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Abstract

This article aims to test the relevance of learning through Genetic Algorithms, in opposition with
fixed R&D rules, in a simplified version of the evolutionary industry model of Nelson and Winter.
These two R&D strategies are compared from the points of view of industry performance (welfare)
and firms’ relative performance (competitive edge): the results of simulations clearly show that
learning is a source of technological and social efficiency as well as a mean for market domination.
Keywords: Innovation, Industry dynamics, Bounded rationality, Learning, Genetic algorithms



1 Introduction

Research and development (R&D) decisions are characterized by a strong uncertainty concerning the
return on investment. This uncertainty is stronger for R&D investment than for other types of invest-
ment. Indeed innovations often result from what Simon [1958] calls “nonprogrammed decisions”,
that is situations where the alternatives of choices must be discovered by firms and the connections
between choices and consequences are imperfectly known. It is the reason why R&D decisions are
generally associated with the uncertainty in the sense of Knight [1921]. This uncertainty strongly
limits the ability of firms to form expectations about the return on their R&D investment. In this
context, firms must be able to improve, through experience, their perception of the relationships
between R&D investment and competitiveness and to adapt accordingly their R&D decisions (see
Oltra & Yildizoglu [1998]). Modelling R&D decisions must consequently rely on decision rules
more sophisticated than the fixed rules that have been traditionally adopted in models of technology
dynamics under bounded rationality assumption (see, for example, the models in Nelson & Winter
[1982]).

As a matter of fact, fixed rules are not a necessary characteristic of decisions under bounded
rationality: the main characteristic is procedural rationality (Simon [1976]). Hence, bounded ra-
tionality does not preclude the tendency of agents to adjust their decisions to the evolution of their
(technological and competitive) environment. Even if they do not search for the globally best solu-
tions, agents learn from their experience and this learning allows them tofine-tunetheir decisions.
Consequently, one must search for a better way of modelling decisions in order to take into account
this individual learning.

Of course, one could choose to implement a simple process of trial and error but such a process
would contain a strong ad hoc element in the way it models the sequence of trials. Firms do definitely
not proceed by purely random trials. When learning is individual1, new strategies are necessarily
based on the past experience: firms combine known decision rules in order to reach better ones. Ge-
netic Algorithms (GA), implement such a learning process through evolutionary mechanisms: from
a population of actual decision rules, the selection keeps the best ones, the crossover combines these
in order to obtain better rules and the mutation introduces some small amount of random experiment-
ing. Moreover, they have the capacity to robustly handle quite complex environments (see Goldberg
[1991] for several examples) and, in this sense, can well correspond to the conditions of R&D deci-
sions. One should not conceive GA as a way to represent the exact decision mechanism of firms but
as a way to represent the presence of learning and of experience-oriented search processes. The GAs
also have the capacity to provide a unified modeling strategy in the vast diversity of mechanisms
adopted in models of bounded rationality (one could nearly establish a one-to-one correspondence
in the literature between models and modelling strategies). Since they take into account learning,
they constitute a good rival of fixed rules that seem to actually constitute the only unifying approach.

This article aims to test the relevance of GA, in opposition with fixed R&D rules, in a simplified
version of the evolutionary industry model of Nelson and Winter. The original model is simplified
in order to focus on R&D process as the main determinant of industry dynamics. Firms arbitrate
at each period between R&D and physical capital when allocating their gross profits to different
investment projects. The industry is composed of two types of firms: theNWFirms that use a fixed
decision rule andGenFirms that adjust their R&D investment through a GA. Competition selects, in
the long term, the firms that outperforms their competitors: firms can only finance their investments
by the profits and they must leave the industry when their physical capital vanishes.

