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Public Information and the Persistence of Bond Market Volatility

1t is a well-documented fact that volatility in financial markets is correlated over time (for a review of
recent work, see Bollerslev, Chou, and Kroner [1992]; for an earlier discussion see Fama [1970]). Although
remarkable progress has been made in modeling this process empirically, relatively little is known about why
financial market volatility is autocorrelated. Since volatility is equivalent to information flow in a large class
of models (see Ross [1989]), one possible explanation is that public information arrives in clusters. Such
autocorrelation is plausible; we know from everyday experience that publicly observable events do not occur
independently over time. For example, suppose the President proposes a new tax bill to Congress on Monday.
On Tuesday, the Congress may react with a counterproposal, and so forth. Thus if the news-generating
process has autocorrelated volatility, we would expect financial market prices also to have autocorrelated

volatility. This volatility predictability is perfectly consistent with efficient markets.

Alternatively, autocorrelated volatility could arise due to trading on private information over time,
changes in tastes, liquidity trading, or some other aspect of the trading or information-gathering process
itself. Some empirical evidence suggests this alternative. For example, French and Roll [1986] find that
stock market volatility is lower when the market is closed, even if businesses are open. Campbell, Grossman,
and Wang [1993] explain stylized facts about volume and return autocorrelation using a model with shocks
to risk aversion. On the theoretical side, Brock and LeBaron [1995] show how learning can give rise to
positively autocorrelated volatility even when fundamentals follow a homoskedastic random walk. Back
[1992] generalizes Kyle [1985] and demonstrates that monopolistic private information trading over time

may lead to volatility patterns.

It is difficult to distinguish between these alternatives, since we cannot measure information arrivals
directly. Our aim, therefore, is somewhat more modest. We attempt to shed light on the sources of auto-
correlated volatility in financial markets by examining the response of asset prices to the release of public
information. We investigate whether inter-day volatility autocorrelation is different around a particular sub-
set of exogenously scheduled, regular public information releases. Specifically, we investigate the response
of Treasury bond prices to monthly U.S. government releases of the producer price index and employment
data. The key feature of these announcements is that (unlike some news) they are not clustered in time but
are released on periodic, preannounced dates. For example, unemployment statistics are generally released

on the first Friday of every month.

We first document that these announcements have a contemporaneous effect on Treasury bond market
daily excess return volatility. Second, we examine whether these predictable increases in the second moment
of excess returns influence the expected value of the first moment of excess returns. We find some evidence

of a risk premium on these announcement days.



We next explore whether shocks to bond volatility on announcement days are as persistent as shocks on
non-announcement days. If announcement shocks do not persist, it would suggest that market prices quickly
incorporate public information and that the trading process does not inherently generate persistent volatility
in response to news. On the other hand, strong persistence of announcement shocks would suggest that some

feature of the trading (or information-gathering) process itself causes volatility to be autocorrelated.

To model volatility, we develop variants of the autoregressive conditional heteroskedasticity (ARCH)
framework of Engle [1982]. Engle [1982] finds that quarterly U.K. inflation has autocorrelated volatility.
Since interest rates contain a component related to expected future inflation, we would naturally expect
interest rates to also have autocorrelated volatility. Engle, Lilien, and Robins [1987] document this by
estimating a variant of an ARCH model using monthly three and six month Treasury bill interest rates.
Bollerslev, Engle, and Wooldridge [1988] use quarterly data on 20-year Treasury bonds in their multivariate
linear GARCH(p,q) model and find that conditional covariances are a significant determinant of risk premia.
Bollerslev, Chou, and Kroner [1992] summarize previous ARCH literature that has used interest rate data.
The primary advantage of an ARCH specification in this context is that it admits time-varying risk premia.
Most previous studies have focussed on this characteristic and its implications for theory on the term structure
of interest rates. Bollerslev, Chou, and Kroner [1992] note that while many of the interest rate applications
have used linear specifications, it is possible that nonlinear dependencies also exist. We use the GARCH(1,1)
model (Bollerslev [1986]) as the starting point for our investigation of the impact of news events. The mixture

model (discussed below) provides a parsimonious framework in which to incorporate potential nonlinearities.

