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Abstract

This paper examines a game-theoretical model of parimutuel betting markets with
asymmetric information. Generically, all Bayesian-Nash equilibria of the simultaneous
game are characterized depending on the number of bettors and the quality of their pri-
vate information. An equilibrium where all bettors use their private information always
exists and becomes unique as the number of bettors increases. On the contrary, in a
sequential framework, a perfectly revealing equilibrium does not always exist and disap-
pears as the number of bettors increases. Bettors arbitrate between following their private
signal, following the choices of previous bettors, and betting against the trend. On av-
erage, information is well aggregated by the market, but extreme effects based on herd
and contrarian behavior occur in identifiable states of the world, leading to significant
mispricing.

Keywords: Parimutuel betting; Asymmetric information; Information aggregation; Herd
behavior; Contrarian behavior.
JEL Classification: C72; D82.

1 Introduction

In this paper we propose a game-theoretical analysis of parimutuel betting markets with
asymmetric information. Such markets are characterized by well defined interactive decision
situations which possess several features of commonly analyzed games. First, they are anony-
mous games in the sense that a player’s payoff only depends on the distribution of strategies
over the set of players rather than on other players’ identities. Second, they are characterized
by negative payoff externalities as the payoff of each player decreases with the number of other
players who bet on the same option. Third, they are “almost” n-person zero-sum games since,
except in the case where all bettors choose the incorrect option, the return to each individual
is a fractional proportion of the entire amount wagered on the market. Finally, they are char-
acterized by a well-defined termination point at which the value of each bet becomes certain.
In consequence, the analysis of parimutuel markets can provide a clear view of pricing issues
and information aggregation which are more complicated elsewhere.

The origin of parimutuel markets lies in horse-race betting. In this paper we consider
parimutuel gambling systems used by racetracks in North America, France, Hong Kong, and
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Japan, where individuals directly place bets on horses. In such systems, if the horse chosen
by an individual wins, then his investment yields returns (calculated through final betting
odds) that are decreasing with the proportion of bettors who bet on the same horse. Besides,
the proportion of the money in the win pool that is bet on any given horse is interpreted as
the subjective probability that this horse will win the race and it corresponds to the implicit
price of a one unit of money bet. Several theoretical and empirical studies in economics have
investigated the features of parimutuel betting markets and have pointed out their particu-
lar relevance for the analysis of decision making under risk and for the analysis of market
efficiency.1

As a whole, the few existing theoretical researches on racetrack parimutuel betting have fo-
cused on games with symmetric information, either by considering bettors with homogeneous
beliefs (Chadha and Quandt, 1996; Feenay and King, 2001), or by introducing uninformed bet-
tors modeled as “irrational” noise bettors (Hurley and McDonough, 1995; Terrell and Farmer,
1996; Koessler, Ziegelmeyer, and Broihanne, 2002), or by endowing bettors with inconsistent
beliefs (Watanabe, Nonoyama, and Mori, 1994; Watanabe, 1997). Contrary to those previous
contributions, we propose to explore a game-theoretical model of parimutuel betting with
asymmetric information and consistent beliefs. That is, we consider strategic parimutuel bet-
ting markets where differences in beliefs are due only to differences in information, and are
not arbitrary unexplained differences in opinions. Those differences in information may be
due, e.g., to the dispersion of knowledge concerning the intrinsic ability of each horse, the
condition of the track, the skill of each jockey, horses’ performances in previous races, etc. In
such a setting, we especially wish to analyze the relative effectiveness of sequential betting
vis-à-vis simultaneous betting at aggregating information from diverse sources.

To begin with, we consider as a benchmark framework the simultaneous move version of
the game. Generically (for almost all bettors’ qualities of information), we characterize the set
of pure strategy Bayesian-Nash equilibria according to the number of bettors and the quality
of their private information. In particular, we show that a “fully informative” equilibrium
where all bettors use their private information always exists. Asymmetric equilibria where
some players bet non-informatively on the same horse whatever their private signal also exist.
Though such a multiplicity of equilibria raises selection questions, we show that such a selection
is needless for a large number of bettors since asymmetric equilibria vanish when the number of
bettors increases. More precisely, when the number of bettors increases, asymmetric equilibria
exist only for small intervals of the players’ information quality and they are characterized
by an increasing number of informative bets. Consequently, odds against each horse perfectly
reflect all private information in large wagering markets.

Next, we investigate sequential betting in an attempt to capture the strategic behavior
of static (simultaneous) betting games, the social learning of sequential trade models, and
signaling behavior. In such a setting, bets, in themselves, could reveal the underlying infor-
mation and so affect the behavior of latter bettors. Therefore, the effect of information on
odds takes an added dimension as the possibility of multiple rounds of bets is considered. We
first show that a perfectly revealing equilibrium can fail to exist, and will typically disappear
when the number of bettors increases. Intuitively, this failure might be related to the fact that
bettors exhibit herd behavior. Such behavior arises if later decision makers choose to blindly
imitate their predecessors’ choice without heed to their own private information. However, as
in most multi-agent sequential trade models with asymmetric information, complete imitation
does not hold in the long-run since it dilutes the profit of early agents.2 Actually, we show
that bettors arbitrate between following their private signal, following the choices of previous

1A detailed account of this recently developed literature may be found in Sauer (1998) and Vaughan Williams
(1999).

2For a survey on sequential trade models with asymmetric information see, e.g., Brunnermeier (2001).
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bettors (herd behavior), and betting against the trend (contrarian behavior). These choices
depend on the quality of bettors’ information, on the information acquired from past bets,
and on the way players forecast future participants’ information so as to predict future prices
(odds).

Unfortunately, it is intractable to provide a complete characterization of the set of equilib-
ria for an arbitrary number of players in the sequential betting game. Indeed, bettors’ decision
rules involve both backward (learning) and forward (signaling) behaviors which prevent the
computation of rational strategies due to the intractability of a full lookahead in the game tree.
Instead, we characterize conditions for some classes of equilibria to exist, we examine the set
of equilibria with two and three bettors and, thereafter, we consider less sophisticated bettors
(called “myopic” bettors) who are not able to anticipate the future fluctuation of betting odds.
That is, myopic bettors perform no lookahead in the sense that they consider the current odds
as the final odds. As with fully rational bettors, it is shown that odds adjustments do not
prevent herd and contrarian behavior because they do not integrate all information available
in the history of bets. Nevertheless, we show that, on average, information is well aggregated
even if herd behavior leads to extreme effects in some states of the world.

It is worth mentioning that the model and results presented in this paper can be applied
to a variety of problems of investment decisions in which the payoff of each agent is decreasing
with the number of agents who make the same decision and where individuals are asymmet-
rically informed about the return of each alternative. In particular, our study can be applied
to models of congestion where the utility of a product like a transportation device, a firm’s
location, or a visit of a public event, decreases with the quantity of users. For example, as
suggested by Feenay and King (2001), bettors in parimutuel markets may be assimilated to
investors who have to choose between several towns in which to locate similar retail stores.
Introducing asymmetric information, as is made in the present paper, allows one to analyze
a situation in which investors are privately informed about, e.g., the state of demand in each
town.

The paper proceeds as follows. Section 2 lays out the framework and basic model of
parimutuel betting used throughout the paper. In Section 3, we cover the results concerning
the set of all pure strategy Bayesian equilibria in the benchmark simultaneous move betting
game. Section 4 investigates the sequential move version of the game. Equilibrium outcomes
and information aggregation with myopic bettors are analyzed in Section 5. We give conclud-
ing remarks and we discuss the relationship with previous studies in Section 6. All proofs can
be found in the Appendix.

2 A Model of Parimutuel Betting

In this section we present a general framework of racetrack parimutuel betting. As most
theoretical studies in this literature, we consider a horse race where there are only two horses.
Additionally, we do not allow bettors to withdraw from betting and we assume that each
bettor is only able to bet one unit of money. Said differently, bettors must spend on the race
their entire endowment of one unit of money. If bettors were able to drop from betting, then
a no-trade result would apply and the only equilibrium would be the trivial equilibrium where
all bettors refrain from betting.3 Finally, we consider a finite set of asymmetrically informed
bettors. All of them are assumed to integrate the direct consequences of their actions on the
odds of the gamble, and they are endowed with beliefs about the state of Nature obtained
from their signals and from the information contained in the choices of their predecessors.

3A complementary analysis to the one presented in this paper would be to investigate a model with with-
drawing possibilities by adding players who bet for exogenous reasons.
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Additionally, with the exception of Section 5 where we consider myopic agents, bettors are
fully rational players in the sense that they incorporate in their optimization problem their
beliefs about successors’ strategies and beliefs. In that way, they take into account their full
impact on the equilibrium betting odds.

Independently of its temporal structure, the parimutuel betting market can be modeled
as follows. The two horses are called A and B. There is a finite set N = {1, . . . , n} of risk
neutral bettors. Each bettor i ∈ N independently chooses to bet one unit of money on a horse
si ∈ Si ≡ {A,B}. For any vector of bets s = (s1, . . . , sn) ∈ S =

∏
i∈N Si and any horse

H ∈ {A,B}, let H(s) = {i ∈ N : si = H} be the set of bettors who bet on horse H, let
h(s) = |H(s)| be the number of bettors who bet on horse H, et let H be the horse other than
H. The odds against horse H, which is given by the total number of bets on horse H divided
by the total number of bets on horse H, is denoted by

OH(s) =
n− h(s)

h(s)
.

We assume that bettors have a common prior belief on the payoff-relevant state space (or
set of states of Nature) Θ = {θA, θB}, where θA stands for “horse A wins” and θB stands for
“horse B wins”. For simplicity, we consider a flat prior belief: Pr(θA) = Pr(θB) = 1/2. The
results would be essentially the same with unequal prior winning chances.4

If bettor i bets on the winning horse, then his payoff is normalized to the return of this
horse, which is equal to its odds plus 1. Otherwise, bettor i receives 0 payoff. Hence, the
payoff of each bettor depends on his own choice, on alternatives chosen by other bettors, and
on the actual state of Nature. For example, odds of 4 to 1 laid against a horse implies a
payoff to a successful bet of four units of money, plus the stake returned (which is equal to
one unit of money here); on the contrary, an unsuccessful bet loses the stake. Formally, each
bettor i ∈ N has a utility function ui : S × Θ → R. Given a pair of bettors’ actions and a
state of Nature, (s, θ) ∈ S × Θ, the utility derived by bettor i is given by ui(s, θ). For all
H ∈ {A,B}, bettor i’s utility function satisfies

ui(s, θ) =

{
OH(s) + 1 = n

h(s) if si = H and θ = θH

0 if si = H and θ 6= θH .
(1)

Before taking his decision, and in addition to the possible history of choices he has observed,
each bettor i ∈ N gets a private signal qi ∈ Qi ≡ {qA, qB} that is correlated to the true state
of Nature. Conditionally on the state of Nature, bettors’ signals are i.i.d. and satisfy

Pr(qi = qA | θA, qj) = Pr(qi = qA | θA) = π > 1/2

Pr(qi = qA | θB, qj) = Pr(qi = qA | θB) = 1− π,

for all i, j ∈ N , i 6= j. Hence, once a bettor i ∈ N has received a signal qi ∈ Qi, his beliefs
about the states of Nature are given by

Pr(θA | qA) = Pr(θB | qB) = π

Pr(θA | qB) = Pr(θB | qA) = 1− π.