1Silverberg & Verspagen [1996] as well as Kwasnicki & Kwasnicka [1992] formalize learning as local individual ran-
dom experiments combined with industry wide imitation. This learning process has both an individual and a population
level components. Our objective is to model learning as a fully individual process.
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The relevance of explicit inclusion of learning through GA is tested at two levels. First, at the
industry level, these modelling strategies are confronted comparing the performances of four cases
composed from 0% to 100% of GenFirms. The results of simulations show that the presence of
learning firms leads to higher technological performance as well as to higher welfare. In the second
place, from the point of view of individual firms, the properties of heterogenous industries are studied
in order to assess the competitive role of learning. In fact, learning allows for the discovery of better
R&D strategies but it is also costly: firms must test new strategies that quite often happen to be worst
than the actual ones. Only the comparison of performances of both types of firms in the long term can
establish the utility of learning strategies. Our results show that GenFirms dominate systematically
the industry and this domination flows from their learning. These results are obtained through the
simulation methodology already developed in Jonard & Yildizoglu [1998]. This procedure uses the
comparison, with non-parametric statistical methods, of the results of batches of simulations instead
of the comparison of individual simulations.

Java and Win32 binary versions of this program can be found on the web2. This site also contains
full documentation in Sun’s API format.

The remainder of this article is organized as follows. In section two we present the character-
istics of the model. The connection between the genetic algorithm and the learning process also
is discussed it this section. Section three is dedicated to the presentation of our methodology and
results. Section four concludes.

2 The model

I only emphasize new elements in the model. The intersection with the well known Nelson & Winter
[1982] (part V, ch.12) model will first be outlined. A second section will present new dimensions
included in this model: capital and R&D investments.

2.1 Characteristics common with Nelson and Winter(1982)

At the beginning of each period, the firmj is characterized by the productivityAj of it’s technology
and it’s capital stock,Kj . Capital is the only production factor, and the production technology is
characterized by fixed input coefficient and constant scale economies. Unit using cost of capital,c,
is constant over different production techniques (the unit cost of production isc/Aj ). The capital
stock depreciates at a rateδ at each period.

Production technics are disembodied. There is no switching cost and the capital can be converted
without cost from one technology to another (for a more realistic model with vintage capital, see
Silverberg, Dosi & Orsenigo [1988]). This corresponds to a vision of technology based on process
innovation. In fact, the innovating firm does not replace its capital stock, but uses it more efficiently.
An innovation therefore corresponds to better knowledge of the production process.

2.1.1 Production and profits

Each firm in the industry (j ∈ I = {1...N}) produces the same homogenous good with the following
production function:

Qj = Aj ·Kj . (1)

2http://cournot.u-strasbg.fr/yildi/learnind/index.html.
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The gross profit rate on capital of the firm is given by:

π j = pA−c (2)

wherep is the market price and is determined by a short term equilibrium on the product market:




Q = ∑
j
Qj

p = p(Q) =
D

Q1/η

(3)

whereQ is the total supply,p(Q) is a constant elasticity inverse market demand function, andη
is the Marshalian demand elasticity. Gross profits of the firm are given by

Π j = π j ·Kj (4)

The state of each firm will change from one period to another in consequence of the R&D deci-
sions, which modify its technology and hence its productivity, and the investment behavior, which
modifies its capital stock.

2.1.2 R&D and technical progress

The productivities are modified in each period consequently to the technical progress. In each period
firms investRDjt on R&D. This investment allows them to imitate their successful competitors and
to innovate. Both imitation and innovation are two-stage stochastic processes.
Innovation

Innovation is a two-stage stochastic process. A first draw determines if the R&D investment of
the firm has been successful and resulted in an innovation:

P[dint = 1] = an ·RDjt ,

wherean is a calibration parameter that projectsRD on [0,1]. A second draw gives the effective
result of the innovation

Ãjt ; N
(
Ajt ,σ2

2

)
.

Hence innovation is a cumulative process and firms with higher productivities have better chance
to attain even higher productivities.
Imitation

For the imitation, we have one stochastic draw which determines if the firm’s R&D investment
has been successful. If it is the case, the firm obtains the best practice in the industry(A∗

t ):

P[dimt = 1] = am ·RDjt

Âjt = Ajt +dimt ·
(
A∗

t −Ajt
)
.

