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ABSTRACT

This paper studies optimal .scal and monetary policy under sticky product prices. The
theoretical framework is a stochastic production economy without capital. The government finances

an exogenous stream of purchases by levying distortionary income taxes, printing money, and
issuing one-period nominally risk-free bonds. The main findings of the paper are: First, for a
miniscule degree of price stickiness (i.e., many times below available empirical estimates)the
optimal volatility of in.ation is near zero. This result stands in stark contrast with the high volatility
of inflation implied by the Ramsey allocation when prices are flexible. The finding is in line with
a recent body of work on optimal monetary policy under nominal rigidities that ignores the role of
optimal fiscal policy. Second, even small deviations from full price flexibility induce near random
walk behavior in government debt and tax rates, as in economies with real non-state-contingent debt
only. Finally, sluggish price adjustment raises the average nominal interest rate above the one called
for by the Friedman rule.
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1 Introduction

Two distinct branches of the existing literature on optimal monetary policy deliver diametrically
opposed policy recommendations concerning the long-run and cyclical behavior of prices and in-
terest rates. One branch follows the theoretical framework laid out in Lucas and Stokey (1983). It
studies the joint determination of optimal fiscal and monetary policy in flexible-price environments
with perfect competition in product and factor markets. In this group of papers, the government’s
problem consists in financing an exogenous stream of public spending by choosing the least disrup-
tive combination of inflation and distortionary income taxes. The criterion under which policies
are evaluated is the welfare of the representative private agent.1

In a significant contribution to the literature, Chari, Christiano, and Kehoe (1991) characterize
optimal monetary and fiscal policy in stochastic environments with nominal non-state-contingent
public debt. A key result of Chari et al. is that the government finds it optimal to make the
inflation rate highly volatile and serially uncorrelated. Under the Ramsey policy, the government
uses unanticipated inflation as a lump-sum tax on financial wealth. The government is able to do
this because public debt is nominal and non-state-contingent. Thus, price changes play the role of
a shock absorber of unexpected innovations in the fiscal deficit. This ‘front-loading’ of government
revenues via inflationary shocks allows the government to keep income tax rates remarkably stable
over the business cycle.

On the other hand, a more recent literature focuses on characterizing optimal monetary policy
in environments with nominal rigidities and imperfect competition.2 Besides its emphasis on the
role of price rigidities and market power, this literature differs from the earlier one described above
in two important ways. First, it assumes, either explicitly or implicitly, that the government has
access to (endogenous) lump-sum taxes to finance its budget. An important implication of this
assumption is that there is no need to use unanticipated inflation as a lump-sum tax; regular
lump-sum taxes take up this role. Second, the government is assumed to be able to implement a
production (or employment) subsidy so as to eliminate the distortion introduced by the presence
of monopoly power in product and factor markets.

A key result of this literature is that the optimal monetary policy features an inflation rate that
is zero or close to zero at all dates and all states.3 The reason why price stability turns out to be
optimal in environments of the type described here is straightforward: the government keeps the
price level constant in order to minimize (or completely eliminate) the costs introduced by inflation
under nominal rigidities.

Taken together, these two strands of research on optimal monetary policy leave the monetary
authority without a clear policy recommendation. Should the central bank pursue policies that
imply high or low inflation volatility? The goal of this paper is to contribute to the resolution of
this policy dilemma. To this end, it incorporates in a unified framework the essential elements of
the two approaches to optimal policy described above. Specifically, we build a model that shares
three elements with the earlier literature: (a) The only source of regular taxation available to the

1See, for example, Chari et al. (1991), Correia and Teles (1996), Guidotti and Végh (1993), and Kimbrough (1986).
2See, for example, Erceg et al. (2000), Gaĺı and Monacelli (2000), Khan, King, and Wolman (2000), Rotemberg

and Woodford (1999), Woodford (1999), and Woodford (2000).
3In models where money is used exclusively as a medium of account or when money enters in an additively

separable way in the utility function, the optimal inflation rate is typically strictly zero. Khan, King, and Wolman
(2000) show that when a nontrivial transaction role for money is introduced, the optimal inflation rate lies between
zero and the one called for by the Friedman rule. However, in calibrated model economies they find that the optimal
rate of inflation is in fact very close to zero and smooth. Erceg et al. (2000) show that in models with sluggish price
adjustment in product as well as factor markets price stability is suboptimal. Yet, for realistic calibrations of their
model, the optimal inflation volatility is close to zero.
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government is distortionary income taxes. In particular, the fiscal authority cannot adjust lump-
sum taxes endogenously in financing its outlays. (b) The government cannot implement production
subsidies to undo distortions created by the presence of imperfect competition. (c) The government
issues only nominal, one-period, non-state-contingent bonds. At the same time, our model shares
two important assumptions with the more recent body of work on optimal monetary policy: (a)
Product markets are not perfectly competitive. In particular, we assume that each firm in the
economy is the monopolistic producer of a differentiated intermediate good. (b) Product prices are
assumed to be sticky. We introduce price stickiness à la Rotemberg (1982) by assuming that firms
face a convex cost of price adjustment. An assumption maintained throughout this paper that is
common to all of the papers cited above (except for Lucas and Stokey, 1983) is that the government
has the ability to fully commit to the implementation of announced fiscal and monetary policies.

In this environment, the government faces a tradeoff in choosing the path of inflation. On the
one hand, the government would like to use unexpected inflation as a non-distorting tax on nominal
wealth. In this way the fiscal authority can minimize the need to vary distortionary income taxes
over the business cycle. On the other hand, changes in the rate of inflation come at a cost, for
firms face nominal rigidities.4 The main result of this paper is that under plausible calibrations of
the degree of price stickiness, this trade off is overwhelmingly resolved in favor of price stability.
The optimal fiscal/monetary regime features relatively low inflation volatility. Thus, the Ramsey
allocation delivers an inflation process that is more in line with the predictions of the more recent
body of literature on optimal monetary policy referred to above, which ignores fiscal constraints by
assuming that the government can resort to lump-sum taxation. Moreover, we find that a miniscule
amount of price stickiness suffices to bring the optimal degree of inflation volatility close to zero.
Specifically, our results suggest that for a degree of price stickiness that is ten times smaller than
available estimates for the U.S. economy, price stability emerges as the central feature of optimal
monetary policy.

The fragility of front-loading government revenue via surprise changes in the price level reveals
that the welfare gains of this way of government financing must be small. To understand why this
is so, it is useful to relate price stickiness to the ability of the government to make nominally non-
state-contingent debt state contingent in real terms. Under full price flexibility, the government
uses unexpected variations in the price level to render the real return on nominal bonds state
contingent. Under price stickiness, this practice is costly for firms are subject to price adjustment
costs. It follows that as price adjustment costs become large, the Ramsey planner is less likely to
use variations in the price level to create state-contingent real debt. Thus, the more sticky prices
are, the more the economy will resemble one without real state-contingent debt. Recent work by
Marcet et al. (2000) shows that the level of welfare in Ramsey economies with and without real
state-contingent debt is virtually the same. As a consequence, in the sticky-price model studied
in this paper, the Ramsey planner is willing to give up front-loading all together to avoid price
adjustment costs even when such costs are fairly small.

Indeed, in financing the budget the Ramsey planner replaces front-loading with standard debt
and tax instruments. For example, in response to an unexpected increase in government spending
the planner does not generate a surprise increase in the price level. Instead, he chooses to finance
the increase in government purchases partly through an increase in income tax rates and partly
through an increase in public debt. The planner minimizes the tax distortion by spreading the
required tax increase over many periods. This tax-smoothing behavior induces near-random walk
dynamics into the tax rate and public debt. By contrast, under full price flexibility (i.e., when the

4Christiano and Fitzgerald (2000) and Sims (2001) also remark on the desirability of quantitatively investigating
the costs and benefits of price volatility in models with sluggish price adjustment.
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government can create real-state contingent debt) tax rates and public debt inherit the stochastic
process of the underlying shocks.

An important conclusion of our study is thus that the Barro-Marcet-Sargent-Seppala result,
namely, that optimal policy imposes a near random walk behavior on taxes and debt, does not
require the unrealistic assumption that the government can issue only non-state-contingent real
debt. This result emerges naturally in economies with nominally non-state contingent debt, clearly
the case of greatest empirical relevance, and a minimum amount of price rigidity.

The remainder of the paper is organized in 8 sections. Section 2 describes the economic envi-
ronment and defines a competitive equilibrium. Section 3 presents the Ramsey problem. Section 4
analyzes the business-cycle properties of Ramsey allocations. It first describes the calibration of the
model. Then it presents the central result of the paper, namely, that even under very small price
adjustment costs the optimal inflation volatility is near zero. Section 5 shows that when prices are
sticky, public debt and tax rates are near random walk processes whereas when prices are flexible
they have a strong mean reverting component. Section 6 shows that price-stickiness introduces
deviations from the Friedman rule. Section 7 presents a discussion of the accuracy of the numerical
solution method. Section 8 investigates whether the time series process for the nominal interest
rate implied by the Ramsey policy can be represented as a Taylor-type interest rate feedback rule.
Finally, section 9 presents concluding remarks.