As Bollerslev, Chou, and Kroner [1992] note, “While serial correlation in conditional second moments
is clearly a property of speculative prices, a systematic search for the causes of this serial correlation has
only recently begun.” One explanation that they offer is the existence of serially correlated news events.
Mitchell and Mulherin [1994] collect an index of news events based on headline widths on the front page of
the New York Times, 1983-1990. They construct a daily database listing major news events with headlines
that are at least three columns wide. Using this database (which the authors kindly provided us), we created
a dummy variable, NEWS, which was equal to one on days on which major news events occurred and zero
otherwise. This daily variable has a first-order autocorrelation coefficient of about 0.20. Thus it appears

there is evidence the news-generating process is in fact positively autocorrelated at daily frequencies.

In contrast, in this study we use a source of news that is, by its very nature, not positively autocorrelated.
The timing of government news releases are exogenous to financial markets. We use a dummy variable equal
to one on the day that the government announces macroeconomic news; since this news is released once a
month, this dummy variable is negatively autocorrelated. A key assumption we make is that the news released

on announcement dates is a one-time lump of exogenous news. A possible problem with this assumption is



that participants other than financial markets may also react to this news after some delay.}
Data

While most recent GARCH research has considered stock prices and exchange rates, which are higher

2 in this study we examine

frequency and thus provide more observations with which to draw inference,
daily returns on 5-, 10-, and 30-year Treasury bonds. We chose these returns because of our interest in
macroeconomic announcements, which we know had a great impact on the Treasury bond market. McQueen
and Roley [1993] and Ederington and Lee [1993] document that PPI and employment news surprises result in

large price changes for the 10-year bond; following them, we therefore consider PPI and employment release

dates.

We calculated excess returns on holding Treasury bonds over 3-month T-bills. Returns were calculated
using the Federal Reserve’s constant maturity interest rate series.> Employment announcement dates begin-
ning in February of 1969 and PPI announcement dates beginning in February of 1971 were supplied to us by
the Bureau of Labor Statistics. We were also able to identify manually PPI release dates back to February
1969;* our analysis begins then and extends through December 1993. Our data on 30-year Treasury bond
yields begins in February 1977.

Table 1 gives summary statistics for daily excess returns. As can be seen in the first entry in the

first column, excess returns on treasury bonds were essentially zero in this period. The magnitude of daily

! We thank Jim Poterba for suggesting this possibility. One possible scenario is that the Federal Re-
serve, upon observing the news, changes its policy on the subsequent day (typically, however, the Fed
learns the contents of the report on the night prior to the report’s release). Under this scenario, the re-
lease of news would be an autocorrelated process. To investigate this possibility, we examined whether
Fed policy changes tended to occur on or subsequent to announcement dates. Specifically, we compared
announcement dates to dates on which the Fed changed its target interest rate, as documented in Rude-
busch [1995). We found no evidence that Fed target changes were more likely to occur on days imme-
diately following announcement days (using Rudebusch’s sample period of 1974-9 and 1984-92). Target
changes occurred on 5.3% of the days in the sample, but on only 5.0% of the post-announcement days.
Thus target changes were less likely to occur on days following announcements than on other days. We
conclude that, at least as far as Fed behavior is concerned, announcement news is not autocorrelated.

2 Monte Carlo evidence in Hong [1987] and Lumsdaine [1995] emphasizes the need for a large amount of
data in maximum likelihood estimation of models with conditional heteroskedasticity.

3 Returns are calculated from yields by assuming a bond price equal to par at the beginning of each daily
holding period (see, for example, Ibbotson and Associates [1994]). That is, we assume a hypothetical bond
with a coupon equal to the yield, and we calculate an end-of-period price on this bond using the next day’s
yield. Total returns equal the above capital appreciation plus income accrued over the holding period, which
varies from one to four days due to weekends and holidays.

4 Using The New York Timesand The Wall Street Journal.



returns was sometimes quite large, with returns for the 10-year bond as high as 4.69 percent (on October
20, 1987, the day after the stock market crash) and as low as -3.67 percent (on February 19, 1980). There
is also evidence of first-order autocorrelation in excess returns. In addition, excess returns are significantly

positively skewed and are significantly fat-tailed.

The upper half of Table 1 motivates our use of the ARCH class of models. The first-order autocorrelation
coefficient for the absolute value of excess returns ranged from .14 to .26, and for the squared value ranged

from .06 to .18. Like stock prices and foreign exchange rates, interest rates exhibit autocorrelated volatility.

