ∈ g |j �= l ∈ Ni(g)}

# {j, l |l �= j ∈ Ni(g)}
. (6)

In words this index measures the propensity with which an agent’s neighbors are also neighbors

together.

The two indicators presented above are affected by the average degree of the network (η̂(g))

that is likely to vary with δ. Therefore, these indicators are somehow biased and we must find

an efficient control for average degree. In the spirit of Watts and Strogatz (1998), we associate

control random graphs to emergent networks characterized by the same number of agents and

links (thus the same average degree). Such random networks are simply built by allocating a

given number of edges to randomly chosen pairs of agents (Erdös and Rény, 1960). For each

given number of edges of emergent networks, the average distance and the average clustering

are numerically computed and averaged over 1, 000 of such random graphs. Thus, instead of

looking at c (g) , where g is an emergent network, we compute the ratio c (g) /c
(
grd
)
, where

c
(
grd
)

denotes the mean average clustering of the 1, 000 random networks that have exactly the

same average degree as g. Similarly we compute d (g) /d
(
grd
)
. These ratios are plotted in Figure

2.

0
2

4
6

0 .2 .4 .6 .8 1
delta

Figure 2. Average distance (black circles : d (g) /d
(
grd
)
), average clustering (grey triangles :

c (g) /c
(
grd
)
) and their fitted values of emergent networks for 1,500 simulations with randomly

drawn values of δ ∈ ]0; 1[.
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Such ratios have been used by Watts and Strogatz (1998) to identify a specific but fre-

quently observed network structure called a small world. It is characterized by the two following

properties :

c (g) /c
(
grd
)

≫ 1 and d (g) /d
(
grd
)

≈ 1. (7)

Small world networks are highly clustered as compared to random graphs and simultaneously

their average distance is close to the one of random graphs which are known to exhibit very

short average path length. We observe that the average distance of emergent networks becomes

close to unity when δ reaches 0.35, and then stays on this value until δ ≈ 0.9. The average

clustering ratio also decreases quite sharply with δ > 0.2. Nevertheless, the clustering of emergent

networks remains significantly higher than their corresponding random networks, at least until

δ � 0.7. Therefore, we conclude that small world configurations are selected for the whole region

characterized by δ ∈ [0.35, 0.7] .

5.3 The spatial structure of emergent networks

Before exploring statistically the extent to which networks correlate and/or discorrelate with

the ring-like geography, we provide in Figure 3 some intuitions on the typical networks shapes

obtained for several values of the parameter δ. When 0.09 � δ � 0.2, it is the ring g◦ which

emerges most often (characterized by an average degree equal to one in Figure 1 and a null

average clustering in Figure 2). So agents not only have two neighbors in average, but all are

connected to their two closest geographic neighbors. When δ is equal to 0.3, networks in which

all agents are connected to their four closest geographic neighbors are likely to emerge. Such

situation corresponds to the double geographic ring g2◦. At the other far end of the spectrum,

emergent networks tend to become maximal chains (gmc) : when δ approaches unity, direct and

indirect connections are likely to provide the same wealth, and thus overlapping connections

become redundant. Between these two extremes, when 0.35 � δ � 0.7, we find structurally

distinguishable configurations characterized by the conjunction of : i) a prevalence of local

connections, ii) the existence of some “short cuts”. The specificity appears clearly when one

compares these structures with the typical networks one obtains with the standard connections

model.
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Figure 3. Typical emergent networks obtained with δ = 0.15, δ = 0.3, δ = 0.35, δ = 0.7,

δ = 0.98. The last network has been generated with the standard connections model of Jackson

and Wolinski (1996) with δ = 0.7 and a connection cost equal to 0.510.

10The link cost in the standard connections model is set to 0.5 because this value is close to the average link

cost borne by an agent to connect to any other agent in our spatialized connections model.
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In order to provide a systematic analysis of the correlation of social connections with the

ring-like geography, we propose to study p(·), the density distribution of direct connections

according to the geographic distance between two linked agents. It is formally defined as

p (h) =
1

η (g)

∑

ij∈g

1 {l(i, j) = h} , (8)

for all h = 1, ..., ⌊n/2⌋, with ⌊·⌋ meaning “the highest integer smaller than”.

In order to explore such a distribution when the emergent networks have the small world

properties, we perform 100 additional numerical experiments for each of the following values of

δ : δ = 0.35, 0.5, 0.7. Averaged distributions for each value of δ are presented in Figure 4. Unsur-

prisingly, networks do correlate with the geographic metrics. Indeed, between 70% and 80% of

links connect two agents at a geographical distance equal or less than 2. Clustering is thus achie-

ved in local space. Nevertheless, the networks also exhibit these distant connections that make

p(·) be long tailed on the upper side of the spectrum. The originality of these networks clearly

relies on the fact that they both correlate with space and have some uncorrelated connections.