The parameter π characterizes bettors’ quality or precision of information. The larger is
π, the larger is the precision of bettors’ signals.

4For example, if bets are made simultaneously and if we consider different prior beliefs for horses A and B,
then, in asymmetric equilibria, the number of non-informative bets on each horse are not necessarily the same.
Actually, it can be shown that in such equilibria, when they exist, the number of unconditional bets on horse
A are increasing with the prior probability of horse A, and inversely for horse B. We do not consider those
generalizations since they introduce integer problems which complicate the exposition without substantially
modifying the results.
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3 Simultaneous Betting

To avoid the complexities associated with social learning and signaling of sequential games,
we first analyze the simultaneous parimutuel betting game. In such a setting, a bettor’s
strategy is a rule of action which maps each realization of his signal to one of two actions:
to bet on horse A, or to bet on horse B. More precisely, a (pure) strategy of bettor i is a
mapping σi : Qi → Si. The set of strategies of each bettor i is denoted by Σi, and the set of
strategy profiles is denoted by Σ =

∏
i∈N Σi. Bettor i’s belief that the winning horse is horse

H ∈ {A,B} and that other bettors receive the vector of signals q−i ∈ Q−i is given by

Pr(θH , q−i | qi) = Pr(q−i | θH) Pr(θH | qi) =


∏

j 6=i

Pr(qj | θH)


Pr(θH | qi). (2)

Thus, using Equations (1) and (2), bettor i’s expected utility given others’ strategies σ−i

when he bets on horse H and receives the signal qi can be written

Ui(H,σ−i | qi) = Pr(θH | qi)
∑

q−i∈Q−i


∏

j 6=i

Pr(qj | θH)


 n

h(H, σ−i(q−i))
.

As usual, in a Bayesian-Nash equilibrium the action prescribed by each bettor’s strategy
maximizes his expected payoff conditional on his signal given others’ strategies. More precisely,
a Bayesian-Nash equilibrium, or simply equilibrium, is a profile of strategies σ such that for
all i ∈ N , qi ∈ Qi, and si ∈ Si we have Ui(σi(qi), σ−i | qi) ≥ Ui(si, σ−i | qi).5 The following
proposition establishes that there is no equilibrium of the simultaneous move game where a
bettor systematically bets against his private signal.

Proposition 1 For any number of bettors, n, and any quality of information, π, the strategy
which involves some bettor i ∈ N in betting against his private signal, i.e., σi(qH) = H for all
H ∈ {A,B}, is strictly dominated.

On the contrary, a natural and intuitive strategy for a bettor is simply to follow his private
signal, i.e., to bet on horse A if he receives the signal qA and to bet on horse B if he receives
the signal qB. In the following proposition we show that there is always an equilibrium where
all bettors use this “informative” strategy, and this equilibrium is the unique symmetric one.
We call this equilibrium the fully informative equilibrium. In such an equilibrium, betting
odds perfectly reflect all private information.

Proposition 2 For any number of bettors, n, and any quality of information, π, there exists
an equilibrium where every bettor follows his private signal, i.e., σi(qH) = H for all H ∈
{A,B} and i ∈ N . Additionally, this equilibrium is the unique symmetric equilibrium.

Now, we investigate the possibility of asymmetric equilibria, i.e., equilibria in which bettors
use different strategies. We first characterize conditions under which no bettor uses his private
information. An equilibrium in which no bettor uses his private information is called a non-
informative equilibrium. For any non-negative integers j and k, the binomial coefficient is
denoted by Cj

k ≡ k!
j!(k−j)! .

5Since we deal in this paper only with pure strategy equilibria, no confusion shall arise when we write
“equilibrium” instead of “pure strategy equilibrium”. To simplify the exposition, we ignore indifference cases
throughout the paper when they are due to non-generic values of π.
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Proposition 3 There exists a non-informative equilibrium where a ∈ {0, 1, . . . , n} bettors
always bet on horse A and b = n− a bettors always bet on horse B if and only if n is an even
number, a = b = n/2, and π ≤ n+2

2n+2 . If such an equilibrium exists, then there are exactly

C
n/2
n non-informative equilibria.

It is interesting to note that limn→∞ n+2
2n+2 = 1/2. Hence, for a large number of bettors, non-

informative equilibria exist only for very low qualities of private information. As shown below,
the same phenomenon arises for all other asymmetric equilibria, namely partially informative
ones. More precisely, a partially informative equilibrium is an equilibrium in which some
bettors bet informationally and each other bettor bets on a given horse whatever his private
signal. A necessary and sufficient condition for such an equilibrium to exist is given by the
following proposition.

Proposition 4 There exists a partially informative equilibrium where exactly k bettors always
follow their private signal if and only if n − k is an even number, n−k

2 bettors always bet on
horse A, n−k

2 bettors always bet on horse B, and the following inequality is satisfied:

π

1− π
≤

∑k
j=0

Cj
kπj(1−π)k−j

n−k
2

+j

∑k
j=0

Cj
kπj(1−π)k−j

n−k
2

+1+j

=

∑k
j=0

( π
1−π

)j

j!(k−j)!(n−k
2

+j)

∑k
j=0

( π
1−π

)j

j!(k−j)!(n−k
2

+j+1)

. (3)

If such an equilibrium exists, then there are exactly Ck
n×C

n−k
2

n−k partially informative equilibria
with k informative bets.

A partially informative equilibrium with exactly k informative bets is called a k-informative
equilibrium. Note that the case k = n corresponds to the fully informative equilibrium,
which always exists from Proposition 2. If k = 0, we get the non-informative equilibrium of
Proposition 3.

Example 1 Consider k = 1 bettor who follows his signal and consider any odd number of
bettors, n. In that case we have a = b = (n− 1)/2, and Condition (3) is equivalent to

π

1− π
≤

1−π
a + π

a+1
1−π
a+1 + π

a+2

,

i.e., π ≤ 1
1+
√

a
2+a

= 1

1+
q

n−1
n+3

. We remark that limn→∞ 1

1+
q

n−1
n+3

= 1/2, which means that the

condition for the existence of a 1-informative equilibrium becomes stronger as the number of
bettors increases. We will generalize this result to all partially informative equilibria.

Solving Condition (3) for π with arbitrarily high values of k should not be conceivable.
However, we provide in the following lines interesting properties of such a solution. We first
show that values of π satisfying the condition for a k-informative equilibrium to exist belong
to an interval [1/2, π(k, n)], where π(k, n) < 1. To do this, we begin to give in the following
lemma a simpler formulation of Condition (3), and we present in subsequent lemmas useful
properties of this new formulation.

Lemma 1 Condition (3) is satisfied if and only if g(k, n, π) ≤ 0, where

g(k, n, π) =
k+1∑

j=0

(
π

1− π

)j

Cj
k+1

k − 2j + 1
k − 2j − n

.
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Lemma 2 For all n ≥ 2 and k < n, there exists π, π′ ∈ ]1/2, 1[ such that g(k, n, π) < 0 and
g(k, n, π′) > 0.

Lemma 3 For all n ≥ 2 and k < n, g(k, n, ·) is strictly increasing with π on the interval
]1/2, 1[.

From those three lemmas we know that the polynomial in π induced by Equation (3)
has one and only one real root on the interval ]1/2, 1[. Actually, we have more: for suffi-
ciently small qualities of information, there exist partially informative equilibria as described
in Proposition 4. More precisely:

Proposition 5 For all n ≥ 2 and k < n such that n − k is an even number, there exists
π(k, n) ∈ ]1/2, 1[ such that Condition (3) is satisfied if and only if π ≤ π(k, n).

We now investigate the properties of π(k, n), where the value of π(k, n) corresponds to
the maximum quality of information for a k-informative equilibrium to exist. According to
the next conjecture, for any number n of bettors, conditions for the existence of a partially
informative equilibrium are weaker as the number of informative bets, k, increases.6

Conjecture 1 For all n ≥ 2 and k ∈ {1, . . . , n− 2}, we have π(k, n) > π(k − 1, n).

The next conjecture presents an additional useful property of the function π(k, n). It is
argued that π(n − 2, n) < π(n − 3, n − 1) for any number n of bettors. Said differently, the
maximum quality of information allowing the existence of a (n − 2)-informative equilibrium
(one non-informative bet on each horse) is decreasing in n.

Conjecture 2 For all n ≥ 3 we have π(n− 2, n) < π(n− 3, n− 1).

From those properties we can immediately establish the two following corollaries.7

Corollary 1 For all n ≥ 3 we have π(k, n) < π(k, n − 1) and limn→∞ π(k, n) = 1/2, for all
k ∈ {0, 1, . . . , n− 2}.
Corollary 2 Let n ≥ 2 and k ∈ {2, . . . , n− 2} such that n− k is an even number.

• The fully informative equilibrium is unique if and only if π > π(n− 2, n);

• If π(k − 2, n) < π ≤ π(k, n), then the less informative equilibria are the k-informative
ones and there exist l-informative equilibria for all l ∈ {k, . . . , n− 2} such that n− l is
an even number.

In particular, since π(0, 2) = 2/3 > π(k, n) for all k > 0 and n > 2, if π > 2/3, then for
any number of bettors, the unique equilibrium is the fully informative one.

4 Sequential Betting

While in most equilibria of the simultaneous betting game odds against horses reflect all
players’ private information, bettors cannot use this publicly revealed information. Hence,
all dimensions of information aggregation can only be examined in a sequential framework.
In this respect, we explore in this section the predictions of our model under a more general
assumption regarding observability of actions by letting bets chosen by any player to be
observable by the rest of the market.

6Conjectures 1 and 2 have been checked numerically up to n = 40 bettors for all possible values of k. The
Mathematica code is available from the authors upon request.

7Of course, the validity of these two corollaries depends on the validity of Conjectures 1 and 2. No other
results in the paper depend on those conjectures.

7



4.1 Strategies, Beliefs, and Expected Utilities

At each stage in the sequence, bettors can observe the bets cast by preceding bettors, but not
the signals that those earlier bettors received. A history of k decisions is denoted by sk ∈ Sk =∏k

j=1{A,B}. When bettor k+1 takes a decision, he observes a history sk, i.e., he observes the
decisions taken by bettors 1, . . . , k. For all H ∈ {A,B}, let H(sk) = {i ∈ {1, . . . , k} : si = H}
be the set of bettors up to period k who chose horse H, and let h(sk) = |H(sk)| be the
associated number of bets on horse H.

