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1. Introduction

Economists have been reluctant to embrace historical explanations of
differences in growth rates. In part, this is because such explanations tend to
be divorced from any analysis of underlying economic factors. In this paper we
show that within the framework of an endogenous 'growth model the historical
pattern of one particular type of government intervention - tax policy -
determines the level and growth rate of output.

The recent literature on endogenous growth has tried to reconcile
indefinite increases in incomes per head with diminishing returns to factors of
production, without resort to exogenous technical progress that falls like manna
from heaven. The new models generate growth endogenously by assuming
positive externalities from private investment in physical or human capital to
production possibilities as a whole (Romer 1986, 1988, Lucas 1988). The
existence of a side-effect of private embodied investment on public disembodied
knowledge leads to aggregate increasing returns to scale and hence the
possibility of growth. We follow the Kaldor-Arrow-Romer tradition of
modelling a link from investment to productivity growth, but we argue that it
is important to put some structure on the size of the externalities that are
created. In particular, we argue that there are diminishing returns in the
production of the externality. This assumption yields a nonlinear "technical
progress function" that results in multiple steady-state growth rates and a rich

dynamic structure that determines both growth and cycles. Previous papers
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have worked either with a linear technology for the production of knowledge
(Uzawa 1965, Lucas 1988, King and Rebelo 1988) or at a level of generality
that precludes a systematic analysis of the effects of policy variables on growth
(Romer, 1986).

Our aim is to show that economies with identical economic structures can
display large dispersion of growth rates. Variations in growth rates result from
differing realisations of government policies, even though the underlying process
generating policy is the same in each country. Either deterministic or stochastic
variations in the tax rate on capital income will generate both cyclical
fluctuations around a trend growth rate and changes in the trend growth rate
itself. The tax rate process is not modelled as the result of an optimisation by
a benevolent government. Instead it is regarded as an exogenous stochastic
process. But policy does affect both the level and growth rate of output,
whereas as Romer (1989, p.51) has pointed out, "in models with exogenous
technological change .... it never really mattered what the government did". We
use an empirically estimated stochastic process for tax rates in the results
reported below.

Many other types of shock could be modelled and would lead to similar
results for the behaviour of the growth rate. We provide an example below in
terms of stochastic depreciation.

These ideas are illustrated by extending the simplest possible neoclassical
growth model to include stochastic shocks and endogenous growth in the form
of a "technical progress function" that builds on the work of Kaldor (1957) and
Arrow (1962). Growth and cycles are then shown to interact because the
strength of the propagation mechanism depends upon agents’ adjustments to
shocks. Moreover, the model generates multiple steady-state growth paths and
the realisation of the stochastic shocks determines towards which growth rate
the economy tends. Two types of stochastic shocks are analysed. First, "fiscal
policy shocks" to the tax wedge between the return on physical investment and
the return on saving are assumed to follow an integrated stochastic process.
Formally, the tax rate on comprehensive income is modelled as a Markov
process. Secondly, the rate of economic depreciation is assumed to follow a
stationary white noise process. The propagation mechanism derives from the
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assumption of a technical progress function which relates the rate of technical
progress to the investment rate - defined as the ratio of net investment to gross
domestic product. This represents the effect of “learning by watching" - the
demonstration effect of new ideas on the efficiency of the existing capital stock.
Learning by watching is assumed to take the form of a pure Marshallian
externality so that a firm does not take into account the beneficial effect of its
investment on productivity in the economy. A competitive equilibrium is,
therefore, feasible, ‘

We solve for the optimal policy response function of the representative
agent and hence the implied stochastic path for output and the growth rate. We
construct the nonlinear stochastic difference equation that describes the
evolution of capital and output over time. Closed-form solutions are not
available and we use numerical methods to compute the asymptotic distributions
of the growth rate of output and other variables.