Lastly, when δ equals 0.5 or 0.7, then there is an increased probability that connections are made

at geographical distance 5 and 6. Agents find it profitable to establish such medium distance

connections as a benchmark between overcoming the local cluster of which they already benefit

from and bearing not too high connection costs. This result supports the idea that sustainable

short cuts are not made at a random distance (and cost) like in Watts and Strogatz (1998) but

are driven by some strategic behavior.
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Figure 4. Distribution of links p(·), according to the geographic distance between the two

directly connected agents l(i, j) (averaged over 100 experiments for each value of

δ = 0.35, 0.5, 0.7).

Since distant connections are necessary to meet the small world properties and since these

distant connections are also very costly (remember that connection costs increase with geographic

distance), a natural issue raises : why do some agents bear such costs ? In other words, does it

pay to sustain shortcuts ? For this purpose, we record for each of the experiments computed for

δ ∈ {0.35, 0.5, 0.7} , the individual payoffs (πi) and li, defined as the longest (geographic) distance

12



between i and i’s neighbors : li ≡ maxj∈Ni(g) l(i, j). Two-way plotted results are presented in

Figure 5. It shows that individual payoffs decrease in average when agents sustain a connection

longer or equal to 4. Therefore we can conclude that it does not pay to sustain distant connections

in the long run11. Nevertheless, for any shortcut to exist, it must remain advantageous to sustain

it : payoffs must be increased with rather than without it. The agents who sustain a distant

connection are locked in, in the sense they are better off with this connection though they

can not appropriate the full social value it generates which is to a large extent captured by

their local neighbors. If the latter (sustaining no distant connection) have higher payoffs, it is

clearly because they indirectly benefit from these connections while they do not bear their high

associated costs : they free ride.
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Figure 5. Fractional polynomial estimates (with 90% confidence interval) of individual payoffs

(πi in ordinates) respective to agent’s longest (geographically) connection ( li in abscises)

( 100 × 20 = 2, 000 agents are considered for each of the three values of δ considered : 0.35

(left), 0.5 (middle), 0.7 (right).

5.4 The heterogeneity of agents and skewed degree distribution

Low average path length and high average clustering characterize small worlds à la Watt

and Strogatz (1998). Another general result of the physics literature on social networks is that

their degree distribution is usually skewed. This last result comes from the scale free networks

approach (Barabási and Albert, 1999). In short, this means many agents have few connections

while few agents have many connections. In the model presented in equation (1) agents have no

incentive to form many connections. Rather they have incentives to be connected to a “star”.

This is why we naturally do not find some densely connected agents among emergent networks

as observed in most real networks. Therefore, we now explore whether slight modifications of

the payoff function might increase the disparity in neighborhood sizes.

Let us consider that agents are heterogeneous in the costs they bear for link formation. The

payoff function (1) thus becomes :

πi (gt) =
∑

j∈N\i

δd(i,j) − ai
∑

j:ij∈gt

cij , (9)

11Due to space constraints, we did not report simple econometric estimations that confirm the inverse-U relation

between li and payoffs when we control for network density that explains much of the variance observed in Figure

5.
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where ai > 0 and its mean 〈ai〉 = 1 to keep consistency with (1). This implies that the costs

bore by two agents to be linked together (aicij, ajcij) may now differ. Moreover, we assume that

the ai are distributed in a Gaussian fashion, numerically given in Figure 6. The ai are randomly

allocated to agents independently of geography.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

Figure 6. Distribution of ai among agents.

Let ρ(k) denote the degree distribution. It is defined as :

ρ(k) =
1

n

∑

i∈N(g)

1 {ηi(g) = k} , (10)

for all k = 0, ..., n− 1.

As in the previous subsection, we perform, with the heterogeneous agents model (ai distri-

buted as presented in Figure 6), 100 additional numerical experiments for each of the following

values of δ : δ = 0.35, 0.5, 0.7. For each of these values, the averaged degree distributions are

computed and plotted in Figure 7 which also presents the averaged degree distributions for the

homogeneous agents model (ai = 1).