2 The Model

In this section we develop a simple infinite-horizon production economy with imperfectly competi-
tive product markets and sticky prices. A demand for money is motivated by assuming that money
facilitates transactions. The government finances an exogenous stream of purchases by levying
distortionary income taxes, printing money, and issuing one-period nominally risk-free bonds.

2.1 The Private Sector

Consider an economy populated by a large number of identical households. Each household has
preferences defined over processes of consumption and leisure and described by the utility function

E0

∞∑
t=0

βtU(ct, ht), (1)

where ct denotes consumption, ht denotes labor effort, β ∈ (0, 1) denotes the subjective discount
factor, and E0 denotes the mathematical expectation operator conditional on information available
in period 0. The single period utility function U is assumed to be increasing in consumption,
decreasing in effort, strictly concave, and twice continuously differentiable.

In each period t ≥ 0, households can acquire two types of financial assets: fiat money, Mt,
and one-period, state-contingent, nominal assets, Dt+1, that pay the random amount Dt+1 of
currency in a particular state of period t+1. Money facilitates consumption purchases. Specifically,
consumption purchases are subject to a proportional transaction cost s(vt) that depends on the
household’s money-to-consumption ratio, or consumption-based money velocity,

vt =
Ptct

Mt
, (2)

where Pt denotes the price of the consumption good in period t. The transaction cost function
satisfies the following assumption:
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Assumption 1 The function s(v) satisfies: (a) s(v) is nonnegative and twice continuously differ-
entiable; (b) There exists a level of velocity v > 0, to which we refer as the satiation level of money,
such that s(v) = s′(v) = 0; (c) (v− v)s′(v) > 0 for v �= v; and (d) 2s′(v)+ vs′′(v) > 0 for all v ≥ v.

Assumption 1(b) ensures that the Friedman rule, i.e., a zero nominal interest rate, need not be
associated with an infinite demand for money. It also implies that both the transaction cost and the
distortion it introduces vanish when the nominal interest rate is zero. Assumption 1(c) guarantees
that in equilibrium money velocity is always greater than or equal to the satiation level. As will
become clear shortly, assumption 1(d) ensures that the demand for money is decreasing in the
nominal interest rate. (Note that assumption 1(d) is weaker than the more common assumption of
strict convexity of the transaction cost function.)

The consumption good ct is assumed to be a composite good made of a continuum of interme-
diate differentiated goods. The aggregator function is of the Dixit-Stiglitz type. Each household
is the monopolistic producer of one variety of intermediate goods. The intermediate goods are
produced using a linear technology, zth̃t, that takes labor, h̃t, as the sole input and is subject
to an exogenous productivity shock, zt. The household hires labor from a perfectly competitive
market. The demand for the intermediate input is of the form Ytd(pt), where Yt denotes the level
of aggregate demand and pt denotes the relative price of the intermediate good in terms of the
composite consumption good. The relative price pt is defined as P̃t/Pt, where P̃t is the nominal
price of the intermediate good produced by the household and Pt is the price of the composite
consumption good. The demand function d(·) is assumed to be decreasing and to satisfy d(1) = 1
and d′(1) < −1. The restrictions on d(1) and d′(1) are necessary for the existence of a symmetric
equilibrium. The monopolist sets the price of the good it supplies taking the level of aggregate
demand as given, and is constrained to satisfy demand at that price, that is,

zth̃t ≥ Ytd(pt). (3)

We follow Rotemberg (1982) and introduce sluggish price adjustment by assuming that the firm
faces a resource cost that is quadratic in the inflation rate of the good it produces

Price adjustment cost =
θ

2

(
P̃t

P̃t−1

− 1

)2

.

The parameter θ measures the degree of price stickiness. The higher is θ the more sluggish is the
adjustment of nominal prices. If θ = 0, then prices are flexible.

The flow budget constraint of the household in period t is then given by:

Ptct[1 + s(vt)] + Mt +Etrt+1Dt+1 ≤ Mt−1 + Dt + Pt


 P̃t

Pt
Ytd

(
P̃t

Pt

)
−wth̃t − θ

2

(
P̃t

P̃t−1

− 1

)2



+(1 − τt)Ptwtht, (4)

where wt is the real wage rate and τt is the labor income tax rate. The variable rt+1 denotes the
period-t price of a claim to one unit of currency in a particular state of period t+1 divided by the
probability of occurrence of that state conditional on information available in period t. The left-
hand side of the budget constraint represents the uses of wealth: consumption spending, including
transactions costs, money holdings, and purchases of interest bearing assets. The right-hand side
shows the sources of wealth: money, the payoff of contingent claims acquired in the previous period,
profits from the sale of the differentiated good net of the price-adjustment cost, and after-tax labor
income.
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In addition, the household is subject to the following borrowing constraint that prevents it from
engaging in Ponzi schemes:

lim
j→∞

Etqt+j+1(Dt+j+1 + Mt+j) ≥ 0, (5)

at all dates and under all contingencies. The variable qt represents the period-zero price of one unit
of currency to be delivered in a particular state of period t divided by the probability of occurrence
of that state given information available at time 0 and is given by

qt = r1r2 . . . rt,

with q0 ≡ 1.
The household chooses the set of processes {ct, ht, h̃t, P̃t, vt,Mt,Dt+1}∞t=0, so as to maximize

(1) subject to (2)-(5), taking as given the set of processes {Yt, Pt, wt, rt+1, τt, zt}∞t=0 and the initial
condition M−1 + D0.

Let the multiplier on the flow budget constraint be λt/Pt and the one on the production con-
straint be mctλt/Pt. Then the first-order conditions of the household’s maximization problem
are (2)-(5) holding with equality and

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (6)

−Uh(ct, ht)
Uc(ct, ht)

=
(1 − τt)wt

1 + s(vt) + vts′(vt)
(7)

v2
t s

′(vt) = 1 − Etrt+1 (8)

λt

Pt
rt+1 = β

λt+1

Pt+1
(9)

mct =
wt

zt
(10)

0 = λt[Ytd(pt) + ptYtd
′(pt)− θπt(πtpt/pt−1 − 1) −mctYtd

′(pt)]
+βθEtλt+1πt+1(πt+1pt+1/pt − 1)pt+1/pt

2, (11)

where πt = Pt/Pt−1 denotes gross consumer price inflation. The interpretation of these optimality
conditions is straightforward. The first-order condition (6) states that the transaction cost intro-
duces a wedge between the marginal utility of consumption and the marginal utility of wealth.
The assumed form of the transaction cost function ensures that this wedge is zero at the satiation
point v and increasing in money velocity for v > v. Equation (7) shows that both the labor income
tax rate and the transaction cost distort the consumption/leisure margin. Given the wage rate,
households will tend to work less and consume less the higher is τ or the smaller is vt. Equation (8)
implicitly defines the household’s money demand function. Note that Etrt+1 is the period-t price
of an asset that pays one unit of currency in every state in period t+1. Thus Etrt+1 represents the
inverse of the risk-free gross nominal interest rate. Formally, letting Rt denote the gross risk-free
nominal interest rate, we have

Rt =
1

Etrt+1

5



Our assumptions about the form of the transactions cost function imply that the demand for money
is strictly decreasing in the nominal interest rate and unit elastic in consumption. Equation (9)
represents a standard pricing equation for one-step-ahead nominal contingent claims. Equation (10)
states that marginal cost equals the ratio of wages to the marginal product of labor. Finally,
equation (11) states that the presence of price-adjustment costs prevent firms in the short run from
setting their prices so as to equate marginal revenue, pt + d(pt)/d′(pt), to marginal cost, mct.

2.2 The Government

The government faces a stream of public consumption, denoted by gt, that is exogenous, stochastic,
and unproductive. These expenditures are financed by levying labor income taxes at the rate τt, by
printing money, and by issuing one-period, risk-free (non-contingent), nominal obligations, which
we denote by Bt. The government’s sequential budget constraint is then given by

Mt + Bt = Mt−1 +Rt−1Bt−1 + Ptgt − τtPtwtht

for t ≥ 0. The monetary/fiscal regime consists in the announcement of state-contingent plans for
the nominal interest rate and the tax rate, {Rt, τt}.

2.3 Equilibrium

We restrict attention to symmetric equilibria where all households charge the same price for the
good they produce. As a result, we have that pt = 1 for all t. It then follows from the fact that
all firms face the same wage rate, the same technology shock, and the same production technology,
that they all hire the same amount of labor. That is, h̃t = ht. Also, because all firms charge the
same price, we have that the marginal revenue of the individual monopolist is constant and equal
to 1 + 1/d′(1). Let

η = d′(1)

denote the equilibrium value of the elasticity of demand faced by the monopolist. Then in equilib-
rium equation (11) gives rise to the following expectations augmented Phillips curve

λtπt(πt − 1) = βEtλt+1πt+1(πt+1 − 1) +
λtηztht

θ

[
1 + η

η
− wt

zt

]
. (12)

This neo-Keynesian feature of the model is a standard element in the recent related literature on
optimal monetary policy.

