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Abstract. We study experimentally the outcome of a 50 periods repetition of a two-player coordination 

game, which admits two-pure strategy Nash equilibria that are Pareto-ranked: a payoff-dominant 

equilibrium and a risk-dominant equilibrium. The experiment consists of a 2x3 factorial design, with two 

different matching rules –global an local interaction–, and three sizes for the basin of attraction of the risk-

dominant equilibrium. Under global interaction, each player can be matched in each period with any player 

in the population. Under local interaction, each player can be matched only with one of his two neighbours. 

Our results confirm earlier experimental results obtained under global interaction (for a survey see Ochs 

(1995)). On the contrary, the results contrast sharply with Keser, Ehrhart & Berninghaus (1998), who found 

that subjects interacting ‘locally’ with their neighbours around a circle, coordinate mostly on the risk-

dominant equilibrium. Moreover, we found no evidence for a faster convergence to an equilibrium under 

local interaction than under global interaction. 
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1. Introduction 

 

This paper reports an experiment designed to study the influence of a local interaction structure 

on equilibrium selection in a coordination game. A ‘global interaction’ is a situation in which the 

behaviour of an agent is directly affected by choices of all other agents in the population. 

Conversely, interactions are ‘local’ if agents take into account only the information coming from a 

strict subset of the population, that is, if only choices of a small group of people are relevant 

whenever an individual performs his or her decisions. The assumption of ‘local interactions’ 

implies the introduction of a spatial dimension in the economy (Kirman (1994)). Agents are 

physically distributed in some spatial environment and interactions are modelled by means of the 

distances between agents. The distance between two agents might reflect a geographic 

characteristic or different socio-economic characteristics of agents themselves. In recent years, 

models with ‘local interactions’ have been applied to many economic contexts, such as, for 

instance, regional economics (Krugman (1994)), technological adoption (Allen (1982a)) or the 

diffusion of information and the contagion of opinions (Allen B. (1982b)). 

The reference treatment is a Global Interaction treatment in which subjects interact globally. 

We compare the results of 12 groups of the Global Interaction treatment with the results of 12 

groups of the Local Interaction treatment. Under global interaction, a player can be matched with 

any other player in the population, while under local interaction a player can be matched only with 

players belonging to a subset of players within the whole population. Although under local 

interaction each player interacts only with the players of his neighbourhood, he interacts indirectly 

with all the players of the population, because neighbourhoods are overlapping. Each player is 

therefore also affected by decisions taken by players who do not  belong to his own neighbourhood 

and his own decisions also affect players outside his neighbourhood. We consider a 2x2 symmetric 

coordination game with two symmetric, strict Nash equilibria and a mixed Nash equilibrium. The 

two pure-strategy Nash equilibria are Pareto-ranked: one is a payoff-dominant equilibrium and the 
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other one is a risk-dominant equilibrium1 in the sense of Harsanyi & Selten (1988). A game with 

this structure is commonly referred to as a Stag Hunt game. Which equilibrium will be selected is 

a matter of considerable debate since all strict Nash equilibria survive any of the established 

refinement tests. Therefore, and while the mixed-strategy equilibrium is commonly dismissed, the 

literature does not provide a clear conclusion as to which of the two pure-strategy equilibria will 

be selected. 

In this paper we contrast previous experimental findings under global interaction with new 

experimental data on local interaction. In contrast to Keser et al. (1998), our experiment relies on 

the same size of population of 8 subjects in both the Global Interaction treatment and in the Local 

Interaction treatment. In the local interaction structure subjects are spatially distributed on a circle 

and each one interacts with his adjacent neighbours. We compare the two interaction conditions 

for three different payoff structures with increasing attractiveness for the risk-dominant 

equilibrium. Our experimental results weakly support the prediction that under local interaction 

risk-dominance is the dominant outcome. Indeed, not all the subject groups interacting in the Local 

Interaction treatment did coordinate on the less risky equilibrium, even if more coordination on 

the payoff-dominant equilibrium is observed in the Global Interaction treatment. Moreover, this 

difference between the two interaction structures is not statistically significant. In this respect, this 

conclusion contrast sharply with the previous experimental result obtained by Keser et al. (1998) 

for different population sizes between the local and the global interaction conditions. Nevertheless, 

we observe that when the risk-dominant equilibrium becomes more attractive, the population 

“converges”2 more frequently towards that outcome. Our results also show that “convergence” is 

not faster under local interaction than under global interaction. 

The balance of the paper is as follows. In the next section we survey some theoretical and 

experimental litterature concerning equilibrium selection. Section 3 introduces the structure of the 

                                                           
1 The risk-dominant equilibrium is the equilibrium with the largest Nash product, that is, the equilibrium for which the 
product of the deviation losses is largest.  
2 What is meant by convergence is defined in section 6.3. 
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game and section 4 describes the matching rules used in the experiment. In section 5 we present 

the practical procedures. Our results are commented in section 6. Final comments conclude.  

