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Abstract

This paper examines the empirical interplay between economic

growth and greenhouse gas emissions using panel data. Relying on

nonparametric methods, we Þnd evidence supporting speciÞcations

which assume the constancy of the relationship between CO2 emis-

sions and GDP per capita during the period of the study. Moreover,

the usually adopted polynomial functional form is rejected against our

nonparametric modelling. It is shown that the relationship between

gas emissions and GDP displays more complex patterns, despite its

monotonous shape, than the well-known Kuznets curve obtained from

ad hoc parametric speciÞcations. The economic development process

has a negative effect on gas emissions, especially for the early and the

advanced stages of development. As a result, developed countries as

well as developing countries should make efforts to reduce CO2 emis-

sions.
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1 Introduction

The relation between economic development and environmental quality has

been extensively explored in recent years. Interests in this relationship is

motivated by its usefulness for the deÞnition of an appropriate joint economic

and environmental policy for improving human welfare. Depending on the

inßuence of economic development on environmental quality, the policy may

differ. If development has a negative effect on environmental quality, efforts

have to be made to reduce pollution. When this effect is positive, economic

development contributes to better environmental quality: the environmental

issue is then automatically resolved.

In the literature, this very active debate focuses on the existence of an

environmental Kuznets curve (EKC) or inverted-U shape curve, which means

that, starting from low levels of income per capita, environmental degradation

increases but after a certain level of income (a turning point) it diminishes.

Empirical studies are generally based on ad hoc parametric speciÞca-

tions with little attention paid to model robustness; yet different parametric

speciÞcations can lead to signiÞcantly different conclusions. As a result, a

functional misspeciÞcation problem is likely. Popular parametric functional

forms are linear, squared, and cubic polynomial functions of GDP per capita.

Holtz-Eakin and Selden (1995) investigated the reduced-form relationship

between the national carbon dioxide (CO2) emissions per capita and the real

GDP per capita for a sample of 130 countries over the period 1951-1986.

They used a Þxed country- and year-speciÞc effects model with a quadratic

polynomial function, and found an out-of-sample Kuznets curve: a closely

linear curve but with an out-of-sample turning point equal to $35,428 per

capita (in 1986 U.S. dollars). Grossman and Krueger (1993, 1995) studied

the effect of GDP per capita on various local environmental indicators, using

a random city-speciÞc effect model. They found no evidence that environ-

mental quality deteriorates with economic growth. For most indicators �

sulfur dioxide (SO2) concentrations, suspended particulate matter (SPM),

biological oxygen demand, chemical oxygen demand, and arsenic in rivers

� an inverted-U shape curve emerges. In particular, the turning point es-

timates for these pollutants are under $8,000 (in 1985 U.S. dollars) of GDP
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per capita. Selden and Song (1994) investigated this relationship for GDP

per capita and four air pollutants � SPM, SO2, oxides of nitrogen (NOx),

and carbon monoxide (CO) � which are from the same sources as Grossman

and Krueger (1993, 1995), and found evidence of a Kuznets curve for all four

pollutants but the turning points for SPM and SO2 exceed $8,000. ShaÞk

(1994) examined the relationship between various environmental quality in-

dicators and income per capita for the period 1960-1990, and obtained several

results among which the clear evidence of environmental Kuznets curves for

deforestation, SPM, and SO2, and a positive shape curve for CO2. For the

latter, the turning point is also out of the sample. Note that ShaÞk (1994)

used all three polynomial functions (linear, squared, and cubic) with Þxed

individual effects (city or country as the case may be) but did not provide

plausible speciÞcation tests in choosing the appropriate model.

Several other studies suggested the existence of EKC for many pollu-

tants.1 For example, Kaufmann et al. (1998) used Þxed and random effect

panel models with quadratic functional form for data from 23 countries be-

tween 1974 and 1989 and found an inverted U-shape relation (i.e. EKC)

between atmospheric concentration of SO2 and the spatial intensity of eco-

nomic activity, measured either by the ratio between GDP and the country�s

area or the product between GDP per capita and city�s population den-

sity. But Kaufmann et al. (1998) also found that there is a U-shape relation

(not EKC) between SO2 concentration and GDP per capita. Taking trade

into account, Suri and Chapman (1998) investigated data from 33 countries

between 1971-1991 using a panel Þxed effect model with also quadratic func-

tional form and found evidence of an EKC for consumption per capita of

primary commercial energy, expressed in terms of oil equivalents.

The empirical work of Schmalensee et al. (1998) adopts a more ßexible

model to evaluate the effect of income on carbon emissions and also Þnds

evidence of an inverted-U shape curve for a sample of 141 countries over

the period 1950-1990. The speciÞcation consists in a panel Þxed year- and

country-speciÞc effects model with a piecewise linear function. Koop and Tole

(1999) suggested a parametric model with random coefficients that differ

1For detailed discussions, see the special issues of Environment and Development Eco-
nomics 1997 and Ecological Economics 1998. See also the excellent survey of Stern (1998).
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across but not within countries over time, and found little evidence for the

existence of an environmental Kuznets curve for deforestation. Despite these

ßexible speciÞcations, the criticism of the ad hoc parametric functional forms

applies.