Because all households are identical, in equilibrium there is no borrowing or lending among
them. Thus, all interest-bearing asset holdings by private agents are in the form of government
securities. That is,

Dt = Rt−1Bt−1

at all dates and all contingencies. Finally, in equilibrium, it must be the case that the nominal
interest rate is non-negative,

Rt ≥ 1.

Otherwise pure arbitrage opportunities would exist and households’ demand for consumption would
not be well defined.
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We are now ready to define an equilibrium. A competitive equilibrium is a set of plans {ct, ht,
Mt, Bt, vt, mct, λt, Pt, qt, rt+1} satisfying the following conditions:

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (13)

−Uh(ct, ht)
Uc(ct, ht)

=
(1 − τt)ztmct

1 + s(vt) + vts′(vt)
(14)

v2
t s

′(vt) =
Rt − 1
Rt

(15)

λtrt+1 = βλt+1
Pt

Pt+1
(16)

Rt =
1

Etrt+1
≥ 1 (17)

λtπt(πt − 1) = βEtλt+1πt+1(πt+1 − 1) +
λtηztht

θ

[
1 + η

η
−mct

]
(18)

Mt + Bt + τtPtztmctht = Rt−1Bt−1 + Mt−1 + Ptgt (19)

lim
j→∞

Etqt+j+1(Rt+jBt+j + Mt+j) = 0 (20)

qt = r1r2 . . . rt with q0 = 1 (21)

[1 + s(vt)]ct + gt +
θ

2
(πt − 1)2 = ztht (22)

vt = Ptct/Mt, (23)

given policies {Rt, τt}, exogenous processes {zt, gt}, and the initial condition R−1B−1 +M−1 > 0.

3 The Ramsey Problem

The optimal fiscal and monetary policy is the process {Rt, τt} associated with the competitive
equilibrium that yields the highest level of utility to the representative household, that is, that
maximizes (1). As is well known, in the absence of price stickiness, the Ramsey planner will always
find it optimal to confiscate the entire initial nominal wealth of the household by choosing a policy
that results in an infinite initial price level, P0 = ∞. This is because such a confiscation amounts to
a nondistortionary lump-sum tax. To avoid this unrealistic feature of optimal policy, it is typically
assumed in the flexible price literature that the initial price level is given. We follow this tradition
here to make our results comparable to this literature. However, we note that in the presence of
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price adjustment costs it may not be optimal for the Ramsey planner to choose P0 = ∞. The
reason is twofold. First, such policy would be distortionary as it would introduce a large deviation
of marginal cost from marginal revenue. Second, an infinitely large initial inflation would absorb
a large number of resources because the implementation of price changes requires the use of real
resources.

A key difference between our model with sticky prices and non-state-contingent nominal govern-
ment debt and models with flexible prices (such as Chari et al., 1991) or models with sticky prices
but state-contingent debt (like the model considered by Correia et al., 2001) is that in our model
the primal form of the competitive equilibrium can no longer be reduced to a single intertemporal
implementability (budget) constraint in period 0 and a feasibility constraint holding in every period.
This feature of the Ramsey problem is akin to the one identified by Marcet, Sargent and Seppala
(2000) in their analysis of optimal policy in a real economy without state-contingent debt. The
reason why under sticky prices and nominally non-state contingent debt the Ramsey constraints
cannot be stated in terms of a single time-zero implementability constraint is the following. Under
price flexibility, given a real allocation, the path for prices is uniquely determined in such a way that
it ensures that the implied real return on nominal debt satisfies the transversality condition of the
competitive equilibrium at all dates and all states. Under price stickiness, the price path is more
constrained for it must also satisfy the expectations augmented Phillips curve. However, a price
path that satisfies the expectations augmented Phillips curve and a time-zero implementability
constraint may not result in state-contingent real government debt that satisfies the transversality
condition of the competitive equilibrium (eqn. 20) at all dates and under all contingencies.

The following proposition presents a simpler form of the competitive equilibrium.5

Proposition 1 Plans {ct, ht, vt, πt, λt, bt,mct}∞t=0 satisfying (13), (18), (22), and

λt = βρ(vt)Et
λt+1

πt+1
(24)

ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt; t > 0 (25)

c0
v0

+ b0 +
(
mc0z0 +

Uh(c0, h0)γ(v0)
Uc(c0, h0)

)
h0 =

R−1B−1 + M−1

P−1π0
+ g0

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (26)

vt ≥ v and v2
t s

′(vt) < 1,

for all dates and under all contingencies given (R−1B−1 +M−1)/P−1, are the same as those satis-
fying (13)-(23), where

γ(vt) ≡ 1 + s(vt) + vts
′(vt)

and
ρ(vt) ≡ 1/[1 − v2

t s
′(vt)].

5The competitive equilibrium could be simplified further by using (13) and (18) to eliminate λt and mct.
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Proof: See appendix A.

We will assume that the government has the ability to commit to the contingent policy rules it
announces at date 0. It then follows from proposition 1 that the Ramsey problem can be stated as
choosing contingent plans ct, ht, vt, πt, λt, bt, and mct so as to maximize (1) subject to (13), (18),
(22), (24)-(26), vt ≥ v, and v2

t s
′(vt) < 1, taking as given (M−1 + R−1B−1)/P0 and the exogenous

stochastic processes gt and zt. The Lagrangian of the Ramsey planner’s problem as well as the
associated first-order conditions are shown in appendix B.

3.1 Alternative representation of the Ramsey constraints

While it is not possible to reduce the constraints of the Ramsey problem to a single intertemporal
budget constraint in period 0 and one feasibility constraint holding at every date and at every
state, as is the case under price flexibility, it is possible to express the set of constraints the Ramsey
planner faces in terms of a sequence of intertemporal budget constraints rather than in terms
of the sequence of transversality conditions given in (26). The next proposition presents such a
representation.

Proposition 2 Plans {ct, ht, vt, πt, bt,mct}∞t=0 satisfying the feasibility constraint (22), the expec-
tations augmented Phillips curve

πt(πt − 1) = βEt
Uc(ct+1, ht+1)
Uc(ct, ht)

γ(vt)
γ(vt+1)

πt+1(πt+1 − 1) +
ηztht

θ

[
1 + η

η
−mct

]
(27)

the sequential budget constraint of the government,

ct

vt
+ bt +

[
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

]
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt ∀t ≥ 1 (28)

c0
v0

+ b0 +
[
mc0z0 +

Uh(c0, h0)γ(v0)
Uc(c0, h0)

]
h0 =

R−1B−1 + Mt−1

P−1π0
+ g0,

the sequence of intertemporal budget constraints

Et

∞∑
j=0

βj

{
Uc(ct+j , ht+j)ct+jφ(vt+j) + Uh(ct+j , ht+j)ht+j + zt+jht+j(mct+j − 1)

Uc(ct+j , ht+j)
γ(vt+j)

(29)

+α2
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]

and the boundary conditions on vt

vt ≥ v and v2
t s

′(vt) < 1,

for all dates and under all contingencies given (R−1B−1 +M−1)/P−1, are the same as those satis-
fying the definition of a competitive equilibrium, that is, (13)-(23).

Proof: See appendix C.

This more compact representation of the restrictions of a competitive equilibrium facilitates
comparison with the those arising in real economies without state-contingent debt (Marcet et al.
2000).
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4 Optimal Inflation Volatility

In this section we characterize numerically the dynamic properties of Ramsey allocations. We
compute dynamics by solving first- and second-order logarithmic approximations to the Ramsey
planner’s policy functions around a non-stochastic Ramsey steady state. We first describe the
calibration of the model and then present the quantitative results.

4.1 Calibration

We calibrate our model to the U.S. economy. The time unit is meant to be a year. We assume
that up to period 0, the economy is in the non-stochastic steady state of a competitive equilibrium
with constant paths for consumption, hours, nominal interest rates, inflation, tax rates, etc. To
facilitate comparison to the case of price flexibility we adopt, where possible, the calibration of
Schmitt-Grohé and Uribe (2001a). Specifically, we assume that in the steady state the inflation
rate is 4.2 percent per year, which is consistent with the average growth rate of the U.S. GDP
deflator over the period 1960:Q1 to 1998:Q3, that the debt-to-GDP ratio is 0.44 percent, which
corresponds to the figure observed in the United States in 1995 (see the 1997 Economic Report
of the President, table B-79), and that government expenditures are equal to 20 percent of GDP,
a figure that is in line with postwar U.S. data. We follow Prescott (1986) and set the subjective
discount rate β to 0.96 to be consistent with a steady-state real rate of return of 4 percent per year.