New productivity of the firm
Finally, the effective productivity of the firm for the next period is given by the best of these three

outcomes:

Aj ,t+1 = max
{

Ajt , Ãjt , Âjt
}

(5)
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2.2 Capital investment and R&D decisions

Main differences between this model and Nelson & Winter (1982) consist in the investment be-
haviour: investment in physical capital and investment in R&D. A possibility of exit from the indus-
try is also included in the model. In each period firms invest a fraction of their gross profit on R&D.
The rest of this profit is used for the expansion of physical capital.

2.2.1 R&D decisions and genetic algorithms

Firms invest a fractionrd jt of their gross profits on R&D. A minimal investment is necessary to keep
alive the R&D potential (research equipment and team). We therefore haverd jt ≥ rdmin.

There are two types of firms: NWFirms and GenFirms. They are distinguished by their R&D
investment behaviour.

NWFirms invest in each period a fixed proportionrdNW of their profit in R&D (in addition to the
minimal amount of R&D):

RDNW jt = (rdmin+ rdNW) ·Π jt (6)

This rule corresponds to the representation of bounded rationality by “fixed rules”. Learning of
firms about their environment does not influence their R&D behaviour. This is the common approach
retained in many evolutionary industry models. Learning is taken into account in the behaviour of
GenFirms.

EachGenFirm uses an individual genetic algorithm (GA) in order to adjust the R&D strategy (the
fractionrd jt ≥ rdmin) to the conditions of the industry. Each possible strategy of the firm is coded as
a chromosomeCi of lengthG. During its life, the firm carries a population ofC strategies (number
of chromosomes). This population of parallel rules evolves as a consequence of the experience of
the firm in the industry.

The experience of the firm can only influence these rules if it provides an evaluation mechanism
for different rules. In an industrial context, the only way of evaluating a rule is using it: the value of a
rule depends on the dynamics of the industry and hence, on the behaviour of other firms. Moreover,
R&D investment does not pay back immediately and each R&D strategy must be used for many
periods before proving its efficiency. Consequently, in order to evaluate each rule, the firm uses
it for a number of periods (n =learning period) and the average gross profit rate of this time
interval gives the fitness of this strategy. When all strategies of the population are evaluated, a new
population is generated through selection–crossover–mutation. We use an elitist GA that conserves
the best strategy of the preceding period in the population.

We adopt an indirect coding of R&D strategies: the fraction of profits dedicated to R&D (strat-
egy) is coded as a chromosomeCi of lengthG. The decimal value of the chromosome corresponds
to the position of this strategy in the search space[0%,100%] . This space contains∆ = ∑i=G−1

i=0 1·2i

equally spaced strictly positive strategies, and zero. The R&D rate corresponding to a chromosome
Ci is finally computed using the following rule

rd j = (Ci)10 ·
1
∆

+ rdmin. (7)

Example: If G= 4, there are(1111)10 = 1·23+1·22+1·21+1·20 = 15= ∆ strictly positive strate-
gies equally spaced between 0% and 100%. If a strategy of the firm isCi = 0011, this chromosome
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corresponds to the following R&D investment rate:

Ci = (0011)10 = 3⇒ rd j = 3 · 1
15

+ rdmin = 20%+ rdmin.

Finally, the R&D investment of the firm is given by

RDjt =
(
rdmin+ rd jt

) ·Π jt

Even if the GA does not represent the exact learning mechanism of firms, it is a convenient way
of representing the presence of this learning at the individual level. Our representation of the learning
process is significantly different from the one considered by Brenner [1998] in his comparison of
evolutionary algorithms with learning algorithms. Many limits to which Brenner [1998] draws our
attention concerns the use of the evolutionary algorithms at the population level. Quite differently,
we use the GA to represent learning of rules at the individual level: each firm carries an individual
population evolving of decision rules. Our formulation gives a clear microeconomic foundation to
learning in accordance with the modelling of the industry dynamics. The importance of this point is
clearly established by Vriend [1998]. This formulation also excludes many ambiguities that appear
when one models learning of rules at the industry level: the definition of fitness at the industry level,
the connection between selection and performance of individual firms are the most disturbing of
them.