A distinctive feature of the model is the existence of multiple equilibria
which result from the nonlinearities - in contrast to the linear approximations
studied in the real business cycle literature - so that history matters, in two
ways. First, the level of technical knowledge depends upon the past path of
output. Second, the equilibrium growth rate itself also depends upon historical
realisations of the underlying stochastic processes. Hence two economies with
identical "deep" parameters and initial capital stocks can not only experience
different time paths for output but may also cycle around different "natural”
growth rates. The stochastic path for output is such that it is impossible to
decompose the variance into two parts that may be attributed to stochastic
shocks to the trend growth rate, on the one hand, and transitory fluctuations on
the other. An economy can experience "premature maturity", in the sense that
if it starts with too high a level of capital the competitive equilibrium may lead
it to cycle around a zero growth rate path.

In two respects the results of this paper have a Kaldorian flavour. First,
we assume a technical progress function in which investment drives technical
progress. Kaldor introduced this idea in his 1957 paper and it was taken up by
Arrow in his work on learning by doing (Arrow (1962)).! But the Kaldorian
technical progress function relates the rate of growth of output per head to the
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rate of growth of investment per head, and so the only steady-state growth path
that is feasible is given by the intersection of an exogenously given curve with
the 45° line (Kaldor (1957), Kaldor and Mirrlees (1962)). In contrast, in our
model the equilibrium growth rate is endogenous. Second, Kaldor (1966)
argued that "premature maturity" was responsible for the "low" (compared with
other OECD countries) growth rates observed in the UK. He attributed this
to the fact that, having industrialised early, the UK could no longer benefit from
the transfer of unproductive labour from agriculture to more productive
manufacturing. No formal model was presented and it is difficult to reconcile
his idea with the observation that countries with initially lower levels of
productivity not only grow more rapidly but can also overtake levels of output
per head in "mature” economies. In the model presented here a different
explanation of the phenomenon is given by the existence of multiple steady-
state growth rates.’

The technical progress function is motivated in section 2, and the full
growth model is described in section 3. Steady-state growth paths are analysed
in section 4 and the complete dynamic solution with stochastic tax rates
provided in section 5. Section 6 analyses stochastic depreciation, and our
conclusions are presented in section 7.

2. A Technical Progress Function

The idea used in this paper is that much technical progress takes the
form of "learning by watching". There is a demonstration or contagion effect
from observations of new ideas embodied in new investment projects to the
level of output that can be produced from the existing stocks of capital and
labour. Cohen and Levinthal (1989) cite a number of studies which show that
many innovations in one firm or industry originated in developments from other

firms and industries.

New investment projects in one sector of the economy
have a demonstration effect on the efficiency of other sectors.
Once an idea is embodied in an investment project the spill-over effect

occurs up-front. Even though the project continues to operate there is no
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subsequent additional demonstration effect. ~This means that it is the
investment that creates the spill-over, not the capital stock, and leads to the
concept of the technical progress function. At low investment rates the
probability of contact with a new idea is low. It increases with the fraction of
investment in economic activity, but the demonstration effect declines as the
investment rate increases beyond a certain point - either because of a saturation
effect similar to the contagion models of consumer durables or because there
is a limit on the rate at which new ideas can be absorbed. Negative investment,
however, does not lead to technical regress. We assume that at all non-positive
levels of net investment the demonstration effect is zero. The model does not -
unlike many real business cycle models - require negative technology shocks to
generate cycles. For simplicity we ignore exogenous technical progress
altogether, although it is trivial to extend the model to include this. Our
assumptions mean that a stationary state is feasible in which zero net investment
is accompanied by a zero rate of technical progress.*

The level of output of the representative firm is given by a conventional
production function which exhibits constant returns to scale in capital and

labour. Output per head, y,, as a function of capital per head, k,, is given by

y, = f(A, k) (1)

Lower case variables refer to values at the level of the individual, upper
case variables to aggregate values. The level of technical knowledge evolves

over time according to

$(Xp)
A =Ace ! (2)

where we define the aggregate net investment rate, X,, to be gross invest-
ment, I, less the nonstochastic rate of depreciation & resulting from normal

wear and tear, as a proportion of total gross domestic product

X, =gt (3)
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From our discussion above the technical progress function ¢ has the
following properties

HX) =0 for X <0
§(X) 20 v X 4)
d'x) 20 0<X 2X

A functional form that meets these conditions is the truncated logistic
function defined by’

ﬁe“xw- n
X) = for X 2 0, b =In(n/h
¢( ) euxﬂ) +1 (./)
&)
=0 for X <0

The restriction on the value of b ensures that the curve passes through
the origin. Figure 1 shows the general shape of the technical progress function.