Recently, Hettige et al. (2000) proceed diverse econometric estimations

with parametric functional form on new panel data constructed from direct

observations on industrial water pollution, measured by biological oxygen de-

mand, at the plant level from 12 countries over the period 1989-1995. Their

results reject the EKC hypothesis and show that industrial water pollution

rises rapidly through middle income status and remains unchanged there-

after. Parallel with our work, Taskin and Zaim (2000) use a nonparametric

methodology to investigate the existence of EKC for environmental efficiency.

They use cross-sectional data on CO2 emissions to compute the environmen-

tal efficiency index (see Fare et al. (1989)) for low- and high income countries

between 1975-1990. As a result, the relationship between the environmental

efficiency index and GDP per capita displays a cubic shape, i.e. the EKC hy-

pothesis holds only for countries with sufficiently high GDP per capita (more

than $5000). It should be noted that the nonparametric regression in Taskin

and Zaim (2000) is not smooth and is not derived from any speciÞcation test.

This study investigates in details the question of EKC using a nonpara-

metric approach for modelling the relationship between greenhouse gas emis-

sions and economic development. This approach is more realistic than a

parametric approach because it implies fewer restrictions. Especially, in the

nonparametric approach, no a priori parametric functional form is assumed.

A nonparametric poolability test allows us to provide a strong support for

a constant relationship during the period of the study between greenhouse

gas emissions and income. Furthermore, for the whole sample as well as

for income groups sub-sample, nonparametric regressions show that the so-

called Kuznets curve no longer holds. Moreover, the relationship between gas

emissions and GDP displays a complex pattern, despite of its monotonous

shape. We also test the adopted nonparametric speciÞcation against a para-

metric one in the framework of panel data. Test results reject the parametric

modelling.

The paper is organized as follows. Section 2 presents the nonparametric
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analysis. Data description and empirical results are reported respectively in

Sections 3 and 4. Section 5 discusses the results and the policy concerns.

Section 6 concludes the study.

2 Nonparametric analysis

This section states the theoretical background of the study. We use a non-

parametric speciÞcation to evaluate the relationship between CO2 emissions

per capita (y) and real GDP per capita (x). This speciÞcation enables us to

avoid specifying some ad hoc parametric functional form, e.g. y as a linear,

quadratic or cubic function of x. As mentioned earlier, parametric functional

forms are often restrictive and misspeciÞed.

A major concern with panel data is poolability: is it correct to assume

constancy of parameters over time? There are parametric tests for the poola-

bility of panel data (e.g., Chow tests) but Baltagi et al. (1996) stress that

they may not be robust to functional misspeciÞcation. Note that most stud-

ies use a constant or a variable relationship between dependent variable and

explicative variables without providing poolability tests, e.g. among others,

panel Þxed effects model in Selden and Song (1994), Holtz-Eakin and Selden

(1995), and a piecewise linear function model in Schmalensee et al. (1998).

To avoid any ad hoc parametric functional form, we propose the following

nonparametric model

yit = gt (xit) + uit, (1)

with E (yit|xit) = gt (xit) , E (uit|xit) = 0, i = 1, ..., N, t = 1, ..., T . The cru-
cial assumption here is that the error term uit is independent and identically

distributed (i.i.d.) in the i subscript but no restriction is placed on the t

subscript. There are two cases to be distinguished.

� Individual effect
It is known that relation (1) cannot distinguish between random and Þxed

individual effects. Following Baltagi et al. (1996), if yit = Gt (xit) + εit with

εit = µi+νit and E (εit|xit) = E (µi|xit) = mt (xit) 6= 0 then we have a �Þxed
effect� model. Let gt (xit) = Gt (xit) +mt (xit) and uit = µi −mt (xit) + νit,

then the model turns out to be the same as (1). Note that Gt (.) andmt (.) are
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not separately identiÞable unless some parametric restrictions are imposed.

Moreover, our speciÞcation also includes the case µi = constant, which is the

well-known Þxed effect model frequently used in empirical work. It is simply

a sub-case of the previous speciÞcation with gt (xit) = Gt (xit).

It should be noted that the random individual effect model E (µi|xit) = 0,
which is a particular case of the Þxed effect model, is directly included in

model (1). But in the empirical part (Section 4), because of the sampling

procedure that consists of a sample of 100 countries, the random effect hy-

pothesis is not appropriate.

� Temporal effect
The eventual presence of a Þxed temporal effect λt, is also included in

model (1). Indeed, if yit = Gt (xit) + λt + uit where λt is uncorrelated with

xit, letting gt (xit) = Gt (xit) + λt, we obtain (1) again. Now if gt (.) is tested

to be constant during the sampling period, therefore we may suppose that

the Þxed temporal effect does not exist or is not signiÞcant. The drawback

of model (1) is that it does not include the random temporal effect.