A (pure) strategy of bettor i is a function σi : Si−1 × Qi → Si. Hence, σi(si−1; qi) ∈ Si

is the choice of bettor i with signal qi ∈ Qi = {qA, qB} when he has observed the history
si−1 ∈ Si−1. A profile of strategies is denoted by σ = (σ1, . . . , σn) ∈ Σ =

∏
i∈N Σi. Denote

respectively by qi+ = (qj)j>i and σi+ = (σj)j>i the signals and strategies of the successors of
bettor i, and let Qi+ =

∏
j>i Qj and Σi+ =

∏
j>i Σj . Let s(σi+ | si; qi+) be the final history

reached according to the profile of strategies σi+ ∈ Σi+ given the history si ∈ Si and the
profile of signals qi+ ∈ Qi+ . Let s(σ | q) = s(σ | ∅; q) be the final history reached according to
the profile of strategies σ ∈ Σ given the profile of signals q ∈ Q, and let s(σn+ | sn; qn+) = sn

(with some abuse of notation since σn+ and qn+ are undetermined objects). Bettor i’s belief
about the state of Nature θ ∈ Θ when he has received the signal qi ∈ Qi and has observed the
history si−1 ∈ Si−1 is denoted by µi(θ | si−1; qi). The conditional independence of the signals
gives, for H ∈ {A,B},

Pr(θH , qi+ | si−1, qi) = Pr(qi+ | θH)µi(θH | si−1; qi). (4)

Given a profile of strategies σi+ ∈ Σi+ , and bettor i’s belief function µi, bettor i’s expected
utility is obtained from Equation (4) and from bettors’ utility function (see Equation (1) on
page 4):

Ui(H, σi+ | si−1; qi) = µi(θH | si−1; qi) E

(
n

h(s(σi+ | si−1,H; qi+))

∣∣∣ θH

)
, (5)

where E
(

n
h(s(σi+ |si−1,H;qi+))

∣∣∣ θH

)
=

∑
qi+∈Qi+

Pr(qi+ | θH) n
h(s(σi+ |si−1,H;qi+ ))

is the expected
final gross return of horse H for bettor i, where the final gross return of horse H is equal to
the final odds against horse H plus one.

4.2 Rational Strategies and Consistent Beliefs

As usual, a pair (σ, µ) is a perfect Bayesian equilibrium if µ is obtained by Bayes’ rule whenever
possible (weak consistency), and σ satisfies sequential rationality. Formally, a pair (σ, µ) is
sequentially rational if for all i ∈ N , qi ∈ Qi, and si−1 ∈ Si−1 we have Ui(σi(si−1; qi), σi+ |
si−1; qi) ≥ Ui(si, σi+ | si−1; qi), for all si ∈ Si. For all j ∈ N , let Jj(sj | sj−1) ≡ {qj ∈ Qj :
σj(sj−1; qj) = sj} be the set of signals such that bettor j plays sj after he has observed the
history sj−1 ∈ Sj−1. If Jj(sj | sj−1) 6= ∅ for all j < i, then bettor i can apply Bayes’ rule:
µi(θ | si−1; qi) = Pr(θ | qi, qj ∈ Jj(sj | sj−1) ∀ j < i). Hence, a pair (σ, µ) is weakly consistent
if for all i ∈ N , qi ∈ Qi, and si−1 ∈ Si−1 we have

µi(θ | si−1, qi) =
Pr(qi | θ)

∏
j<i

∑
qj∈Jj(sj |sj−1) Pr(qj | θ)∑

θH∈{θA,θB} Pr(qi | θH)
∏

j<i

∑
qj∈Jj(sj |sj−1) Pr(qj | θH)

, (6)

whenever Jj(sj | sj−1) 6= ∅ for all j < i. The next lemma will be useful in several steps of our
analysis:

Lemma 4 Bettor n bets on horse H ∈ {A,B} if and only if µn(θH | sn−1; qn) ≥ h(sn−1)+1
n+1 .
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In the next subsection we characterize the set of perfectly revealing equilibria. Contrary
to the simultaneous setting we show that such equilibria do not always exist in a sequential
betting market, and they disappear as the number of bettors increases.

4.3 Perfectly Revealing Equilibrium

At a perfectly revealing equilibrium, each bettor follows his own private signal whatever the
history he has observed. Formally, an equilibrium (σ, µ) is said perfectly revealing if each bettor
follows his private signal, i.e., σi(si−1; qH) = H for all i ∈ N , si−1 ∈ Si−1, and H ∈ {A,B}.
More generally, a profile of strategies (σi)i<j is said perfectly revealing if σi(si−1; qH) = H
for all i < j, si−1 ∈ Si−1, and H ∈ {A,B}. Perfectly revealing equilibria are “quite” easy
to analyze because an individual’s bet does not influence the actions of later bettors, given
that they always follow their private signal. Therefore, there is no incentive to deviate from
the equilibrium to change the bets of subsequent bettors because every information set in the
game tree is reachable with positive probability via perfectly revealing strategies. The next
lemma characterizes bettors’ updated beliefs when previous bettors used perfectly revealing
strategies.

Lemma 5 If the profile of strategies (σj)j<i is perfectly revealing, then bettor i’s beliefs are
given by

µi(θH | si−1; qH) =
π2h+2−i

π2h+2−i + (1− π)2h+2−i
,

and µi(θH | si−1; qH) =
π2h−i

π2h−i + (1− π)2h−i
,

for all H ∈ {A,B} and si−1 ∈ Si−1, where h = h(si−1).

We begin by noting in the following proposition that there is a range of parameter values
for which perfectly revealing betting fails to be an equilibrium. More precisely, it is shown that
if the quality of bettors’ private information is not fairly balanced, then a perfectly revealing
equilibrium does not exist. The intuition is the following. Consider the last bettor in the
sequence (bettor n). If the quality of information is too low and the private signal of bettor
n is in accordance with previous decisions, then the majority of past bets on the favorite is
not sufficiently convincing that the favorite will really win, and thus it is optimal for bettor
n to bet against the trend and his own private signal. Such a behavior is called a contrarian
behavior as the agent ignores his private signal and bets against the current favorite. On the
contrary, if the quality is too high, then previous bets provide strong evidence that the favorite
will win, and thus bettor n will not follow his signal if it favors the longshot. This behavior
is called herd behavior as the agent follows the trend independently of his private signal. In
this later case, the fact that previous bettors have bet on the same horse reveals relevant
information about the winning chance of this horse (the favorite). Such public information
may overwhelm the bettor’s private assessment and may counterbalance the negative effect of
the odds against the favorite (which is low), and thus may cause a bettor otherwise inclined
to bet on the longshot to bet on the horse chosen by previous bettors.

Proposition 6 Let n > 2. If (σ, µ) is a perfectly revealing equilibrium, then

n1/(n−2)

1 + n1/(n−2)
≥ π ≥ n1/n

1 + n1/n
.
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This necessary condition for a perfectly revealing equilibrium to exist becomes more and
more restrictive as the number of bettors, n, increases. In the following proposition we give
necessary and sufficient conditions for a perfectly revealing equilibrium to exist.

Proposition 7 There exists a perfectly revealing equilibrium if and only if the following in-
equality is satisfied for all i ∈ N and a ∈ {0, 1, 2, . . . , i− 1}:

(
π

1− π

)2a+2−i

≥
∑n−i

j=0

Cj
n−iπ

j(1−π)n−i−j

i−a+j

∑n−i
j=0

Cj
n−iπ

j(1−π)n−i−j

a+1+j

. (7)

For bettor 1 this condition is always satisfied, and for bettor n it simplifies to

(
π

1− π

)2a+2−n

≥
1

i−a
1

a+1

=
a + 1
n− a

, (8)

For any number of bettors between two and fifteen, the intervals of qualities of information
[π(n), π(n)] allowing a perfectly revealing equilibrium to exist are given in Figure 1. Whatever
the quality of information, π, there is no perfectly revealing equilibrium when the number of
bettors exceeds eleven as π(n) > π(n) when n > 11.

0,58578 0,59054 0,58579 0,57978 0,5741 0,56905 0,56461 0,56073 0,55731 0,55428

0,55158 0,54916 0,54698 0,54501

0,75

0,66667

1

0,6310
0,61015

0,59055
0,57767

0,56888 0,561 0,55472

0,55 0,54569 0,54206 0,53916

0,5

0,75

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Bettors

π

Figure 1: Intervals of Qualities of Information Allowing a Perfectly Revealing Equilibrium to
Exist.

While a perfectly revealing equilibrium usually fails to exist, bettors will doubtlessly follow
their own signal when the majority of previous decisions is not too pronounced. That is, the
emergence of informative bets crucially relies on the observed history. A combination of unin-
formative bets (herd and contrarian bets) and informative bets may constitute an equilibrium.
In the next subsection we characterize other equilibria than the perfectly revealing ones with
two and three bettors.

4.4 Characterization of Equilibria with Two and Three Bettors

Proposition 8 Consider the sequential betting game with two bettors. There exists a perfectly
revealing equilibrium if and only if π ≥

√
2

1+
√

2
' 0.586. Otherwise, there is an equilibrium

where the first bettor always follows his signal and the second bets against the first bettor’s
choice whatever his signal. Those equilibria are sequential equilibria (in the sense of Kreps
and Wilson, 1982), and for generic values of π there is no other sequential equilibrium.
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In conformity with Proposition 8, the first player always bets accordingly to his signal. On
the contrary, if a bettor takes his decision in the second position, then his strategy depends
on the quality of the market’s information. If the quality is low (π is low), then he always
plays the current longshot (contrarian behavior). Otherwise, if the quality is good (π is high),
then he always follows his signal. Hence, herd behavior is not possible with only two bettors.
The reason is that two different signals cancel each other out and, since there is a negative
payoff externality, the second bettor never follows the first bettor by betting against his own
private signal. When the parimutuel betting market involves more than two players we will
see that past histories can overwhelm later bettors’ signals if π is relatively high which entails
the occurrence of herding behavior. The following proposition characterizes the set of all
equilibria in which the first two bettors always follow their private signals.

Proposition 9 Consider the sequential betting game with three bettors. Assume that the first
and the second bettors always follow their private signals, i.e., σ1(qH) = σ2(H ′; qH) = H for
all H, H ′ ∈ {A,B}.

• If 0.547 ' 1 − 2
(

2
3(
√

177−9)

)1/3
+ ( 1

2
(
√

177−9))
1/3

32/3 < π <
3√3

1+ 3√3
' 0.591, then σ is an

equilibrium iff the third bettor uses a contrarian behavior, i.e., σ3(H, H; q3) = H for all
q3 ∈ Q3 and σ3(H, H; qH) = σ3(H, H; qH) = H for all H ∈ {A,B}.

• If 0.591 ' 3√3
1+ 3√3

< π < 3/4, then σ is an equilibrium iff the third bettor always follows
his signal, i.e., σ is perfectly revealing.

• If π > 3/4, then σ is an equilibrium iff the third bettor herds, i.e., σ3(H,H; q3) = H for
all q3 ∈ Q3 and σ3(H, H; qH) = σ3(H, H; qH) = H for all H ∈ {A,B}.