3. A Stochastic Growth Model

In this section we introduce the technical progress function into a one
sector neoclassical growth model with time-varying tax rates. Investment and
saving behaviour are assumed to be determined by the optimal consumption
programme of an infinitely-lived "representative" individual. This is clearly a
strong assumption but it enables us to compare the time path for output implied
by the competitive equilibrium of an economy that permits multiple steady-state
growth paths with the predictions of conventional real business cycle models.
The "representative” individual is an owner-manager who maximises expected
utility subject to the production constraints, assuming that he or she cannot
influence the overall level of technical knowledge next period. The impact of
investment on the dissemination of knowledge is a pure externality. For
simplicity labour supply is fixed and the size of the population is normalised to
unity. Preferences are assumed to be described by an additively separable



7

isoelastic function of consumption per head. - For individual i utility in period

t is®

1-q

U:=E,Zﬂ‘c‘1+,, 120 (6)
=0

-In order that steady-state growth paths are possible equilibria of the
model we shall assume that technical progress is Harrod-neutral. For simplicity
we assume also that the production opportunities of the representative
individual are described by a Cobb-Douglas production function in which the
elasticity of output with respect to capital is denoted by a. Technical progress
is, therefore, both Hicks-and Harrod-neutral. Hence

y, =A k (7N

The capital stock owned by the agent evolves according to the non-

stochastic difference equation

k1 = k(1-6) + Yoo G- (k) + 4 (8)

where r(.) denotes the tax function describing the payment as a function
of the capital stock and / is a lump-sum subsidy. We analyse a proportional tax

on comprehensive income which implies

(k) =7 (y, - 8k) (9)

All tax revenues are assumed to be returned to agents as a lump-sum
subsidy, and so I,=r(k,). Similar results to those presented below follow from
the assumption that revenues are spent on government consumption. The
exogenous driving force of the model will be time-varying tax rates. The tax
rate r, is assumed to follow a Markov process described by’

Prob{r,,, s7 | 1, <1} =F(r, 1) (10)
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A deterministic cycle in tax rates can be thought of as a special case of
the stochastic process (10) with a degenerate Markov transition matrix. The
owner-manager faces an infinite horizon stochastic programming problem that
involves maximising (6) subject to (i) equations (7) and (8), (ii) the distribution
of the stochastic shocks described by equations (9) and (10), and (iii) an
assumption about the time path of A, which is exogenous to the owner-
manager. The assumption of rational expectations implies that technical
knowledge is assumed to evolve according to (2) and (3) and the latter equation
satisifies the condition that k = K, where K is the aggregate level of capital per
head.

There is one state variable, k,, and one control variable, ¢.. The
necessary conditions for an optimum of this programme are the following Euler
equation and transversality condition:

¢ 7 =8 E‘{cul"7exp(r”1) ] (11)

where the (stochastic) post-tax return to capital in period t+1, denoted
by r,,,, is given by

l-a o1

exp(ryyg) =1 + (1-Ty) (aAHlku»l - ) (12)
Note that the partial derivative of output with respect to capital is taken

holding A constant. The transversality condition is

. +
lim E B u/ (e pky =0 (13)

These conditions are also sufficient given that (i) the utility and
production functions are concave and satisfy the Inada derivative conditions, and
(ii) the stochastic process for r, is stationary and bounded.® Under these
conditions there exists a unique continuous optimal policy response function
(Brock and Mirman 1972, Lucas and Prescott 1971, Danthine and Donaldson
1981 (appendix 1)).
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To study this problem it is helpful to transform the variables measuring
output, capital and consumption into levels per efficiency unit of labour in order
to arrive at a stationary system.” Define the transformed variables by

z = — z =yke (14)

y =k (15)

k et = k:(l-S) + y: _— (16)

where the government budget constraint has been used to obtain (16).
The Euler equation becomes

exp(WX) e, =B E{c. Texp(r) (17)

s a1
exp(r,y) =1 + (17 (ok - - 9 (18)

The solution to the infinite horizon optimisation problem for the
representative agent is described by a time-invariant policy rule that maps the
relevant state variables in period t - the transformed value of his capital stock,
the tax rate, and the aggregate investment rate - into the agent’s investment rate

(and hence into the level of the transformed capital stock in period t+1).