The bottom half of Table 1 focuses on the announcement dates. For both the employment release and
the PPI release, bond market volatility is far higher on release dates than non-release dates, measured either
way. Both the excess returns and the volatility measures exhibit means that are substantially larger than
the full sample. In contrast, the first-order autocorrelation coefficients of volatility following announcement
days are not very different from average, rising from .16 to .18 for 10-year bond squared excess returns but

falling from .26 to .25 for the analogous absolute value of excess returns.

A suggestive fact from Table 1 is that excess returns are far above average on announcement dates
for both the PPI and employment. For the pooled announcement dates, excess returns are .084%, .098%,
and .132% for the 5-, 10-, and 30-year bonds, on average, compared with negative excess returns for non-
announcement dates. Financial market participants know beforehand that these days have high volatility.

If risk is higher on these days, we would expect returns also to be higher; this is precisely what happens.5

We turn next to simple OLS regressions to explore the relationship of the announcement dates to both
risk and return. Since the daily bond market return data used here are relatively unfamiliar, we also review
some of the day-of-the-week properties. Table 2 documents the relationship between the volatility of daily
excess returns, day-of-the-week effects, and the announcement dates. Again, we measure volatility in two

ways, using both squared and absolute value of excess returns.

The results indicate that there are pure day-of-the-week effects for return volatility. We see that bond
market volatility is generally highest on Mondays and Fridays, lowest on Wednesdays, exhibiting a U-shaped
curve over the week. This contrasts somewhat with the stock market, in which return variances decline over
the course of the week (French [1980]). Because we also include announcement day dummy variables, the
difference between day-of-the-week volatility patterns in the two markets is not due to the macroeconomic

announcements we study here, which would otherwise tend to raise bond market volatility on the applicable

5 Interestingly, if in 1969-94 one had shorted Treasury bonds on non-announcement dates and had held
Treasury bonds on announcement dates, one would have made positive excess daily returns (admittedly small
and doubtless less than trading costs.



Fridays.® Table 2 also confirms that, controlling for day of the week effects, announcement days have
significantly higher volatility than average. Across the three bonds studied, event day volatility increases by

about 50% relative to Fridays, as measured by squared excess returns.

The financial press often claims that financial markets are particularly quiet on the days prior to these
announcements. For example, a typical headline in the Wall Street Journalreads (8/5/94) “Treasurys Decline
in Light Trading as Market Awaits Today’s Report on Employment in July”. This might be called the “calm
before the storm” effect. We investigate this claim by including leads and lags of the announcement dummy
in the regression. For the 10-year bond, both squared and absolute returns are lower than on average on days
preceding macroeconomic announcements (12% lower for absolute, 16% lower for squared excess returns, seen
by comparing the coefficients on Announcement(t + 1) in Table 2 to the full sample means in Table 1). The
effect is statistically significant for absolute returns but not for squared returns. We conclude, therefore,
that there is some evidence for the “calm before the storm” effect.” Volume data might cast further light

on this question.

Table 2 shows that announcement dates have significantly higher volatility than average. Is this high
risk accompanied by high return? Table 3 explores this issue by examining excess returns on announcement
dates. The first five rows show day-of-the-week effects. Most strikingly, excess returns are consistently
negative on Mondays and consistently positive on Fridays. Since Table 2 showed that both Mondays and

Fridays are high volatility days, we find no obvious relation between high volatility and mean excess returns.?

The seventh row shows the effect of including the announcement day dummy. Holding constant day-
of-the-week effects, excess returns are .045 percent higher on announcement days. This higher return is
marginally significant with a t-statistic of between 1.5 and 2.5 across the three bonds we study. In contrast,
the sixth and eighth rows show that the days before and after announcement dates (which we know from

Table 2 do not have high volatility) do not have high return.

The fact that returns are signicantly higher on announcement dates is similar to results that might
be obtained from an ARCH-M specification which allows conditional variance to affect the mean (see, for
example, Engle, Lilien, and Robbins [1987]). We consider the results in Tables 2 and 3 important because

they supply evidence of a time-series risk /return tradeoff without reliance on the ARCH-M specification.?

6 84% of the announcements were on Fridays, and 37% of the Fridays had announcements.

