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Abstract

In this methodological work we explore the possibility of explicitly modelling expectations
conditioning the R&D decisions of firms. In order to isolate this problem from the controversies
of cognitive science, we propose a black box strategy through the concept of “internal model”.
The last part of the article uses the artificial neural networks as a tool to model the presence
and the evolution of the internal model of agents.
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And one of the deepest, one of the most general functions of living organisms
is to look ahead, to produce future as Paul Valéry put it.”(François Jacob (1982),
p.66).

1 Introduction

The purpose of R&D investment is to carry out an innovation which is a potential source of
competitiveness for firms. When a firm invests in R&D, it becomes involved in a dynamic
process which rests on an a priori belief in technological progress. The primary motivation of
firms to invest in R&D is linked to this expectation concerning the existence of a technological
change process that firms try to exploit in order to increase (or to maintain) their competi-
tiveness. Thus R&D investment corresponds to a decision which is turned to the future and,
as a consequence, which involves an expectation dimension.

In the meantime, R&D decisions are characterized by a strong uncertainty concerning the
return on investment. This uncertainty is stronger for R&D investment than for other types of
investment. Indeed innovations often result from what Simon (1958) calls “nonprogrammed
decisions”, that is situations where the alternatives of choices must be discovered by firms
and the connections between choices and consequences are imperfectly known. It is the reason
why R&D decisions are generally associated to uncertainty in the sense of Knight (1921). This
uncertainty strongly limits the ability of firms to form expectations about the return on their
R&D investment. In this context, firms must be able to improve through experience their
perception of the relationships between R&D investment and competitiveness and to adapt
accordingly their R&D decisions. Thus firms determine their R&D investment through the
combination of adaptation with expectation of potential return on R&D. Both dimensions
generally coexist except in the extreme situations where there is no uncertainty or where the
uncertainty is totally radical so that firms can not form any expectation.

In order to clarify the role of uncertainty in R&D decisions, we should distinguish between
two types of uncertainty:

- technological uncertainty concerns the connection between R&D and innovation. It de-
pends on the nature of innovation (radical or incremental) and on the potentialities of the
technology which is exploited by firms. This uncertainty influences the occurrence and the
time of innovation as well as the technological performances associated to the innovation;

- market uncertainty rather affects the link between R&D investment and competitiveness
of firms (in terms of profit or market share). The impact of innovation on the competitiveness
of firms does not only depend on technological factors but also on the evolution of demand and
on the behaviors of competing firms. This uncertainty is mainly linked to the environment in
which R&D is carried out, especially when the industry persistently is out of equilibrium.

On the basis of this distinction between the sources of uncertainty, we argue that the
nature and the degree of uncertainty in R&D decisions depend on the technology and on
the market structure. In this perspective, uncertainty is not systematically associated to
radical innovation but to innovation in general. For instance in an oligopolistic structure, a
firm that carries out R&D activities in order to realize incremental innovations has to cope
with the market uncertainty which comes from the behavior of its rivals. In an equilibrium
approach this problem is overcome since every firm is supposed to perfectly anticipate the
equilibrium decisions. Otherwise this uncertainty strongly influences the impact of innovation
upon the competitiveness of the firm. Another case could be a monopolistic situation with
radical innovation. In that case, uncertainty would come mainly from technological factors
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(unless unpredicted variations of demand occur). Finally the combination of expectation with
adaptation in the presence of uncertainty appears as relevant for any types of innovation
(incremental or radical).

We propose to explore the modelling of the determination of the level of R&D investment
of firms. This means that we are not going to tackle the decision of being an innovator or not,
nor the adoption of a new technology. We are going to exclude these decisions and focus on
the situations where firms invest in internal R&D in order to produce an innovation. In that
case the problem is to determine the level of R&D investment. Our interest is to analyze how
expectation and adaptation can be combined in the modelling of R&D investment rules. In the
literature both dimensions are generally split up: rational expectations are assumed in neo-
classical models whereas alternative approaches (institutional and/or evolutionary) generally
adopt a purely adaptive representation.