Before investigating the effect of GDP per capita on CO2 emissions per

capita, we apply the test for poolability proposed by Baltagi et al. (1996) to

test the null hypothesis H0: gt (.) = g (.) for all t (almost everywhere) against

the alternative H1: gt (.) 6= g (.) for some t with probability greater than 0.
This test allows us to know whether the relationship between y and x does

not change over time. The test statistic is

J =
Nh1/2Iq
2�σ20

,
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1
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h and a denote two smoothing parameters corresponding respectively to the
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N-cross sectional data for a Þxed value of t and the pooled data for all the

periods (h can be Þxed constant for all t). The smoothing parameter, also

called �bandwidth�, determines the degree of smoothing in nonparametric

estimates (density estimate and nonparametric regression curve). In the

empirical part, a normal kernel is used (in this case, K (.) is the standard

normal density). The choice of h and a have an inßuence the value of the

test statistic. In the following, h and a are Þxed according to the method

of Baltagi et al. (1996).2 J is proved to have a standard normal asymptotic

distribution under H0. Under H1, J
p−→ J0 > 0, then this poolability test is

one-sided.

The nonparametric estimate of E (y|x) at the point x0 by the kernel
method is

1

n

nX
l=1

K ((xl − x0) /s) ylPn
l K ((xl − x0) /s)

,

where n is the number of observations in the regression and s is the corre-

sponding smoothing parameter. In the case of gt (xit) = g (xit) ∀t, n = NT ,
and s = a.

In the following sections, we use the theoretical framework sketched above

to investigate the existence of an EKC for the empirical relationship between

CO2 emissions per capita and GDP per capita.

3 Data

The series used in the empirical investigation stem from two sources: the na-

tional CO2 emission per capita series, measured in metric tons, is provided

by the Oak Ridge National Laboratory (see Marland et al. (1999)), and the

real GDP per capita series, measured in thousand constant dollars at 1985

international prices, are extracted from the Penn World Table 5.6 (Summers

and Heston (1991)). The CO2 series include emissions from fossil fuel burn-

ing, gas ßaring and cement manufacture but excludes emissions from bunker

fuels used in international transport. More details on the data can be found

in Holtz-Eakin and Selden (1995).

2We choose h = cxsdN−1/α and a = cxsdN−1/α0 , where c = 1, α = 5, α0 = 2 and xsd
is the standard error of x.
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The data structure is a balanced panel of 100 countries between 1960-

1996. The list of countries is provided in Appendix 1.3 Table 1 provides

descriptive statistics which take into account the panel structure of the sam-

ple. It decomposes each variable (CO2 emissions and real GDP per capita)

into �between� countries and �within� country patterns.

Insert Table 1 here

CO2 emissions per capita and GDP per capita vary respectively from

0 (the level of, e.g., Chad in 1960) to 10.99 metric tons (Luxembourg in
1970), and from 0.126 (Congo Dem. Rep., former Zaïre, in 1996) to 19.474

thousands of 1985 dollars (USA in 1996) for the overall statistic.

The within patterns refer to deviation from each country�s average. Note

that to make results comparable, in the deÞnition of �within�, we add the

overall averages (0.937 for CO2 and 4.134 for GDP). The reported �within�

and �between� standard deviations indicate that the variation in CO2 emis-

sions and the variation in GDP between countries are both approximately

three times higher than those observed within a country during the sampling

period. That is to say, if one were to choose two countries randomly from

the sample, the difference in CO2 emissions and the difference in the GDP

are expected to be both three times higher than the differences for the same

countries in two randomly selected years. Finally, the GDP variable is glob-

ally more dispersed than gas emissions (standard deviations equal to 4.218

and 1.371 respectively).

Density estimates of GDP per capita show that its distribution is two-

modal and highly skewed at all dates. Figure 1 displays kernel density es-

timates of GDP per capita by year. We observe in the data sample that

the proportion of low GDP per capita countries slightly decreases during the

sampling period. On the contrary, the proportion of high GDP per capita

increases. In the subsequent section, the effect of this change in GDP per

capita distribution on the functional form gt (.) is shown to be insigniÞcant

for the whole sample.

3The balanced nature of the panel excludes countries with separation/reuniÞcation
during the data collecting period (e.g. Russia and other former Soviet Republics, Germany,
etc.).
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Insert Figure 1 here

The group distinction is based on the 1996 GNP per capita classiÞcation

of the WorldBank (1998). Descriptive statistics are given in Table 2. Note

that GNP is in general different from GDP but adopting this criterion allows

us to have the same countries included within a group during the sampling

period and then to obtain a balanced panel sample for each income group,

which will simplify the econometric analysis.

Insert Table 2 (A, B, and C) here

Overall statistics by income group show the same increasing Þgures from

the low income group to the high, both for CO2 emissions per capita and GDP

per capita. For the GDP, the switching pattern is approximately 3.0 between

groups. Regarding the CO2 the dissimilarity between groups is more remark-

able: approximately 8.5 between the low and the middle income groups, 3.5

between the middle and the high income groups, and exceptionally about 30

between the low and the high income groups.