 

2. Some theoretical and experimental literature on the coordination problem 

2.1 Theory 

We distinguish between the “classical” theories as opposed to the evolutionary theories. Among 

classical theories, based on models of substantively rational agents, a few do discriminate between 

the two strict Nash equilibria of such a game (e.g. Harsanyi & Selten (1988), Carlsson & Van 

Damme (1993), Harsanyi (1995)). Harsanyi & Selten (1988) rely on collective rationality to 

predict payoff dominance. Carlsson & Van Damme (1993) predict the risk-dominant equilibrium, 

on the ground that it is robust to a specific type of uncertainty about payoffs. More recently, 

Harsanyi (1995) revised his position and proposed a new theory of equilibrium selection that relies 

only on risk dominance as a criterion for choosing among different equilibria. He claimed that the 

new theory has a much “higher degree of theoretical unity and of direct intuitive 

understandability”, compared to Harsanyi & Selten (1988). Theories which rely on eductive 

reasoning neglect complicated learning processes that induce equilibrium and therefore they 

neglect also the history of the process. While classical theories consider only global interaction 

structures, evolutionary game theory studies both global and local interaction structures. We take 

therefore as a reference the predictions of evolutionary game theory. 

Evolutionary models put forward learning and adaptive behaviour as important features for 

understanding the strategic choices in a game where players gain experience. Theories based on 

deterministic dynamics, such as myopic best response dynamic, predict history-dependent 

equilibrium selection and predict either the payoff-dominant or the risk-dominant equilibrium, 

depending on the basin of attraction which contains the initial state. Kandori, Mailath & Rob 

(1993) (henceforth KMR) and Young (1993) reconsidered the learning dynamics, and showed that 

the addition of a small mutation probability, changes significantly the result of the deterministic 
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dynamics. Stochastic models predict that the limit distribution will concentrate all the probability 

mass on the risk-dominant equilibrium. Robson & Vega-Redondo (1996) showed that the 

matching rule of the players may affect the equilibrium outcome. Under random rematching in 

each period, the payoff-dominant equilibrium will be selected. In these models, the relative sizes 

of the basins of attraction strongly affect the outcome. This result, however, is weakened if one 

takes into account other factors, such as the “strength of learning”. Binmore & Samuelson (1997) 

showed that by taking into account this factor, either of the two equilibria will be reached. Finally, 

Bergin & Lipman (1996) showed that any refinement effect obtained by adding small mutations, 

as in KMR (1993), is solely due to restrictions on how mutation rates vary across states. They 

show that virtually any outcome can be obtained, in the limit as the probability of a mutation 

approaches zero, if in the process the relative probabilities of the strategies to which a mutation 

switches a player can approach zero or infinity. Besides, some authors studied the impact of local 

interactions. 

Berninghaus & Schwalbe (1996) consider a deterministic interaction model in which each 

player interacts only with a subset of the population. In their model, risk-dominance, as a selection 

criterion, is stronger than Pareto superiority. Ellison (1993), who extended KMR’s (1993) model 

to local interactions, also showed that the risk-dominant equilibrium is always selected in the long-

run. Blume (1993) studied the play of 2 x 2 games in an infinite two-dimensional lattice, in which 

agents deviate from their best reply strategy with a probability that depends on the prospective loss 

in payoff from such a deviation. Blume (1993) considers a log linear response model with 

parameter β > 0 and establishes that when the log linear strategy revision approaches the best-reply 

rule (β → ∞), the limit distribution puts probability one on the risk-dominant convention as in the 

uniform error model. Models of local interactions have also established that “convergence” to the 

equilibrium is faster under local interactions. Starting from an initial state where most of the 

players adopt the payoff-dominant action, and for a given rate of mutation, the expected waiting 

time before all the players adopt the risk-dominant action, is much lower under local interaction 
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than under global interaction.3 Therefore, under global interaction “..play should exhibit great 

inertia with a historically determined equilibrium repeated over and over again.”, and under local 

interaction, “…evolutionary forces will be a powerful determinant of play…”4 (Ellison (1993)). 

This implies that in an experiment with a finite number of periods of play, under the assumption of 

best-reply stochastic dynamics, we should observe much more risk-dominant outcomes than 

payoff-dominant outcomes under local interaction. On the contrary, depending on the payoff 

structure of the stage game, as much payoff-dominant outcomes as risk-dominant outcomes can be 

observed under global interaction.   

 

2.2 Previous experiments 

Because there is no single theoretical prediction, coordination games have been extensively 

studied by experimentalists under global interaction (for a survey see Ochs (1995)). The available 

evidence can be summarised as follows : although the coordination problem is solved by the 

repeated interaction between subjects, i.e. disequilibrium outcomes are rare, strategic uncertainty 

leads to coordination failure, i.e. convergence is towards the inefficient equilibrium outcome. 

Experiments have also shown that factors which are irrelevant according to classical theories affect 

the outcome. For example, Van Huyck, Battalio & Beil (1990) (henceforth VHBB) observed in a 

finitely repeated ‘weakest link’ game5, that the larger the number of players, the greater the chance 

that players will end up coordinating on the least profitable equilibrium6. More recently, 

experimental studies sought to identify conditions under which evolutionary game theory 

adequately characterises observed play in the repeated Stag Hunt game. Battalio, Samuelson & 

Van Huyck (1997) provide a comprehensive summary about human behaviour in Stag Hunt games 

                                                           
3 By assuming pairwise asymmetric information structures, Durieu & Solal (1999) rule out cycles in Ellison’s 
deterministic dynamics and reduce the expected first passage time from one Nash equilibrium to another in stochastic 
dynamics. 
4 More details concerning the expected waiting time under both interaction structures will be given afterwards. 
5 A ‘weakest link’ game is a pure coordination game in which individual payoffs are partly determined by the 
minimum effort chosen in the population. 
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under global interaction structures: 1) non-equilibrium outcomes are rare, 2) in the first period of 

play the payoff-dominant strategy is generally the modal choice, 3) the final outcome of the game 

is generally accurately predicted by the location of the initial outcome in a particular basin of 

attraction. The experiment of Keser, Ehrhart & Berninghaus (1998) showed that if the interaction 

structure is local the equilibrium selection is drastically modified. If all players are located around 

a circle, with each player having 2 neighbours (the adjacent players), the strategy choices converge 

towards the risk-dominant equilibrium. Moreover, in their fixed group treatment without local 

interaction, they observed that the payoff-dominant equilibrium was more often selected than the 

risk-dominant equilibrium. 

