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Abstract

This paper analyzes a model of sequential parimutuel betting described as a two-
horse race with a finite number of noise bettors and a finite number of strategic and
symmetrically informed bettors. For generic objective probabilities that the favorite
wins the race, a unique subgame perfect equilibrium is characterized. Additionally,
two explanations for the favorite–longshot bias—according to which favorites win
more often than the market’s estimate of their winning chances imply—are offered. It
is shown that this robust anomalous empirical regularity might be due to the presence
of transaction costs and/or to strategic bettors’ subjective attitude to probabilities.

Keywords: Parimutuel betting; Sequential decisions; Favorite–longshot bias; Non-
expected utility under risk.

JEL Classification: C72; D81.

Résumé

Nous considérons un modèle séquentiel de pari-mutuel décrit comme une course
à deux chevaux, avec un nombre fini de parieurs symétriquement informés. En
présence de liquidité, nous montrons que l’unique équilibre parfait en sous-jeux est
caractérisé par un biais en faveur de l’outsider dans le cas où des coûts de transaction
existent et/ou lorsque les parieurs pondèrent subjectivement les probabilités.



1 Introduction

Empirical and theoretical research on racetrack betting has been expanded during

the last twenty years due to the importance of the industry and, more generally,

to the recent rise of gambling opportunities around the world. Horserace betting

markets also capture important elements of investment decisions under uncertainty

and they possess several usual attributes of financial markets. For example, they

are characterized by a large number of investors (bettors) acting in a rich interac-

tive and uncertain environment. Another interesting feature of racetrack betting

markets is that prices (odds) of a particular horse are a decreasing function of the

total amount bet on that horse. This means that rational participants consider the

negative effect of their bets on their expected earnings. As they take into account

the impact of their actions on odds, these participants can be assimilated to strategic

traders in the recent literature on market microstructure where the process of price

formation is explicitly modeled (Kyle, 1985; Glosten and Milgrom, 1985). More in-

directly, the study of racetrack betting may help to understand traders’ behaviors in

financial markets because the increased frequency of actual gambling may have po-

tentially important effects on changed attitudes toward risk taking in stock market

investments.

Contrary to stock markets, racetrack betting markets are conveniently charac-

terized by a well-defined end-point at which each bet possesses a definite value.

More generally, horserace betting markets provide a paradigmatic example of a case

where the organization of the market determines the game form and the type of

competition. Hence, since the “rules of the game” driving horserace betting markets

are unambiguously defined, such markets provide a useful perspective for theoretical

and empirical economic analyses.

Several empirical studies have provided evidence that most racetrack betting

markets do not satisfy weak form efficiency because favorites win more often than

the market’s estimate of their winning chances imply. This observation implies that

the expected return per unit of money bet on a horse increases with the probability of

the horse winning. In other words, higher average returns could be earned by betting

on favorites (generally identified by lower odds) than by betting on horses with a

lower probability to win (generally identified by higher odds). Such a phenomenon

is known in the literature as the favorite–longshot bias. Among the reasons provided
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in the literature to explain why favorites win more often than the betting odds

indicate, one can find arguments that turn on risk-loving preferences, context specific

behaviour, overconfidence, extra utility from betting on longshots, bettors’ tendency

to discount a fix fraction of their losses, optimal responses by bookmakers (insider

trading), etc.1

This paper proposes two theoretical explanations for the favorite–longshot bias in

a model of sequential parimutuel betting. We first show that this robust anomalous

empirical regularity might be due to the presence of transaction costs. Such an

explanation was already proposed by Hurley and McDonough (1995, 1996). However,

by testing experimentally the implications of their theoretical modelling, the latter

authors rejected this argument. Alternatively, we show that the bias might result

from bettors’ subjective attitude to probabilities. Indeed, numerous empirical studies

have provided evidence that biases in subjective odds result from the fact that bettors

are oversensitive to the chances of winning on longshots and oversensitive to the

chances of losing on favorites.2 By building a game-theoretical framework where

non-expected utility players interact, we show that this simple argument is strongly

appealing.