4 Empirical results

The nonparametric test statistic for poolability J is equal to -0.820 for the

whole sample, which is largely lower than 1.645 (the 95% value of the stan-

dard normal distribution, one-sided test). Hence, we conclude that the data

for the whole sample is poolable.4 The following model

yit = g (xit) + uit, (2)

with E (yit|xit) = g (xit) and E (uit|xit) = 0, is then retained. As shown

in Section 2, equation (2) might correspond to two possible speciÞcations

which are both Þxed country effect models. (i) g (xit) = G (xit)+m (xit) and

uit = µi − m (xit) + νit, (ii) g (xit) = G (xit) and uit = µi + νit. In (i), µi
depends on xit, that is E (µi|xit) = m (xit). In (ii), µi is simply a constant
parameter. Then (ii) is a sub-case of (i).

4GAUSS and STATA procedures to implement the numerical calculations of this paper
are available from the authors upon request.
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Kernel estimate of E (y|x) = g(x) and 95% pointwise conÞdence interval,
�g(.)± 2SD [�g(.)] are presented in Figure 2, where �g(.) is the estimate of g(.)
and SD (.) is the kernel estimate of standard deviation of g(.).5

Insert Figure 2 here

As shown in Figure 2, the hypothesis of monotonous relationship between

GDP per capita and CO2 emissions per capita obtained from the nonpara-

metric regression cannot be rejected. This gives strong evidence of the non-

existence of an EKC. As pointed out previously, the model (2) takes into

account any possible correlation between Þxed individual effects and the re-

gressor, the curve �g (.) representing the net effect of real GDP per capita on

gas emissions per capita.

We also provide a parametric version from the result of the poolability

test, which is a parametric Þxed country effect model

yit = xitβ1 + x
2
itβ2 + x

3
itβ3 + µi + ηit, (3)

where µi is the Þxed country effect and ηit is i.i.d. with E (ηit|xit) = 0.6 A
random effects model does not seem appropriate here, because of the sam-

pling procedure, i.e. countries are not randomly drawn from a large popu-

lation. Furthermore, Þxed temporal effects are not suitable because they do

not imply the functional constancy over the sampling period.

The estimation of model (3) can be carried out by the Ordinary Least

Squares regression on the model transformed by the within operator. In

order to account for the presence of heteroskedasticity, and spatial and serial

dependence in the data, we use the estimator developed by Driscoll and

Kraay (1998). This methodology provides us with standard errors robust to

very general form of temporal and spatial dependence (see Appendix 2 for

a brief description). It should be noted that while this procedure does not

test for spatial and serial dependence, it gives us consistent estimates in the

presence of such a dependence.

Table 3 presents estimation results with simple standard errors (just ob-

tained from the OLS regression on the model (3) with idiosyncratic errors,

5See, e.g., Lee (1996) for more details on kernel regression.
6Bold characters represent vectors. x is the vector of regressors.

10



which we term as model P1) and standard errors robust to heteroskedasticity,

and spatial and serial correlation (model P2). The parameter estimates are

the same for the two models. However, we observe that all the coefficients

are signiÞcant for the two models, except for the quadratic term in the model

P2. The standard errors are higher for all the parameters in the model P2

than those in the model P1. The linear and quadratic terms of GDP both

have positive effects on gas emissions, in contrast to the cubic term, which

has a small negative impact.

Insert Table 3 here

As shown in Figure 2, which also presents the curve yit = xit�β1+ x
2
it
�β2+

x3it
�β3 where �β1, �β2, and �β3 are parameter estimates, an inverted-U shape

curve occurs for the sample with a turning point approximately equal to

$13,400 corresponding to the level of GDP per capita of Iceland in 1990.

The parametric and nonparametric models lead to different conclusions.

While the parametric speciÞcation results in an EKC, the nonparametric

speciÞcation gives a monotonous increasing relation between gas emissions

and GDP. CO2 emissions always go up with economic development. They

rise at increasing rate and then at decreasing rate for GDP per capita smaller

than the amount approximately equal to the turning point value ($13,400),

and they rise again at increasing rate for GDP per capita larger than this

value.

The result between these two approaches is contrary for the countries

with GDP per capita higher than $13,400. We can see clearly in Figure 2

that the parametric speciÞcation does not Þt the sample well, in particular

for observations corresponding to incomes greater than $13,400 for which the

curve is downward sloping while the data plot suggests an upward sloping

curve. It should be noted that the downward behavior of the parametric

curve follows from the restrictions imposed on the functional form.