Table 1: Calibration

Symbol Definition Value Description

Calibrated Parameters:
β 0.96 Subjective discount factor
π 1.042 Gross inflation rate
h 0.2 Fraction of time allocated to work
sg g/y 0.2 Government consumption to GDP ratio
sb B/(Py) 0.44 Public debt to GDP ratio

1 + µ η/(1 + η) 1.2 Gross value-added markup
θ 17.5/4 Degree of price stickiness
A 0.0111 Parameter of transaction cost function

s(v) = Av + B/v − 2
√
AB

B 0.07524 Parameter of transaction cost function
λg 0.9 Serial correlation of log gt

σεg 0.0302 Standard deviation of innovation to ln gt

λz 0.82 Serial correlation of technology shock
σεz 0.0229 Standard deviation of innovation to ln zt

Note. The time unit is a year. The variable y ≡ zh denotes steady-state output.

We assume that the single-period utility index is of the form

U(c, h) = ln(c) + δ ln(1 − h).
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We set the preference parameter δ so that in the flexible-price steady state households allocate 20
percent of their time to work. The resulting parameter value is δ = 2.9.6

To calibrate the price elasticity of demand η, we use the fact that in a flexible price equilibrium
the markup of prices over marginal costs is related to the price elasticity of demand as 1 + µ =
η/(1 + η). Drawing from the empirical study of Basu and Fernald (1997), we assign a value of 0.2
to the value added markup of prices over marginal cost, µ. Basu and Fernald estimate gross output
production functions and obtain estimates for the gross output markup of about 1.1. They show
that their estimates are consistent with values for the value added markup of up to 25 percent.

To calibrate the degree of price stickiness, we use Sbordone’s (1998) estimate of a linear new-
Keynesian Phillips curve. Such a Phillips curve arises in our model from a log-linearization of
equilibrium condition (18) around a zero-inflation steady state:

π̂t = βEtπ̂t+1 +
h

θµ
m̂ct,

where a circumflex denotes log-deviations from the steady state. Using quarterly postwar U.S. data,
Sbordone estimates the coefficient θµ/h to be 17.5. Given our calibration h = 0.2 and µ = 0.2,
we have that the price-stickiness coefficient θ is 17.5. As pointed out by Sbordone, in a Calvo-Yun
staggered price setting model, this value of θ implies that firms change their price on average every
9 months. Because in our model the time unit is a year, we set θ equal to 17.5/4.

We use the following specification for the transactions cost technology:

s(v) = Av + B/v − 2
√
AB (30)

This functional form implies a satiation point for consumption-based money velocity, v, equal to√
B/A. The money demand function implied by the above transaction technology is of the form

v2
t =

B

A
+

1
A

Rt − 1
Rt

,

Note that money demand has a unit elasticity with respect to consumption expenditures. This
feature is a consequence of the assumption that transaction costs, cs(c/m), are homogenous of
degree one in consumption and real balances and is independent of the particular functional form
assumed for s(.). Further, as the parameter B approaches zero, the transaction cost function s(.)
becomes linear in velocity and the demand for money adopts the Baumol-Tobin square root form
with respect to the opportunity cost of holding money, (R− 1)/R. That is, the log-log elasticity of
money demand with respect to the nominal interest rate converges to 1/2, as B vanishes.

To identify the parameters A and B, we estimate this equation using quarterly U.S. data from
1960:1 to 1999:3. We measure v as the ratio of non-durable consumption and services expenditures
to M1. The nominal interest rate is taken to be the three-month Treasury Bill rate. The OLS
estimate implies that A = 0.0111 and B = 0.07524.7 At the calibrated steady-state interest rate
of 8.2 percent per year, the implied semi-elasticity of money demand with respect to the nominal
interest rate (∂ lnm/∂R) is equal to -2.82. When the nominal interest rate is zero, our money
demand specification implies a finite semi-elasticity equal to -6.6.

Government spending, gt, and labor productivity, zt, are assumed to follow independent AR(1)
processes in their logarithms,

ln gt = (1 − λg) ln g + λg ln gt−1 + εgt ; εgt distributes N(0, σεg )
6See Schmitt-Grohé and Uribe (2001a) for a derivation of the exact relations used to identify δ.
7The estimated equation is v2

t = 6.77 + 90.03(Rt − 1)/Rt. The t-statistics for the constant and slope of the
regression are, respectively, 6.81 and 5.64; The R̄2 of the regression is 0.16. Instrumental variable estimates using
three lagged values of the dependent and independent variables yield similar estimates for A and B.
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and

ln zt = λz ln zt−1 + εzt ; εzt distributes N(0, σεz )

We assume that (λg, σεg) = (0.9, 0.03) and that (λz, σεz) = (0.82, 0.02). This specification is in line
with the calibration of the stochastic processes for gt and zt given in Chari et al. (1995). Table 1
summarizes the calibration of the economy.

4.2 Numerical Results

In Schmitt-Grohé and Uribe (2001a) we show that under flexible prices (with and without imperfect
competition) it is possible to find an exact numerical solution to the Ramsey problem. The reason
is that in that case the constraints of the Ramsey problem reduce to a static feasibility constraint
and a single intertemporal, time-separable, implementability constraint. On the other hand, when
price adjustment is sluggish and the government issues only nominal state non-contingent debt, the
Ramsey problem contains a sequence of intertemporal implementability constraints, one for each
date and state. This complication renders impossible the task of finding an exact numerical solution.
One is thus forced to resort to approximation techniques. In this section we limit attention to results
based on log-linear approximations to the Ramsey planner’s optimality conditions. In section 7,
we present results based on a second-order approximation to the Ramsey planner’s decision rules.
We show there that the results of this section are robust to higher-order approximations.

Table 2 displays a number of sample moments of key macroeconomic variables under the Ramsey
policy. The moments are computed as follows. We first generate simulated time series of length T
for the variables of interest and compute first and second moments. We repeat this procedure J
times and then compute the average of the moments. In the table, T equals 100 years and J equals
500. In section 7 we explain the criterion for choosing these two parameter values.

The top panel of table 2 corresponds to a flexible-price economy with perfect competition (θ = 0
and η = −∞), the middle panel to a flexible-price economy with imperfect competition (θ = 0,
η = −6), and the bottom panel to an economy with sluggish price adjustment and imperfect
competition (θ = 17.5/4 and η = −6).

4.2.1 Optimal Inflation Volatility under Price Flexibility

Under flexible prices and perfect competition, the nominal interest rate is constant and equal to
zero. That is, the Friedman rule is optimal. Because under perfect competition the nominal interest
rate is zero at all times, the distortion introduced by the transaction cost is driven to zero in the
Ramsey allocation (s(v) = s′(v) = 0). On the other hand, distortionary income taxes are far from
zero. The average value of the labor income tax rate is 18.7 percent. The Ramsey planner keeps
this distortion smooth over the business cycle; the standard deviation of τ is 0.04 percentage points.

In the Ramsey allocation with perfect competition and flexible prices, inflation is on average
negative (-3.7 percent per year). The most striking feature of the Ramsey allocation is the high
volatility of inflation. A two-standard deviation band on each side of the mean features a deflation
rate of 15.7 percent at the lower end and inflation of 8.3 percent at the upper end. The Ramsey
planner uses the inflation rate as a state-contingent lump-sum tax/transfer on households’ financial
wealth. This lump-sum tax/transfer is used mainly in response to unanticipated changes in the state
of the economy. This is reflected in the fact that inflation displays a near zero serial correlation.
The result that in the Ramsey equilibrium inflation acts as a lump-sum tax on nominal wealth is
due to Chari et al. (1991) and has recently been stressed by Sims (2001).
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Table 2: Dynamic Properties of the Ramsey Allocation (Linear Approximation)

Variable Mean Std. Dev. Auto. corr. Corr(x, y) Corr(x, g) Corr(x, z)
Flexible Prices and Perfect Competition (θ = 0 and η = −∞)

τ 18.7 0.044 0.834 -0.322 0.844 -0.516
π -3.66 6.04 -0.0393 -0.245 0.313 -0.321
R 0 0 – – – –
y 0.25 0.00843 0.782 1 0.203 0.975
h 0.25 0.00217 0.834 -0.322 0.846 -0.516
c 0.21 0.00827 0.778 0.955 -0.0797 0.997

Flexible Prices and Imperfect Competition (θ = 0)
τ 25.8 0.0447 0.616 0.236 -0.845 0.511
π -1.82 6.8 -0.0411 -0.207 0.329 -0.321
R 1.83 0.0313 0.797 -0.237 0.845 -0.513
y 0.208 0.00675 0.783 1 0.289 0.951
h 0.208 0.0024 0.833 -0.237 0.845 -0.513
c 0.168 0.00645 0.777 0.93 -0.0624 0.998

Baseline Sticky-Price Economy
τ 25.1 0.998 0.743 -0.283 0.476 -0.238
π -0.16 0.171 0.0372 -0.123 0.385 -0.289
R 3.85 0.562 0.865 -0.949 -0.0372 -0.969
y 0.209 0.00713 0.815 1 0.199 0.943
h 0.208 0.00253 0.813 -0.124 0.611 -0.424
c 0.168 0.00707 0.819 0.938 -0.131 0.958

Note. τ , π, and R are expressed in percentage points and y, h, and c in levels. Unless
indicated otherwise, the parameter values are: β = 1/1.04, δ = 2.9, g = 0.04, b−1 =
0.088, η = −6, θ = 17.5/4, A = 0.0111, B = 0.07524,

T = 100, and J = 500.
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The high volatility and low persistence of the inflation rate stands in sharp contrast to the
smooth and highly persistent behavior of the labor income tax rate. Our results on the dynamic
properties of the Ramsey economy under perfect competition and flexible prices are consistent with
those obtained by Chari et al. (1991).