In the next section, we discuss rational expectation models. We consider two different
models of innovation: Aghion and Howitt (1992) and Ericsson and Pakes (1995). The former
is a canonical model of endogenous growth while the latter is a very sophisticated model of
industry dynamics. Both endogenize innovation as a stochastic outcome of R&D investment of
firms. We show that this class of models deals with risk (and not with uncertainty) and does not
cope with the formation and the adaptation of expectations. In section 3, we focus on models
based on adaptive decision rules. We show that recent models of innovation developed in the
evolutionary framework tend to overlook the role of expectation in innovation decisions. In this
class of models, the decision rules are purely adaptive, and as a consequence do not take into
account the impact upon investment of the expectations of firms concerning the relationships
between R&D and competitiveness. Section 4 is devoted to the modelling trade-off between
expectation and adaptation. We argue that in the presence of uncertainty expectations reflect
the existence of an internal model of the economy that firms use to make simulations about
the possible outcomes of their decisions. This internal model is specific to firms and is adapted
over time according to observations and experiences.

2 Equilibrium and risk: rational expectation models

Given our interest in the sources of uncertainty, we focus on non-deterministic models of
innovation. Our purpose is to study the decision rules governing R&D investment in the
models in which innovation is endogenized as a stochastic process. Two types of models
come within this perspective: endogenous growth models and industrial dynamics models.
For our analysis of the standard approach of R&D decisions, we choose the canonical model
of endogenous growth of Aghion and Howitt (1992) and the model of industrial dynamics
developed by Ericsson and Pakes (1995). These two models illustrate the modelling of R&D
decisions in an equilibrium approach.

2.1 Macroeconomic dynamics and rational expectations

Aghion and Howitt (1992) present a model of endogenous growth that is based on Shumpeter’s
idea of creative destruction. The particular process it focuses on is research activities aimed at
producing innovations which consist in developing better products. In this model, the inputs
of research are skilled labor and specialized labor. A successful research firm obtains a patent
on its innovation which it sells to an intermediate firm that becomes a monopolist until the
next innovation occurs. At any point in time the main decision is how to allocate the fixed
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flow of skilled labor between manufacturing and research.
Labor used in research produces a random sequence of innovations that follows a Poisson

law. The Poisson arrival rate of innovations in the economy at any period is a function of
the flow of skilled labor used in research. The probability law of innovations is stationary
and research firms know the Poisson arrival rate. Moreover each innovation increases the
productivity by a constant factor. Thus the only uncertainty for research firms concerns the
time of innovation. Given that firms know the Poisson arrival rate, they do not have to cope
with uncertainty but with technological risk.

Concerning the market environment, the occurrence of innovation for each firm is indepen-
dent of the inputs of other research firms. An innovative firm obtains systematically a patent
which it sells to an intermediate firm. The patent price is equal to the expected present
value of the monopoly rents of the intermediate firm. Given that each innovation destroys
the monopoly rents resulting from the previous innovation, the only uncertainty concerns the
length of the interval of monopoly rents. Thus the value of an innovation is the expected
present value of the flow of monopoly profits generated by the innovation over an interval
whose length is exponentially distributed. Firms know the function which determines the
parameter of this exponential distribution. This knowledge enables them to maximize the
expected present value of profit.

But to calculate this expected value firms have to take into account the cost of inputs
which is the wage rate of labor. More precisely the expected wage of period t + 1 is used to
calculate the expected value of the (t + 1)th innovation. This means that firms must be able
to forecast the evolution of the wage rate. In order to ensure intertemporal coordination the
authors assume that agents have perfect foresights. This assumption is a necessary condition
for the intertemporal equilibrium. Thus firms know the probability laws of the stochastic
processes and perfectly forecast the evolution of the cost of inputs. It implies that firms
perfectly know the model of the economy. As a consequence they do not cope with uncertainty,
but make optimal decisions under risk. In this context, there is no need for any adaptive
dimension. Firms do not have to adapt to unpredicted changes since they perfectly predict
future outcomes. Moreover there is no memory in the technology since the arrival rate of
innovations depends only on the current flow of input to research. It means that there is no
accumulation nor irreversibilities in the research process of firms. R&D decisions are totally
turned to the future which is predicted and described by stationary probability distributions.

2.2 Industrial dynamics and rational expectations

Ericson and Pakes (1995) formalize research activities in an other framework by using Markov
processes. Their model of industry dynamics is based upon a stochastic model of the entry and
growth of firms that invest in research and exploration activities to enhance their capability to
earn profits. The stochastic outcome of the firm’s investment, the success of other firms in the
industry and the competitive pressure from outside the industry determine the profitability
of each firm.