Our model retains the basic features of the parimutuel system considered by

Watanabe, Nonoyama, and Mori (1994). In particular, each bettor can choose be-

tween betting on one of two horses or withdrawing from betting. However, since we

consider a common prior belief on the winning chances of each horse, noises bettors

are introduced in order to avoid the unique no-betting equilibrium obtained when all

bettors have consistent beliefs and are perfectly rational. Another distinction with

Watanabe et al.’s (1994) theoretical framework is that in our model bets are placed

sequentially rather than simultaneously. This feature, which has been introduced

by Feeney and King (2001) in a game where players cannot refrain from betting,

captures more realistically the working of racetrack betting markets where odds are

listed on a tote board which is updated about once a minute. Besides, sequential

choices allow the characterization of a unique (subgame perfect) equilibrium. It is

also worth noticing that, contrary to most theoretical works analyzing parimutuel

systems, we consider a finite number of bettors, which implies that each of them
1For more details on these possible explanations, see, e.g., Williams (1999).
2See, for example, Ali (1977), Thaler and Ziemba (1988), and Jullien and Salanié (2000).
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cannot ignore the effect of his betting choice on odds.3 Finally—so far as we know,

for the first time—we allow players to subjectively weight winning chances of both

horses.

The paper is organized as follows. In Section 2 we present the sequential betting

model. In Section 3 we introduce bettors’ subjective attitudes to probability, we

characterize the equilibrium of the market accordingly, and we discuss the effects of

transaction costs and probability distortions on equilibrium subjective probabilities.

Concluding remarks are given in Section 4.

2 A Model of Sequential Betting

We consider a horse race between two horses called F (the favorite) and L (the

longshot), with respective objective probabilities of winning the race p and 1 − p,

where p > 1/2.

We consider two classes of bettors. First, there is a finite set of strategic bet-

tors (or simply bettors), N = {1, . . . , n}, who place their bets sequentially, at a

predefined date. A strategic bettor maximizes his decision-weighted gain, i.e., he

maximizes a modified mathematical expectation of his gain where objective prob-

abilities are replaced by subjective weights. Second, there is a finite set of noise

bettors, {1, 2, . . . , 2K}, who act for exogenous motives and without regard for ex-

pected gains.4 For convenience, we assume that noise bettors split their bets up

equally amongst the two horses, i.e., K noise bettors bet one unit of money on horse

F and K noise bettors bet one unit of money on horse L.

Each (strategic) bettor has the option to bet one unit of money on the favorite

or to bet one unit of money on the longshot or to refrain from betting. More

precisely, each bettor i ∈ N = {1, . . . , n} chooses an action si ∈ Si = {F, L,D}
in period i, where F stands for “betting one unit of money on the favorite”, L for

“betting one unit of money on the longshot”, and D for “withdrawing”. Denote by

sk = {s1, . . . , sk} the vector of actions chosen by the first k bettors (i.e., the history

of length k), and write s0 = ∅ and sn = s. Let Sk =
∏k

i=1 Si be the set of histories

of length k, and write S0 = {∅} and Sn = S. When a bettor i ∈ N acts, he observes
3Simultaneous parimutuel betting with a continuum of bettors has been analyzed by Watanabe

(1997).
4As shown latter, without the presence of noise bettors the market breaks down. The noise

trader approach is discussed and justified in Shleifer and Summers (1990).
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a history si−1 ∈ Si−1 of bets made by bettors 1, . . . , i− 1.

For any history sk ∈ Sk of length k ∈ N , we partition {1, . . . , k} into three sets

as

F (sk) = {i ∈ {1, . . . , k} : si = F},
L(sk) = {i ∈ {1, . . . , k} : si = L},
D(sk) = {i ∈ {1, . . . , k} : si = D}.

Let F (∅) = L(∅) = D(∅) = ∅. Hence, in period k, F (sk) (respectively L(sk))

is the set of bettors who have bet on horse F (respectively horse L), and D(sk)

is the set of bettors who did not bet. For any history sk, let nF (sk) = |F (sk)|
(respectively nL(sk) = |L(sk)|) denote the number of bettors who have bet on horse

F (respectively horse L), and let nD(sk) = |D(sk)| denote the number of bettors

who have withdrawn. Of course, nF (sk) + nL(sk) + nD(sk) = k for all sk ∈ Sk,

k ∈ N .

In the parimutuel wagering system used at most racetracks throughout the world,

bettors bet against one another and, according to the principle of mutualization, the

winners share the stake money, after deductions have been made for the market

maker. We denote by t ∈ [0, 1[ this level of transaction costs, i.e., the amount that

the racetrack subtracts from each unit of money bet for expenses, taxes, and profit.