X, = x(kt, T ,x‘) (19)

In general, as we discuss in section 5, numerical methods must be used
to solve for the optimal policy response function. These involve finding a fixed
point in the space of continuous functions of the mapping defined implicitly by

the Euler equation.
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The value of the optimal investment rate chosen by the representative
agent must be consistent with the aggregate level of the investment rate that is

assumed when individual decisions are made. Hence in equilibrium

X, =X, (20)

With endogenous growth the competitive equilibrium investment rate is
the fixed point of the mapping given by (19) and (20), and may be written as'°

x, = 'x,(k:, ) (21)

Equivalently, in state-space the equilibrium transformed value of the
capital stock evolves according to a time-invariant function k (derived
straightforwardly from the function x)

k, o =kk, nX) (22)

From (3), (15) and (16) and (20) it also follows that

x »
. Xk + kt

-t
kt 41 e«x‘) (23)

The competitive equilibrium of the economy is the intersection of these
two surfaces. This may be written as

k' o= #(k:, 1) (24)

t+1

The dynamic behaviour of the economy is determined by the mapping
described by equation (24). As we shall show, the optimal programme implies
that a competitive equilibrium may exhibit multiple turnpikes - that is, the value
of the initial capital stock determines to which of several steady-state growth
paths the economy converges. The nonlinearity of the technical progress
function means that the unique turnpike theorem (and the implied saddlepoint

L T U T T v v 2 1% 11 =
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providing a complete solution of the dynamic behaviour of output, it is helpful
to discuss multiple equilibria by examining the existence of steady-state growth
paths along which expectations are realised with perfect foresight.

4. Deterministic Steady-state Growth Paths

In order to illustrate the existence of multiple turnpikes we consider, first,
the existence of deterministic steady-state growth paths, These are charac-
terised by the following four behavioural equations and one definitional identity.
The natural growth rate - denoted by n - is given by the technical progress

function

n= 4(x) (25)

If the expected growth rate of consumption is g then the Euler equation

(11) becomes

g=1"(-0» (26)

where p (= -Ing) is the rate of pure time preference.
The investment criterion is that the private marginal product of capital
net of depreciation is equal to the cost of capital which is the post-tax rate of

return grossed up by the tax rate.

<IR

=1—_'T- +8 27

where v denotes the steady-state capital-output ratio.

Equilibrium requires that the "warranted" - or, in modern parlance,

rational expectations - growth rate g is equal to the natural rate of growth

g =n (28)

Finally, by definition




X =gv (29)

These five equations determine the steady-state equilibrium values of the
five endogenous variables, n,g,vx, and r.

The solution may be illustrated diagrammatically in the growth rate -
investment rate space. The natural growth rate is given by the technical
progress function. The rational expectations growth rate is given by the capital
market equilibrium curve given from equations (26), (27) and (29) by

_xgp«Sgl-rn
T oa(l-1)-mx

(30)

Figure 2 shows the two curves. Steady-state growth paths exist when the
natural rate equals the rational expectations growth rate. The shape of the
technical progress function was motivated above. It is easy to show from
equation (30) that the capital market equilibrium curve is a monotone
increasing and convex function of x with a vertical asymptote at x=a(1-r)/y. By
construction there always exists a stationary equilibrium because both curves
pass through the origin. But depending upon the parameter configuration there
may also exist up to two additional equilibrium growth paths at positive growth
rates.'? These are shown as n, and n in Figure 2. The most interesting feature
of these multiple steady-state growth rates is that, for a given tax rate, the
growth rate is inversely related to the transformed steady-state level of capital
per head. The savings equation (26) shows that the growth and interest rates
are positively related, and the investment equation (27) that the interest rate
and capital intensity are negatively related. It is this result which will underlie
some of the unusual dynamics described below.