Technological opportunities provided by the industry are open to all, so that the only
distinction among firms is their efficiency in exploiting these opportunities. The efficiency of
each firm is measured relatively to the efficiency of the other firms in the industry and to the
competition from outside the industry. The efficiency of firms and the industry structure evolve
as a result of the outcomes of firms’ investment and with changes in the market environment in
which it is embedded. The model includes an exogenous stochastic process which reflects the
improvements made by competition outside the industry (linked to the evolution of demand,
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input costs, science and technology). At each period the state of the industry is given by the
efficiency of firms and the market structure which is described in terms of the number of firms
at each state of efficiency.

The level of investment of firms is chosen so as to maximize the expected present discounted
value of profits as a function of all information available to firms. The authors assume that
this information includes:

- the history of all past states of the industry,
- the history of the firm’s own past investment decisions,
- the current state of the industry,
- the probability laws governing the evolution of that state over time, including the law

governing the impact of the firm’s own investment on that evolution.
In this model technological uncertainty concerns the stochastic outcomes of firms’ research

investment and there are two sources of market uncertainty which are the evolution of compe-
tition outside the industry and the process of entry of new firms in the industry. Since firms
know the probability laws governing these factors, they can maximize the expected future
profits generated by investment. Thus in spite of the complexity of the model, firms are suf-
ficiently informed to cope optimally with risk. This property is due to non-trivial behavioral
assumptions which seem to us difficult to justify empirically and of poor relevance for R&D
decisions.

Moreover in order to determine their optimal investment strategy, firms need to form
expectations about the evolution of the state of efficiency of the other firms in or entering the
industry. The distribution used to form these expectations is derived from the firm’s perception
of the Markov process governing the state of efficiency of its competitors. It corresponds to the
firm’s beliefs about how the structure of the industry will change. The industry is said to be in
dynamic equilibrium when the process generating the change in industry structure is accurately
reflected in the beliefs of each firm. The authors refer to a rational expectations equilibrium
where optimal decisions are based on the true distribution of future states generated by the
optimal behavior of all firms.

The assumption of rational expectation insures intertemporal coordination of the future
decisions of firms. It also means that the firms know perfectly the model of the economy
or that the model they use to form their expectations does not lead to systematic errors in
prediction. The latter argument implies that errors in prediction are not correlated and that
the distribution of errors is centered around a mean equal to zero. Thus even if errors in
prediction occur, the agents do not change the model they use to form their expectations.
Under the rational expectation assumption, expectations lead agents to make decisions whose
outcomes do not refute their predictions (Gaffard (1997)). In the model of Ericson and Pakes,
it means that in spite of the complexity of interactions among firms and the risk associated to
research investment, firms have the ability to predict the evolution of the state of the industry
by using a “good” model of the economy. This model is not adapted through time since it
does not entail systematic errors in prediction.

The presentation of Aghion and Howitt (1992) and Ericson and Pakes (1995) shows that
none of these models deals with actual technological or market uncertainty. Even if the authors
introduce stochastic processes to represent innovations, the assumption according to which
firms know the probability laws, that are generally stationary, implies that firms deal with
risk and not with uncertainty. We usually find this assumption in the neoclassical approach
to innovation. In this framework, knowledge about probability distributions is necessary to
firms in order to be able to maximize the expected present value of profits.
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We also emphasize that the concept of equilibrium with rational expectations or perfect
foresights, which is generally used in standard models, leads to a systematic coordination
among agents and among periods. In that sense, the role of rational expectations is mainly
to insure intertemporal coordination. The problem with this approach is that it does not deal
with how agents form and adapt their expectations. Under the equilibrium assumption there
is no need for adaptation since the expectations correspond to the objective distribution of
outcomes. In this context, agents do not have to exploit observations and past experiences in
order to improve their predictions and to adapt the model of the economy they use to form
expectations. However this issue is particularly relevant for R&D decisions which are guided
by the agents’ vision of the technological change process.

3 Uncertainty and adaptive behavior

When one takes into account the complexity of the innovation process and the inherent un-
certainty (technological and/or market), the assumption of agents possessing the true model
of the economy becomes very costly in terms of realism. This assumption is of course critical
for models based on rational expectations.

Evolutionary modelling of R&D decisions has rejected this assumption from the beginning
(see Nelson and Winter (1982), and Hodgson (1994) for a historical account). As an alternative,
the bounded rationality concept of Simon and adaptive behavior based on decision rules have
been placed in the centre of evolutionary models (see Simon (1982)).