 

3. The coordination game 

The stage game is a 2x2 symmetric game illustrated in figure 1, where each player has to choose 

strategy X or strategy Y. If both players choose X, then both get a payoff of a; if both players 

choose Y, then both get d. If one player chooses X while the other chooses Y, then the former 

player gets c while the latter player gets b. We consider the case where a > b and d > c so that the 

stage game has two pure-strategy Nash equilibria: (X,X) and (Y,Y). We also require that d – c > a 

– b, which implies that (Y,Y) is the risk-dominant equilibrium. Finally, we assume that the two 

equilibria are Pareto-ranked, and that a > d, which implies that (X,X) is the payoff-dominant 

equilibrium.7                 

                                             
 

 X Y 

  X a, a c, b 

  Y b, c d, d 
 

Figure 1: The stage coordination game. 

                                                                                                                                                                                              
6 Crawford (1991) gives an evolutionary interpretation of these experimental results and Carlsson & Ganslandt (1998) 
by perturbing symmetric coordination games provide a theoretical foundation for VHBB’s results. 
7 The stage game has also an equilibrium in mixed strategies in which each player chooses strategy X with probability 
k* = (d - c) / (a + d – b - c). 
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Defined like this, this stage game is commonly referred to as the Stag Hunt game and poses the 

potential conflict between efficiency and security. Although, strategy X might yield the highest 

payoff (a) if the opponent chooses also X, it is risky since it yields the lowest payoff (c) if the 

opponent chooses the safe strategy Y. More precisely, one strict Nash equilibrium risk dominates 

the other if, after a normalisation of payoffs which preserves best-reply correspondences and 

dominance relations between strategies, it strictly Pareto dominates the second (see Weibull 

(1995)). For example, the payoff matrix of figure 1 can be normalised in the following manner: 

 
 

X Y 

X a - b, a - b 0, 0 

Y 0, 0 d – c, d - c 
 

After such a normalisation of payoffs, the strict Nash equilibrium (X,X) appears no longer 

attractive since d – c > a – b. 

In the experiment we used three different payoff matrices in both treatments. Thus, we have a 

2x3 factorial design, with 2 different matching rules and 3 different payoff matrices. Figure 2 

shows the parameter values considered in the experiment. 
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                  X           Y                                       X           Y                                           X           Y 
 X 50, 50 0, 25  X 50, 50 0, 30    X 45, 45 0, 35 

     Y 25, 0 30, 30  Y 30, 0 40, 40   Y 35, 0 40, 40 

 
                         i                                                        ii                                                         iii   

Figure 2: Parameter values used in the experiment. 

 

Let k be the probability with which each player chooses strategy and define k* as the value of k for 

which a player is indifferent between choosing strategy Y and choosing strategy X, i.e. k* is the 

value of k for which there is a mixed-strategy equilibrium. k* depends on the payoff matrix: k* = 

0.54 for payoff matrix i, k* = 0.67 for payoff matrix ii, and k* = 0.80 for payoff matrix iii. In fact, 

Y is a k*-dominant strategy which implies that if k* = 1 then strategy Y weakly dominates 

strategy X. Moreover, in the normalised payoff matrix, the gain resulting from strategy profile 

(Y,Y) is k* / (1-k*) times the gain resulting from strategy profile (X,X). In other words, the greater 

k*, the more attractive is the risk-dominant equilibrium. 

From the evolutionary perspective, the risk-dominant equilibrium has the larger basin of 

attraction under the best-reply as well as the replicator dynamics.8 Under global interaction k* is 

commonly referred to as the “separatrix” because it divides the state space into two basins of 

attraction: the basin of attraction of the payoff-dominant equilibrium and the basin of attraction of 

the risk-dominant equilibrium. Each basin of attraction has an absorbing state in which all players 

adopt the same strategy9. Henceforth we note Y° the steady state in which all players adopt 

strategy Y and X° the steady state in which all the players adopt strategy X. Moving from payoff 

matrix i to payoff matrix ii and iii implies that, under global interaction, we allow more and more 
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initial conditions to converge to the state Y° under deterministic dynamics. On the contrary, when 

each player interacts only with two neighbours the value of k* becomes irrelevant since the basin 

of attraction of X° contains only one state, X° itself. Thus, under the local interaction condition, 

the magnitude of k* has no impact on the relative sizes of the basins of attraction and we therefore 

expect the likelihood of observing Y° to be high. Nevertheless, as noted by Fudenberg & Levine 

(1998), “..this implicitly supposes a more-or-less uniform prior over possible initial positions”. 

 

4. Matching rules 

We introduce now two different matching rules that we used in our experiment. 

4.1 The Global Interaction treatment 

The stage coordination game is repeated 50 times by the same group of 8 players. Under global 

interaction, each player in the population can be matched with any of the 7 other players in the 

population. However, his actual payoff depends only on the action taken by his actual opponent. 

At the end of each round, each player is informed about the distribution of decisions in his group 

for the current round. No information about the individual decisions of the other players is given. 