Contrary to the 2-bettor case, herd behavior is now possible when the quality of informa-
tion is high. The behavior of the third bettor in the equilibria described by Proposition 9 is
relatively intuitive. If the quality of information is low, then the negative effect of the odds
against the favorite dominates the belief that this horse will win, and thus the third bettor
bets on the longshot whatever his private information. If the quality of information is high,
then the third bettor strongly believes that the favorite will win, and thus he bets on the
favorite and also disregards his private information. For intermediate qualities of information,
neither information externalities nor payoff externalities dominate, and thus the third bettor
follows his signal.

There are other equilibria than those described by Proposition 9. Unfortunately, those
equilibria may coincide, i.e., different types of equilibria may exist for generic qualities of
information. For example, it can be shown that if π ≤

√
2

1+
√

2
' 0.586, then there is an

equilibrium where the first bettor follows his signal and the other bettors adopt a contrarian
behavior. For higher number of bettors, a plethora of other equilibria coexist. In the next
section we consider less sophisticated decision rules to characterize unique dynamic behaviors
with a larger number of bettors.

5 Dynamic of Bets and Information Aggregation with Myopic
Bettors

In this final section we consider that the parimutuel betting market is composed of myopic
players who cannot carry out game-theoretic lookahead. In other words, myopic bettors do
not anticipate the signaling effect of their bets on future bets. In particular, they believe that
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odds resulting from their bets are the final odds. Nonetheless, while myopic bettors are not
endowed with forward looking behaviors, they still perform backward looking behaviors. That
is, myopic bettors maximize a particular perceived payoff and they update their information
via Bayes’ rule, knowing that all previous bettors are myopic bettors.

Considering myopic bettors has at least three advantages for the analysis of parimutuel
betting markets. First, equilibrium outcomes are unique, indifference cases notwithstanding.
Second, we are able to provide an exhaustive analysis of bettors’ behavior in markets with
a significant number of bettors. Finally, direct comparisons with previous studies on herd
behavior in financial markets where no lookahead behavior is required can be made (see
Section 6).

While optimal strategies are easier to compute with myopic bettors, we will see that
conditions for the existence of a perfectly revealing equilibrium are similar to those with fully
rational bettors. Additionally, herd and contrarian behaviors also arise, so the most important
and interesting phenomena obtained before are not lost here.

The new sequential game with myopic bettors is modeled as follows. Given a sequence of
bets up to player i, si ∈ Si, the odds of period i against horse H ∈ {A,B} is

OH(si) =
i− h(si)

h(si)
=

h(si)
h(si)

.

For all H ∈ {A,B}, the (perceived) payoff of each myopic bettor i ∈ N is

ui(si, θ) =

{
OH(si) + 1 = i

h(si)
if si = H and θ = θH

0 if si = H and θ 6= θH .

So defined, myopic bettors incorporate the direct effect of their choices on the current
betting odds, but not on later odds movements.8 The information structure and beliefs are
defined exactly as in the previous section but the (perceived) expected utility takes a quite
simpler form because current bettors do not forecast future bettors’ behavior:

Ui(H | si−1; qi) = µi(θH | si−1; qi)
i

1 + h(si−1)
, (9)

where, as before, µi(θ | si−1, qi) is given by Equation (6).9 For all H ∈ {A, B}, we obtain
Ui(H | si−1; qi) > Ui(H | si−1; qi) iff

µi(θH | si−1; qi) >
h(si−1) + 1

i + 1
, (10)

which corresponds to Lemma 4 with i = n.
Since rewards decrease with the number of individuals having chosen the correct option,

it is easy to see that long-run herding is impossible in parimutuel betting markets. Indeed,
if long-run herding would occur in some period k, then all bettors after some history sk ∈
Sk would bet on some horse H independently of their private signal. In that case, beliefs
would remain constant after period k, whereas betting odds against horse H ∈ {A,B} would
continuously decline. Therefore, there is unavoidably a period after period k in which a bettor
switches by betting on the other horse, a contradiction with the fact that they all follow the

8We can easily remark that if myopic bettors were playing the simultaneous move game, then, whatever
the parameters of the market, they would all follow their private signal, resulting in the fully informative
equilibrium obtained in Section 3.

9Of course, outside equilibrium beliefs are irrelevant for the analysis of equilibrium outcomes with myopic
bettors.

12



crowd. Nevertheless, as informational externalities coexist with negative payoff externalities,
the emergence of pronounced herd behavior cannot be prevented.

As in the previous section, we investigate in the following subsection conditions for the
existence of a perfectly revealing equilibrium. Similar conditions are found; in particular,
when the number of bettors increase, the perfectly revealing equilibrium disappears.

5.1 Perfectly Revealing Equilibrium

Assume that bettors before i followed their private signal and that bettor i receives the signal
qH for some H ∈ {A,B}. Then, using Lemma 5 on page 9, Inequality (10) becomes equivalent
to π2h+2−i

π2h+2−i+(1−π)2h+2−i > h+1
i+1 , where h = h(si−1). This inequality can be rewritten as

π >
(h + 1)

1
2h+2−i

(h + 1)
1

2h+2−i + (i− h)
1

2h+2−i

if h >
i− 2

2

π <
(h + 1)

1
2h+2−i

(h + 1)
1

2h+2−i + (i− h)
1

2h+2−i

if h <
i− 2

2
.

It is easy to show that the first bettor always follows his signal. The second bettor
always follows his signal iff π ≥

√
2

1+
√

2
. The third bettor always follows his signal iff π ≥ 3√3

1+ 3√3

(>
√

2
1+
√

2
) and π ≤ 3/4. Hence, with two or three bettors the conditions for a perfectly revealing

equilibrium to exist are the same as with fully rational bettors. Actually, by computing
numerically the conditions for bettors i = 2 to 15 to follow their private information whatever
the observed history, we find slightly stronger conditions than those represented in Figure 1.
More precisely, an equilibrium in which the first i bettors follow their signal exists iff π belongs
to the intervals [π(j), π(j)] represented in Figure 1 for all j ≤ i. Hence, when the number of
bettors exceeds 7, no perfectly revealing equilibrium exists. The intuition is that the strongest
conditions are imposed on the last bettor and, at the perfectly revealing equilibrium, the last
bettor is exactly in the same situation when all bettors are myopic as when all bettors are
fully rational. In the following lines we turn to the analysis of other equilibrium outcomes in
which bets are not perfectly revealing.

5.2 Beliefs and Optimal Strategies of Myopic Bettors

Without necessarily assuming perfectly revealing strategies, the form of bettor i’s posterior
probability that horse H wins after inferring, from the history si−1, kH(si−1) = kH signals
favoring horse H (qH signals) and kH(si−1) = kH signals favoring horse H (qH signals) is

µi(θH | si−1; qi) =





πkH+1(1−π)
k
H

πkH+1(1−π)
k
H +(1−π)kH+1π

k
H

if qi = qH

πkH (1−π)
k
H

+1

πkH (1−π)
k
H

+1
+(1−π)kH π

k
H

+1 if qi = qH ,
(11)

where we necessarily have kH + kH ≤ i− 1. Of course, µi(θH | si−1; qi) is increasing with the
difference kH − kH , and kH = kH implies µi(θH | si−1; qi) = 1/2. The procedure we used to
compute the optimal strategy of each bettor depending on his signal and the history he has
observed is the following.

Bettor 1. Let kH(∅) = kH(∅) = 0. For all q1 ∈ Q1 and H ∈ {A,B}, we obtain µ1(θH | q1)
from Equation (11) and σ1(q1) from the best response deduced from Inequality (10). Of course,
we get here µ1(θH | qH) = π, µ1(θH | qH) = 1− π, and σ1(qH) = H for all H ∈ {A,B}.
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Bettor i. For all si−1 ∈ Si−1 and H ∈ {A,B}, let

kH(si−1) =

{
kH(si−2) + 1 if σi−1(si−2; qH) = si−1 and σi−1(si−2; qH) 6= si−1

kH(si−2) otherwise.

For all si−1 ∈ Si−1, qi ∈ Qi and H ∈ {A,B}, we obtain µi(θH | si−1; qi) from Equation (11)
and σi(si−1; qi) from the best response deduced from Inequality (10).

Computing this procedure for given qualities of information π ∈ ]0.5, 1[ allows us to obtain
beliefs and optimal strategies of each bettor in the sequence for all histories and all profiles
of signals.10 We have represented the set of all possible outcomes for the first five bettors
in Figures 2, 3, and 4, where in the first column “a” (“b”, resp.) in position i ∈ {1, . . . , 5}
corresponds to a signal qA (qB, resp.) for bettor i.11 As in the previous section, we see
that there is a preponderance of uninformative bets with low qualities of information due
to contrarian behaviors and with high qualities of information due to herd behavior. All
bets are always informative only for qualities of information between approximately 0.59 and
0.63. Hence, at least in the short-run, contrarian and herd behaviors arise whether or not
bettors are endowed with forward looking behavior. In the next subsection we show that herd
behavior leads to disproportionate mispricing up to at least 15 periods in identifiable states
of the world.

a a a a a A B A B A A B A A B A B A A A

a a a a b A B A B A A B A A B A B A A B

a a a b a A B A B A A B A B A A B A B A

a a a b b A B A B A A B A B B A B A B B

a a b a a A B B A A A B B A A A B B A A

a a b a b A B B A B A B B A B A B B A B

a a b b a A B B A A A B B A A A B B A A

a a b b b A B B A B A B B A B A B B A B

a b a a a A B A B A A B A A B A B A A A

a b a a b A B A B A A B A A B A B A A B

a b a b a A B A B A A B A B A A B A B A

a b a b b A B A B A A B A B B A B A B B

a b b a a A B B A A A B B A A A B B A A

a b b a b A B B A B A B B A B A B B A B

a b b b a A B B A A A B B A A A B B A A

a b b b b A B B A B A B B A B A B B A B

 Informative Bets  Contrarian BehaviorNotes:

Signals' Profiles

π
1/2 0,5337 0,5432 0,5838

Figure 2: Set of Outcomes for the First Five Myopic Bettors with Low Values of π.