We find that while most agents have 4, 5 or 6 connections in the homogeneous model12, de-

gree distribution is indeed much more dispersed when agents are heterogeneous. Unsurprisingly,

the agents who have lower costs are much more inclined to form numerous connections. What is

of much interest is that a Gaussian-like distribution of agents as regard costs generates an asym-

metric and long tailed degree distribution. Though we consider a limited number of agents, this

result is consistent with the skewed degree distributions often observed in most social networks.

Moreover, it should be noticed that unreported experiments (due to space constraints) perfor-

med with the heterogeneous agents model and random values of δ ∈ ]0; 1[ show that the small

world properties are fully preserved for 0.35 � δ � 0.713. Therefore, all the three characteristics

(short average path length, high average clustering and skewed degree) are then simultaneously

observed on emergent networks.

12Bimodality on 4 and 6 neighbors is found when δ = 0.35.
13On the contrary, it tends to increase slightly the range of relevant values of delta for which a small world à la

Watts and Strogatz (1998) is found. Numerical results are available from the authors on request.
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Figure 7. Degree distribution ρ (k) (averaged over 100 experiments for each value of

δ : 0.35, 0.5, 0.7, for the two models described in (1) and (9)).

6. Conclusion

In this paper, we introduced a model of network formation in which agents, arranged on

a circle, myopically decide to establish, maintain or severe links. For that, they balance the

benefits obtained from knowledge that imperfectly flows through bilateral relationships (positive

externalities deteriorate with relational distance) against the costs they pay to maintain direct

connections which linearly increase with geographic distance. We also proposed an original time-

inhomogeneous stochastic process to study the structural properties of networks that emerge in

the long run.

We showed that a simple model of strategic network formation which is a spatialized va-

riation of the Connections model developed by Jackson and Wolinski (1996), can lead, in a

dynamic setting, to emergent networks that share the main structural properties of most real

social networks. We first studied the effects of the parameter which tunes the decay of positive

externalities in each bilateral connection, on the structure of emergent networks. We found that

density is the highest when the decay is around 55%-60%. It decreases down to the empty net-

work when decay is small and to minimally connected networks when decay is close to the unity.

For a large region of intermediary levels of the decay (35% to 70%), we found, while controlling

for networks density, emergent networks that exhibit the small world configurations characte-

rized by both a high average clustering and a short average path length. Clustering occurs in

local space while few agents sustain distant connections. We further studied, for this region, the

effects of introducing agents’ heterogeneity as regard their connections costs (distributed in a

Gaussian manner). We found that emergent networks exhibit in addition asymmetric distribu-

tions of neighborhoods. Therefore, we conclude that the three characteristics of a short average

distance, a high average clustering and a skewed degree distribution are simultaneously gathered

for a large and intermediary region of the decay parameter.
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Let us now briefly discuss some implications of our results as regard the interplay between

knowledge, networks and geography. Indeed, this model provides a theoretical ground for the

relative density of invention networks depending on the nature of knowledge, assuming that the

decay parameter measures the quality of interpersonal knowledge transfers. Emergent networks

are less dense both when knowledge is highly tacit or highly codified (knowledge transferability

is low or high). The model also provides an economic rationale for why connections between

inventors are mainly established in the local space and thus why knowledge mostly diffuses

locally. This result is fully consistent with the empirical studies of Saxenian (1994), Almeida

and Kogut (1999) or Breschi and Lissoni (2006) which show that local knowledge diffusion

(Jaffé et al., 1993) occurs thanks to the higher density of social networks within local areas.

Furthermore, if denser and more clustered networks are found in local areas, some long distant

connections are likely to be formed when the quality of knowledge transfer is intermediary. Then

the private returns of distant connections overcome their high costs and are thus established.

Such links are strategically formed with parsimony because, since knowledge flows in local areas

thanks to local clustering, the neighbors of agents sustaining shortcuts have no incentive to

duplicate distant connections they already benefit from.

This suggests agents free-ride on the distant connections of their neighbors. It can also be

shown that, for some high values of knowledge transferability, the social surplus in star networks

overbalance the ones of the emergent networks. Agents fail to coordinate in selecting one of them

to play the role of knowledge transmitter : no agent intends to bear the costs associated to such

a central position. An efficiency analysis of emergent networks is further needed in order to fully

appreciate the structural differences between the emergent networks and the efficient ones. This

issue constitutes an avenue for further research.
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Appendix

A.1 Proof of Proposition 1

i) The proof uses the following steps. We give an upper bound expression for the connected

network value of k links. We show that this expression is at its maximum when k = n− 1 links.

Next, we show that under the given condition, that expression is negative. Since the value of

the empty graph is zero, it is the efficient network under the condition.