A player’s payoff is determined by the sum of his payoffs over all 50 rounds. The players have 

complete information about the game. They know each player’s payoff function (the same for each 

player) and that the game ends after 50 repetitions. 

In this treatment, under deterministic dynamics, the basins of attraction of the two strict Nash 

equilibria have the same size when the stage game relies on payoff matrix i. For the two others 

matrices, payoff matrix ii and payoff matrix iii, the risk-dominant equilibrium has the largest basin 

of attraction. Thus, KMR (1993) and Young (1993) predict that, for payoff matrix ii and payoff 

matrix iii, the limit distribution concentrates all of its probability on the risk-dominant equilibrium. 

                                                                                                                                                                                              
8 Due to integer problems such a result is true only for large populations of players under global interaction and for 
small neighbourhoods under local interaction. 
9 Be aware that the mixed-strategy equilibrium can not be an absorbing state in a symmetric game. 
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4.2 The Local Interaction treatment 

Like under global interaction, the stage coordination game is repeated 50 times by the same group 

of 8 players. Under local interaction, each player in the population can be matched only with one 

of his neighbours. In our experiment we considered only neighbourhoods containing two players. 

The different neighbourhoods are arranged on a circle design, so that the neighbourhood of a given 

player contains his two adjacent players. Figure 3 describes the interaction structure (a similar 

figure has been used in the instructions of the Local Interaction treatment in order to make the 

subjects aware of the local interaction condition). In this circle design, player 1 plays either with 

player 2 or with player 8. Player 2 interacts either with 1 or with player 3, and so on. Player 1’s 

payoff depends on his own choice and on the choice of his actual opponent either player 8 or 

player 2. At the end of each round, each player is informed about the distribution of his 

neighbours’ choices for the current round. But he is neither informed about the individual 

decisions of his neighbours, nor about his neighbours’ neighbours’ decisions. Each player’s final 

payoff depends on the cumulative payoff over all 50 rounds. Players have complete information 

about the game. They know each player’s payoff function (the same for everyone), they know that 

their neighbours also interact with other neighbours, they know that they are allocated around a 

circle of 8 players, and that the game ends after 50 repetitions. 

In the Local Interaction treatment, whatever the payoff matrix considered, the risk-dominant 

equilibrium has the same largest basin of attraction under best-reply deterministic dynamics. 

Consequently, Ellison (1993) and Berninghaus & Schwalbe (1996) predict the risk-dominant 

equilibrium as an outcome in all cases. 
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You (player 1) 

 
 

 
 
 
 

 
 
 
 

 
 

 
Figure 3: Local interactions on the circle. 

 

Note that our experimental design is not specifically based on one of the models reviewed in the 

introduction, for two reasons. First, there is no reference model available for this literature. The 

existing models make different assumptions about behavioral rules, matching rules or mutation 

probabilities. Furthermore, except for Ellison (1993), the models based on global interaction 

cannot be easily compared to those which study local interaction. Finally, all models are based on 

a large population and a very large number of periods, two features which cannot be reproduced in 

the lab. Second, our aim is essentially to study how the interaction structure affects coordination in 

a simple game. In this respect, those models are not very useful since their primary focus is the 

long run outcome of the interaction process. 

Nevertheless, our experimental design is able to provide some useful insights about the 

aggregate behavior of a population of human players interacting in a controlled environment. As in 

the case of market experiments, the primary interest of the experimental methodology is to 

discover which factors affect the outcome of the process and which factors play a negligible role. 

In this respect we are essentially interested in the influence of the interaction structure and the 

payoff matrix on the aggregate outcome of the interaction process. 

2

3

4
5
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As previously noted, the easiest way to compare our results between both interaction structures 

and between the different payoff matrices will be to rely on best-reply dynamics with a uniform 

error model as considered by KMR (1993) and Ellison (1993). In such settings, we have clear 

results concerning the impact of k*, the impact of the interaction structure and the speed of 

convergence of the interaction process. In this respect, we will mainly rely on this framework in 

order to evaluate our experimental results. 

 

5. Practical Procedures 

The experiment was run on a computer network10 in Spring 1997, using 192 inexperienced 

students, at the Laboratory of Experimental Economics of Strasbourg (LEES11). The subjects were 

recruited by phone from a pool of 600 students. Subjects were students from various disciplines. 

Twelve sessions were organised, with 2 groups of 8 subjects per session. The experiment consisted 

of a 2x3 factorial design {global interaction, local interaction}x{k* = 0.54, k* = 0.67, k* = 0.80} 

with 4 observations per cell. Subjects were randomly assigned  to a group of 8 players, to play a 

50-fold repetition of the stage coordination game, the stage game being either based on payoff 

matrix i, payoff matrix ii or payoff matrix iii. Each subject was seated at a computer terminal, 

which was physically isolated from other terminals. Communication, other than through the 

decisions made, was not allowed. The subjects were instructed about the rules of the game and the 

use of the computer program through written instructions (available upon request), which were 

also read aloud by a research assistant. A short questionnaire was submitted to the subjects to 

check their understanding of the instructions, followed by two training periods, during which 

subjects were told that they would simply play “against” a computer program.12 After each period 

                                                           
10 Based on an application developed by K. Boun My (1997) designed for Visual Basic. 
11 BETA, Université Louis Pasteur, Strasbourg, France. 
12 In pilot sessions we observed that the initial period of play in the experiment, was strongly influenced by the 
outcomes during the training sessions when training sessions involved subjects playing against each other. If they 
coordinated on X during the training sessions, they tended to do the same in period 1 of the experiment, and similarly 
when the coordinated on Y. Therefore, we tried to neutralize the training sessions by letting them play “against”  the 
computer, and announcing in advance the computer’s “choice”. 
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subjects were informed about the individual number of points gained for that period. They were 

also informed about the number of points earned by the other player, with whom they interacted, 

the decision that he had taken in that period, the number of players of their neighbourhood who 

played X and the number of players of their neighbourhood who played Y. The accumulated 

number of points since the beginning of the experiment was on permanent display. Rewards were 

counted in points and converted at the end of the experiment into cash (1 point = 0.04 Francs). 