Under imperfect competition and flexible prices, the volatility and correlation properties of
inflation, income tax rates, and other real variables are virtually unchanged. The main effect of
imperfect competition is that the Friedman rule ceases to be optimal. The average nominal interest
rate rises from zero to 1.8 percent. The reason for this departure from the Friedman rule is the
presence of monopoly profits. As shown in Schmitt-Grohé and Uribe (2001a) these profits represent
pure rents for the owners of the monopoly rights, which the Ramsey planner would like to tax at a
hundred percent rate. If profit taxes are either unavailable or restricted to be less than one hundred
percent, then the social planner uses inflation as an indirect tax on profits. Inflation acts as an
indirect tax on profits because when consumers transform profits into consumption, they must hold
money to perform the required transaction. The Friedman rule reemerges if (a) monopoly profits
are completely confiscated; (b) profit tax rates are constrained to be equal to income tax rates; (c)
monopolistically competitive firms make no profits (as could be the case in the presence of fixed
costs); and (d) the Ramsey planner has access to consumption taxes.8 Another difference between
the perfectly and imperfectly competitive economies is that in the latter the average income tax rate
is 7 percentage points higher than in the former, even though initial public debt and the process
for government purchases are the same in both economies. The reason for this difference is that
under imperfect competition, the labor income tax base is smaller due to the presence of market
power.

4.2.2 Optimal Inflation Volatility under Price Stickiness

If price changes are brought about at a cost, then it is natural to expect that a benevolent govern-
ment will try to implement policies consistent with a more stable behavior of prices than when price
changes are costless. However, the quantitative effect of an empirically plausible degree of price
rigidity on optimal inflation volatility is not clear a priori. When price adjustment is costly, the
social planner faces a tradeoff. On the one hand, the planner would like to use unexpected changes
in the price level as a state-contingent lump-sum tax or transfer on nominal wealth. In this way,
the benevolent government avoids the need to resort to changes in distortionary taxes and interest
rates over the business cycle. The use of inflation for this purpose would imply a relatively large
volatility in prices. On the other hand, the Ramsey planner has incentives to stabilize the price
level in order to minimize the costs associated with nominal price changes. The bottom panel of
table 2 shows that for the degree of stickiness that has been estimated for the U.S. economy, this
tradeoff is to a large extent resolved in favor of price stability. The Ramsey allocation features a
dramatic drop in the standard deviation of inflation from about 7 percent per year under flexible
prices to a mere 0.17 percent per year when prices adjust sluggishly.9 This implication of the Ram-
sey allocation under sticky prices is more in accord with the recent neo-Keynesian literature on
optimal monetary policy that ignores fiscal considerations (see the references cited in footnote 2).10

8For a formal derivation of these results and a more detailed discussion, see Schmitt-Grohé and Uribe (2001a).
9Siu (2001) obtains similar results in a cash-credit economy where nominal rigidities are introduced by assuming

that a fraction of firms must set their price one period in advance and the only source of uncertainty are government
purchases shocks.

10An important assumption driving the result that significantly less inflation volatility is desirable in the presence of
sticky prices is that government debt is state-noncontingent. When government debt is state contingent, the presence
of sticky prices may introduce no difference in the Ramsey real allocation (see Correia et al., 2001). The reason for
this result is that, as shown in Lucas and Stokey (1983), when government debt is state contingent and prices are fully
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Figure 1: Degree of Price Stickiness and Optimal Inflation Volatility
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The baseline value of θ is 4.4. The standard deviation of inflation is measured in percent per
year.

Indeed the impact of price stickiness on the optimal degree of inflation volatility turns out to be
much stronger than suggested by the numbers in table 2. Figure 1 shows that a minimum amount
of price stickiness suffices to make price stability the central goal of optimal policy. Specifically,
when the degree of price stickiness, embodied in the parameter θ, is assumed to be 10 times smaller
than the estimated value for the U.S. economy, the optimal volatility of inflation is below 0.52
percent per year, 13 times smaller than under full price flexibility.

Therefore, the question arises as to why even a marginal degree of price stickiness can turn
undesirable the use of a seemingly powerful fiscal instrument, such as large re- or devaluations of
private real financial wealth through surprise inflation. Our conjecture is that in the flexible-price
economy, the welfare gains of surprise inflations or deflations are very small. Our intuition is as
follows. Under flexible prices, it is optimal for the central bank to keep the nominal interest rate
constant over the business cycle. This means that large surprise inflations must be as likely as
large deflations, as variations in real interest rates are small. In other words, inflation must have
a near-i.i.d. behavior. As a result, high inflation volatility cannot be used by the Ramsey planner
to reduce the average amount of resources to be collected via distortionary income taxes, which
would be a first-order effect. The volatility of inflation serves primarily the purpose of smoothing
the process of income tax distortions—a second-order source of welfare losses—without affecting
their average level.

An additional way to gain intuition for the dramatic decline in optimal inflation volatility
that takes place even at very modest levels of price stickiness is to interpret price volatility as
a way for the government to introduce real state-contingent public debt. Under flexible prices
the government uses state-contingent changes in the price level as a non-distorting tax or transfer

flexible, the Ramsey allocation does not pin down the price level uniquely. In this case there is an infinite number
of price level processes (and thus of money supply processes) that can be supported as Ramsey outcomes. Loosely
speaking, the introduction of price stickiness simply ‘uses this degree of freedom’ without altering other aspects of
the Ramsey solution. This is not possible under state-noncontingent debt. For in this case the price level is uniquely
determined in the flexible-price economy. Thus, the presence of nominal rigidities modifies the optimal real allocation
in fundamental ways.
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on private holdings of government assets. In this way, non-state contingent nominal public debt
becomes state-contingent in real terms. So, for example, in response to an unexpected increase
in government spending (a war, say) the Ramsey planner does not need to increase tax rates
by much because by inflating away part of the public debt he can ensure intertemporal budget
balance. It is therefore clear that introducing costly price adjustment is as if the government was
limited in its ability to issue real state-contingent debt. It follows that the larger is the welfare
gain associated with the ability to issue real state-contingent public debt—as opposed to non-state
contingent debt—the larger is the amount of price stickiness required to reduce the optimal degree
of inflation volatility. Recent work by Marcet, Sargent, and Seppala (2000) shows that indeed the
level of welfare under the Ramsey policy in an economy without real state-contingent public debt is
virtually the same as in an economy with state-contingent debt. Our finding that a small amount
of price stickiness is all it takes to bring the optimal volatility of inflation from a very large level
to near zero is thus perfectly in line with the finding of Marcet, Sargent, and Seppala.

If this intuition is correct, then the behavior of tax rates and public debt under sticky prices
should resemble that implied by the Ramsey allocation in economies without real state-contingent
debt. We will investigate this issue further in the next section.

5 Near Random Walk Property of Taxes and Public Debt under

Sticky Prices

Lucas and Stokey (1983) show that under state contingent government debt tax rates and public
debt inherit the stochastic process of the underlying exogenous shocks. This implies, for example,
that if the shocks driving business cycles are serially uncorrelated, so are government bonds and tax
rates. The work of Barro (1979) and more recently Marcet, Sargent, and Seppala (2000) suggests
that the Lucas and Stokey result hinges on the assumption that the government can issue state-
contingent debt. These authors show that independently of the assumed process for the shocks
generating aggregate fluctuations, tax rates and public debt exhibit near random walk behavior.
Chari, Christiano, and Kehoe (1991) show that the Ramsey allocation of a flexible price economy
with nominally non-state-contingent debt behaves exactly like that of an economy with real state-
contingent debt. It follows that under flexible prices and state non-contingent nominal debt, tax
rates and government bonds inherit the stochastic process of the exogenous shocks.

In this section we investigate the extent to which the introduction of nominal rigidities brings
the Ramsey allocation closer to the one arising in an economy without real state contingent debt. In
other words, we wish to find out whether the Barro-Marcet-Sargent-Seppala result can be obtained,
not by ruling out complete markets for real public debt, but instead by introducing sticky prices
in an economy in which the government issues only non-state-contingent nominal debt.