Alternatives to the unifying rational expectations framework lead to a great diversity
because the modelling of bounded rationality entails the modelling of agents’ learning process
when an empirically and conceptually founded unanimity about this learning process does not
exist for the time being (see Dennett (1998)). Simon’s propositions have consequently been
introduced in economic models in a progressive and diversified way. Concerning the modelling
of R&D decisions, the persistent form of this formalization has been centered around decisions
rules and their modification as a consequence of learning.

3.1 From bounded rationality to decision rules

The original model of Nelson and Winter (1982, ch.15) introduces a very simple kind of R&D
investment rule: each firm is supposed to invest a constant fraction of its capital stock in
R&D. Even if the merit of this model is to propose a first application of the concept of
bounded rationality to innovation decisions, it is limited by a very simplistic version of this
concept. In the end, as Silverberg and Verspagen (1999) assert: “While there is technological
learning at the economy-wide level, firms themselves are completely unintelligent, since they
operate according to given search and investment rules that cannot be modified as a result of
experience.” This is of course very far from Simon’s initial propositions.

Winter (1984) provides a first attempt in introducing adaptive R&D decision rules. In
this model, the R&D-capital ratios are adapted in order to reach a satisfactory profit rate
which is given by the capital weighted industry average profit rate. If the current profit of the
firm is less than satisfactory, the firm progressively adjusts its R&D-capital ratio towards the
industry average ratio. This adaptive rule corresponds more to blind imitation (of the average
behavior) than to the positive result of a learning process. Moreover this rule assumes that
each firm knows the distributions of capital stocks, profit rates and R&D ratios in order to be
able to compute the weighted averages. Hence we have an informatively demanding but finally
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poor adaptive behavior behind this rule. Silverberg and Verspagen (1995, 1995b) enrich this
rule by letting firms choose their R&D investment as a fraction of profit or sales. Moreover the
relative weight of each source of R&D financing (sales or profit) is adapted through imitation
and random experiments (mutations) according to a satisficing rule. This emphasizes a second
important dimension of the evolutionary modelling of learning process: random experiments
or mutations. As a matter of fact imitation and mutation are two main dimensions of adaptive
rules that will be introduced in subsequent models of innovation.
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2)  01100  (=12)
3)  10111  (=23)
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Figure 1: A simple example of genetic algorithm

3.2 Towards richer adaptation: the emergence of a unified mod-
elling principle?

Recent and more sophisticated models of technology dynamics progressively adopt mechanisms
of rule adaptation more resolutely inspired by evolutionary algorithms. These algorithms are
not introduced to represent faithfully the exact learning mechanism of agents but to just take
into account, in the least ad hoc way, the presence of learning (see Marengo (1992) for a
precursory application of evolutionary algorithms to models of learning).

The models developed by Kwasnicki (see Kwasnicki and Kwasnicka (1992) and Kwasnicki
(1998)) use a representation of the learning of firms already very close to genetic algorithms
(see Figure 1 and Goldberg (1991)). Even if the R&D strategies of firms do not directly result
from learning and adaptive processes, the result of this R&D (i.e. innovation) is modelled
as the discovery and the effective use of new routines: “The creative process is evolutionary
by nature and as such its description should be based on a proper understanding of the
hereditary information.” (Kwasnicki (1998, pp.140),) The learning of the firm does not directly
concern its strategy of R&D investment (R&D is a constant function of capital stock) but the
routines which enable it to produce better products. These routines are adapted through
an evolutionary process based on recombination and mutation. The speed and the scope of
this adaptation depend on the decisions of the firm (mainly on R&D investment). Given the
emphasis on the modelling of innovation as the learning of new routines, these models open
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yet a little more the “black box” of the firm and, hence, their adaptive dimension is closer to
the behavioral theory of the firm than to the innovation theory.

An even richer modelling of adaptive R&D strategies can be found in the work of Ballot and
Taymaz. Even if R&D decisions are on a secondary plan in their first articles (see for example
Ballot and Taymaz (1997)), one of their most recent articles is dedicated to R&D rules. In their
initial articles they use controlled Genetic Algorithms to model the learning process of the firm
as a result of incremental innovations. The efficiency of this learning is mainly determined by
the spending of firm in human capital training. Even if these models are remarkable because
they plainly adopt evolutionary algorithms, they are closer to Kwasnicki (1998) since the
adaptation concerns the technology of firms and not their innovative strategies. Ballot and
Taymaz (1999) is directly dedicated to the comparative modelling of R&D strategies. This
model confronts an evolutionary adaptation mechanism, which is a Classifier System (CS),
with other more ad hoc satisficing criteria: Informed behavior à la Nelson & Winter (1982),
Optimizing behavior based on statistical inference about the production function and Follower
behavior which is pure imitation of the top 50% of firms in the industry.