Subjects were also paid a show-up fee of 30 Francs that was added to their cash earnings for the 

experiment at the end of the session. 

 
 
6. Results 

We present the results with respect to the three stylised facts observed under global interaction and 

summarised by Battalio et al. (1997): non-equilibrium outcomes are rare, the modal first period 

outcome is the payoff-dominant strategy, and convergence is accurately predicted by the first 

period state. Besides, we analyse our experimental results by comparing them to, either 

deterministic or stochastic, best-reply dynamics. Indeed, clear predictions exist in such a 

theoretical framework concerning at once the outcome of the interaction process and the speed of 

“convergence”. Thus, we compare the myopic best reply rates between both matching rules. Note 

that subsection 6.1 summarizes results concerning the coordination problem at the individual level, 

whereas subsection 6.2 and 6.3 deal with the outcome of the process constituted by the whole 

group of subjects. Although we have few independent observations (4 groups for each payoff 

matrix both in the Global Interaction treatment and in the Local Interaction treatment) we shall 

indicate the significance level of the comparison between the two treatments for each payoff 

matrix or between two payoff matrices in the same treatment.13 Appendix A presents the time path 

of the number of subjects who choose X for each group. 
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6.1 Equilibrium outcomes 

Tables 1 summarises the data for the 50 periods. For both interaction structures, the first column 

identifies the groups, the second column indicates the overall proportion of Nash equilibria 

observed in the 50 periods, and the last column indicates among the Nash equilibria the overall 

proportion of Pareto outcomes (X°). Each group label has three items. The letter refers to the 

interaction structure (Global or Local), the first number refers to the payoff matrix (0.54, 0.67 or 

0.80) and the last number refers to the group number. 

 
Global Interaction Local Interaction 

Group Nash Pareto Group Nash Pareto 

G54.1 94% 99% L54.1 77% 93% 

G54.2 90% 98% L54.2 78% 91% 

G54.3 84% 99% L54.3 80% 96% 

G54.4 84% 99% L54.4 76% 97% 

 
 (a): k* = 0.54. 

 
Global Interaction Local Interaction 

Group Nash Pareto Group Nash Pareto 

G67.1 100% 100% L67.1 93% 1% 

G67.2 95% 100% L67.2 77% 99% 

G67.3 86% 9% L67.3 97% 100% 

G67.4 87% 100% L67.4 74% 3% 

 
(b): k* = 0.67. 

 
 

Global Interaction Local Interaction 

Group Nash Pareto Group Nash Pareto 

G80.1 65% 20% L80.1 92% 4% 

G80.2 80% 98% L80.2 83% 6% 

G80.3 86% 16% L80.3 60% 75% 

G80.4 88% 100% L80.4 80% 9% 

 
(c): k* = 0.80. 

 
Table 1: Overall proportion of Nash equilibria and payoff-dominant (Pareto) equilibria. 

                                                                                                                                                                                              
13 All comparison are tested with the Wilcoxon-Mann-Whitney test and we set the significance level at 5 %. 
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Under global interaction the average proportion of Nash equilibria over the three payoff matrices 

is equal to 86.58 % and under local interaction it is equal to 80.58 %; this difference is not 

statistically significant. Concerning the proportion of Pareto outcomes among Nash equilibria, the 

average proportion over the three payoff matrices is equal to 78.17 % under global interaction and 

it is equal to 56.17 % under local interaction; once again, this difference is not statistically 

significant. For k* = 0.54, there is a high frequency of payoff-dominant equilibria, both under 

local and under global interaction. The situation is more contrasted for k* = 0.67 and k* = 0.80. In 

some groups, the payoff-dominant equilibrium is the more frequent, while in others it is the risk-

dominant one which is outstanding. More precisely, for k* = 0.54, both the proportion of Nash 

equilibria and the proportion of payoff-dominant equilibria among the Nash equilibria are 

significantly larger under global interaction than under local interaction (p = 0.014). If k* = 0.67 or 

k* = 0.80, neither the proportion of Nash equilibria nor the proportion of payoff-dominant 

equilibria among the Nash equilibria is significantly affected by the type of interactions. Indeed, 

for k* = 0.67, there are clearly three groups which are close to the payoff-dominant equilibrium 

under global interaction, while the other one is closer to the risk-dominant solution. For k* = 0.80, 

there are two groups which are close to the payoff-dominant equilibrium under global interaction, 

while the two others are closer to the risk-dominant solution. Under local interaction, for k* = 

0.67, in two groups there is a high frequency of risk-dominant equilibria, while the remaining 

groups get closer to the payoff-dominant equilibrium and for k* = 0.80 there are three groups 

which are close to the risk-dominant equilibrium and the last one is close to the payoff-dominant 

solution. 