To this end, we consider the response of the flexible- and sticky-price economies under optimal
fiscal and monetary policy to a serially uncorrelated government purchases shock. The result is
displayed in figure 2. The response of the flexible price economy is shown with a dashed line and
the response of the sticky price economy with a solid line. Government purchases are assumed
to increase by 3 percent (one standard deviation) in period 1. Under flexible prices and perfect
competition (the case considered by Chari, et al.), taxes and bonds, like the shock itself, return
after one period to their pre-shock values. By contrast, under sticky prices both variables are
permanently affected by the shock. Specifically, when prices are sticky, bonds and taxes jump up
on impact and then converge to values above their pre-shock levels. The difference in behavior under
the two model specifications can be explained entirely by the behavior of the price level. Under
flexible prices, the Ramsey planner inflates away part of the real value of outstanding nominal
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Figure 2: Impulse response to an iid government purchases shock
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Figure 3: Degree of Price Stickiness and Deviations from the Friedman Rule
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The baseline value of θ is 4.4. The nominal interest rate is measured as percent per year.

debt, bringing real public debt to its pre-shock level in just one period. Under sticky prices, the
government finds it optimal not to increase the price level much. This is because price increases
are costly. Instead, the planner finances the increase in government spending partly by increasing
public debt and partly by increasing taxes. In order to avoid a large distortion at the time of the
shock, the planner smoothes the tax increase over time. As a consequence, the stock of public debt
displays a persistent increase.

Thus, our sticky price model appears to replicate the near random walk behavior of bonds
and tax rates found under the Ramsey allocation in real models without state-contingent debt, the
Barro-Marcet-Sargent-Seppala result. Indeed, the Barro-Marcet-Sargent-Seppala result obtains not
only under the baseline calibration of the degree of price stickiness (i.e., θ = 17.5/4, or firms change
prices once every 9 months), but for a minimal degree of nominal rigidities. Specifically, if we
reduce θ by a factor of 10, bonds and tax rates maintain their near-random-walk behavior. This
result is consistent with figure 1, which documents that a small amount of price rigidity suffices to
bring the volatility of inflation close to zero.

6 Price Stickiness and Deviations from the Friedman Rule

In our baseline sticky-price economy the Friedman rule fails to hold. The average nominal interest
rate is 3.8 percent per year. This significant deviation from the Friedman rule can be decomposed
in two parts. First, as shown by Schmitt-Grohé and Uribe (2001a), the presence of monopolistic
competition induces the social planner to tax money balances as an indirect way to tax monopoly
profits. Comparing the top and middle panels of table 2, it follows that imperfect competition
induces a deviation from the Friedman rule of 1.8 percentage points per year. Comparing the
middle and bottom panels, it then follows that in our baseline economy price stickiness explains
half of the 3.8 percentage points by which the nominal interest rate deviates from the Friedman
rule. Indeed, as figure 3 illustrates, there exists a strong increasing relationship between the degree
of price stickiness and the average nominal interest rate associated with the Ramsey allocation.
The intuition behind this result is simple. The more costly it is for firms to alter nominal prices,
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Table 3: Accuracy of the approximate numerical solution

Variable Mean Std. Dev. Auto. corr. Mean Std. Dev. Auto. corr.
Flexible Prices and Perfect Competition
Exact Solution Log-Linear Approximation

τ 18.8 0.0491 0.88 18.7 0.044 0.834
π -3.39 7.47 -0.0279 -3.66 6.04 -0.0393
R 0 0 – 0 0 –

Flexible Prices and Imperfect Competition
Exact Solution Log-Linear Approximation

τ 26.6 0.042 0.88 25.8 0.0447 0.616
π -1.46 7.92 -0.0239 -1.82 6.8 -0.0411
R 1.95 0.0369 0.88 1.83 0.0313 0.797

Baseline Sticky-Price Economy
Log-Quadratic Approximation Log-Linear Approximation

τ 25.3 0.908 0.719 25.1 0.998 0.743
π -0.148 0.206 0.237 -0.16 0.171 0.0372
R 3.82 0.689 0.892 3.85 0.562 0.865

Note. τ , π, and R are expressed in percentage points.

the closer to zero is the inflation rate chosen by the benevolent government.

7 Accuracy of Solution

The quantitative results presented thus far are based on a log-linear approximation to the first-
order conditions of the Ramsey problem. In Schmitt-Grohé and Uribe (2001a) we show how to
compute exact numerical solutions to the Ramsey problem in the flexible-price economies (with
perfectly and imperfectly competitive product markets). The availability of exact solutions allows
us to evaluate the accuracy of the log-linear solution for the flexible-price economies considered
above. The top and middle panels of table 3 shows that the quantitative results obtained using the
exact numerical solution and a log-linear approximation are remarkably close. The most noticeable
difference concerns the standard deviation of inflation. The log-linear approximation underpredicts
the optimal volatility of inflation by one percentage point.

Next we gauge the accuracy of the log-linear approximation to the sticky-price Ramsey alloca-
tion by comparing it to results based on a log-quadratic approximation. The quadratic approxi-
mation technique we used is described in Schmitt-Grohé and Uribe (2001b). The results shown in
the bottom panel of table 3 suggest that the log-linear and log-quadratic approximations deliver
similar quantitative results. In particular, the dramatic decline in inflation volatility vis-a-vis the
flexible-price economy also arises under the higher-order approximation.

We close our discussion of numerical accuracy by pointing out that in both the flexible- and
sticky-price economies the first-order approximation to the Ramsey allocation features a unit root.
As a result, the local approximation techniques employed here become more inaccurate the longer
is the simulated time series used to compute sample moments. The reason is that in the long run
the log-linearized equilibrium system is bound to wander far away from the point around which
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the approximation is taken. We choose to restrict attention to time series of length 100 years
because for this sample size the log-linear model of the flexible-price economy performs well in
comparison to the exact solution. The need to keep the length of the time series relatively short
also applies when a log-quadratic approximation is used. If the system deviates far from the point
of approximation, then the quadratic terms might introduce large errors. These discrepancies can
render the quadratic approximation even more imprecise than the lower-order one. The quadratic
approximation is guaranteed to perform better than the linear one only if the system’s dynamics
are close enough to the point around which the model is approximated.

8 Interest-Rate Feedback Rules

In this section we address the question of whether the time series arising from the Ramsey allocation
imply a relation between the nominal interest rate, inflation, and output consistent with available
estimates of such relationship for U.S. data. In recent years there has been a revival of empirical
and theoretical research aimed at understanding the macroeconomic consequences of monetary
policy regimes that take the form of interest-rate feedback rules. One driving force of this renewed
interest can be found in empirical studies showing that in the past two decades monetary policy
in the United States is well described as following such a rule. In particular, an influential paper
by Taylor (1993) characterizes the Federal Reserve as following a simple rule whereby the federal
funds rate is set as a linear function of inflation and the output gap with coefficients of 1.5 and
0.5, respectively. Taylor emphasizes the stabilizing role of an inflation coefficient greater than
unity, which loosely speaking implies that the central bank raises real interest rates in response
to increases in the rate of inflation. After his seminal paper, interest-rate feedback rules with
this feature have become known as Taylor rules. Taylor rules have also been shown to represent
an adequate description of monetary policy in other industrialized economies (see, for example,
Clarida, Gaĺı, and Gertler, 1998).

To see whether the nominal interest rate process associated with the Ramsey allocation can
be well represented by a linear combination of inflation and output, we estimate the following
regression using artificial time series from the sticky-price model.

Rt = β0 + β1πt + β2yt + ut.

Here the nominal interest rate, Rt, and inflation, πt, are measured in percent per year, and output,
yt, is measured as percent deviation from its mean value. To generate time series for Rt, πt,
and yt, we draw artificial time series of size 100 for the two shocks driving business cycles in our
model, government consumption and productivity shocks. We use these realizations to compute
the implied time series of the endogenous variables of interest using the baseline calibration of the
sticky-price model. We then proceed to estimate the above equation. We repeat this procedure
500 times and take the median of the estimated regression coefficients. The OLS estimate of the
interest rate feedback rule is

Rt = 0.04 − 0.14πt − 0.16 yt + ut; R2 = 0.92.

Clearly, an interest rate feedback rule fits quite well the optimal interest rate process. The R2

coefficient of the regression is above 90 percent. However, the estimated interest-rate feedback rule
does not resemble a Taylor rule. First, the coefficient on inflation is less than unity, and indeed
insignificantly different from zero with a negative point estimate. Second, the output coefficient is
negative. The results are essentially unchanged if one estimates the feedback rule by instrumental
variables using lagged values of π, y, and R as instruments. Thus, an econometrician working with
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a data sampled from the Ramsey economy would conclude that monetary policy is passive, in the
sense that the interest rate does not seem to react to changes in the rate of inflation.