A CS uses rules like “IF (Condition) THEN (Action)”. Each time an Action is chosen
only if its Condition is fulfilled and if the rule has a strong value. This value is fixed by a
credit assignment system and new rules are generated by a GA. Because of the condition part,
the CS has the possibility to develop in parallel better sets of rules for different situations.
In Ballot and Taymaz (1999), this CS continuously adapts the R&D-Sales ratio according
to the information about the market share and the relative performance of the firm on the
market. Then the GA generates new rules with a speed which is increasing in the general
human capital of the firm. The comparison between these four rules clearly shows that the
combination of evolutionary algorithms with empirical knowledge on the elements of R&D
decisions can significantly limit the ad hoc nature of rule-based adaptive models.

The main idea of GA (and also of the CS) is the combination of good solutions in order to
obtain better and even the best solutions. This combination is augmented by casual random
experimenting. This simple idea is behind the Schemata Theorem of Holland (Goldberg (1991)
and Mitchell (1996)). This simple mechanism of learning is also the basis of an emerging
paradigm in Artificial Life studies. If one aims to explore the behavior of a whole system
(an ecology) of adaptive agents, this can be done in the unifying frame of Complex Adaptive
Systems (CAS) (Holland 1996, 1998).

This paradigm is actually far from providing a rich unified framework for models of eco-
nomic decisions. In the meantime evolutionary algorithms combined with a good empirical
knowledge on economic decisions can offer a coherent strategy for adaptive models. This
strategy could overcome the criticism concerning the excessive diversity of bounded rational-
ity models by providing such a unified framework (see Sargent (1995) for a summary, and
Rubinstein (1998) for alternatives that stick to equilibrium assumption). Such a common
framework would unfortunately not solve the main problem of adaptive models: because they
refuse to assume that agents possess the true model of the economy in their head, these models
go to the other extreme by considering agents without any model in their mind. In that case
agents just “grope in the dark”.

4 Uncertainty and modelling of expectations

If one does not adopt a biologically over-determined vision of human behavior (“everything
is coded in our genes”), the intentions of economic agents must be taken into account in the
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modelling of their decisions. Even with minimal knowledge, under uncertainty, agents look
forward: a firm engages in R&D investments only if it assumes that there is potential technical
progress and, moreover, that research activities can give a competitive edge over other firms
through new production processes or products. R&D activity consequently follows from the
anticipation of a positive impact of this activity on the prospects of the firm.

Unfortunately, it is very difficult to include these anticipations in models of R&D be-
cause we do not have a precise knowledge on how these expectations are actually formed by
economic agents. The adaptive learning mechanisms of the preceding section include an ex-
pectional dimension but only for conditions already observed and rules already used by agents.
Expectations are hence hard-coded into rules and learning about the environment cannot be
distinguished from the search for better rules (Dosi, et al. (1999)). Consequently, these mech-
anisms do not explain how agents represent their environment in order to evaluate decisions
even if they are not yet been tested. To overcome this problem, maybe we should resign to
be unable to model the formation process of expectations and focus more on the effects of the
simple presence of such a process. This black-box approach would leave aside a detailed repre-
sentation of this process and thus overcome one of the major problems of Artificial Intelligence
(Hofstadter (1979) and Dennett (1998)).

Simulations DecisionInternal Model

Effective
result of the

decision

If Result differs from
Simulation

Update model

Figure 2: Dynamics of the internal model

4.1 Expectations and agent’s internal model

Instead of assuming that the agents know the exact model of the economy (rational expecta-
tions hypothesis), one can imagine that their decisions are guided by a more or less approx-
imate model. This model summarizes the state of the agent’s knowledge and evolves as a
consequence of evolution of this knowledge. This approximate model can be called the inter-
nal model of the agent. It guides the decision process since it enables the agent to test the
connections between the alternatives of choice and their consequences. The presence of such
an internal model can reflect the intentionality of decisions.