Consequently, the selection–crossover–mutation mechanisms respectively correspond, at the
firm level, to the elimination of bad rules, to the combination of the selcted rules in order to dis-
cover better new rules, and to few random experiments. Elitism assures that memory is taken into
account andgoodold rules are not eliminated if better new rules are not found. Also, the chromo-
some length,G, has a signification in terms of the learning process of firms: the higherG, the finer
the search process of the firm. A firm that uses a higherG is more demanding for its learning process:
it desires to get closer to the best strategies in the search space. But learning will be costlier for such
a firm because it will have to try many rules before getting closer to the best ones. Consequently,
the boundaries of the search space do not depend onG (firms always explore[0%,100%]) but the
refinement of the process does. Our coding mechanism hence combines the best of two worlds:
the speed of binary coding and the flexibility ofgraycode. A higher number of chromosomes(C)
corresponds to a more flexible learning process that will conserve more rules in the rule population
of the firm, but this flexibility will also have a cost: the higher the number of rules in the population,
the higher the total learning period for each particular population of rules. Consequently, a nice
correspondence exists between the characteristics of the GA and the learning processes of firms.

2.2.2 Investment in physical capital

Capital investment results directly from the arbitrage of firms between the R&D investment and
capital expansion. Learning firms adapt the sharing of gross profits between R&D and physical
capital:

Kjt+1 = (1−δ) ·Kjt +
(
1− rd jt

) ·Π jt .
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2.2.3 Exit

If the profits of the firm get persistently low, it can loose all possibility of investment and innovation.
In this case, current profits do not permit any investments. The capital stock of the firm vanishes
because of the depreciation. When the capital stock gets very small, the firm looses all possibility of
innovation and growth. It consequently exits the industry when

Kjt ≤ K.

3 Simulation methodology and results

I use the simulation protocol developed in Jonard & Yildizoglu [1998]. This protocol is explained
in a first paragraph. Relative performance of GenFirms is measured through different indicators that
have been developed for this article. Simulation results are used to assess the role of learning at two
different levels. First, the role of learning on the aggregate performance of the industry is explored.
Second, the relative performance of learning firms – i.e. their competitive edge – is evaluated.

3.1 Protocol

Since we aim to derive results independent from a particular sequence of random numbers, a batch
of 20 simulations, of 6000 periods each, is run for each configuration of the model. Observations
have been saved every 40 periods. The whole possible history of the industry is hence represented
by a sample of 3000 observations. The relevant dimensions (e.g. technical progress, concentration)
of resulting samples are compared by way of non-parametric testing (the non-parametric Wilcoxon–
Mann–Whitney test, see for instance ch.18 in Watson, Billingsley, Croft & Huntsberger [1993]). For
convenience, results are presented asbox plots where the box gives the central 50% of the sample
centered around the median: the box hence gives the first, second and third quartiles(Q1,Q2,Q3)
of the distribution. The whiskers give the significant minimum and the significant maximum of
the distribution. Each box contains the whole history of the industry for all simulations for each
corresponding configuration.

This protocol allows the qualitative comparison of different industry configurations. Different
indicators are used for these comparisons.

3.2 Indicators

Quite standard indicators are used for the comparison of performance of industries:

• welfare indicators: market price, average gross profits and concentration of capital;

• technical efficiency indicators: average productivity and maximal productivity.

Only the concentration of capital needs some explanation:

K =
∑
j
K2

j(
∑
j
Kj

)2 , (8)
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whereKj is the capital stock of firmj. This indicator gives an equivalent number of firms as if
each of them had the same part of capital stock. We have 1≤ K ≤ N whereN is the number of
active firms in the industry. The higher is this indicator, the more evenly balanced is the distribution
of capital stock between firms. This is an application of the Herfindall index to the capital stocks
and summarizes the inequalities in the distribution of the capital stock.

Some simple new indicators are necessary in order to compare relative performance of GenFirms:

• the share of capital owned by GenFirms;

• the share of GenFirms in cumulated profits;

• market share of GenFirms;

• R&D investment share of GenFirms.

Since the shares of NWFirms are complementary and give a total of 100%, only the shares of
GenFirms are used for comparison.