The results are also insensitive to the introduction of a smoothing term à la Sack (1998) in the
above interest-rate rule. Specifically, adding the nominal interest rate with one lag to the set of
explanatory variables yields

Rt = 0.03 + 0.15πt − 0.11 yt + 0.34Rt−1 + ut; R2 = 0.96.

One issue that has attracted the attention of both empirical and theoretical studies on interest-
rate feedback rules is whether the central bank looks at contemporaneous or past measures of
inflation. It turns out that in our Ramsey economy, a backward-looking rule also features an
inflation coefficient significantly less than one. Specifically, replacing πt with πt−1 in our original
specification of the interest rate rule we obtain

Rt = 0.04 + 0.21πt−1 − 0.16 yt + ut; R2 = 0.92.

We close this section by pointing out that the results should not be interpreted as suggesting
that optimal monetary policy can be implemented by passive interest-rate feedback rules like the
ones estimated above. In order to arrive at such conclusion, one would have, in addition, to identify
the underlying fiscal regime. Then, one would have to check whether in a competitive equilibrium
where the government follows the resulting monetary/fiscal regime, welfare of the representative
household is close enough to that obtained under the Ramsey allocation. An obvious problem
that one might encounter in performing this exercise is that the competitive equilibrium fails to be
unique at the estimated policy regime. This is a matter that deserves further investigation.

9 Conclusion

The focus of this paper is the study of the implications of price stickiness for the optimal degree of
price volatility. The economic environment considered features a government that does not have
access to lump-sum taxation and can only issue nominally risk-free debt. The central finding is
that for plausible calibrations of the degree of nominal rigidity the volatility of inflation associated
with the Ramsey allocation is near zero. Indeed, a very small amount of price stickiness suffices to
make the optimal inflation volatility many times lower than that arising under full price flexibility.

Our results show that when prices are sticky, the social planner abandons the use of price
surprises as a shock absorber of unexpected innovations in the fiscal budget. Instead the government
chooses to rely more heavily on changes in income tax rates. The benevolent government minimizes
the distortions introduced by these tax changes by spreading them over time. The resulting tax
smoothing behavior induces a near random walk property in tax rates and public debt. This
characteristic of the Ramsey real allocation under sticky prices resembles that of economies where
the government can issue only non-state-contingent debt, like the ones studied by Barro (1979) and
Marcet, Sargent, and Seppala (2000).

Our results suggest that the fragility of the use of the price level as a shock absorber is not
limited to the introduction of small degrees of nominal rigidities. Any friction that causes changes
in the equilibrium real allocation in response to innovations in the price level is likely to induce
the Ramsey planner to refrain from using the price level as an instrument to front-load taxation.
Examples of such frictions could be informational rigidities as in Lucas (1972) and Mankiw and
Reis (2001) and costs of adjusting the composition of financial portfolios, as in limited participation
models (Fuerst, 1991; Lucas, 1990). We plan to explore these ideas further in future research. If this
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conjecture is correct, our sticky-price model is simply a metaphor to illustrate a deeper mechanism
at work in the macroeconomy that leads central banks all over the world to favor price stability
above any other goal of monetary policy.

22



Appendix A

Proof of Proposition 1

We first show that plans {ct, ht, vt, πt, λt, bt,mct} satisfying (13)-(23) also satisfy (24) (25), (26)
vt ≥ v, and v2

t s
′(vt) < 1. It follows from the definition of ρ(vt) and (15) that ρ(vt) = Rt. It is

easy to see then that (15), (17), and assumption 1 together imply that vt ≥ v and v2
t s

′(vt) < 1.
Taking expectations conditional on information available at time t of (16), using the definition of
ρ(vt), and combining it with (17) one obtains (24). To obtain (25) divide (19) by Pt. Solve (14)
for τt and use the resulting expression to eliminate τt from (19). Use (23) to replace Mt/Pt and
let bt = Bt/Pt. Finally, multiply and divide (20) by Pt+j and replace qt+j+1 with (21) and (16).
Multiply by λt/(qtPt) to get(26).

Next, we must show that for any plan {ct, ht, vt, πt, λt, bt,mct} satisfying (13), (18), (22), (24)
(25), (26) and vt ≥ v, and v2

t s
′(vt) < 1 one can construct plans {Mt, Bt, qt, rt+1, τt, Rt} so that

(14)-(17), (19)-(21), and (23) hold at all dates and under all contingencies. Set τt such that (14)
holds. Set Rt = ρ(vt). It follows from the definition of ρ(vt) that (15) holds. Assumption 1, the
constraints vt ≥ v and v2

t s
′(vt) < 1 ensure that Rt ≥ 1. Let rt+1 be given by (16). Taking expected

value and comparing the resulting expression to (24) shows that (17) is satisfied. With rt in hand,
let qt be given by (21). Using Bt = btPt and (23) to write Mt/Pt = ct/vt, and the definition of
τt we recover (19). Let Pt = πtPt−1 and recall that P−1 is given. Multiply (26) by qtPt/λt. Note
that qtPtλtβ

jλt+j+1/πt+j+1 using (16) and (21) can be expressed as qt+j+1Pt+j . Finally, replace
ct+j/vt+j with (23) to obtain (20)

Appendix B

The Lagrangian of the Ramsey Problem

L = E0

∞∑
t=0

βt

{
U(ct, ht) + λf

t

[
ztht − [1 + s(vt)]ct − gt − θ

2
(πt − 1)2

]
(31)

+λb
t

[
λt − βρ(vt)Et

λt+1

πt+1

]

+λs
t

[
ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht − ρ(vt−1)bt−1

πt
− ct−1

vt−1πt
− gt

]

+λp
t

[
βEt

λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
− πt(πt − 1)

]
+ λc

t [Uc(ct, ht) − λtγ(vt)]}

First-Order Conditions of the Ramsey problem for t ≥ 1

ztht = [1 + s(vt)]ct + gt +
θ

2
(πt − 1)2 (32)

λt = βρ(vt)Et
λt+1

πt+1
(33)
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ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt (34)

πt(πt − 1) = βEt
λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
(35)

Uc(ct, ht) = λtγ(vt) (36)

Uc(t)− λf
t [1 + s(vt)] +

λs
t

vt
+ λs

thtγ(vt)Mc(t) − βEt
λs

t+1

vtπt+1
+ λc

tUcc(t) = 0 (37)

Uh(t) + λf
t zt + λs

t (mctzt + Mtγ(vt)) + λs
thtMh(t)γ(vt) +

λp
tηzt

θ

(
1 + η

η
−mct

)
+ λc

tUch(t) = 0

(38)

λb
t −

ρ(vt−1)λb
t−1

πt
− β

λp
t

λ2
t

Etλt+1πt+1(πt+1 − 1) +
λp

t−1

λt−1
πt(πt − 1) − λc

tγ(vt) = 0 (39)

−λf
t s

′(vt)ct − βλb
tρ

′(vt)Et
λt+1

πt+1
− λs

tct

v2
t

+ λs
tMthtγ

′(vt) − βbtρ
′(vt)Et

λs
t+1

πt+1
+ β

ct

v2
t

Et
λs

t+1

πt+1
− λc

tλtγ
′(vt) = 0

(40)

−λf
t θ(πt − 1) + λb

t−1ρ(vt−1)
λt

π2
t

+ λs
t

ρ(vt−1)bt−1 + ct−1/vt−1

π2
t

+ λp
t−1

λt

λt−1
(2πt − 1) − λp

t (2πt − 1) = 0

(41)

λs
t = βρ(vt)Et

λs
t+1

πt+1
(42)

λs
t =

η

θ
λp

t (43)

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (44)

First-Order Conditions of the Ramsey Problem at time 0

ztht = [1 + s(vt)]ct + gt +
θ

2
(πt − 1)2 (45)

λt = βρ(vt)Et
λt+1

πt+1
(46)
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ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt (47)

πt(πt − 1) = βEt
λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
(48)

Uc(ct, ht) = λtγ(vt) (49)

Uc(t)− λf
t [1 + s(vt)] +

λs
t

vt
+ λs

thtγ(vt)Mc(t) − βEt
λs

t+1

vtπt+1
+ λc

tUcc(t) = 0 (50)

Uh(t) + λf
t zt + λs

t (mctzt + Mtγ(vt)) + λs
thtMh(t)γ(vt) +

λp
tηzt

θ

(
1 + η

η
−mct

)
+ λc

tUch(t) = 0

(51)

λb
t − β

λp
t

λ2
t

Etλt+1πt+1(πt+1 − 1) − λc
tγ(vt) = 0 (52)

−λf
t s

′(vt)ct − βλb
tρ

′(vt)Et
λt+1

πt+1
− λs

tct

v2
t

+ λs
tMthtγ

′(vt) − βbtρ
′(vt)Et

λs
t+1

πt+1
+ β

ct

v2
t

Et
λs

t+1

πt+1
− λc

tλtγ
′(vt) = 0

(53)