Hence, given the sequence of bets of strategic bettors, s ∈ S, and the number of

noise bettors, 2K, the gross return to a winning one unit of money bet on horse

h ∈ {F, L} is given by

Rh(s) = (1− t)
nF (s) + nL(s) + 2K

nh(s) + K
.

Let Oh(s) = Rh(s) − 1 denote the final odds against horse h ∈ {F, L}, which

measure the net return per unit of money wagered.5 Subjective probabilities refer

to the betting market’s estimate of each horse’s chance of winning the race.6 We
5Since the sum of prices implied in the odds,

P
h 1/(Oh + 1), is greater than one, the average

bettor trades at a loss, which implies that the track secures a profit overall. For this reason, without
the presence of noise bettors, the market necessarily breaks down since everybody would drop from
betting.

6This term has its root in the constant returns model, where it is assumed that the transaction
costs are equal to zero, and that all agents are fully informed, have identical risk-neutral preferences,
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denote by

Ph(s) =
nh(s) + K

nF (s) + nL(s) + 2K
,

the subjective probability of horse h ∈ {F, L}. The concept of subjective probability

of a horse has been widely used in the racetrack betting literature. In particular,

when the favorite–longshot bias is observed, the subjective probability of the favorite

is lower than its objective probability, and the subjective probability of the longshot

is higher than its objective probability.

3 Characterizations of Equilibria

In this section we define bettors’ strategies and their decision-weighted utilities.

Then, the unique subgame perfect equilibrium is characterized according to objective

probabilities, the number of noise bettors, the level of transaction costs, and strategic

bettors’ tendency to subjectively weight objective probabilities.

Bettors i’s behavioral strategy, for i ∈ N , is denoted σi : Si−1 → Si, and a profile

of behavioral strategies is denoted by σ = (σ1, . . . , σn). Let s(σ | sk) be the final

history (outcome) reached according to the profile of behavioral strategies σ, given

the history sk ∈ Sk, and let s(σ | ∅) = s(σ) be the final history generated according

to σ.7

We assume that (strategic) bettors convert objective probabilities into subjective

decision weights. The decision weight attached to each state, either horse F or horse

L wins the race, is determined by a probability weighting function π : [0, 1] → [0, 1]

which transforms the individual probabilities of each consequence into weights. We

further assume the following (inverted) S-shaped decision-weighting function:

π(p) =
pγ

pγ + (1− p)γ , (1)

where γ ∈ ]0, 1].8 We are drawn to this partly because empirical research on in-

dividual decision making over a period of fifty years, from Preston and Baratta

(1948) to Gonzalez and Wu (1999), lends support to such an inverse-S-shaped form

and maximize wealth. See Sauer (1998) for more details.
7Note that it is equivalent for each bettor to observe either all the decisions taken by previous

bettors in the sequence or only the odds at each previous date.
8This form has been suggested by Quiggin (1982).
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in non-expected utility models,9 and partly because of convenience. Such a weight-

ing function exhibits greater sensitivity to high and low probabilities relative to

mid-range probabilities, and is concave below one-half and convex above it. This

distortion is increasing with the difference 1− γ and implies that bettors overweight

small probabilities and underweight high ones.

Accordingly, given the sequence of bets s ∈ S, bettor i’s decision-weighted utility

(or simply utility) is given by

Vi(s) =





π(p)OF (s)− π(1− p), if si = F

π(1− p)OL(s)− π(p), if si = L

0, if si = D,

which reduces to

Vi(s) =





π(p)(1 + OF (s))− 1, if si = F

π(1− p)(1 + OL(s))− 1, if si = L

0, if si = D.

With the aforementioned class of probability weighting functions, bettor i’s

decision-weighted utility is given by

Vi(s) =





(1− t)pγ

pγ + (1− p)γ
nF (s) + nL(s) + 2K

nF (s) + K
− 1, if si = F

(1− t)(1− p)γ

pγ + (1− p)γ
nF (s) + nL(s) + 2K

nL(s) + K
− 1, if si = L

0, if si = D.

Note that because (strategic) bettors face only two possible states, they behave

accordingly to rank-dependent expected utility maximizers.10 Hence, the bettors’

behavior doesn’t lead to violations of stochastic dominance. Of course, when γ = 1,

bettors are simply expected utility maximizers.