10The computational program is available from the authors upon request.
11When a bettor is indifferent between betting on horse A and betting on horse B we assume as a tie-breaking

rule that he bets on horse B.
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a a a a a A A B A A A A A A A A A A A A A A A A A

a a a a b A A B A A A A A A B A A A A A A A A A B

a a a b a A A B B A A A A B A A A A B A A A A A A

a a a b b A A B B B A A A B B A A A B B A A A A B

a a b a a A A B A A A A B A A A A B A A A A B A A

a a b a b A A B A A A A B A B A A B A B A A B A A

a a b b a A A B B A A A B B A A A B B A A A B B A

a a b b b A A B B B A A B B B A A B B B A A B B B

a b a a a A B A A A A B A A A A B A A A A B A A A

a b a a b A B A A B A B A A B A B A A B A B A A A

a b a b a A B A B A A B A B A A B A B A A B A B A

a b a b b A B A B B A B A B B A B A B B A B A B B

a b b a a A B B A A A B B A A A B B A A A B B A A

a b b a b A B B A B A B B A B A B B A B A B B A B

a b b b a A B B B A A B B B A A B B B A A B B B B

a b b b b A B B B B A B B B B A B B B B A B B B B

 Informative Bets  Contrarian Behavior  Herd BehaviorNotes:

Signals' Profiles

π
0,5858 0,5905 0,6309 2/3 0,6909

Figure 3: Set of Outcomes for the First Five Myopic Bettors with Middle Values of π.

a a a a a A A A A A A A A A A A A A A A A A A A A

a a a a b A A A A A A A A A A A A A A B A A A A A

a a a b a A A A A A A A A B A A A A A A A A A A A

a a a b b A A A A A A A A B B A A A A B A A A A A

a a b a a A A B A A A A A A A A A A A A A A A A A

a a b a b A A B A A A A A A A A A A A B A A A A A

a a b b a A A B B A A A A B A A A A A A A A A A A

a a b b b A A B B B A A A B B A A A A B A A A A A

a b a a a A B A A A A B A A A A B A A A A B A A A

a b a a b A B A A A A B A A A A B A A A A B A A A

a b a b a A B A B A A B A B A A B A B A A B A B A

a b a b b A B A B B A B A B B A B A B B A B A B B

a b b a a A B B A A A B B A A A B B A A A B B A A

a b b a b A B B A B A B B A B A B B A B A B B A B

a b b b a A B B B B A B B B B A B B B B A B B B B

a b b b b A B B B B A B B B B A B B B B A B B B B

 Informative Bets  Herd BehaviorNotes:

Signals' Profiles

π
0,6909 3/4 4/5 5/6 1

Figure 4: Set of Outcomes for the First Five Myopic Bettors with High Values of π.
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5.3 Some Examples of Informational Inefficiencies

Since short-run herding and non-informative bets in general can arise, valuable information
may be lost in the parimutuel betting market. In this respect, it seems worthwhile to inves-
tigate more deeply whether significant bandwagon effects in the betting odds can be created.
More generally, we now examine if herd and contrarian behaviors (which are non-informative
behaviors by definition) can lead to significant mispricing. To address this issue, we com-
pare implicit prices set in the market—represented by horses’ subjective probabilities—with
objective probabilities.

The subjective probability of period i that horse H wins the race depends on the betting
odds established in period i, and is given by

PS
H(si) ≡ h(si)

i
=

1
OH(si) + 1

.

This variable can be viewed as the price of obtaining a claim to one unit of money in the
event that horse H wins the race, and thus it is also called the (equilibrium) implicit price
for horse H in period i if si is an equilibrium history of bets. To simplify the notations, let
PS

H(s(σ | qi)) = PS
H(qi), where σ is an equilibrium strategy profile. The objective probability

of period i that horse H wins the race is given by

PO
H (qi) ≡ Pr(θH | qi),

where qi = (q1, . . . , qi) is the vector of signals received by all bettors up to period i. Hence,
PO

H (qi) is the belief about the winning chance of horse H for an agent who would be able to
observe the signals of all bettors up to period i. Said differently, if bettors before bettor i use
the perfectly revealing strategy, then µi(θH | si−1; qi) = PO

H (qi).
By means of simulations, we now illustrate how inefficient can win pool shares (implicit

prices) be in forecasting outcomes in a sequential parimutuel betting market. The initial
conditions for the first simulation are the following: the quality of information is π = 0.85 and
the profile of private signals is q15 = (qB, qB, qA, qA, qA, qB, qA, qA, qA, qA, qA, qA, qA, qA, qA).
Figure 5 on the following page shows the evolution of bettors’ beliefs about horse A, µi(θA |
si−1; qi), the evolution of the implicit price for horse A, PS

A(si), and the evolution of the
objective probability of horse A, PO

A (qi), up to period 15. After fifteen periods of bets, the
implicit price for horse A and bettors’ beliefs about the winning chance of horse A are close to
zero, whereas the objective probability of horse A is close to 1. Here, a sufficiently excess of
bets on horse B at the beginning of the sequence leads bettors to believe that horse B is more
likely to win, regardless of their own private information. Hence, informational efficiency of
betting odds is severely disrupted due to long sequences of imitative bets.

The quality of information used in the first simulation is relatively extreme and one might
believe that such inefficiencies cannot arise with intermediate qualities of information. How-
ever, this is not the case. Figure 6 on the next page shows the 15-period moving of beliefs,
implicit prices and objective probabilities of horse A with the sequence of private signals
q15 = (qA, qA, qA, qB, qB, qA, qB, qB, qB, qB, qB, qB, qA, qB, qB) and with the quality of infor-
mation π = 0.7. Here again, significant mispricing and discrepancies between beliefs and
objective probabilities are observed. Heavy bets on a horse trigger more bets on that horse,
even though this horse turned out not to be the one that will win the race according to the
information which is distributed among all bettors. Nevertheless, this inefficiency is stronger
to obtain with π = 0.7 than with π = 0.85 since three initial decisions on the “wrong” horse
are necessary to generate herding. For example, as illustrated in Figure 7 on page 18, prices
set in the market can converge to the fundamentals for other profiles of signals. Of course,
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Figure 5: Evolution of Beliefs, Implicit Prices, and Objective Probabilities of Horse A up to
Bettor 15 with π = 0.85 and q15 = (qB, qB, qA, qA, qA, qB, qA, qA, qA, qA, qA, qA, qA, qA, qA).
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Figure 6: Evolution of Beliefs, Implicit Prices, and Objective Probabilities of Horse A up to
Bettor 15 with π = 0.70 and q15 = (qA, qA, qA, qB, qB, qA, qB, qB, qB, qB, qB, qB, qA, qB, qB).

implicit prices adjust relatively slowly after some periods because of the relative rigidity of
betting odds.

Finally, it is worth noticing that significant mispricing is possible even if the first deci-
sions correctly reflect the fundamentals. Indeed, as illustrated in Figure 8 on the next page,
herding might arise later due to non-informative bets during the last five periods. In the next
subsection we examine the relevance of the above examples on the average efficiency of the
market in aggregating bettors’ private information.
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Figure 7: Evolution of Beliefs, Implicit Prices, and Objective Probabilities of Horse A up to
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5.4 Measures of Information Aggregation in Prices

According to the previous examples, betting odds aggregate only partially the information pri-
vately held by market participants in some states of the world. This informational inefficiency
leads to high discrepancies between fundamental prices (objective probabilities) and equilib-
rium prices (subjective probabilities). We now present general measurements of information
aggregation. In this respect, we first describe the two backgrounds against which information
aggregation measurements will be made. Then we explain the measurement method we have
adopted to compare the levels of information in different patterns of prices. As our analyses
are restricted to parimutuel betting markets which involve at most fifteen players, we finally
discuss the extent to which these results apply to large betting markets.

Our first baseline is an artificial parimutuel betting market where each bettor has access
to all the private information of previous bettors (including his own private information). The
dynamic of prices in such a “full communication” market is relatively simple to characterize.
Indeed, each bettor i bets on horse H if Pr(θH | qi) > h(si−1)+1

i+1 . When the number of bettors
increases, the implicit price for horse H tends to the objective probability which, according to
the law of large numbers, tends to 1 if the winning horse is horse H, and tends to 0 otherwise.
The final full communication implicit price for horse H ∈ {A,B} is denoted by PFC

H (qn).
As an alternative baseline we consider a parimutuel betting market where individuals

make decisions only on their own private information. In other words, players do not infer
any information from past bets, they simply respond optimally to the current odds given their
private signal. Formally, each bettor i bets on horse H if Pr(θH | qi) > h(si−1)+1

i+1 . We denote
by PPI

H (qn) the final private information implicit price for horse H ∈ {A,B}. Though some
type of merging of information will be reflected in the private information price, there is no
explicit information aggregation as part of the behavior of the market.

Since measures of the degree of aggregation involve comparisons of distributions, we adopt
the measure proposed by Würtz (1997) to determine when one price pattern is close in in-
formation content to another price pattern.12 More precisely, we study the evolution of the
average distances

V 1(π, n) =
∑

qn∈Qn

Pr(qn)
∣∣∣PFC

H (qn)− PS
H(qn)

∣∣∣,

V 2(π, n) =
∑

qn∈Qn

Pr(qn)
∣∣∣PFC

H (qn)− PPI
H (qn)

∣∣∣,

for various values of π and n. If the parimutuel betting market with myopic players is (strong-
form) informationally efficient, then the final equilibrium price is always equal to the final full
communication price, and thus V 1(π, n) = 0 for all π ∈ ]0.5, 1[ and n > 1. On the contrary,
informational inefficiency is characterized by how close are the two average distances V 1(π, n)
and V 2(π, n) given a pair (π, n).

We illustrate the results of our simulations by means of three examples. As such an analysis
is highly time consuming we have considered at most fifteen players, and π starts at 0.505 and
ends at 0.995 by an increment of 0.05.13 Figure 9 on the following page shows the evolution of
the two distances for π = 0.53. As already mentioned, low values of the quality of information
induce contrarian behavior. Due to this preponderance of uninformative bets the two average
distances are close to each other when the market involves less than ten players. However, the

12Würtz’s (1997) function simply measures the distance between two densities. If two discrete distributions
are described by their probability density functions {xi}i=1,...,m and {yi}i=1,...,m respectively, then the measure
is given by 0.5

Pm
i=1 | xi − yi |.

13The simulation program is available from the authors upon request.
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parimutuel betting market becomes more informationally efficient as its size increases. This is
not surprising as informative bets do accumulate. The same qualitative results are obtained
for π ∈ [0.505, 0.59[.
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Figure 9: Evolution of Average Distances V 1(π, n) and V 2(π, n) up to Bettor 15 with π = 0.53.

On the contrary, the parimutuel betting market seems to become less informationally
efficient as its size increases for intermediate values of π. Figure 10 on the next page shows
the evolution of the two distances for π = 0.7 (the same qualitative results are obtained
for π ∈ [0.59, 0.85[). As shown in the previous subsection, such a value of the quality of
information entails herd behavior. Even though the degree of informational inefficiency is
quite low, the preponderance of uninformative bets due to herd behavior still persists for
middle-sized parimutuel betting markets.

Figure 11 on the following page shows the evolution of the two distances for π = 0.875.
Such a high degree of informational efficiency is typical of large values of π as one signal
already leads to a good forecast of the parimutuel betting market’s outcome.

Though the parimutuel betting markets we considered in this subsection are quite small,
we believe that our results extend to larger markets. Indeed, more than the magnitude of the
average distance V 1(π, n) and its comparison with V 2(π, n), it is the dynamic of V 1(π, n) which
helps predicting the capacity of large parimutuel mechanisms to aggregate the information
held privately by the players. In this respect, as far as extreme values of the quality of
information are considered, there is a clear evidence that most of the information held by
the players becomes aggregated by the dynamics of the price process. On the contrary, for
intermediate values of π the parimutuel betting market seems to do a less effective job of
aggregation. The analyses conducted in this subsection have established this result at an
average level and part of the examples presented in subsection 5.3 have shown that mispricing
effects consistently occur under certain identifiable, but unlikely, conditions.
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Figure 10: Evolution of Average Distances V 1(π, n) and V 2(π, n) up to Bettor 15 with π = 0.7.
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6 Conclusion and Relation to Previous Work

To the best of our knowledge, the analysis offered in this paper is the first to investigate
betting behavior in parimutuel markets under asymmetric information. Not surprisingly, the
temporal structure of the market drives the results. Though betting odds perfectly reflect
all available information in the simultaneous move market game, non-informative behaviors
emerge whatever the quality of players’ information in a sequential parimutuel betting market.
More precisely, we showed that a perfectly revealing equilibrium fails to exist with more than
a dozen of bettors. We also illustrated the fact that extreme mispricing effects may occur.
Such informational inefficiencies at various states of the world are due to herd behavior arising
with intermediate qualities of information. Analyses of the average capacity of the sequential
parimutuel mechanism to aggregate the disseminated information confirmed this former result
and led to the opposite conclusion for extreme values of the quality of information.