Under both types of interaction structures, there is no significant difference in the proportion of 

Nash equilibria between k* = 0.54, k* = 0.67 and k* = 0.80. However, under local interaction for 

k* = 0.54 there is a significant larger proportion of payoff-dominant equilibria than with k* = 0.80 
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(p = 0.014). There is no such a significant difference between k* = 0.67 and the two other values 

of k*. 

Finally, note that as in previous experiments under global interaction, we observe a high rate of 

equilibrium plays in our Global Interaction treatment. 

 

6.2 Initial and Final States 

Table 2 compares the initial state, observed in period 1, with the final state, observed in period 50. 

Previous experiments found that under global interaction are that the modal first period outcome is 

the payoff-dominant strategy, and that convergence is accurately predicted by the first period state 

which is in accordance with best-reply deterministic dynamics. Accordingly, we report in table 2 

the number of players choosing X in the first period and in the last period for global interaction. 

Concerning local interaction, since we rely on best-reply dynamics, we have to be more precise. 

For the local interaction structure, table 2 reports not only the total number of players who chose X 

in the first and in the last period, but describes also each subject’s decision for these periods as a 

string of X’s and Y’s. Subjects are arranged in accordance with Figure 3, i.e. the subject who 

corresponds to player 1 is on the left and the subject who corresponds to player 8 is on the right. 

This implies that subject 1 has interacted in each period either with the subject who is on his right, 

i.e. subject 2, or with the subject who is on the right, i.e. subject 8. 
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 Global interaction    Local interaction  

Group Period 1 Period 50 Group Period 1 Period 50 
  G54.1 6/8 8/8 L54.1 7/8 XYXXXXXX 7/8 XXXXYXXX
  G54.2 6/8 7/8 L54.2 8/8 XXXXXXXX 8/8 XXXXXXXX
  G54.3 7/8 8/8 L54.3 7/8 XXXXXXYX 8/8 XXXXXXXX
  G54.4 7/8 8/8 L54.4 7/8 XXXXXYXX 7/8 XYXXXXXX
  G67.1 7/8 8/8 L67.1 3/8 YYXYYXYX 0/8 YYYYYYYY
  G67.2 6/8 8/8 L67.2 7/8 XXXXXXXY 8/8 XXXXXXXX
  G67.3 5/8 0/8 L67.3 8/8 XXXXXXXX 8/8 XXXXXXXX
  G67.4 8/8 8/8 L67.4 4/8 XXYYXYXY 0/8 YYYYYYYY
  G80.1 5/8 0/8 L80.1 2/8 YYYYYYXX 0/8 YYYYYYYY
  G80.2 7/8 7/8 L80.2 5/8 XYYXYXXX 0/8 YYYYYYYY
  G80.3 6/8 1/8 L80.3 7/8 XXXYXXXX 4/8 XYYXYXYX
  G80.4 7/8 8/8 L80.4 7/8 XXXXYXXX 0/8 YYYYYYYY

 
Table 2: Initial and final states. 

 
As an example, in group G54.1, in period 1, 6 subjects out of 8 played X and two played Y. Our 

results support the stylised fact that under global interaction the modal first period outcome is the 

payoff-dominant strategy. Moreover, no significant differences in the number of players choosing 

X in the first period are observed when comparing different values of k* in our Global Interaction 

treatment.  

Changing the interaction rule has little impact on initial conditions. A comparison of both types 

of interaction structures reveals that no significant difference is observed concerning the number of 

players choosing X in the first period; this fact is true for each payoff matrix. Besides, no 

significant differences in the number of players choosing X in the first period are observed when 

comparing different values of k* in our Local Interaction treatment. Let us turn now to the third 

stylised fact : the final outcome of the game is accurately predicted by the location of the initial 

outcome in a particular basin of attraction 

 

For the Global Interaction treatment we observe that in all cases the final state lies in the same 

basin of attraction as the initial state. Let us note nX the state where n players have adopted 

strategy X, n = 0, 1, …, 8, and let DY° be the set of states which belong to the basin of attraction of 
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Y°, and DX° the set of states which belong to the basin of attraction of X°. For k* = 0.54 we have 

DY° = {0X, 1X, 2X, 3X}, DX° = {5X, 6X, 7X, 8X}14, for k* = 0.67 we have DY° = {0X, 1X, 2X, 

3X, 4X, 5X}, DX° = {6X, 7X, 8X} for k* = 0.67 and for k* = 0.80 we have DY° = {0X, 1X, 2X, 

4X, 5X, 6X}, DX° = {7X, 8X}. Separatrix crossing in rarely observed (one occurs in group G80.1, 

two occur in group G80.2 and one occurs in group G80.4). Battalio et al. (1997) noted already that 

such events are rare in experimental data concerning Stag Hunt games under global interaction. 

Thus, stochastic dynamics, as considered for example by KMR (1993), agree poorly with our 

observations. Even if convergence in such dynamics often relies on long periods of time, note that 

for payoff matrix iii the expected waiting time is less than 50 periods as long as the rate of 

mutation is greater or equal to 0.03. 