A subgame perfect equilibrium (or simply equilibrium) is a profile of behavioral

strategies σ such that for all i ∈ N , si ∈ Si, and si−1 ∈ Si−1 we have
9See Starmer (2000) for a survey of non-expected utility theories under risk.

10Axiomatizations of rank-dependent expected utility have been presented, among others, by
Segal (1990), Wakker (1994), and Abdellaoui (2001).
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Vi

(
s
(
σ | si−1, σi(si−1)

)) ≥ Vi

(
s
(
σ | si−1, si

))
.

To simplify the exposition, we assume as a tie-breaking rule that a bettor who

expects zero utility from betting chooses to withdraw. This assumption is made

without loss of generality as long as generic objective probabilities are considered.

The next lemma shows that strategic bettors never bet on both horses. This

implies that the clustering of behavior obtained in the sequential parimutuel game

of Feeney and King (2001), where a first group of bettors bet on one horse and

subsequent bettors bet on the other horse, breaks down whenever bettors are allowed

to refrain from betting. This result also contrasts with Watanabe et al. (1994)

where both types of betting choices are possible at equilibrium because bettors hold

mutually inconsistent beliefs.

Lemma 1 There is no equilibrium outcomes in which some strategic bettors bet on

the favorite and some strategic bettors bet on the longshot.

Proof. Assume by way of contradiction that s, where si = F and sj = L for

some i, j ∈ N , is an equilibrium outcome. This implies that

Vi(s) > 0, for all i ∈ F (s) ∪ L(s).

Since π(1− p) = 1− π(p), we get

(1− t)π(p)
nF (s) + nL(s) + 2K

nF (s) + K
− 1 > 0,

(1− t)(1− π(p))
nF (s) + nL(s) + 2K

nL(s) + K
− 1 > 0,

or, equivalently,

π(p) >
nF (s) + K

(nF (s) + nL(s) + 2K)(1− t)
,

π(p) <
nF (s) + K − t(nF (s) + nL(s) + 2K)

(nF (s) + nL(s) + 2K)(1− t)
,

which is impossible for all admissible parameters. ¤
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The next lemma shows that strategic bettors never bet on the longshot if none

of them bet on the favorite.

Lemma 2 There is no equilibrium outcomes in which some strategic bettors bet on

the longshot and no strategic bettors bet on the favorite.

Proof. Let nF (s) = 0. A player who bets on the longshot has strictly positive

utility if and only if

π(p) <
K − t(nL(s) + 2K)
(nL(s) + 2K)(1− t)

,

which is impossible since K−t(nL(s)+2K)
(nL(s)+2K)(1−t) ≤ 1/2 and π(p) > 1/2. ¤

From the two previous lemmas we know that strategic bettors never bet on the

longshot. Hence, we get the following result.

Lemma 3 There is no equilibrium outcomes in which some strategic bettors bet on

the longshot.

Proof. Directly from Lemmas 1 and 2. ¤

Thus, the equilibrium outcome is necessarily characterized by bets on the favorite

or by withdrawals. Of course, strategic bets on the favorite are only observed if the

number of noise bettors is sufficiently large relatively to the level of transaction

costs. The next proposition gives a necessarily condition for the existence of an

equilibrium characterized by bets on the favorite. In particular, it is shown that if

there is no noise bettors, then the only equilibrium is for all strategic bettors to drop

from betting.

Proposition 1 If s is an equilibrium outcome and at least one strategic bettor

chooses to bet on the favorite (i.e., nF (s) ≥ 1), then t ≤ K
2K+1 .

Proof. First note that if s is an equilibrium outcome, then nL(s) = 0 from

Lemma 3. Assume by way of contradiction that t > K
2K+1 and nF (s) ≥ 1. The first

inequality gives
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K + 1
(2K + 1)(1− t)

> 1

=⇒ π(p) <
K + 1

(2K + 1)(1− t)
, since π(p) ≤ 1

=⇒ π(p) <
K + nF (s)

(2K + nF (s) + nL(s))(1− t)
, since nF (s) ≥ 1 and nL(s) = 0

=⇒ Vi(s) < 0, for all i ∈ F (s).

Hence, each bettor i ∈ F (s) deviates by withdrawing, a contradiction with the fact

that s is an equilibrium outcome. ¤

The next theorem gives a complete characterization of the equilibrium outcome.