In the following lines we first sketch a short bibliographic note on parimutuel betting
games. Then we discuss the relationships which exist between our framework and the growing
literature on social learning and information aggregation in sequential decision models with
observable actions and asymmetric information.

Watanabe et al. (1994) are the first to analyze a game-theoretical model of parimutuel
betting. They consider two horses and assumed that bettors’ prior beliefs are inconsistent. In
other words, agents agree to disagree, contrary to the Harsanyi doctrine. An ad hoc selection
criterion is introduced to select a unique equilibrium which is regular in the sense that if there
exists a player who bets on horse A (respectively B) at an equilibrium, then players who have
strictly larger (respectively smaller) probability for the win of this horse will always bet on
it. Watanabe (1997) considers the same model but with a continuum of bettors. Ziegelmeyer,
Broihanne, and Koessler (2001) and Feenay and King (2001) have independently developed
a sequential betting game with consistent beliefs, a finite set of strategic bettors, and no
withdrawing possibilities.14 By assuming symmetric information (and common prior beliefs
on the winning chance of each horse), they show that the subgame perfect equilibrium is
unique for almost all values of prior probabilities. In such an equilibrium, there is always
an advantage to being an early mover and players betting first do not necessarily choose to
bet on the horse with the highest probability to win.15 As shown by Propositions 8 and 9 of
this paper, at least with two and three bettors, asymmetric information has “destroyed” this
effect according to which early bettors might choose an action with a low ex ante expected
gain.16 Besides the former remark, no relevant connection can be made between our results
and the previous results obtained in the literature on parimutuel betting markets. On the
contrary, our results can be linked to those obtained in traditional herding models, in models
of sequential trade in financial markets, and in the literature on sequential voting.

It seems natural to draw a parallel between the analysis offered here and the literature
on “information cascades”. An information cascade can be defined as a choice sequence in
which some agents act as if they ignored their private information and followed the choices
made earlier in the sequence by other agents.17 In the pioneering herding models agents are
only concerned with maximizing their own expected payoffs which cannot be directly affected
by the actions of others. The complete absence of payoff interdependencies is obviously a

14A game-theoretical model under symmetric information where it is assumed that each bettor must spend
his entire endowment on the race has also been analyzed by Chadha and Quandt (1996).

15This model was extended to the case where bettors have the possibility to withdraw by Koessler,
Ziegelmeyer, and Broihanne (2002), by introducing a fraction of noise bettors into the game (see also Hur-
ley and McDonough, 1995 and Terrell and Farmer, 1996 in simultaneous move betting games with transac-
tions/information costs).

16Of course, this effect cannot arise with myopic bettors.
17See, e.g., Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), and Chamley and Gale (1994).
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strong assumption as in almost any game the payoff structure of an agent is affected by the
other players’ actions. In this respect, our work can be seen as an extension of rational herd
behavior models where negative payoff externalities are considered. Even though long-run
herding is impossible in sequential parimutuel betting markets, our results imply that herd
behavior, at least in the short-run, is robust to the parimutuel mechanism.

Though most of the literature on rational herding assumes that prices for taking an action
are fixed, a notable exception is Avery and Zemsky’s (1998) model where the relationship
between asset prices and herd behavior is investigated. Hence, as in sequential parimutuel
betting markets under asymmetric information, along with informational externalities, payoff
externalities arise through the addition of a price mechanism. The main differences between
Avery and Zemsky’s (1998) asset pricing model and parimutuel betting markets are the fol-
lowing. First, in Avery and Zemsky’s (1998) model, the price is determined by a market
maker according to his information about past trades, while in parimutuel betting markets
the price mechanism is exogenous and ensures that average bettors’ return is null or negative
(negative if transaction costs are strictly positive). Second, in parimutuel betting markets
the return of each player also depends on his expectation about the behavior of later par-
ticipants. Hence, in such markets, the analysis is complicated by the fact that fully rational
agents are concerned not only with learning from predecessors, but also with signaling to suc-
cessors.18 This intractable difficulty was avoided in Section 5 by considering myopic agents.
This latter framework is in fact very related to the one of Avery and Zemsky. More pre-
cisely, if we assume further that bettors do not recognize their impact on betting odds, i.e.,
if ui(si, θH) = OH(si−1) + 1 if si = H and ui(si, θH) = 0 if si 6= H, and if odds against
each horse H is replaced by OH(si−1) = 1−Pr(θH |si−1)

Pr(θH |si−1)
, then the subjective probability of

horse H becomes equal to Pr(θH | si−1), i.e., the price of the asset in Avery and Zemsky
(1998). In that case, condition 10 on page 12 for bettor i to follow his signal is replaced by
µi(θH | si−1; qi) > Pr(θH | si−1), which is satisfied iff qi = qH . Hence, bettors always follow
their private signal. Our results contrast with Avery and Zemsky’s (1998) ones since in Avery
and Zemsky full revelation of information is obtained once an endogenous price is incorporated
into the analysis. To obtain herd behavior, they have to consider information asymmetries
between the market maker and traders. This is not necessary in parimutuel betting markets
where the price mechanism is exogenous and independent of the types of participants. In
particular, betting odds do not integrate bettors’ decision rules.

Finally, our work can be related to the literature on sequential voting in the sense that
this literature also extends information cascade models to a context in which an individual’s
payoff from taking an action is influenced by the actions of others.19 In particular, agents
must consider the information their actions provide to agents later in the sequence. This
literature also asks how sequential decisions differ from simultaneous decisions in terms of
generated outcomes and information aggregation. However, betting markets are characterized
by strong conflicting interests that we do not find in standard models of sequential voting.
Additionally, only a player which is pivotal in voting models can affect the outcome, whereas all
players always affect the payoffs of the others in parimutuel games. Our results, particularly
the impossibility results concerning perfectly revealing equilibria, differ from those of this
literature because our impossibility results do not require different qualities of information or
more than two horses. This contrasts with the results obtained in sequential voting where
there always exists a perfectly revealing equilibrium when there is only one quality and two
candidates (see Theorem 1 in Dekel and Piccione, 2000).

18Dasgupta (2000) performs a similar analysis with the notable difference that he considers positive payoff
externalities with an additional requirement of complete agreement on investment decisions. See also Corsetti,
Dasgupta, Morris, and Shin (2001) in a 2-period model.

19See, e.g., Feddersen and Pesendorfer (1998), Dekel and Piccione (2000), and references therein.
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Appendix

Proof of Proposition 1. The strategy σi ∈ Σi satisfying σi(qH) = H for all H ∈
{A,B} is optimal for bettor i if Ui(H,σ−i | qH) ≥ Ui(H, σ−i | qH) for all H, i.e., (1 −
π)

∑
q−i∈Q−i

(∏
j 6=i Pr(qj | θH)

)
n

h(H,σ−i(q−i))
≥ π

∑
q−i∈Q−i

(∏
j 6=i Pr(qj | θH)

)
n

h(H,σ−i(q−i))
for

all H, which is impossible with π > 1/2. ¤

Proof of Proposition 2. To prove the existence of a fully informative equilibrium, let i ∈ N
and assume that σj(qH) = H for all H ∈ {A,B} and j 6= i. Then, it is clear that

∑

q−i∈Q−i


∏

j 6=i

Pr(qj | θH)


 n

h(H, σ−i(q−i))
=

∑

q−i∈Q−i


∏

j 6=i

Pr(qj | θH)


 n

h(H, σ−i(q−i))
.

Therefore, for any H ∈ {A,B}, inequality Ui(H, σ−i | qH) ≥ Ui(H, σ−i | qH) is satisfied if and
only if Pr(θH | qH) ≥ Pr(θH | qH), i.e., π ≥ 1− π, which is satisfied since π > 1/2.

To prove that the fully informative equilibrium is the unique symmetric equilibrium, re-
mark that there are three other symmetric strategy profiles: (i) every bettor bets against his
own private signal, (ii) every bettor bets on horse A, and (iii) every bettor bets on horse B.
We prove that none of those strategy profiles form a Bayesian-Nash equilibrium.

(i) Directly from Proposition 1.
(ii) Let σi(qH) = A for all H ∈ {A, B} and i ∈ N . Then, Ui(B, σ−i | qB) = Pr(θB | qB)n

1 =
nπ and Ui(A, σ−i | qB) = Pr(θA | qB)n

n = (1− π) < nπ. Hence, σ is not an equilibrium.
(iii) Similar to (ii). ¤

Proof of Proposition 3. Let a be the number of bettors who bet on horse A whatever
their private signal, and let b = n− a be the number of bettors who bet on horse B whatever
their private signal (a, b 6= 0 from Proposition 2). The expected utility of each bettor i who
bets unconditionally on horse A is given by

Ui(A, σ−i | qA) = Pr(θA | qA)
n

a
=

nπ

a

Ui(B, σ−i | qA) = Pr(θB | qA)
n

n− a + 1
=

n(1− π)
n− a + 1

Ui(A, σ−i | qB) = Pr(θA | qB)
n

a
=

n(1− π)
a

Ui(B, σ−i | qB) = Pr(θB | qB)
n

n− a + 1
=

nπ

n− a + 1
.

Similarly, the expected utility of each bettor i who bets unconditionally on horse B is given
by

Ui(A, σ−i | qA) = Pr(θA | qA)
n

a + 1
=

nπ

a + 1

Ui(B, σ−i | qA) = Pr(θB | qA)
n

n− a
=

n(1− π)
n− a

Ui(A, σ−i | qB) = Pr(θA | qB)
n

a + 1
=

n(1− π)
a + 1

Ui(B, σ−i | qB) = Pr(θB | qB)
n

n− a
=

nπ

n− a
.