λs
t = βρ(vt)Et

λs
t+1

πt+1
(54)

λs
t =

η

θ
λp

t (55)

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (56)

Steady State of the Ramsey Economy

Assume that bt = b−1 for all t and that xt = xt−1 = xt+1 = x for all endogenous and exogenous
variables. Also, z = 1. Note that the steady-state value of the marginal cost mct = wt/zt is simply
w.

h = [1 + s(v)]c + g +
θ

2
(π − 1)2 (57)

1 = βρ(v)
1
π

(58)
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c

v
+ b+

(
w +

Uh(c, h)γ(v)
Uc(c, h)

)
h =

ρ(v)b
π

+
c

vπ
+ g (59)

π(π − 1) =
ηh

θ(1− β)

(
1 + η

η
− w

)
(60)

Uc(c, h) = λγ(v) (61)

Uc − λf [1 + s(v)] +
λs

v
+ λshγ(v)Mc − β

λs

vπ
+ λcUcc = 0 (62)

Uh + λf + λs(w + Mγ(v)) + λshMhγ(v) +
λpη

θ

(
1 + η

η
− w

)
+ λcUch = 0 (63)

λb − ρ(v)λb

π
− β

λp

λ2
λπ(π − 1) +

λp

λ
π(π − 1) − λcγ(v) = 0 (64)

−λfs′(v)c − βλbρ′(v)
λ

π
− λsc

v2
+ λsMhγ′(v) − βbρ′(v)

λs

π
+ β

c

v2

λs

π
− λcλγ′(v) = 0 (65)

−λfθ(π − 1) + λbρ(v)
λ

π2
+ λs ρ(v)b + c/v

π2
+ λp(2π − 1) − λp(2π − 1) = 0 (66)

π = βρ(v) (67)

λs =
η

θ
λp (68)

Appendix C

Proof of Proposition 2

We first show that plans {ct, ht, vt, πt, bt,mct} satisfying (13)-(23) also satisfy (27)-(29), vt ≥ v,
and v2

t s
′(vt) < 1. It follows from the definition of ρ(vt) and (15) that ρ(vt) = Rt. It is easy to see

then that (15), (17), and assumption 1 together imply that vt ≥ v and v2
t s

′(vt) < 1. To obtain
(27) divide (18) by λt and then use (13) to eliminate λt. Next divide (19) by Pt. Solve (14) for
τt and use the resulting expression to eliminate τt from (19). Use (23) to replace Mt/Pt and let
bt = Bt/Pt. This yields (28). For any t, j ≥ 0, (19) can be written as

Mt+j + Bt+j + τt+jPt+jzt+jmct+jht+j = Rt+j−1Bt+j−1 + Mt+j−1 + Pt+jgt+j

Let Wt+j+1 = Rt+jBt+j + Mt+j and note that Wt+j+1 is in the information set of time t + j. Use
this expression to eliminate Bt+j from (19) and multiply by qt+j to obtain

qt+jMt+j(1 −R−1
t+j) + qt+jEt+jrt+j+1Wt+j+1 − qt+jWt+j = qt+j[Pt+jgt+j − τt+jPt+jmct+jzt+jht+j ],
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where we use (17) to write Rt+j in terms of rt+j+1. Take expectations conditional on information
available at time t and sum for j = 0 to j = J

Et

J∑
j=0

[
qt+jMt+j(1 −R−1

t+j)− qt+j(Pt+jgt+j − τt+jPt+jmct+jzt+jht+j)
]
= −Etqt+J+1Wt+J+1 + qtWt.

Take limits for J → ∞. By (20) the limit of the right hand side is well defined and equal to qtWt.
Thus, the limit of the left-hand side exists. This yields:

Et

∞∑
j=0

[
qt+jMt+j(1 −R−1

t+j) − qt+j(Pt+jgt+j − τt+jPt+jmct+jzt+jht+j)
]
= qtWt

By (16) we have that Pt+jqt+j/qt = βjλt+jPt/λt. Use (13) to eliminate λt+j , (23) to eliminate
Mt+j/Pt+j to obtain

Et

∞∑
j=0

βj Uc(ct+j , ht+j)
γ(vt+j)

[
ct+j

vt+j
(1 −R−1

t+j)− (gt+j − τt+jmct+jzt+jht+j)
]

=
Wt

pt

Uc(ct, ht)
γ(vt)

Solve (14) for τt+j . Then τt+jmct+jzt+jht+j = mct+jzt+jht+j+γ(vt+j)/Uc(ct+j , ht+j)Uh(ct+j , ht+j)ht+j .
Use this in the above expression and replace gt+j with (22). This yields

Et

∞∑
j=0

βj


Uc(ct+j , ht+j)ct+j

1 + α1s(vt+j) +
1−R−1

t+j

vt+j

γ(vt+j)
+ Uh(ct+j , ht+j)ht+j+

zt+jht+jUc(ct+j , ht+j)
γ(vt+j)

(mct+j − 1) +
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

]
=

Wt

Pt

Uc(ct, ht)
γ(vt)

Finally, use (15) to replace (1 − R−1
t+j)/vt+j with vt+js

′(vt+j) and use the definitions of φ(vt)
and Wt to get (29).

We next show that that plans {ct, ht, vt, πt, bt,mct} satisfying (22), (27)-(29), and vt ≥ v, and
v2
t s

′(vt) < 1 also satisfy (13)-(23). Construct λt so that it satisfies (13). Let τt be given by (14). Let
Rt be given by (15). Let rt+1 be given by (16). Let qt be given by (21) and Mt/Pt by (23). By the
same arguments given in the proof of Proposition 2 on can show that (18) and (19) then hold. Thus,
what remains to be shown is that (17) and (20) are satisfied. Note that Rt = ρ(vt) = 1/[1−v2

t s
′(vt)],

then the restriction vt ≥ v and v2
t s

′(vt) < 1 and assumption 1 imply that Rt ≥ 1. Write (29) as

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+Et

∞∑
j=1

βj

{
Uc(ct+j , ht+j)ct+jφ(vt+j) + Uh(ct+j , ht+j)ht+j + zt+jht+j(mct+j − 1)

Uc(ct+j , ht+j)
γ(vt+j)

(69)

+
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]

Make a change of index h = j − 1.
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Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+βEt

∞∑
h=0

βh {Uc(ct+h+1, ht+h+1)ct+h+1φ(vt+h+1) + Uh(ct+h+1, ht+h+1)ht+h+1

+zt+h+1ht+h+1(mct+h+1 − 1)
Uc(ct+h+1, ht+h+1)

γ(vt+h+1)
(70)

+
θ

2
(πt+h+1 − 1)2

Uc(ct+h+1, ht+h+1)
γ(vt+h+1)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]
Using (29) this expression can be simplified to read:

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+βEt

{
Uc(ct+1, ht+1)

γ(vt+1)

[
ct/vt + ρ(vt)bt

πt+1

]}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]
(71)

Take expectations of (16) and use the resulting expression to eliminate βEt

{
Uc(ct+1,ht+1)
γ(vt+1)πt+1

}
. This

yields

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+Etrt+1
Uc(ct, ht)
γ(vt)

[ct/vt + ρ(vt)bt] =
Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]
(72)

Multiply by Ptγ(vt)/Uc(ct, ht) and replace θ/2(πt − 1)2 with (22). Combine (15) with (23) to
express , ct/vt(v2

t s
′(vt)) as Mt/Pt(1−R−1

t ). Finally, use (14) to replace Uh/Ucγ(vt)ht. The resulting
expression is

Mt(1 −R−1
t ) + τPtmctztht − Ptgt + Etrt+1(Mt + RtBt) = Mt−1 + Rt−1Bt−1 (73)

Subtracting (19) from this expression it follows that (17) must hold. Finally, we must show that
(20) holds. Multiply (19) in period t + j by qt+j and take information conditional on information
available at time t to get

Et[qt+jMt+j(1 − rt+j+1) + qt+j+1Wt+j+1] = Et[qt+jWt+j + qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)]

Now sum for j = 0 to j = J .

Et

J∑
j=0

[qt+jMt+j(1 − rt+j+1) − qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)] = −Etqt+J+1Wt+J+1 + qtWt

Divide by qtPt

Et

J∑
j=0

qt+jPt+j

qtPt
[(ct+j/vt+j)(1 − rt+j+1)− (gt+j − τt+jwt+jht+j)] = −Etqt+J+1Wt+J+1/(qtPt) +

Wt

Pt

It follows from (29) that the limit of the left-hand side of the above expression as J → ∞ is Wt/Pt.
Hence the limit of the right-hand side is well defined. It then follows that

lim
J→∞

Etqt+J+1Wt+J+1 = 0

for every date t. Using the definition of Wt, one obtains immediately (20).
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