The equilibrium pattern of behavior is relatively simple. When the objective prob-

ability of the favorite reaches high probability intervals, then the number of bets

on the favorite increases. Since bettors who bet on the favorite obtain a strictly

positive utility and others get zero utility, it is intuitively clear that the equilibrium

exhibits a first mover advantage, the first bettors in the sequence choosing to bet

on the favorite until its odd is too low to expect positive utility. The proof of this

result needs some additional lemmas; the complete arguments and calculations are

given in the appendix.

Theorem 1 Let σ be a subgame perfect equilibrium and let k ∈ {1, . . . , n− 1}.

1. If p < (K+1)1/γ

(K−t(2K+1))1/γ+(K+1)1/γ , then s(σ) = (D, . . . , D).

2. If p ∈ ] (K+k)1/γ

(K−t(2K+k))1/γ+(K+k)1/γ , (K+k+1)1/γ

(K−t(2K+k+1))1/γ+(K+k+1)1/γ [, then s(σ) =

(F, . . . , F,D, . . . ,D), where nF (sk) = k.

3. If p > (K+n)1/γ

(K−t(2K+n))1/γ+(K+n)1/γ , then s(σ) = (F, . . . , F ).

Proof. See the appendix. ¤

A first obvious consequence of Theorem 1 is that the subjective probability of

a horse is increasing with its objective probability. We also remark that if there

is no transaction costs (t = 0) and if strategic bettors maximize their expected

gains (γ = 1), then the equilibrium subjective probability of each horse is close

to its objective probability. Indeed, in that case, if p ∈ ] K+k
2K+k , K+k+1

2K+k+1 [, then the
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subjective probability of the favorite is PF (s) = K+k
2K+k . The same argument applies

for objective and subjective probabilities of the longshot. The following examples

illustrate this result with two and three strategic bettors and with K = 2 and K = 4.

Example 1 Let n = K = 2, γ = 1, and t = 0. Depending on the value of the

favorite’s objective probability, p, the equilibrium outcomes and subjective proba-

bilities of the favorite are given by Figure 1 on page 18.

Example 2 Let n = 3, K = 4, γ = 1, and t = 0. Depending on the value

of the favorite’s objective probability, p, the equilibrium outcomes and subjective

probabilities of the favorite are given by Figure 2 on page 18.

Assume now that transaction costs are strictly positive, i.e., t > 0, and assume

again that strategic bettors maximize their expected gains, i.e., γ = 1. From The-

orem 1, if p ∈ ] K+k
(2K+k)(1−t) ,

K+k+1
(2K+k+1)(1−t) [, then the subjective probability of the

favorite is PF (s) = K+k
2K+k , which becomes smaller than p as t increases. Therefore,

in this model, when transaction costs increase, the favorite–longshot bias appears at

equilibrium. The next example illustrates this point with the same parameters as

Example 2, but with t = 1/4, which is approximately the level of transaction costs

of racetrack betting markets in France.

Example 3 Let n = 3, K = 4, γ = 1, and t = 1/4. Depending on the value

of the favorite’s objective probability, p, the equilibrium outcomes and subjective

probabilities of the favorite are given by Figure 3 on page 18. A comparison of

Figures 2 and 3 shows the tendency of strategic bettors to refrain from betting

when there are significant transaction costs, resulting in a decrease of the favorite’s

subjective probability.

Finally, consider that there is no transaction costs but that strategic bettors

subjectively weight the prior objective probabilities according to the (inverted) S-

shaped decision-weighting function π given by Equation (1). From Theorem 1, if

p ∈ ] (K+k)1/γ

K1/γ+(K+k)1/γ , (K+k+1)1/γ

K1/γ+(K+k+1)1/γ [, then the subjective probability of the favorite

is PF (s) = K+k
2K+k , which becomes smaller than p as γ decreases. Hence, the more

the bettors “distort” true winning chances of both horses the larger the favorite–

longshot bias. The next example illustrates this bias with the same parameters as

Example 2, but with γ = 1/2.
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Example 4 Let n = 3, K = 4, γ = 1/2, and t = 0. Depending on the value

of the favorite’s objective probability, p, the equilibrium outcomes and subjective

probabilities of the favorite are given by Figure 4 on page 18. A comparison of

Figures 2 and 4 shows that probability distortions generate the favorite–longshot

bias because strategic bettors tend to refrain from betting even with relatively high

objective probabilities of the favorite.