Thus, we have an equilibrium if a
n+1 ≤ π ≤ a+1

n+1 and b
n+1 ≤ π ≤ b+1

n+1 . Hence, to have an
equilibrium we must have a = b = n/2, and thus n is necessarily an even number. Additionally,
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we must have π ≤ n+2
2n+2 . The fact that there exist exactly C

n/2
n non-informative equilibria is

obvious. This completes the proof. ¤

Proof of Proposition 4. Assume that k < n bettors always follow their signal, a bettors
always bet on horse A, and b = n− a− k bettors always bet on horse B. Let NK be the set
of bettors who follow their signals, NA the set of bettors who always bet on horse A, and NB

the set of bettors who always bet on horse B. For each bettor i ∈ NK we have

Ui(A, σ−i | qA) = nπ




k−1∑

j=0

Cj
k−1π

j(1− π)k−1−j

a + 1 + j




Ui(B, σ−i | qA) = n(1− π)




k−1∑

j=0

Cj
k−1π

j(1− π)k−1−j

b + 1 + j




Ui(A, σ−i | qB) = n(1− π)




k−1∑

j=0

Cj
k−1π

j(1− π)k−1−j

a + 1 + j




Ui(B, σ−i | qB) = nπ




k−1∑

j=0

Cj
k−1π

j(1− π)k−1−j

b + 1 + j


 .

For each bettor i ∈ NA we have

Ui(A, σ−i | qA) = nπ




k∑

j=0

Cj
kπ

j(1− π)k−j

a + j




Ui(B, σ−i | qA) = n(1− π)




k∑

j=0

Cj
kπ

j(1− π)k−j

b + 1 + j




Ui(A, σ−i | qB) = n(1− π)




k∑

j=0

Cj
kπ

j(1− π)k−j

a + j




Ui(B, σ−i | qB) = nπ




k∑

j=0

Cj
kπ

j(1− π)k−j

b + 1 + j


 .

Finally, for each bettor i ∈ NB we have

Ui(A, σ−i | qA) = nπ




k∑

j=0

Cj
kπ

j(1− π)k−j

a + 1 + j




Ui(B, σ−i | qA) = n(1− π)




k∑

j=0

Cj
kπ

j(1− π)k−j

b + j




Ui(A, σ−i | qB) = n(1− π)




k∑

j=0

Cj
kπ

j(1− π)k−j

a + 1 + j




Ui(B, σ−i | qB) = nπ




k∑

j=0

Cj
kπ

j(1− π)k−j

b + j


 .
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It is easy to verify that each bettor i ∈ NA is rational only if a < b+1 and each bettor i ∈ NB

is rational only if b < a + 1, which implies that b − 1 < a < b + 1, i.e., a = b = n−k
2 . In this

case, it is rational for each bettor i ∈ NK to follow his signal. Moreover, each bettor i ∈ NH

rationally follows his signal when he receives the signal qH . It remains to check under which
conditions each bettor i ∈ NH bets on H even when he receives the signal qH . From the
expected utilities given above, this condition is satisfied if and only if

π

1− π
≤

∑k
j=0

Cj
kπj(1−π)k−j

a+j

∑k
j=0

Cj
kπj(1−π)k−j

a+1+j

=

∑k
j=0

( π
1−π

)j

j!(k−j)!(a+j)

∑k
j=0

( π
1−π

)j

j!(k−j)!(a+j+1)

,

where a = n−k
2 and 0 ≤ k < n. The fact that there are exactly Ck

n×C
n−k

2
n−k partially informative

equilibria with k informative bets is obvious. ¤

Proof of Lemma 1. Let f(k, n, π) = π
1−π −

Pk
j=0

C
j
k

πj(1−π)k−j

n−k
2 +jPk

j=0

C
j
k

πj(1−π)k−j

n−k
2 +1+j

. We have to show that

f(k, n, π) ≤ 0 is equivalent to g(k, n, π) ≤ 0. Let x = π
1−π ∈ ]1,+∞[ and a = n−k

2 . We

have f(k, n, π) ≤ 0 ⇔ x ≤
Pk

j=0

C
j
k

xj

a+jPk
j=0

C
j
k

xj

a+j+1

⇔ ∑k
j=−1

Cj
kxj+1

a+j+1 ≤ ∑k+1
j=0

Cj
kxj

a+j , since by convention

C−1
k = Ck+1

k = 0. The last inequality is equivalent to
∑k+1

j=0
xj

a+j (C
j
k − Cj−1

k ) ≥ 0. Us-

ing the definition of the binomial coefficient, it is not difficult to show that Cj
k − Cj−1

k =
Cj

k+1
k+1−2j

k+1 . Substituting this value into the last inequality, we get
∑k+1

j=0
xj

a+j C
j
k+1

k+1−2j
k+1 ≥

0 ⇔ ∑k+1
j=0 xjCj

k+1
k+1−2j

(n−k
2

+j)(k+1)
≥ 0 ⇔ ∑k+1

j=0 xjCj
k+1

k+1−2j
n−k+2j ≥ 0 ⇔ g(k, n, π) ≤ 0. ¤

Proof of Lemma 2. It is equivalent to prove this property for f(k, n, π). We have

f(k, n, 1/2) = 1−
Pk

j=0
1

j!(k−j)!( n−k
2 +j)Pk

j=0
1

j!(k−j)!( n−k
2 +j+1)

< 0. Moreover, limπ→1−

Pk
j=0

C
j
k

πj(1−π)k−j

n−k
2 +jPk

j=0

C
j
k

πj(1−π)k−j

n−k
2 +1+j

=
n−k

2
+k+1

n−k
2

+k
,

and limπ→1−
π

1−π = +∞, which implies that limπ→1− f(k, n, π) > 0 for all n and k. Hence,
there exists π, π′ ∈ ]1/2, 1[ such that f(k, n, π) < 0 and f(k, n, π′) > 0. ¤

Proof of Lemma 3. We have to show that ∂g(k,n,π)
∂π > 0 for all π ∈ ]1/2, 1[. Let x = π

1−π ∈
]1,+∞[. We have ∂g(k,n,π)

∂π > 0 ⇔ ∑k+1
j=0 j xj−1Cj

k+1
k−2j+1
k−2j−n > 0. Assume that k is an even

number. Then, the last inequality is equivalent to

k/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<
k+1∑

j=(k/2)+1

j xj−1Cj
k+1

2j − k − 1
n + 2j − k

⇔
k/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<

k/2∑

j=0

(k + 1− j) xk−jCk+1−j
k+1

2(k + 1− j)− k − 1
n + 2(k + 1− j)− k

⇔
k/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<

k/2∑

j=0

(k + 1− j) xk−jCj
k+1

k − 2j + 1
n− 2j + k + 2

,

because Cj
k+1 = Ck+1−j

k+1 . To prove the last inequality, it is sufficient to show that for all
j = 0, 1, . . . , k/2 we have j xj−1Cj

k+1
k−2j+1
n+2j−k < (k + 1− j) xk−jCj

k+1
k−2j+1

n−2j+k+2 . Since x > 1 ⇒
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xj−1 < xk−j for all j = 0, 1, . . . , k/2, it is sufficient to show that j k−2j+1
n+2j−k ≤ (k+1−j) k−2j+1

n−2j+k+2
or, equivalently, k + 1 − 2j ≥ 0, which is satisfied for all j = 0, 1, . . . , k/2. Now, we assume
that k is an odd number. Then, we have

(k−1)/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<
k+1∑

j=(k+1)/2

j xj−1Cj
k+1

2j − k − 1
n + 2j − k

⇔
(k−1)/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<
k+1∑

j=(k+3)/2

j xj−1Cj
k+1

2j − k − 1
n + 2j − k

⇔
(k−1)/2∑

j=0

j xj−1Cj
k+1

k − 2j + 1
n + 2j − k

<

(k−1)/2∑

j=0

(k + 1− j)xk−jCk+1−j
k+1

k − 2j + 1
n− 2j + k + 2

.

The rest of the proof is as before. ¤

Proof of Proposition 5. Directly from Lemmas 2 and 3. ¤

Proof of Lemma 4. Directly from the expected utility of Equation (5) on page 8. ¤

Proof of Lemma 5. From Bayes rule (Equation (6) on page 8) with Jj(H | sj−1) = {qH}
(because every player follows his signal by assumption), after some simplifications. ¤

Proof of Proposition 6. Let (σ, µ) be a perfectly revealing equilibrium. This implies that
the last bettor always follows his signal: σn(sn−1; qH) = H for all sn−1 ∈ Sn−1. In particular,
(i) σn(H, . . . , H; qH) = H and (ii) σn(H, . . . , H; qH) = H.

(i) From Lemmas 4 and 5 we have (h = 0): µn(θH | sn−1; qH) ≥ h(sn−1)+1
n+1 ⇔ π2−n

π2−n+(1−π)2−n

≥ 1
n+1 ⇔ n1/(n−2)

1+n1/(n−2) ≥ π.

(ii) From Lemmas 4 and 5 we have (h = n − 1): µn(θH | sn−1; qH) ≥ h(sn−1)+1
n+1 ⇔

πn

πn+(1−π)n ≥ n
n+1 ⇔ π ≥ n1/n

1+n1/n . This completes the proof. ¤

Proof of Proposition 7. Assume that σ−i is perfectly revealing, i.e., all bettors other than
i follow their own private signal. Let a = a(si−1) and consider player i with the signal qA (the
same conditions are obtained when he gets the signal qB). From Equation (5), his utility can be
written Ui(A | si−1; qA) = nµi(θA | si−1; qA)

∑
qi+∈Qi+

Pr(qi+ | θA) 1
a+1+|{j>i:qj=qA}| , since ev-

ery bettor j > i follows his private signal. Moreover from Lemma 5 we have Ui(A | si−1; qA) =
n π2a+2−i

π2a+2−i+(1−π)2a+2−i

∑
qi+∈Qi+

Pr(qi+ | θA) 1
a+1+α(qi+ ) , where α(qi+) = |{j > i : qj = qA}|.

Similarly, Ui(B | si−1; qA) = n (1−π)2a+2−i

π2a+2−i+(1−π)2a+2−i

∑
qi+∈Qi+

Pr(qi+ | θB) 1
(i−a)+β(qi+ ) , where

β(qi+) = |{j > i : qj = qB}|. Hence, Ui(A | si−1; qA) ≥ Ui(B | si−1; qA) if and only if
(

π
1−π

)2a+2−i
≥

P
q
i+
∈Q

i+

Pr(q
i+
|θB)

(i−a)+β(q
i+

)P
q
i+
∈Q

i+

Pr(q
i+
|θA)

a+1+α(q
i+

)

≡ xi(B)
xi(A) . For all j ∈ {0, 1, . . . , n − i}, {qi+ ∈ Qi+ :

α(qi+) = j} is the set of vectors of signals of bettors after i such that exactly j signals
favor horse A. Clearly, we have |{qi+ ∈ Qi+ : α(qi+) = j}| = Cj

n−i. Moreover, for all
qi+ ∈ {qi+ ∈ Qi+ : α(qi+) = j}, Pr(qi+ | θA) = πj(1 − π)n−i−j . Therefore, we get

xi(A) =
∑n−i

j=0

Cj
n−iπ

j(1−π)n−i−j

a+1+j and, similarly, xi(B) =
∑n−i

j=0

Cj
n−iπ

j(1−π)n−i−j

i−a+j . To summa-
rize, if σ−i is a profile of perfectly revealing strategies, then player i follows his signal if
(