In our Local Interaction treatment things are less in accordance with deterministic best-reply 

dynamics. Indeed, all states which consist of 7 players choosing X in the first period imply a cycle 

under these dynamics, in which each player switches from the pareto-dominant to the risk-

dominant action and vice-versa. We never observe the emergence of such a cycle. On the contrary, 

in some cases such an initial state implies convergence to state X°, whereas in an other case it 

implies convergence to state Y° depending on the payoff matrix. Nevertheless, the larger the value 

of k* the less players are choosing X in the last period. This result can be explained by the fact that 

a larger value of k* implies a larger number of initial states in favour of Y° and simultaneously 

less observed convergence to X° when 7 subjects already played X in the first period. Besides, 

deterministic best-reply dynamics disagrees with behaviours in groups L54.3 and L67.2. Indeed, in 

both groups the number of subjects who choseY declines between the first and the last period of 

interactions. Such a decline is not predicted under local interaction with two neighbours. Finally, 

concerning the number of players choosing X in the last period, no significant difference is 

observed between both types of interaction structures, for either payoff matrix. Again our 

experimental results under local interaction are in contradiction with stochastic dynamics, as 

                                                           
14 The state {4X} is part of a two-states cycle in which each player switch from the pareto-dominant to the risk-
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considered for example by Ellison (1993). In fact, the expected waiting time is independent of the 

magnitude of k* when each player has only two neighbours and is generally less than 50 periods 

even if we allow for very small mutation rates. Thus, the process should rapidly converge to state 

Y° whatever the payoff matrix and whatever the initial state. 

 

6.3 Convergence 

To study the convergence within the population with respect to the steady states X° and Y°, we 

take the point of view of the stochastic dynamics which determines the most likely equilibrium. 

We therefore take into account a tolerance bound of 1/8: if, for some period, at least 7 players 

adopt the same strategy for all the remaining periods, we assume that convergence has been 

reached.15 We define this period as the convergence period. We also consider a weaker indicator, 

corresponding to the number of periods for which at least 7 subjects chose the same strategy, since 

in many cases at least 7 subjects chose the same strategy before the convergence period. Table 3 

summarizes the results with respect to convergence. For both matching rules, the first column 

identifies the groups, the second column shows the convergence period with its associated 

outcome (X° or Y°), and the last column indicates the number of periods spent by the process 

inside the convergence bound (CB), i.e. at least 7 players adopt the same strategy in each of these 

periods. Although there is no convergence observed for the L80.3 group, for the purpose of 

statistical analysis, we set the convergence period at 51 and the number of periods spent by the 

population within the CB at 0. Appendix B presents the same analysis with a larger tolerance 

bound of 2/8.  

 

 

 

                                                                                                                                                                                              
dominant action and vice-versa. 
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Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB  
Group 

Convergence

Period 

# of periods 

inside CB 

G54.1 5  (X°) 46 L54.1 49 (X°) 28 
G54.2 11 (X°) 43 L54.2 38 (X°) 27 
G54.3 41 (X°) 43 L54.3 29 (X°) 38 
G54.4 15 (X°) 41 L54.4 50 (X°) 35 

 
(a): k* = 0.54. 

 

 

Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB  
Group 

Convergence

Period 

# of periods 

inside CB 

G67.1 1 (X°) 50 L67.1 22 (Y°) 44 
G67.2 8 (X°) 47 L67.2 31 (X°) 41 
G67.3 9 (Y°) 42 L67.3 1 (X°) 50 
G67.4 28 (X°) 43 L67.4 42 (Y°) 31 

 
(b): k* = 0.67.  

 
Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB 
Group 

Convergence

Period 

# of periods 

inside CB 

G80.1 43 (Y°) 16 L80.1 12 (Y°) 40 
G80.2 43 (X°) 43 L80.2 38 (Y°) 33 
G80.3 15 (Y°) 36 L80.3 - - 
G80.4 22 (X°) 48 L80.4 31 (Y°) 33 

 
 (c): k* = 0.80.  

 

Table 3: Convergence analysis (tolerance bound of 1/8). 
 

                                                                                                                                                                                              
15 Although the procedure is somehow arbitrary, it is reasonable to admit that convergence is reached if deviations 
from a given steady state are small (see e.g. D. Friedman (1996)).  
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For each payoff matrix we observe that on average convergence takes more periods under local 

interaction than under global interaction. However, for none of the payoff matrices is this 

difference statistically significant. We observe also that the average number of periods spent by the 

population within the CB is larger under global interaction than under local interaction for each 

payoff matrix. For k* = 0.54, the population spends significantly more periods at equilibrium 

under global interaction than under local interaction (p = 0.014). For k* = 0.67 and k* = 0.80 there 

is no statistically significant difference with respect to the time spent at equilibrium. 

Again, we can remark that stochastic best-reply dynamics contrast sharply with our 

experimental results. Even when these dynamics are in accordance with the observed final state, 

the number of periods spent around this well predicted state (Y°) is not higher under local 

interaction than under global interaction. In the next section we try to give some insights 

concerning this disturbing fact.  

 

6.4 Myopic best reply 

Myopic best response is one of the central hypotheses for the evolutionary learning dynamics 

analysis (see for example KMR (1993) or Ellison (1993)). It assumes that players react to the 

distribution of play in the previous period, capturing the intuitive notion that players react 

myopically to their environment. We studied whether the decisions of the players satisfy the 

myopic best response by measuring the best reply rate (BRR). In order to do that, we counted for 

each player the number of decisions which were equivalent to a myopic best reply and made the 

average over the 50 periods and all the players in the group. Table 4 shows that in all games 

subjects have a significant tendency to take decisions in accordance with the myopic best reply 

prediction with respect to the proportion of the population (Global Interaction treatment) or of 

their neighbourhood (Local Interaction treatment). 
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Global Interaction Local Interaction 

Group BRR Group BRR Group BRR Group BRR Group BRR Group BRR 

G54.1 92% G67.1 100%. G80.1 71% L54.1 72% L67.1 96% L80.1 93% 

G54.2 84% G67.2 92% G80.2 83% L54.2 71% L67.2 71% L80.2 89% 

G54.3 80% G67.3 90% G80.3 84% L54.3 76% L67.3 95% L80.3 56% 

G54.4 79% G67.4 81% G80.4 91% L54.4 76% L67.4 83% L80.4 88% 
 

Table 4: Best reply rates (BRR). 
 