More generally, the effects of transaction costs or (and) probability distortions

are summarized in the following proposition.

Proposition 2 The difference between the objective probability and the subjective

probability of the favorite (longshot) is increasing (decreasing) with transaction costs,

t, and bettors’ probability distortions, 1− γ.

Proof. Directly from Theorem 1 ¤

4 Concluding Remarks

In this paper we have analyzed a simple model of sequential parimutuel betting

in which non-expected utility players either bet on one of two horses or withdraw.

To avoid the no-betting equilibrium, noise bettors have been introduced. We have

shown that the favorite–longshot bias (according to which favorites are underbet

and longshots overbet) may be observed at the (unique) equilibrium due to the

presence of transaction costs and/or to bettors’ tendency to subjectively weight

horses’ winning chances. While there is some empirical evidence suggesting that the

favorite–longshot bias is not explained by transaction costs, the probability distortion

argument still remains appealing. Indeed, such an explanation is consistent with

numerous empirical studies on racetrack betting markets and, more generally, with

the recently growing theoretical and experimental literature on non-expected utility

under risk.

Though this paper has formalized an empirically supported explanation for the

favorite–longshot bias by incorporating non-expected utility bettors in a game the-

oretical framework, it should be interesting to consider a racetrack betting market

with more than two horses. Such an extension would permit to examine how the al-

location of strategic bets and the magnitude of the favorite–longshot bias depend on

11



the distribution of objective probabilities. More particularly, the empirical evidence

that only extreme favorites have positive expected values need to be theoretically

confirmed. As in this suggested theoretical framework bettors would face more than

two possible states, one should consider rank-dependent functional forms. By doing

so, there is room for finding probability weighting functions which account for these

additional empirical facts. However, this remains the topic of future research.

Appendix. Proof of Theorem 1

In this appendix we provide several additional lemmas and we prove Theorem 1.

Since the sequential betting game considered in this paper can be reduced to an

extensive form game with perfect information, we know that there exists a subgame

perfect Nash equilibrium in pure strategies (see, for example, Myerson, 1991, Theo-

rem 4.7, p. 186). Hence, to show Theorem 1, it is sufficient to show that any outcome

inconsistent with Theorem 1 is not an equilibrium outcome. We first prove the first

and the third parts of the theorem.

Proof of Theorem 1(1). First note that p < (K+1)1/γ

(K−t(2K+1))1/γ+(K+1)1/γ is equivalent

to π(p) < K+1
(2K+1)(1−t) . Assume by way of contradiction that this last inequality is

satisfied and that s is an equilibrium outcome satisfying nF (s) ≥ 1. From Lemma 3

we know that nL(s) = 0. Hence, for all i ∈ F (s), we have:

Vi(s) > 0

=⇒ π(p) >
nF (s) + K

(1− t)(nF (s) + 2K)

=⇒ π(p) >
K + 1

(1− t)(2K + 1)
,

a contradiction. ¤

Proof of Theorem 1(3). Assume that p > (K+n)1/γ

(K−t(2K+n))1/γ+(K+n)1/γ , i.e., π(p) >

K+n
(2K+n)(1−t) , and that nD(s) ≥ 1, where s = s(σ), and σ is a subgame perfect

equilibrium. Consider a bettor who does not bet, i ∈ D(s). His equilibrium utility

is equal to zero. If he deviates and chooses to bet on the favorite, then his utility

becomes, with si−1 = (F, . . . , F ):

12



Vi(si−1, s(σ | si−1, F ))

= (1− t)π(p)
nF (s(σ | si−1, F )) + nL(s(σ | si−1, F )) + 2K

nF (s(σ | si−1, F )) + K
− 1

≥ (1− t)π(p)
2K + n

K + n
− 1 > 0.

Hence, σ is not an equilibrium because each bettor i ∈ D(s) deviates and bets on

the favorite. ¤

Now, we provide several lemmas used to prove the second part of the theorem.

The next lemma extends Lemma 1 to any subgame of the sequential betting game.

Lemma 4 For any subgame (along or outside the equilibrium path), there is no

equilibrium outcomes of this subgame in which some strategic bettors bet on the

favorite and some strategic bettors bet on the longshot.