π
1−π

)2a+2−i
≥
Pn−i

j=0

C
j
n−i

πj(1−π)n−i−j

i−a+jPn−i
j=0

C
j
n−i

πj(1−π)n−i−j

a+1+j

. Hence, a perfectly revealing equilibrium is obtained if

the last inequality is satisfied for all i ∈ N and a ∈ {0, 1, . . . , i− 1}. ¤
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Proof of Proposition 8. To prove the proposition we analyze all possible strategies of the
first bettor and we examine the associated best response of the second one depending on his
possible outside equilibrium beliefs. The first bettor has three types of possible strategies: i)
He follows his signal; ii) he bets against his signal; iii) he bets non-informatively.

i) The First Bettor Follows his Signal. We check for the existence of an equilibrium in
which the first bettor always follows his signal, i.e., σ1(qA) = A and σ1(qB) = B. In this
case, Bayes’ rule applies everywhere and we obtain the following beliefs for the second bettor:
µ2(θA | A; qA) = µ2(θB | B; qB) = π2

π2+(1−π)2
, µ2(θA | A; qB) = µ2(θB | B; qA) = µ2(θA |

B; qA) = µ2(θB | A; qB) = 1/2, and µ2(θA | B; qB) = µ2(θB | A; qA) = (1−π)2

π2+(1−π)2
. From those

beliefs, we can compute the expected utilities of bettor 2 depending on his signal, the observed
history, and his betting choice. We easily obtain U2(A | A; qA) = U2(B | B; qB) = π2

π2+(1−π)2
,

U2(A | B; qB) = U2(B | A; qA) = 2(1−π)2

π2+(1−π)2
, U2(A | A; qB) = U2(B | B; qA) = 1

2 , and

U2(A | B; qA) = U2(B | A; qB) = 1. Therefore, for any H ∈ {A,B}, σ2(H; qH) = H and

σ2(H; qH) =





H if π >
√

2
1+
√

2
= 2−√2 ' 0.586

H if π <
√

2
1+
√

2
.

It remains to verify if bettor 1 is rational for all π > 1/2 when bettor 2 uses the above
strategy. Given σ2, we obtain the following expected utilities:

U1(A, σ2 | qA) = µ1(θA | qA)
∑

q2∈Q2

Pr(q2 | θA)(1 + OA(A, σ2(A; q2)))

= π
∑

q2∈Q2

Pr(q2 | θA)
2

a(A, σ2(A; q2))

=





π(2− π) if π >
√

2
1+
√

2

2π otherwise.

Similarly,

U1(A, σ2 | qA) = U1(B, σ2 | qB) =





π(2− π) if π >
√

2
1+
√

2

2π otherwise

U1(B, σ2 | qA) = U1(A, σ2 | qB) =





(1− π)(2− π) if π >
√

2
1+
√

2

2(1− π) otherwise.

We get σ1(qH) = H, for any π > 1/2. Hence, player 1 follows his own private signal.
ii) The First Bettor Bets Against his Signal. Assume that σ2(qH) = H. Bayes’ rule applies

everywhere and we obtain the following beliefs for bettor 2: µ2(θH | H; qH) = π2

π2+(1−π)2
,

µ2(θH | H; qH) = 1/2, and µ2(θH | H; qH) = (1−π)2

π2+(1−π)2
. Bettor 2’s expected utility is then

U2(H | H; qH) = (1−π)2

π2+(1−π)2
, U2(H | H; qH) = 1

2 , U2(H | H; qH) = 1, and U2(H | H; qH) =
2π2

π2+(1−π)2
. It follows immediately that the second bettor always adopts a contrarian behavior,

whatever his private signal: σ2(H, q2) = H for all q2 ∈ Q2. Now consider bettor 1. It is easy
to see that U1(H | qH) = 2π and U1(H | qH) = 2(1 − π) < 2π. Indeed, since the second
bettor always bets on the other horse, the odds against the horse chosen by the first bettor is
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always equal to 2. Hence, there is no equilibrium where the first bettor always bets against
his private signal.

iii) The First Bettor Bets Non-Informatively. Assume that σ1(q1) = H ∈ {A,B} for
all q1 ∈ Q1. The second bettor cannot apply Bayes’ rule when he observes that the first
bettor has bet on horse H. When he observes H, he keeps his posterior beliefs. We obtain
σ2(H; qH) = H and

σ2(H; qH) =





H if π > 2/3

H if π < 2/3

To determine bettor 2’s optimal action when he has observed a first bet on horse H
we have to specify outside equilibrium beliefs. By restricting our attention to consistent
beliefs (in the sense of Kreps and Wilson, 1982), the following conditions must be satisfied:
µ2(θH | H; qH) ∈ [1/2, π2

π2+(1−π)2
], and µ2(θH | H; qH) ∈ [ (1−π)2

π2+(1−π)2
, 1/2]. Hence, U2(H |

H; qH) = 2µ2(θH | H; qH) ≥ 1 and U2(H | H; qH) = 1− µ2(θH | H; qH) ≤ 1/2, which implies
that σ2(H; qH) = H. We obtain the following expected utilities for bettor 1:

U1(H | H) = 2(1− π)(π/2 + (1− π)) = (1− π)(2− π) if π > 2/3

U1(H | H) = 2(1− π)(π + (1− π)) = 2(1− π) if π < 2/3,

and

U1(H | H) = 2π(π/2 + (1− π)) = π(2− π) if σ2(H; qH) = H

U1(H | H) = 2π(π + (1− π)) = 2π if σ2(H; qH) = H.

It is clear that if π > 2/3 or σ2(H; qH) = H, then bettor 1 deviates by following his signal
qH . Hence, assume that π < 2/3 and σ2(H; qH) = H. This last strategy is used by bettor 2
if U2(H | H; qH) ≥ U2(H | H; qH). Since U2(H | H; qH) ≤ π2

π2+(1−π)2
and U2(H | H; qH) ≥

2(1−π)2

π2+(1−π)2
, we must have π ≥

√
2

1+
√

2
. Thereafter, note that U1(H | H) ≥ U1(H | H) if and

only if π ≤
√

2
1+
√

2
. Thus, whenever π 6=

√
2

1+
√

2
, the first bettor never uses a non-informative

strategy. ¤

Proof of Proposition 9. First note that if the first and the second bettors follow their
signals, then there is no outside equilibrium beliefs to specify. Beliefs of the second bettor are
the same as in the 2-bettor case. Beliefs of the third bettor are given by µ3(θA | A, A; qA) =

π3

π3+(1−π)3
, µ3(θA | B,B; qB) = (1−π)3

π3+(1−π)3
, µ3(θA | A,A; qB) = µ3(θA | A,B; qA) = µ3(θA |

B, A; qA) = π, µ3(θA | B,B; qA) = µ3(θA | B,A; qB) = µ3(θA | A,B; qB) = 1 − π. From
those beliefs we can compute the expected utilities of the third bettor, and then his optimal
strategy: σ3(H, H; qH) = σ3(H, H; qH) = H, for all π, and

σ3(H, H; qH) =





H if π >
3√3

1+ 3√3
' 0.591

H if π <
3√3

1+ 3√3

σ3(H, H; qH) =





H if π > 3
4

H if π < 3
4 .
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Thereafter, we get the expected utilities of the second bettor:

U2(A, σ3 | A; qA) = U2(B, σ3 | B; qB) =





π2

π2+(1−π)2
if π > 3/4

π2

π2+(1−π)2
3−π

2 if 3/4 > π >
3√3

1+ 3√3

π2

π2+(1−π)2
3
2 if π <

3√3
1+ 3√3

U2(B, σ3 | A; qA) = U2(A, σ3 | B; qB) =
(1− π)2

π2 + (1− π)2
3(2− π)

2
for all π

U2(A, σ3 | A; qB) = U2(B, σ3 | B; qA) =





1
2 if π > 3/4
3−π

4 if 3/4 > π >
3√3

1+ 3√3

3
4 if π <

3√3
1+ 3√3

U2(A, σ3 | B; qA) = U2(B, σ3 | A; qB) =
3(2− π)

4
for all π.

We now turn to the optimal strategy of the second bettor. From the previous expected
utilities it is clear that U2(H, σ3 | H; qH) ≥ U2(H, σ3 | H; qH) for all H ∈ {A,B} and π ≥ 1/2.
Hence, if the private signal of the second bettor contradicts the private signal of the first one,
then the second bettor always follows his private signal (and thus bets against the first bettor’s
choice). Otherwise, we have:

If π ≥ 3/4, then U2(A, σ3 | A; qA) ≥ U2(B, σ3 | A; qA) ⇔ π2 ≥ (3/2)(1− π)2(2− π) ⇔

π ≥ 1
9

(
10− 35

(27
√

179− 296)
1/3

+ (27
√

179− 296)
1/3

)
' 0.592 < 3/4.

If 3/4 ≥ π ≥ 3√3
1+ 3√3

, then U2(A, σ3 | A; qA) ≥ U2(B, σ3 | A; qA) ⇔ π2(3−π) ≥ 3(1−π)2(2−
π) ⇔

π ≥ 1
2

(
3− 1

(
√

37− 6)
1/3

+ (
√

37− 6)
1/3

)
' 0.571 <

3
√

3
1 + 3

√
3
.

If π ≤ 3√3
1+ 3√3

, then U2(A, σ3 | A; qA) ≥ U2(B, σ3 | A; qA) ⇔ π2 ≥ (1− π)2(2− π) ⇔

π ≥ 1− 2
(

2
3(
√

177− 9)

)1/3

+
(1
2(
√

177− 9))
1/3

32/3
' 0.547 <

3
√

3
1 + 3

√
3
.

Thus, bettor 2 always follows his signal if π ≥ 1−2
(

2
3(
√

177−9)

)1/3
+ ( 1

2
(
√

177−9))
1/3

32/3 ' 0.547.
Otherwise, he goes against the trend.

We assume in the following lines that π ≥ 0.547 (otherwise, the equilibrium we are cur-
rently analyzing breaks down). Recalling that we assume that the second bettor always follows
his own private signal and that the third bettor acts according to his strategy σ3 found before
(which depends on π), we get (after some calculations) the following expected utilities of the
first bettor:

U1(A, σ2, σ3 | qA) = U1(B, σ2, σ3 | qB) =




π
2 (2π2 + 5π(1− π) + 6(1− π)2) if π > 3/4
π(π2 + 3π(1− π) + 3(1− π)2) if 3/4 > π >

3√3
1+ 3√3

3π
2 (π2 + 2π(1− π) + 2(1− π)2) if π <

3√3
1+ 3√3

,
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U1(B, σ2, σ3 | qA) = U1(A, σ2, σ3 | qB) =




1−π
2 (6π2 + 5π(1− π) + 2(1− π)2) if π > 3/4

(1− π)(3π2 + 3π(1− π) + (1− π)2) if 3/4 > π >
3√3

1+ 3√3
3(1−π)

2 (2π2 + 2π(1− π) + (1− π)2) if π <
3√3

1+ 3√3
.

We have exactly U1(H, σ2, σ3 | qH) ≥ U1(H,σ2, σ3 | qH) if and only if π ≥ 1/2. Hence, the
first bettor always follows his own private signal. This completes the proof. ¤
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