One observes slightly lower rates of best reply under local interaction than under global 

interaction. Indeed, for each payoff matrix, the average rate of BR over all 4 groups is larger under 

global interaction than under local interaction which implies that the average rate of BR over all 12 

groups is larger under global interaction (85.58 %) than under local interaction (80.50 %). 

Nevertheless, the only significant difference is observed for k* = 0.54 where the average rate of 

BR is significantly larger under global interaction (83.75 %) than under local interaction (73.75 %) 

(p = 0.014). From the evolutionary theoretical point of view, all the results discussed in this sub-

section are in accordance with the results observed in 6.2 and 6.3. Indeed, we simultaneously 

observe lower rates of myopic best reply and a lower number of periods spent by the population 

within the CB under local interaction than under global interaction. Both differences are only 

statistically significant for k* = 0.54. In the meantime, whereas best-reply dynamics are in 

accordance with the observed initial and final state in the Global Interaction treatment, they 

contrast sharply with our results in the Local Interaction treatment. 

 

 

7. Concluding remarks 

The purpose of our experiment was to compare the outcome of a simple coordination game, when 

interactions are repeated among players of the whole population (Global Interaction treatment) 

with a context where interactions are restricted to small overlapping neighbourhoods of players 
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(Local Interaction treatment). We compared the outcomes of the two interaction structures for 

different sizes of the basin of attraction of the risk-dominant equilibrium; k* = 0.54, k* = 0.67 and 

k* = 0.80. We summarise our results as follows.  

Firstly, some of the stylised facts observed in earlier studies on global interaction, are reproduced 

in our global interaction treatment and two are preserved for local interaction. More precisely, i) 

non-equilibrium outcomes are rarely observed both under local and under global interaction, ii) the 

first period modal choice is the payoff-dominant strategy both under local and under global 

interaction, iii) under global interaction, the first period play determines strongly the steady-state 

which will be reached, as it generally lies in the same basin of attraction as the initial state. 

Secondly, in the local interaction treatment we observe a clear difference between k* = 0.54 and 

k* = 0.80. Convergence is towards the payoff-dominant steady state for k* = 0.54 and towards the 

risk-dominant steady state only for k* = 0.80 under local interaction. The larger the basin of 

attraction of the risk-dominant equilibrium the more we observe convergence to the risk-dominant 

equilibrium.  

 

Thirdly, there is no evidence in our analysis that convergence is faster under local interaction than 

under global interaction. On the contrary, for k* = 0.54 the population spent significantly more 

periods near the equilibrium under global interaction than under local interaction. The most 

notable difference between both types of interaction structures is with respect to the number of 

subjects playing X in the final state. There is slightly more convergence to the risk-dominant 

solution under local interaction for k* = 0.67 and for k* = 0.80.  

 

 

In accordance with Keser et al. (1998), we find that on average subjects play the myopic best 

response under global interaction. But in contrast to their result (1998), myopic best reply fits 

much less our data under local interaction. A possible reason for that is due to the fact that myopic 



 

 25

best reply takes only into account past periods of play. It is possible that under local interaction, 

behaviors wer more forward oriented, in the sense that subjects could have tried to “persuade” 

their neighbours to play the pareto-dominating strategy by playing themselves that strategy. They 

could have felt that it is easier to persuade two neighbours rather than 7 persons at a time, even 

though their neighbours are not isolated from the rest of the population 

 

Note that in our experimental work we have opposed risk-dominance and Pareto-dominance. 

Nevertheless, (Y, Y) is not only the risk-dominant equilibrium in the three payoff matrices we 

have considered, but it is also the secure equilibrium. Indeed, action Y always has its minimum 

payoff greater than action X’s minimum payoff. Further work could be devoted to analyse 

subjects’ behavior in a controlled environment where two strict Nash equilibria coexist, one which 

is Pareto-dominant and risk-dominant and the second one which is the secure equilibrium. 
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k* = 0.67 

Global Interaction 

Local Interaction 
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k* = 0.80 
 
 

Global Interaction 

Local Interaction 
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APPENDIX B 
 
 

Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB  
Group 

Convergence

Period 

# of periods 

inside CB 

G54.1 1 50 L54.1 37 42 
G54.2 3 49 L54.2 36 39 
G54.3 18 49 L54.3 25 45 
G54.4 7 48 L54.4 45 48 

 
(a): k* = 0.54.  

 
 

Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB  
Group 

Convergence

Period 

# of periods 

inside CB 

G67.1 1 50 L67.1 3 48 
G67.2 1 50 L67.2 19 48 
G67.3 7 44 L67.3 1 50 
G67.4 1 50 L67.4 31 45 

 
(b): k* = 0.67. 

 
 

Global Interaction Local Interaction 

Group 
Convergence 

Period 

# of periods 

inside CB 
Group 

Convergence

Period 

# of periods 

inside CB 

G80.1 42 25 L80.1 6 48 
G80.2 23 47 L80.2 36 43 
G80.3 14 40 L80.3 - - 
G80.4 1 50 L80.4 18 44 

 
(c): k* = 0.80. 

 
 

Table 5: Convergence analysis (tolerance bound of 2/8). 
 

 