Since the speciÞcations (2) and (3) are nested, we can perform a sim-

ple differencing test as described in Yatchew (1998) for comparison pur-

poses. The null hypothesis is the parametric model (3), the alternative is

the nonparametric model (2). This test compares the variances obtained

from these two speciÞcations. It does not necessitate any nonparametric
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estimation because the differencing operator to obtain the differencing vari-

ance estimator s2diff in the nonparametric speciÞcation deletes any nonpara-

metric effect. Indeed, using model (2) and applying the Þrst differencing

operator to the data, which is rearranged so that xit is in increasing order:

x1 < ... < xk < ... < xNT (in the rearranged data, x has only one index), lead

to uk−uk−1 = yk−yk−1− [f (xk)− f (xk−1)] . The latter term represents the
difference between nonparametric effects from two close data points xk and

xk−1, which is approximately equal to 0, then uk − uk−1 ≈ yk − yk−1. This
implies an estimate of the variance from model (2):

s2diff =
1

2NT

NTX
k

(yk − yk)2 .

Given the variance estimator in the model (3),

s2res =
1

NT

X
i,t

(yit − β0xit)2 = 1

NT
RSS,

where RSS denotes the residual sum of squares. The test statistic is

D = (NT )1/2

³
s2res − s2diff

´
s2diff

.

Under the null, D has a standard normal asymptotic distribution. If the

null is false, D must be large. Then the test is one-sided. Empirically, D

is equal to 15.46 (s2res = 0.814, s2diff = 0.649), which exceeds widely the

5% level 1.645. Hence, the parametric speciÞcation is rejected against the

nonparametric speciÞcation.

In the following, we study whether an EKC exists for low, middle, and

high income countries groups. Figures 3-5 present both nonparametric and

parametric curves.

Insert Figure 3-5 here

Parametric estimation results by income group are reported in Table 4

both for the models P1 and P2. The parameter estimates of the Þrst two

groups (see Table 4) have the same signs as those obtained from the esti-

mation on the whole sample (see Table 3). For the high income group, the
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squared and the cubic terms are of opposite sign compared to the Þrst two

groups and the whole sample. We observe that all the coefficients are in-

signiÞcant in the speciÞcation P2, contrary to P1, for the low and middle

income groups. For the high income group, all the coefficients, except for

the cubic term, are signiÞcant both for the speciÞcations P1 and P2. Con-

sequently, relying on the model P2, it seems that economic activity has no

signiÞcant effect on CO2 emissions for the low and middle income countries.

Insert Table 4 here

For each group, it seems very hard to derive an EKC from the nonpara-

metric regression, even if apparently the nonparametric estimation for the

middle income group displays an inverted-U shape. Indeed, Figure 4 shows

that the decreasing part of the curve is not robust since the conÞdence in-

terval is very large. Parametric curves for the low and the high income

groups (see Figures 3 and 5) have an inverted-U form (EKC) whereas that of

the middle (see Figure 4) is monotonous, which is not an EKC. Finally, we

observe that the difference between the nonparametric and the parametric

curves is striking for the middle income group: the nonparametric curve Þts

the data better than the parametric one, especially for relatively high values

of CO2 emissions.

5 Discussion

How can we explain the complex but monotonous relation between CO2
emissions per capita and economic growth obtained in this study? Several

arguments can be brought forward. It seems that the earlier stage of economic

development can be associated with lower economic activities. One may

think that at such a stage, polluting technologies or obsolete technologies

are still used. But governments� policies are more biased towards economic

development than environmental protection. Countries in a middle state

of development have an increasing number of new green technologies and

environmental policies which allow them to compensate for the polluting

effect of their economic activities. This is a reason why gas emissions are

only increasing slightly. In rich countries, positive effects on emissions due
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to intensive economic activity seem to exceed the reduction due to modern

technologies. On the whole, the economic development process has always

had a negative effect on gas emissions, but with varying magnitude.

The following discusses the policy concerns. In the parametric model,

the pollution problem only relates to poor countries and they only are called

upon to make efforts to reduce the environmental degradation. Consequently

economic development is the only way for them to overcome the issue. In

the nonparametric model, not only poor countries but also richer countries

face environmental pollution. It implies that economic development is not a

sufficient condition to reduce gas emissions, and so all countries, especially

developed countries because of their important resources, should make efforts

to reduce these emissions.

It is useful to stress that this study is interested in a particular type of

environmental pollution, which is CO2. In this respect, a few reservations

must be expressed about the use of this type of pollutant. The question

one can ask is whether the nonparametric estimation results are speciÞc to

CO2. In other words, would we obtain the same results for another type of

pollutant? If it is not so, then Kuznets relations would not be bound to be

contradicted. A formal answer to this question could be obtained only by

using data relating to those pollutants. A priori, there is no reason why we

should obtain a Kuznets relation from these pollutants. Thus, it seems more

interesting to discuss the speciÞcity of CO2 in order to underline both the

limits and the contributions of our study.

The question of the speciÞcity of CO2 can be articulated in two ways: the

complementarity of the production factors and restrictions of energy substitu-

tion as well as the deceleration of the efforts of energy saving. The problem

of CO2 is directly related to that of energy. There is a strong correlation

between fossil energy, CO2, and economic activity. The speciÞcity of CO2
follows from the fact that on the one hand, there is a level of CO2 emis-

sions, related to economic activity, which cannot be reduced. On the other

hand, economic activity cannot be reduced to zero. In other words, the CO2
emissions are much more difficult to reduce than the emissions due to other

pollutants. CO2 emissions come primarily from vehicles, which are one of

the main sources of economic activity in developed countries. This may be a
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reason for the unwillingness of these countries to contribute to CO2 reduction

under a given threshold. Indeed, that would automatically have a detrimen-

tal effect on their economic activity. That may be also an explanation for

the monotonous curve obtained from nonparametric modelling. The ques-

tion of the determination of this threshold and its modulation by country

during a period of time remains unsolved. The efforts to be made will be

thus according to this threshold.