Proof. The proof is similar to the Proof of Lemma 1. ¤

Lemma 5 Let k ∈ {1, . . . , n − 1}, j ∈ N , sj−1 ∈ Sj−1, and let σ be a subgame

perfect equilibrium. If

p ∈ ]
(K + k)1/γ

(K − t(2K + k))1/γ + (K + k)1/γ
,

(K + k + 1)1/γ

(K − t(2K + k + 1))1/γ + (K + k + 1)1/γ
[,

nL(sj−1) = 0, and nF (sj−1) ≤ k, then nF (s(σ | sj−1)) ≤ k.

Proof. Assume by way of contradiction that π(p) < K+k+1
(1−t)(2K+k+1) , σ is a sub-

game perfect equilibrium, nL(sj−1) = 0, nF (sj−1) ≤ k, and nF (s(σ | sj−1)) > k.

Let s = s(σ | sj−1). For all i ∈ F (s), i ≥ j, we have

13



Vi(s) = (1− t)π(p)
nF (s) + nL(s) + 2K

nF (s) + K
− 1

<
K + k + 1
2K + k + 1

nF (s) + nL(s) + 2K
nF (s) + K

− 1

=
K + k + 1
2K + k + 1

nF (s) + 2K

nF (s) + K
− 1, because nL(s) = 0 by Lemma 4

≤ K + k + 1
2K + k + 1

2K + k + 1
K + k + 1

, because nF (s) ≥ k + 1

= 0.

Hence, each player i ∈ F (s), i ≥ j, deviates by choosing to drop from betting, which

implies that s is not an equilibrium outcome. ¤

Lemma 6 Let k ∈ {1, . . . , n− 1}. If

p ∈ ]
(K + k)1/γ

(K − t(2K + k))1/γ + (K + k)1/γ
,

(K + k + 1)1/γ

(K − t(2K + k + 1))1/γ + (K + k + 1)1/γ
[,

and s is an equilibrium outcome, then nF (s) ≥ k.

Proof. Consider a subgame perfect equilibrium σ, and let s = s(σ) be the associ-

ated equilibrium outcome. Assume by way of contradiction that π(p) > K+k
(1−t)(2K+k)

and that nF (s) < k. Each bettor i ∈ D(s) has zero utility. If he deviates and bet

on the favorite, his utility becomes

Vi(si−1, s(σ | si−1, F ))

= (1− t)π(p)
nF (s(σ | si−1, F )) + nL(s(σ | si−1, F )) + 2K

nF (s(σ | si−1, F )) + K
− 1

≥ (1− t)π(p)
nF (s(σ | si−1, F )) + 2K
nF (s(σ | si−1, F )) + K

− 1

≥ (1− t)π(p)
2K + k

K + k
− 1, because nF (s(σ | si−1, F )) ≤ k by Lemma 5

>
K + k

(2K + k)
2K + k

K + k
− 1 = 0.

Hence, σ is not an equilibrium because each bettor i ∈ D(s) deviates and bets on

14



the favorite. ¤

From Lemma 5 and 6 we know that the number of bets on the favorite is in

accordance with Theorem 1(2). It remains to show that bets on the favorite are

always done by the first bettors.

Lemma 7 Let k ∈ {1, . . . , n− 1}. If

p ∈ ]
(K + k)1/γ

(K − t(2K + k))1/γ + (K + k)1/γ
,

(K + k + 1)1/γ

(K − t(2K + k + 1))1/γ + (K + k + 1)1/γ
[,

si = D and sj = F , where j > i, then s is not an equilibrium outcome.

Proof. From Lemma 5 and 6 we have nF (s) = k. Consider a bettor i ∈ D(s)

such that sj = F for some j > i. This implies that nF (si−1) < k, and thus

nF (s(σ | si−1), F ) ≤ k from Lemma 5. In that case it can be shown as in the Proof

of Lemma 6 that bettor i deviates by betting on the favorite. This completes the

proof of the lemma and of Theorem 1. ¤
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Figure 1: Equilibrium outcomes and subjective probabilities of the favorite when
n = K = 2, γ = 1, and t = 0.
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Figure 2: Equilibrium outcomes and subjective probabilities of the favorite when
n = 3, K = 4, γ = 1, and t = 0.
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Figure 3: Equilibrium outcomes and subjective probabilities of the favorite when
n = 3, K = 4, γ = 1, and t = 0.25.
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Figure 4: Equilibrium outcomes and subjective probabilities of the favorite when
n = 3, K = 4, γ = 1/2, and t = 0.
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