5. Growth and Cycles

The dynamic behaviour of the model is given by the nonlinear first-order
difference equation for k', equation (24), which is given by the intersection of
- the surfaces defined by equations (22) and (23). Even when tax rates follow a
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deterministic path explicit solutions can be obtained only in very special cases.
For example, when y=1, §=1, and r, =0 vt, the optimal policy response function
is

- sQa
ko =¢*ap i (31)

Combining this with (23) gives the competitive equilibrium as

k':I = cxp{-d’(aﬂ - k:l-a)} af k:a (32)

In general, however, the dynamic equilibrium must be solved by
numerical methods. We search for a continuous function which is an approx-
imation to (21) for the competitive equilibrium investment rate. On empirical
grounds we constrain the tax rate to lie at percentile points of the range 0.00
to 0.99. Since (21), however, is continuous by construction, we solve initially for
a discrete set of points in state space k*, and then interpolate using free cubic
splines to estimate x, as a continuous function of continuous k*, for each
discrete r,."

Given an initial guess x°(k't,rt) at the function, an improved guess x' is
obtained by applying Newton-Raphson to find the required root of the Euler
equation (17) and (18) to a given tolerance. For a given r,, k*, determines x,

via the guess x°, hence also k*,,, from (23) and c*, from (16); but in order to

t+1
solve (17) it is necessary to determine c*,,, too, by advancing all these
equations one period. The technique employed is therefore to solve, for each
r,, for the value of x1(k't) which satisfies (17) for k*,, and c*,, conditional on
the function x°(k'M) used, with interpolation as necessary, to determine x,,,,

k*.., and hence c* The method is clearly equivalent to the solution of a
t+2 y €q

t+1
finite horizon problem, although in this model we do not find it particularly
helpful to think of it in that way. Iteration over these functions is complete
when x*! differs from x" by less than a given tolerance at every point (k*,r,),
providing an approximation to the time-invariant competitive equilibrium
function for k* ,,.

For the case of a constant tax rate the difference equation for k™ is

plotted in figure 3. Its shape depends upon the number of equilibrium steady-
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state growth rates. Steady-state growth paths exist when k*,,, = k",. Figure 3
is plotted for parameter values such that there are three steady-state growth
equilibria. Because of the inverse relationship between the growth rate and
capital intensity it can be seen that the high growth and the zero growth
equilibria are stable, whereas the low growth equilibrium path is unstable.

When tax rates are stochastic - and follow a Markov process - there are
as many curves as there are possible tax rates.' In each case the current tax
rate and capital stock jointly form a sufficient statistic for next period’s capital
stock. With several curves the dynamics become more interesting, and we can
show the interaction between growth and cycles. Consider, first, the simplest
case in which there are only two tax rates, and hence a 2x2 transition matrix
describing the stochastic process for taxes. There are two equilibrium curves
relating k', to k*,. Both can intersect the 45° line up to three times. The
dynamic path for capital and output depends upon the relative positions of the
two curves. The number of possible configurations depends upon the number
and order of the intersections with the 45° line. One possible configuration is
shown in figure 4. If the economy finds itself with a capital stock in the region
AB then it will exhibit "growth cycles" around a stochastic trend which varies
with the tax wedge. It is easy to show that the trend growth rate is inversely
related to the tax rate. In the region EF there are stable cycles around a
stationary level of output. The region CD is characterised by unstable growth
cycles.