We observe, therefore, a difficulty of CO2 abatement. This is due to the

absence of incentives to save energy and to use less polluting or renewable

energies, which is related to energy substitution. Moreover, new green tech-

nologies are costly to use. At the present stage of technology, renewable

energies cannot be produced in large quantities, and thus are not proÞtable.

The debate concerning the deceleration of the efforts of energy saving is well-

known. Indeed, since the two oil crises, the real price of a barrel of oil has

not ceased to fall until recently. There is no incentive on behalf of the polit-

ical leaders to carry out energy saving policies and to reduce, for example,

the emissions of CO2. One reason may be that signiÞcant tax revenues are

raised from oil. Therefore, in order to reduce CO2 emissions, public policy

has to be oriented in the domain of energy saving, renewable energies and

new green technologies. In this direction, the role of public policy should be

to create incentives for energy saving and energy substitution, and to reduce

costs implied by the use of renewable energies and new green technologies.

6 Concluding remarks

This paper investigates the empirical relationship between economic growth

and greenhouse gas emissions using panel data. Relying on nonparametric

procedures, we Þnd evidence supporting speciÞcations which assume the con-

stancy of the relationship between CO2 emissions per capita and GDP per

capita during the period of the study. However, this result does not necessar-

ily imply parametric speciÞcations such as parametric Þxed country effect or

Þxed coefficient models. We have shown that the Þxed country effect model

with the usually adopted polynomial functional form is rejected against our

nonparametric modelling.
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Another Þnding is that the relationship between gas emissions and GDP

displays a complex pattern, despite its monotonous shape, which is different

from the well-known Kuznets curve obtained from ad hoc parametric spec-

iÞcations. Each stage of economic development has a different effect on the

environment. But globally, the economic development process has a negative

effect on gas emissions, especially at the early and the advanced stages of

development. Economic development is not a sufficient condition for envi-

ronmental conservation and rich countries seem to have more responsibility

than poorer countries in the struggle to abate gas emissions.

It will be interesting to extend the nonparametric study to other pollu-

tants (urban air pollutants, deforestation, etc.). Results at odds with those

obtained by parametric methods may be also expected.
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Appendix 1: list of countries in data

Algeria, Angola, Argentina, Australia, Austria, Belgium, Belize, Benin, Ber-

muda, Bolivia, Brazil, Burkina Faso, Cameroon, Canada, Cape Verde, Cen-

tral African Rep., Chad, Chile, China, Colombia, Comoro, Congo Democratic

Rep. (former Zaïre), Congo Rep., Costa Rica, Denmark, Dominican Rep.,

Ecuador, Egypt, El Salvador, Ethiopia, Fiji, Finland, France, Gabon, The

Gambia, Ghana, Greece, Guatemala, Guinea, Guinea-Bissau, Haiti, Hon-

duras, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy,

Ivory Coast, Jamaica, Japan, Jordan, Kenya, Korean Rep., Luxembourg,
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Madagascar, Mali, Malta, Mauritania, Mauritius, Mexico, Morocco, Mozam-

bique, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway,

Papua New Guinea, Paraguay, Peru, Philippines, Portugal, Romania, Saudi

Arabia, Senegal, Seychelles, Sierra Leone, Singapore, South Africa, Spain,

Sri Lanka, Sudan, Sweden, Switzerland, Syria, Thailand, Togo, Trinidad and

Tobago, Tunisia, Turkey, Uganda, United Kingdom, United States, Uruguay,

and Venezuela.

Appendix 2: Estimation robust to heteroskedasticity, and spatial
and serial dependence

The standard Generalized Method of Moments (GMM) estimator for

panel data, based on NR× 1 vector of moment conditions E
h
�ht (β)

i
= 0, is

�β = argmin
β∈Θ

�ht (β)
0V−1

T
�ht (β) ,

where �ht (β) ≡
h
h1t (β)

0 , . . . ,hNt (β)
0i0 , and the NR × NR weights matrix

VT is replaced by a consistent estimator

�VT =
1

T

TX
t=1

TX
s=1

E
h
�ht (β) �hs (β)

0i .
The estimation of VT requires to estimate NR (R+ 1) /2 distinct elements

of VT using the NT avalaible observations in the manner which yields a

nonsingular matrix. This will not be possible in practice when N becomes

large relatively to T .