3.3 Comparison of industry performance

Three different points of view can be adopted for the evaluation of the impact of learning on indus-
trial efficiency: technological performance, firms’ profit and consumers’ welfare. We do not have
a direct indicator for consumers’ welfare, but the market price is of course inversely related to con-
sumers’ surplus. The effect on firms’ surplus can be appreciated by comparing the distribution of
average cumulative profits in each industry configuration. Technological performance is evaluated
through average and maximal productivity. The latter shows how far a particular industry can go in
the technology space and the former resumes general technological level of industry.

The presence of learning firms should normally increase technological efficiency because these
firms are able to exploit the increasing relationship that exists between R&D investment and innova-
tion. But there is a specific cost for learning: in order to learn, firms must spend time to try different
strategies, including the inferior ones. Learning can consequently be a source of delay in the discov-
ery of better technologies. The overall effect can only assessed through the comparison of different
industries.

Maximal productivity

(a)

0

100

200
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400

500

nwgen0 nwgen1 nwgen2 nwgen3 nwgen4

Average productivity

(b)

0

100

200

300

400

500

nwgen0 nwgen1 nwgen2 nwgen3 nwgen4

Figure 1: Learning and technology dynamics

We compare four industry configurations:
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nwgen0: 100% of NWFirms;

nwgen1: 75% of NWFirms, 25% of GenFirms;

nwgen2: 50% of each type;

nwgen3: 75% of GenFirms;

nwgen4: 100% of GenFirms.

All configurations have a total population of 40 firms and all GenFirms are the simplest kind,
they haveC = 8 chromosomes ofG = 7 genes. NWFirms invest(rdmin+7%) in R&D. rdmin = 3%.
Other parameters are common to all simulations and they are given in appendix.

Average profits
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Figure 2: Learning and market structure

The results on technological efficiency are represented in Figure 1. Graphic (a) clearly shows
that learning firms contribute very significantly to the technological advancement of the industry.
Their impact is important even if they form a minority (even 25%). Moreover, the difference with
the distribution of average productivity (Graphic (b)) is very small and consequently the diffusion
is very quick in these industries. Higher technological efficiency is due to the presence of learning.
This is summarized in the following proposition.

Proposition 1 Presence of learning firms is a source of technological efficiency at the industry level.

One could, wrongly, be tempted to explain this positive effect by the lowrd ratio of NWFirms,
but we have very similar distributions even whenrdNW = 27% (see Figure 4).

Quite interestingly, this efficiency is even costless for society. The presence of learning firms
increases the concentration of capital (equivalent number of firms decreases in Figure 2–(b)) but
this higher concentration does not increase the market price (Figure 2–(c)). Hence the effect on
consumers’ welfare is not negative (Figure 2–(c)). Moreover, higher investments in R&D do not
even penalize the gross profits of the firms (Figure 2–(a)): learning is even a source of supplementary
profits for the industry and the global effect of learning on society is clearly positive.
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Proposition 2 Presence of learning firms implies

1. higher concentration;

2. higher gross profits;

3. lower market price;

4. higher social welfare.

These consequences clearly result from the evolution of the arbitrage of GenFirms between R&D
investment and capital investment. This proposition also implies that if we neglect learning, we can
overestimate the welfare loss generally associated to greater concentration: evennwgen1(25% of
learning firms) clearly improves the social welfare in comparison withnwgen0(100% of NWFirms).
Learning firms deliberately modify both components of their production: cost and capital stock. The
presence of learning firms is hence a source of dynamic social efficiency at the industry level and the
efficiency at the technological level is the real source of this positive effect on social welfare.
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Figure 3: Relative performance of GenFirms

3.4 Competing R&D strategies

Relative performance of GenFirms can be measured by their share in aggregate magnitudes of the in-
dustry. It is indeed important to show that learning firms are effectively benefiting from this learning.
We use hybrid industries (nwgen1, nwgen2andnwgen3) for this comparison.

The Figure 3 clearly shows that when GenFirms compose more than 50% of the initial popula-
tion, they dominate the whole history of the industry (Figures 3–(a)-(c)). This domination comes
from a higher investment on R&D than the NWFirms (Figure 3–(d)).