However, the case of two tax rates is very special. With N > 2 tax rates
the dynamic behaviour of the economy depends upon the configuration of the
possible 3N equilibria. To make it easier to analyse the different resulting
configurations of the equilibrium k*,,, curves, we introduce an "indicator"
function defined in the appendix. The indicator function can be used to show
whether history matters, and how. The appendix demonstrates that as the
number of tax rates increases, it becomes more likely that the range of values
of k', constitutes a closed and irreducible set of states. In that case two
economies which have the same parameters and transition matrices, but
different initial conditions and realisations of the stochastic variable, must have
the same long run probability distribution of the transformed values of all
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relevant variables, such as the capital stock and output. The frequency
distribution of growth rates in such a case is shown in figure S. The distribution
is bimodal, around the zero and high steady-state growth rates. The actual
levels of output and consumption depend upon the entire past history of shocks.
By contrast when there is more than one such closed and irreducible set
(typically two, corresponding to zero and high growth rate cycles) then there
are multiple asymptotic distributions for the transformed variables which depend
on the initial conditions. The economy will be driven to either a zero or a
high growth rate stochastic cycle and once there can never re-emerge. In this
case history determines not only the current level of output but also the
asymptotic distribution of growth rates. With additional sources of shocks,
however, it is possible that the economy may jump from the zero growth to the
high growth rate path, or vice versa. To illustrate this possibility we now

introduce stochastic depreciation.

6. Stochastic Depreciation

In the model of section 5 a sequence of low tax rates can take the
economy from a path of stochastic cycles around a zero trend growth rate to a
region of high growth cycles. Other sources of stochastic shocks may achieve
the same effect. In particular we show in this section that a partial destruction
of the capital stock, such as that resulting from a major war, for example, may
move the economy onto a high growth path. Suppose that at the beginning of
each period there is a stochastic depreciation rate, denoted by ¢, over and
above the normal depreciation rate 5. The stochastic difference equation for

k" (formerly equation (16)) becomes

ke = (e ) [K(1-9 +y) - ol ] (33)

The idea of infrequent war destruction could be captured by a simple
two-point distribution  in which there was a very high probability that e was
zero, and a correspondingly small probability that ¢ was large. Solving for the

competitive equilibrium in this case yields the result that two economies that



16

are completely identical in all respects - the same values of the "deep"
preference and technology parameters and the same initial capital stock - can
experience very different paths for output and growth. Suppose both economies
start with identical initial capital stocks. Then if one economy suffers the "high"
depreciation rate and the other does not, but from then on only the normal
depreciation rate occurs, the economy that "suffered" the high rate may shift
from zero growth cycles to the regime of cycles around the high growth rate and
the other undamaged economy will stagnate, cycling around the stationary state.
For some parameter configurations the first economy can be better off - as
measured by the expected utility of the representative agent - from the effects
of a "war"; for others worse off. Of course, if the high depreciation state recurs
then the loss of capital could offset the benefits of shifting to a high growth
regime.

Examples of the time path of output for these two economies are shown
in Figure 6. The economy that experiences the adverse shock to depreciation
(country A) not only catches up the country (B) that does not, but actually
overtakes it. This is the sort of phenomenon that commentators seem to have
in mind when they refer to the advantages that Japan and Germany experienced

from losing the war.

7. Conclusions

In the model of endogenous growth with stochastic fiscal policy and
depreciation shocks, it is clear that shocks of either type can alter both the
trend growth rate and the transitory adjustment path. Innovations to the trend
and autoregressive components of output are correlated. It is, therefore,
impossible to decompose the variance of output into proportions that can be
attributed to a random walk component on the one hand and stationary shocks
on the other. A much richer nonlinear stochastic time series process for output,

investment and growth rates emerges.
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An important implication of the model is that history matters. The
existence of multiple steady-state growth rates means that, even with identical
structures and starting points, economies can experience very different growth
patterns that have permanent effects on both the level and rate of growth of
output. Within this simple framework it would make no sense to explain
differences in growth rate and levels of output per head without an examination
of the historical experience of the countries concerned. This turns on its head
Hahn’s (1971) phrase "The theory of growth is not a theory of economic
history".
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APPENDIX: Analysing Competitive Equilibrium Dynamics

In order to analyse the dynamic path of the competitive equilibrium we
introduce an "indicator" function defined by I(k*,) = & sgn(k*,,,) where