Obviously, in this context, the concept of “model” must be understood in a very loose
sense. More than a mathematical construction, it consists in a representation of the agent’s
perception of the environment: “In (. . . ) situations [that are not sufficiently simple as to be
transparent to human mind], we must expect that the mind will use such imperfect information
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as it has, will simplify and represent the situation as it can, and make such calculations as
are within its powers” (Simon (1976, p.144)). These calculations are “As if” experiments that
enable the agent to evaluate the possible consequences of its decisions. In other words, before
making a decision, the agent simulates the potential outcomes of different decisions by using
its internal model. The output of these simulations yields the expectations of the agent.

Concerning the R&D decisions, the relevance of such a model could seem more problematic.
These decisions are made by a meta-agent: the firm. A faithful description of the internal
model of such an meta-agent is of course impossible, and in a certain sense meaningless.
Fortunately, one does not need such a description in order to embody expectations in models
of R&D. The effects of the intentionality can be studied simply by representing the presence
of such a model instead of its exact structure. This is not necessarily a restrictive assumption
since “the actions taken within organization need to be consistent; the frameworks within
which they are embedded do not. (. . . ) All is required is that the frameworks should fit
where they touch” (Loasby (1986, p.51)). In this case, one can easily assume that the firm
bases its decisions on the connection that its internal model establishes between R&D and the
relevant dimensions of the environment.

The agent compares the expectations resulting from the simulations with effective obser-
vations. If this experience questions the internal model, the latter is updated. Hence we have
a dynamic structure which evolves as it is depicted by Figure 2.

The representation of this internal model must therefore take into account the update of
the model following the experience and the expectations of the firm. The main idea behind
our approach is that “an intelligent being learns from experience, and then uses what it
has learned to guide expectations in the future” (Dennett (1998, p.185)) and, moreover, “. . .
failed predictions can serve as well as overt reward as a basis for improvement” (Holland (1998,
p.77)). The idea we are trying to represent in our models is therefore a fairly obvious one: “an
intelligent agent must engage in swift information-sensitive ‘planning’ which has the effect of
producing reliable but not foolproof expectations of the effects of its actions” (Dennett (1998,
p.193).

While this idea is quite obvious, its integration into models of R&D is problematic. This
is the reason why purely adaptive models (see the preceding section) generally neglect this
dynamic process of expectation formation. The representation of learning as the product of an
evolutionary algorithm does permit the elaboration of better decision rules, but only by trial
and error. The agent can only judge decisions which have been used before. On the contrary,
the vision based on the dynamics of the internal model admits that agents can have a relatively
precise (if not perfect) perception of the value of their decisions even if they have never been
used before. This is made possible by means of simulations with the internal model. We must
now attack the problem of the integration of this idea into economic models.

4.2 How to represent the evolution of the internal model?

The standard way of formalizing such a model is given by subjective probabilities of Savage.
In this case, the internal model of the firm corresponds to a set of conditional probability
distributions. The update of this model can be imagined through successive least square
estimations or Bayes rule.

With least square estimations, we must have an idea of the structure of the model of
the firm and assume that the agent does not modify this structure in the updating process,
but only its quantitative elements (mainly the coefficients of the equation). Even if this
is very restrictive, we will consider some possible applications of this methodology to R&D
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decisions. Two problems limit the relevance of this process: the decreasing importance through
time of more recent experiences, and the impossibility for the agent to modify the structure
of the internal model as a result of its experiments (Salmon (1995), Sargent (1995)). The
first limitation can easily be neutralized by assuming a fixed memory horizon for the agent
(estimations over last n periods instead of the whole history). The second limitation cannot
be handled by least squares and so limits the relevance of this approach to relatively stable
environments (characterized, for example, by incremental technical progress).

The Bayesian approach has the advantage of not assuming any particular structure for the
internal model. But it is very demanding in terms of agents’ rationality. Moreover, “there is
substantial evidence that Bayes’ theorem lacks empirical relevance and hence its procedural
justification is weak” (Salmon (1995, p.245)).

R&D

Investment
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Decision 4
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Figure 3: Feedforward ANN with one hidden layer

Even if least squares can be used in simple representations of this internal model (see for
example the use of this approach in Jonard and Yildizoglu (1998) for the expectations about
the return on physical investment), we need a tool as flexible as possible for the black-box
approach. Ideally our representation should be independent of the structure and the param-
eterization of the internal model in order to incorporate only the most primitive dimensions
of this model: its existence and its influence on the decisions of agents. An artificial neural
network (ANN) is a good candidate to represent the dynamics of the internal model in a
black-box approach. With only minimal structural assumptions, namely the list of dependant
and explicative variables, it can represent the fact that the firm adjusts its internal model to
the flow of experience.