Proposition 3 When they do not form atoosmall minority, learning firms dominate the market and
gain shares comparatively to their initial positions.
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Figure 4:rdNW = 27%+3%

The costly and random nature of learning plays against learning firms when they are too few in
the industry and theirmistakeseventually push them out of the industry. When they are numerous,
some of them succeed and they end up dominating the industry. One could think that the low R&D
rate of NWFirms is responsible of this result. The following figure shows that even with higher fixed
R&D rate, NWFirms cannot dominate the industry.

Proposition 4 Even if the R&D rate of NWFirms is high, GenFirms dominate the R&D activity of
the industry.

The Figures 4–(a) and (c) show that even when facing NWFirms with higher R&D rate, Gen-
Firms dominate the industry. In fact, higher R&D rate imposes a stringent constraint on capital in-
vestment of NWfirms while GenFirms are continuously arbitrating between these two investments.
Their relative performance is even higher in this case. Figures 4–(b) and (d) again indicate the
positive impact of learning firms on the performances of industry.

In order to check the reality of learning, we need to abandon our methodology and consider an
individual simulation (the last of the 20 simulations). The Figure 5 gives central indicators of the
distribution of R&D rate of the GenFirms innwgen2. We represent in this figure(µ−σ,µ,µ+σ)
whereµ is the average andσ is the standard deviation. This Figure clearly shows that GenFirms are
not simply randomizing and the dispersion is decreasing in time.

Proposition 5 GenFirms learn.

4 Conclusion

This article is a first attempt to explicitly compare different behaviour rules for R&D investment.
Ballot & Taymaz [1999] have already done such a comparison but the complexity of the underlying
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Figure 5: Convergence ofrd jt in nwgen4

model (MOSES model of Swedish industry) considerably conceals the exact role of different deci-
sion rules in industry and firms performance. I deliberately adopt a very simple model in order to
completely focus on the effects of R&D rules.

Two general results dominate the simulations. In the first place, results at the industry level
clearly show that we should not ignore learning in models of industry. Otherwise, this can result in a
severe underestimation of the performance of industries at the technological level and, at the level of
social welfare: industries with learning firms exhibit higher technological and social efficiency. The
imperfect competition generally associated to the innovation process is not necessarily the cause of
a significant loss of welfare, even in the short term. In the second place, learning gives a competitive
edge to firms benefitting from it: learning firms dominate the industry. Both results are directly
engendered by the continuous arbitrage of learning firms between R&D and capital investments.

On a methodological level, one of the shortcomings of Genetic Algorithms in industrial context
with endogenous payoff structure is the necessity of effectively using each rule in order to discover
its fitness. Learning is consequently slow (a different but similar problem also applies to classifier
systems): firm’s learning is directly on the strategy space. A more ambitious assumption about
learning would consider firms that aim to discover as much of information as possible on the payoff
structure; to haveexpectationson the relationship between R&D and profit. Such a learning would
be based on inductive reasoning (Holland, Holyoak & Thagard [1989]). Oltra & Yildizoglu [1998]
propose to model these expectations using an artificial neural network (ANN). A more complete
learning model should then proceed in cascade: a GA searching the strategy space and an ANN
providing expected fitness values for strategies. Learning would in this case include a better under-
standing of the environment of the firm (through the adjustment of the ANN) and the discovery of
better strategies (through the workings of the GA) given this understanding.
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Appendix: parameter values

din is fixed in order to have a initial innovation probability of 5%. dim = din/10.

Parameter Value

Number of NWFirms: NNW variable
Number of GenFirms:NGen variable
Output frequency 40
Number of simulations 20
Number of periods: T 3000
Using cost of capital: c 0.1
Initial productivity: A0 0.16
Initial capital: K0 50
Demand elasticity: η 0.5
Autonomous demand:D 100
Depreciation rate: δ 5%
Threshold capital:K 10−5

R&D rate of NWFirms: rdNW 7%
Minimal R&D rate: rdmin 3%
Dispersion of Innovations: σ 0.05
Number of chromosomes:C 8
Number of genes: G 7
Xover points 1
Learning rate:n 5
P[Xover] 0.7
P[Mutate] 0.03