In order to overcome this difficulty, we use a methodology proposed by

Driscoll and Kraay (1998). Let us deÞne a R × 1 vector of cross-sectional
averages ht (β) = N−1PN

i=1 hit (β). The model can then be identiÞed us-

ing only the R × 1 vector of cross-sectional averages of the orthogonality
conditions E [ht (β)] = 0. The GMM estimator for β is

�β = argmin
β∈Θ

ht (β)
0 S−1T ht (β)

with ST
a.s.−→ S0, a positive semi-deÞnite weights matrix. A consistent esti-

mate of the variance of the GMM estimator requires a consistent estimator

of the R ×R matrix
�ST =

1

T

TX
t=1

TX
s=1

E
h
ht (β)hs (β)

0i .
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Since �ST has onlyR (R+ 1) /2 distinct elements, the size of the cross-sectional

dimension is no longer a constraint on the feasibility of estimating this ma-

trix.

In order to characterize a general class of heteroskedasticity, and spatial

and serial dependence, Driscoll and Kraay (1998) deÞne a two-dimensional

lattice of integers using mixing conditions. This provides us with

ht (β) =
1

N (T )

N(T )X
t=1

hit (β) ,

and

�ST = �Ω0 +
m(T )X
j=1

w (j,m (T ))
h
�Ωj + �Ω

0
j

i
,

where

�Ωj = T−1
TX

t=j+1

ht
³
�β
´
ht−j

³
�β
´0
,

ht
³
�β
´
= N (T )−1

N(T )X
i=1

hit
³
�β
´
,

w (j,m (T )) = 1− j/ [m (T ) + 1] is the Barlett kernel and N (T ) is a nonde-
creasing function of T. In the estimation procedure, we set m(T ) = 2, which

gives consistent standard errors robust to heteroskedasticity, and spatial and

serial correlation. Without lose of generality, we also set N (T ) = N.

18



References

Baltagi, B., Hidalgo, J., Li, Q., 1996. A nonparametric test for poolability

using panel data. Journal of Econometrics 75, 345�367.

Driscoll, J., Kraay, A., 1998. Consistent covariance matrix estimation with

spatially dependent panel data. Review of Economics and Statistics 80,

549�560.

Fare, R., Grosskopf, S., Lovell, C., Pasurka, C., 1989. Multilateral productiv-

ity comparisons when some outputs are undesirable. Review of Economics

and Statistics 71, 90�98.

Grossman, M. G., Krueger, A. B., 1993. Environmental impacts of a North

American free trade agreement. In: Garber, P. (ed.), The U.S.-Mexico

Free Trade Agreement, MIT Press, Cambridge, MA, pp. 165�177.

Grossman, M. G., Krueger, A. B., 1995. Economic growth and the environ-

ment. Quarterly Journal of Economics 60, 353�377.

Hettige, H., Mani, M., Wheeler, D., 2000. Industrial pollution in economic

development: the environmental Kuznets curve revisited. Journal of De-

velopment Economics 62, 445�476.

Holtz-Eakin, D., Selden, T., 1995. Stoking the Þres ? CO2 emissions and

economic growth. Journal of Public Economics 57, 85�101.

Kaufmann, R., Davidsdottir, B., Garnham, S., Pauly, P., 1998. The determi-

nants of atmospheric so2 concentrations: Reconsidering the environmen-

tal Kuznets curve. Ecological Economics 25, 209�220.

Koop, G., Tole, L., 1999. Is there an environmental Kuznets curve for defor-

estation ? Journal of Development Economics 58, 231�244.

Lee, M., 1996. Methods of Moments and Semiparametric Econometrics for

Limited Dependent Variable Models. Springer-Verlag, New York, Berlin.

Marland, G., Andres, R., Boden, T., Johnston, C., Brenkert, A., 1999.

Global, regional, and national CO2 emission estimates from fossil fuel

19



burning, cement production, and gas ßaring: 1751-1996. Carbon Diox-

ide Information Analysis Center, Oak Ridge National Laboratory, U.S.

Department of Energy, Oak Ridge, Tennessee, U.S.A.

Schmalensee, R., Stoker, T., Judson, R., 1998. World carbon dioxide emis-

sions: 1950-2050. Review of Economics and Statistics 80, 15�27.

Selden, T., Song, D., 1994. Environmental quality and development: is there

a Kuznets curve for air pollution emissions ? Journal of Environmental

Economics and Management 27, 147�162.

ShaÞk, N., 1994. Economic development and environmental quality: an

econometric analysis. Oxford Economic Papers 46, 757�773.

Stern, D., 1998. Progress on the environmental Kuznets curve ? Environ-

mental and Development Economics 3, 173�196.

Summers, R., Heston, A., 1991. The Penn world table (mark V): an ex-

panded set of international comparisons, 1950-1988. Quarterly Journal

of Economics 106, 327�369.

Suri, V., Chapman, D., 1998. Economic growth, trade and energy: Impli-

cation for the environmental Kuznets curve. Ecological Economics 25,

195�208.

Taskin, F., Zaim, O., 2000. Searching for a Kuznets curve in environmental

efficiency using kernel estimation. Economics Letters 68, 217�223.

WorldBank, 1998. World Development Indicators. Washington D.C.