+1 k*p > k%,
sgn(k*,,;) = 0 k*.. = k*,
-1 k*.., < k%,

and summation is over all N possible values of r,. It is assumed here that N is
finite, but similar results hold if it is countably infinite. We shall call points at
which k*,,, = k*, "crossover points", and label them K;(r,), i=h,l,z according
as to whether they correspond to high, low or zero growth rates respectively.
min K, denotes the value of k" at the high growth crossover point on that curve
which crosses at the lowest k*,; corresponding definitions hold for min K, and
min K,. The following properties of I(k*,) follow directly:

Ik*) = +N k*, < minK,
lk*y)l < N min K, < k*; < max K,
Ik*) = N max K, < k*,

and I(k*,) is constant in any interval [K-¢,K+¢] which contains no crossover
points.

Intuitively I(k*,) is the number of curves above the line k*,,, = k*,
minus the number of curves below the line, at the point k*; equivalently, it can
be thought of as the cumulative difference between the number of stable and
unstable crossover points, counting over the half-line k < k*,. Then I(k*,) is
a step function which changes by +2 around each discrete crossover point, and
does not change elsewhere. We can use this function to decompose the state
space of k*, (the real line) into subsets which are either sets of transient states
or closed and irreducible sets of persistent states, according to the standard
definitions of Markov theory."®

The decomposition theorem for Markov chains states that any chain M
can be decomposed as M = Tu C' u C?u ... where T is the set of transient
states and the C' are closed irreducible sets of persistent states.
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All points at which |I(k*,)| = N must be transient. For, to take one of
the two values, whenever I(k*,) = +N then k*,, > k*, for every value of r,,
and conversely when I(k*,) = -N, k*,,, < k*, for all r,. If therefore |I(k*,)|
= N for some values of k*, in the interior of the range of the extreme crossover
points, then by monotonicity of all the functions k*,,,(k*,, r,) in k*,, the set of
states in that range [k*,: min K, < k*, < max K,] cannot be irreducible. For
if I(k*,) = +N then k*,,, > k*, for all r,. IfI(k*,,) = +N, thenk*,, > k*,
and so on. After some time T, {I(k*,,;)| < N, because at the highest crossover
point, max K,, the indicator function must increase to +N from +N-2. Any set
of states for which |I(k*,,;)| = N must be left within a finite time and retarn
is impossible.

So in addition to the transient states [k*,: k*, < min K] and [k*: k*,
> max K,], there may be transient states interior to the range [k*,: min K, <
k*, < max K,]. Moreover, these can be of two quite different types, depending
on whether |I(k*,,;)| = N. For in regions where this condition holds, k*, is
either decreasing or increasing, but not both, for all values of r.. In regions
where |I(k*,,,)| < N, k*, may decrease and increase according to the
realisation of r,, and such regions may be either transient (T) or closed and
irreducible (C).

An example - of the case illustrated in figure 4 - will demonstrate the
use of the indicator function, which is shown in figure 7. The maximum number
of crossover points is 3N and, therefore, of regions is 3N+1. When the
crossover points are grouped together by type, so that all the K, precede all the
K, which in turn precede all the K,, without any overlap, the nature of the

regions in the two tax rate case illustrated in figure 4 is:
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a) Region Indicator State
—A I(k*,) = +N T
AB |1(k*,)] < N C
BC I(k*,) =N T
CD |1(k* )| < N T*
DE I(k*,) = +N T
EF [1(k* )| < N C
Fe I(k*,) =-N T

Note that in general the two k*,,, curves may cross each other either
twice, once, or not at all, between the extreme crossover points, min K, and
max K.

In region —A, k*, is always increasing and in region BC k* is decreas-
ing. The same applies for regions DE and F-—. In region CD, k* can be either
increasing or decreasing, and in general this will be a transitive state. However,
it is distinguished as T* because in some circumstances it might never be left,
depending on the time path of the r, (for example, tax rates could follow a
deterministic cycle so as to leave k" in CD). With N=2, this case occurs if the
curves corresponding to 7° and 7' both have 3 crossover points and the ordering
is K, (r), K ('), K(), K(r'9), K,(), K ('%), ijk = 0,1 A different
ordering of these points when N =2 provides different configurations of the
indicator function.