An ANN provides a time varying flexible functional form that delivers an approximation of
the connections between the inputs and the output of the internal model. This approximation
is obtained by the calibration of the parameters of the ANN (aij and bj in Figure 3) according
to the series of input and output data. These parameters reflect the intensity of the connections
in the network. A better approximation can be achieved through the introduction of fictive
nodes in the network (a hidden layer) which represent unobserved state variables, or more
particularly, unobserved variables of the internal model of the agent. ANN thus covers a wide
range of models from the simplest linear one when there is no hidden layers, to the increasingly
sophisticated ones when the number of the hidden nodes increases. This number can even be
used to represent the complexity of the agent’s internal model.

We can now propose two examples of application of the black-box approach to R&D
decisions.
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4.3 Internal model for R&D decisions

Our first example proposes a very simple model of R&D decisions where the internal model
is represented by a linear model. This model is adapted to the flow of experience through
incremental least squares. The second example is dedicated to the possible use of ANN in a
very simple framework.

In order to represent the expectations of the firm concerning the R&D-profitability con-
nection, we can use incremental least square estimation of a linear model. In that case the
update of the internal model is based on a constant structure. The only elements which are
really updated according to experience are the coefficients of the model.

Expectations of the agent are based on the predictions of the estimated model. In a direct
use of such a model the agent can estimate the return on R&D investments and compare
it to the return of other investment possibilities (physical capital, financial). But R&D has
not necessarily an instantaneous return and this approach neglects the delayed impact of
R&D on profitability or competitiveness. Thus an under-estimation of the return on R&D
can be observed. This can be overcome by the use of the cumulated R&D investment as
an explicative variable. The linear structure of the model makes useless the test of different
hypothesis (amounts) of R&D investment. The impact of R&D on competitiveness is given by
the same coefficients for all values of this investment. Nevertheless, these limitations and the
one which comes from the constant structure of the model should not eliminate this modelling
possibility, especially in the case of incremental innovation.
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Figure 4: Expectations, decisions and learning

For a more general approach, the internal model used by firms for their R&D decisions
could be represented by an ANN (see Figure 4). Given a state of this ANN, the firm uses it
to compare alternative investment decisions in terms of their competitive outcome. On the
basis of the results of the ANN, the agent takes a decision. This investment decision results
in a certain performance determined by the dynamics of the industry. This decision and the
corresponding outcome provides a new experiment for the firm. The use of this experiment
for the update of the internal model corresponds to the learning.
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At any point in time the state of the ANN is indeed given by parameters which represent
the strength of connections. These parameters are calibrated at each period by using the past
observations of inputs (decisions and indicators) and outputs (indicators of competitiveness
or profitability). Then the agent provides this ANN with different investment hypothesis and
compares the resulting outputs:

Input : “(RD/CF = x%)” −→ Output : “π = y%”.

where RD/CF represents the R&D- cash flow ratio and π, the profit rate of the firm. This
expectation (x% → y%) can be compared with other hypothesis in order to make a decision
through the relevant decision process. With bounded rationality, the firm will choose the first
hypothesis with a satisfying outcome. This decision and its effective result (the observed profit
rate) can again be used to update the internal model (to calibrate the ANN).

As input data one could use actual or lagged values of different relevant variables: R&D
investments (cumulated or not), capital stock (size), market share, known demand characteris-
tics, the degree of maturity of the technology. Cumulated or lagged values of R&D investments
can be particularly relevant since the innovation process is cumulative and R&D does not have
immediate reward. As to competitiveness we can consider different indicators such as relative
mark-up, variation rate of the productivity or the variation of the profit rate. Because of
bounded rationality, the firm content itself with testing a limited set of hypothesis and cannot
generally attain a global optimum.

5 Conclusion

As a conclusion we would like to stress that we can leave a room for expectations in models of
R&D without assuming that firms know the exact model of the economy. The important point
is that firms form expectations by using their internal model and adapt this model according
to their experience and observations. This approach opens up new perspectives to cope with
the trade-off between expectations and adaptation in R&D models.

The approach we propose in this article is also close to the workings of a classifier system
but it has the advantage of explicitly modeling the formation of expectations. This separation
of expectations and decisions also allows for the possibility of different frameworks for the
modeling of these two processes and should enrich our analysis of learning processes.
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