Yatchew, A., 1998. Nonparametric regression techniques in economics. Jour-

nal of Economic Literature 36, 669�721.

20



Table 1: Descriptive statistics for the whole sample

variables mean std.dev. min. max.

CO2 emissions per capita (metric tons)
(a)

overall 0.937 1.371 0 10.99

between 1.307 0.007 8.300

within 0.432 -1.932 4.238

real GDP per capita (thousands $1985)(b)

overall 4.134 4.218 0.216 19.474

between 3.932 0.305 14.825

within 1.573 -2.438 13.829

# countries 100

# years 37

Notes: (a) see Marland et al. (1999), (b) obtained from The Penn World Table 5.6 (Summers and Heston
(1991))

Table 2: Descriptive statistics by income groups

(A): Low income group

variables mean std.dev. min. max.

CO2 emissions per capita (metric tons)
(b)

overall 0.077 0.094 0 0.76

between 0.079 0.008 0.401

within 0.053 -0.165 0.443

real GDP per capita (thousands $1985)(c)

overall 0.904 0.432 0.216 2.761

between 0.378 0.306 1.918

within 0.220 0.134 2.132

# countries 34
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(B): Middle income group

variables mean std.dev. min max

CO2 emissions per capita (metric tons)
(b)

overall 0.663 0.799 0 4.78

between 0.718 0.062 3.038

within 0.368 -1.965 2.405

real GDP per capita (thousands $1985)(c)

overall 3.124 1.974 0.411 13.766

between 1.760 0.763 8.529

within 0.936 -1.521 8.361

# countries 39

(C): High income group

variables mean std.dev. min max

CO2 emissions per capita (metric tons)
(b)

overall 2.420 1.671 0.1 10.99

between 1.544 0.714 8.301

within 0.703 -0.451 5.721

real GDP per capita (thousands $1985)(c)

overall 9.660 3.860 0.904 19.474

between 2.703 3.635 14.826

within 2.803 3.087 19.355

# countries 27

Notes: (a) see the WorldBank (1998); (b) see Marland et al. (1999); (c) obtained from The Penn World
Table 5.6 (Summers and Heston (1991)).
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Table 3: Parametric estimation results for the whole sample

P1 P2

variables coef. std.err. std.err.

linear term 0.2401 0.0223 0.0282

quadratic term 0.0057 0.0027 0.0047∗

cubic term -0.0007 0.0001 0.0002

RSS 3012.42

# obs. 3700

Note: dependent variable is CO2 emissions per capita (metric tons); RSS is the residual sum of squares;
* corresponds to insigniÞcant coefficient; P1 corresponds to the parametric model with simple standard
errors; P2 is the parametric model with standard errors robust to heteroskedasticity, and spatial and serial
correlation.

Table 4: Parametric estimation results by income group

income group(a) low middle high

P1 P2 P1 P2 P1 P2

variables coef. std.err. std.err. coef. std.err. std.err. coef. std.err. std.err.

linear term 0.0401 0.0523∗ 0.1091∗ 0.0930 0.0419 0.0532∗ 0.4797 0.0630 0.0440

quadratic term 0.0892 0.0411 0.0954∗ 0.0262 0.0082 0.0142∗ -0.0202 0.0068 0.0060

cubic term -0.0285 0.0096 0.0228∗ -0.0012 0.0004 0.0007∗ 0.0001 0.0002∗ 0.0002∗

RSS 8.67 461.69 2267.32

# obs. 1258 1443 999

Notes: (a) see the WorldBank (1998); dependent variable is CO2 emissions per capita (metric tons);
RSS is the residual sum of squares; * corresponds to insigniÞcant coefficient; P1 corresponds to the
parametric model with simple standard errors; P2 is the parametric model with standard errors robust to
heteroskedasticity, and spatial and serial correlation.
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Figure 1: Kernel density estimates of GDP per capita by year. The distribution

is bi-modal and highly left-skewed.
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Figure 2: Nonparametric and parametric estimations for the whole sample. The

solid curve is the nonparametric Þt �g (x) . The short dashed curves are the 95%

pointwise conÞdence interval. The dashed curve is the parametric Þt yit = �β
0
xit.

The symbols + represent data points.

25



Figure 3: Low income group: nonparametric and parametric estimations.

The solid curve is the nonparametric Þt �g (x) . The short dashed curves are the 95%

pointwise conÞdence interval. The dashed curve is the parametric Þt yit = �β
0
xit.

The symbols + represent data points.
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Figure 4: Middle income group: nonparametric and parametric estimations.
The solid curve is the nonparametric Þt �g (x) . The short dashed curves are the 95%

pointwise conÞdence interval. The dashed curve is the parametric Þt yit = �β
0
xit.

The symbols + represent data points.
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Figure 5: High income group: nonparametric and parametric estimations.
The solid curve is the nonparametric Þt �g (x) . The short dashed curves are the 95%

pointwise conÞdence interval. The dashed curve is the parametric Þt yit = �β
0
xit.

The symbols + represent data points.
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