In general, as N increases the likelihood of some overlap between the
three sets of crossover points increases, and accordingly it becomes increasingly
probable that there will be only three regions - two transient and only one
closed and irreducible - instead of the seven shown in figure 4. To demonstr-
ate this we have computed the competitive equilibrium for an economy with a
large number of possible tax rates, and the Markov transition matrix is
estimated from data on UK tax rates over the period 1913-87. Other parameter
values used in this example are a=045, §=098, v=1.0, §=0.085, x=50,
1n=90.001, and 1 =0.15. Figure 8 shows the indicator function for this case with
51 values for r, and no overlapping of the groups of crossover points. In figure
9 there are 100 values for r,, the 51 of figure 3 and a further 49, and as a result

~Ff ~uorlanming thare are now clearlv onlv three regions.
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FOOTNOTES

1. In Arrow’s model (and its various elaborations, for example Sheshinski
(1967)), the level of technical knowledge is a concave function of cumulative
past investment and positive growth of output per head is impossible without
population growth.

2. In this paper we model only pure externalities arising from investment, thus
retaining the ability to model outcomes as a competitive equilibrium. Kaldor
(for example, 1975) would have had more sympathy with a model in which some
of the increasing returns were internal to the firm, thus requiring a model of
monopolistic competition (Shell (1973), Canning (1988), and Romer (1988)).

3. To give one example, "in his study of twenty-five major discoveries introduced
into the United States by DuPont, Mueller (1962) indicated that, despite the
company’s reputation for path-breaking research, fifteen originated with work
done outside the company" (Cohen and Levinthal fn.2, p.570).

4. The technical progress function is defined here in terms of net investment so
that for expositional purposes a stationary state is a feasible solution to the non-
stochastic version of the model. The qualitative nature of the results is
unchanged if the argument of the technical progress function is instead gross
investment.

S. Other functional forms that satisfy (4) include linear transforms of the
hyperbolic tangent and piecewise linear functions.

6. When v = 1 (6) becomes the discounted sum of the natural logarithm of
consumption.

7. We do not discuss here the sources of stochastic tax policy. For a full
discussion of the motivation for modelling taxes in this way see King and
Robson (forthcoming) which also presents estimates of the Markov transition
matrix for tax rates in the US and UK.. Bizer and Judd (1989) also examine
random taxation.

8. In the deterministic case conditions were provided by Mirrlees (1967).
9. See Mirrlees (1967), Sheshinski (1967) and King, Plosser and Rebelo (1988).

10. Existence of a competitive equilibrium - the mapping described by equation
by (21) - is assured by the assumption that the technical progress function is
bounded.

11. Multiple turnpikes were obtained by Kurz (1968), who assumed that capital
was an argument of the utility function, and by Liviatan and Samuelson (1969),
who studied joint production. Our model exhibits some of the characteristics
of joint production in that investment produces both capital and knowledge.
Deterministic turnpike theorems in infinite horizon models are surveyed by
McKenzie (1986).
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12. For three non-negative growth rate equilibria to exist a necessary condition
is that the capital market equilibrium curve be steeper at the origin than the
technical progress function. This holds for all tax rates when

p+86& Bnah
a >1_1+i1

In the simulations reported below the parameter values used satisfy this
condition. For high enough values of the tax rate only one steady-state growth
rate - namely zero - exists.

13. Full details of the algorithm are given in King and Robson (forthcoming).

14. The same is true when tax rates follow a stationary deterministic time path -
a nonlinear cycle - because, as noted above, the deterministic case corresponds
to a degenerate Markov transition matrix.

15. A state kP is persistent if, given that k*, = kP, the probability that k*,,, =
kP for some T>01is 1. A state k' is 1ra_r%§i§n1 if it is not persistent. A set S of
persistent states is SLO_Sf_d if, given any k' ¢ S, k? / S, the probability that if k*,
= k' then k*,,, = k®is 0. S is irrgdggiblg if, given any k', k¥ ¢ S, the
probability that if k*, = k' then k*,,; = k° for some T>0 is strictly positive.
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tax rates from 0.00 to 0.99