An upper bound value of a network of k > n− 1 links may be given by :

πmax(g |#g = k ) = 2kδ + [1/2n(n− 1)− k] δ2 − 2k ⌈n/2⌉−1

This expression considers that all agents who are not directly connected, benefit from each other

just as they were at relational distance 2. It also assumes that bonds costs are minimal (as it

is connecting immediate geographic neighbors). Now assume that k = n − 1. Thus the upper

bound network value becomes :

πmax(g |#g = n− 1) = 2(n− 1)
(
δ + 1/2nδ2 − 2 ⌈n/2⌉−1

)
(A1)

To know whether we should consider cases where k > n− 1, let us see how the upper expression

of the network value behaves when we add a link : The maximal value with k (k > n− 1) links

minus the max value with k + 1 links is equal to :

πmax(g |#g = k + 1)− πmax(g |#g = k ) = 2δ − δ2 − 2 ⌈n/2⌉−1

which is independent of k and strictly negative when δ < ⌈n/2⌉−1. Thus there is no interest in

adding a new link from the beginning that is from k = n− 1.

On the other hand if k < n−1, the network is not connected, then no node can benefit from

all others. For instance if k = n − 2, then the agents are associated to at least two connected

components. Since the two components are isolated, the total value of the graph is equal to the

sum of the value of the two components. Let us assume that it is possible to connect the two

components by adding a bond at distance 1 (as it is assumed in the πmax expression). Then the

value of this bond adds to the total value more than any of the other ones did previously while

it costs at most the same. Thus the value of the graph with n− 2 links is negative if the one of

the connected graph composed of n− 1 links is also negative.

Thus expression (A1) gives the maximal value of the network. It is negative when : δ +
(n−2)
4 δ2 < ⌈n/2⌉−1 . This completes the proof.�

Part ii) Any non empty acyclic graph is a tree or a set of disjoint trees (with potentially

some isolated agents). A tree of m nodes has always k = m− 1 links. A tree of m+ u− 1 nodes

generates more utility than a graph composed of two distinct trees of m and u nodes, that is

because with the same number of links, it generates one more direct and several more indirect

connections. Thus we can restrict our analysis to connected acyclic graphs which are necessarily

trees.
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One can get two different types of trees given the following definition. A network g is said

to exhibit regional overlap if ∃i ∈ N(g) such that for an arc jh ∈ g, i ∈ N(gcc), with gcc the

covering chain of g.

a) Let us first consider the trees for which there is no regional overlap.

In that situation, any link ij in g generates a cost equal to its covering chain (Definition

3) while it generates less utility since less agents are thus directly or indirectly connected. This

applied for all bonds that exhibit no regional overlap. Thus the value of such network is always

below the one of its associated covering chain.

b) Consider now connected trees which exhibit some regional overlap. In that situation, each

link ij of g such that l(i, j) generates an extra cost of 2 ⌈n/2⌉−1 as compared to its covering

chain, while it generates at most a gross extra value of 2δ2 − 2δn−1. Thus π(g) < π(gc) if

δ2 − δn−1 < ⌈n/2⌉−1 .�

Part iii) The proof of the first part of the Proposition is trivial since gc costs as much as

gc′ and gc′′, while it brings more utility due to more indirect connections. As regard, each new

node added to the chain costs as much as the preceding ones while it always brings more value

due to more indirect connections. Thus, if the maximal chain gmc has a positive value, then it

is always the most efficient chain.�

A.2 Proof of Proposition 2

Part i) When δ > ⌈n/2⌉−1, the proof is trivial : two geographic neighbors always have interest

in forming a connection. When δ < ⌈n/2⌉−1, it is easy to show that the empty network is always

stable. Being on the empty net, no agent has any interest in forming a link even with his direct

-geographic- neighbors since this connection will cost him always more than the (direct) gross

payoff it may bring to him. Moreover, as showed by Jackson and Wolinski (1996), in such a

situation, stability implies no loose end, that is no agent i is connected to only one other agent

j. That is because j will always find interest in severing this connection. Thus, as noticed by

Johnson and Gilles (2000), since all acyclic networks but the empty graph always have loose ends

(among which the star net), the empty network is the only acyclic pairwise stable network.�

Part ii) In the star network, the center of the star is never interested in maintaining a link

with his most distant neighbor. This link costs him 1, which is strictly more than his gross utility

which is simply δ < 1. In the complete network, no agent has an incentive to maintain his most

distant connection since its deletion would reduce costs of 1 while gross utility would decrease

of only δ − δ2 < 1. Then, neither the star nor the complete graphs are paiwise stable.�
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