7 The size and significance of this effect, however, appears to be dependent on the sampling period used.

8 These day of the week patterns are stable over time. Splitting the sample in half and rerunning the pre-
ceding regressions over both time periods did not alter the significance and signs of the Monday and Friday ef-
fects.

® Pagan and Sabau [1987], for example, suggest that inference in the ARCH-M model will hinge critically

5



On the other hand, while the simple OLS specification in these tables appears appealing, there at least two
reasons to consider more complex specifications. First, from an econometric standpoint, failure to account
for conditional heteroskedasticity is inefficient. In addition, as the descriptive results in Table 1 suggest, the

effect of announcement days on excess return volatility is of separate interest.
Main Results

Perhaps the most commonly used model of financial asset return volatility is the GARCH(1,1) model
proposed by Bollerslev [1986]. Though it is not necessarily the correct specification of the return generating
process, it is an important benchmark, because the same model has been estimated across a wide variety
of asset classes and sampling frequencies. In addition, theoretical results are available for quasi-maximum

likelihood estimators of this model (see, for example, Lumsdaine [1996]).

For these reasons, we begin by estimating a univariate GARCH(1,1) model of daily bond returns ad-
Justed for day-of-the-week and announcement day effects. We initially accommodate these volatility effects
using the procedure outlined in Andersen and Bollerslev [1994]. Dummy variables allow us to measure
the (contemporaneous) impact of an announcement day on both conditional mean returns and conditional

volatility. Specifically, we assume returns are of the form

F

S e E 012 + ¢ Roy + (sehe) /%,
k=M

(1) Ry

F
(1 +6813) H(1+5k1,’c)
k=T

(2) 5t

where IM ... IF are day of the week indicator dummy variables, I2 is the announcement indicator dummy
variable, s; is the volatility seasonal for time ¢, §; measures the volatility effect of an announcement on
day ¢, and &; is a random variable with mean zero and unit variance, independent of s; and h;. That is,
we estimate a (multiplicative) seasonal dummy for each day of the week as well as an announcement day
volatility factor. The specification (1) allows the conditional variance to differ on announcement days, that
is, the deseasonalized residual 5, = (1 + 601{‘)1/2&’1:/2 has mean zero, with conditional variance h; on

non-announcement days and A;(1 + &) on announcement days.

We estimate an autoregressive model for the first moment because we find small but highly significant
positive autocorrelation in Treasury bond returns.!® This may be due to microstructure effects in measuring

prices, or it may be due to equilibrium partial adjustment. In addition, the coefficients pps through up

on correct specification of the conditional variance process.

10 We also estimated a model with higher order autoregressive terms but the higher order terms were in-
significant and thus are excluded.



measure day-of-the-week effects in mean returns, and @ measures changes in mean returns on announcement

dates.

The benchmark GARCH(1,1) model is given the following specification of the conditional variance

process h;:
) hh=w+ Otff_lht—l + Bh: 1

where fgh:/2 is the adjusted residual, that is This is an augmented version of the residual

used in Andersen and Bollerslev [1994], modified to additionally deseasonalize due to announcement effects.
Alternatively, we could use (s:h;)!/2¢; (the first stage residual from estimation of (1)) or #, (deseasonalizing
exactly as Andersen and Bollerslev); doing so produces nearly identical results. We are principally interested
in the persistence properties of the estimated conditional volatility following announcements. On one hand,
if markets are eflicient, we would expect information to be incorporated immediately so that announcement
news would exhibit little persistence. On the other hand, if volatility is caused by some feature of the
trading process itself, persistence following announcement news may be higher than on non-announcement

days. Hence, we supplement our benchmark GARCH(1,1) model with alternative specifications which allow

the degree of volatility persistence to vary.

Reported parameter estimates for equations (1)-(3) are obtained by quasi-maximum likelihood estima-
tion using a normal likelihood function; starting values for conditional volatility are estimated to maximize

the sample likelihood.!!

The results are reported in Table 4 for the 5-, 10-, and 30-year bond returns. Robust standard errors, as
given in Bollerslev and Wooldridge [1992], are also provided. Across all specifications of h;, the parameter
estimates in (1) and (2) are quite stable; the parameter estimates for the 5- and 10-year returns are almost
identical across all specifications. The autoregressive coefficient is approximately 0.15. Expected returns are
statistically significantly negative on Mondays and Thursdays (-0.037% for the 10-year bond), and positive
on Fridays (0.038% for the 10-year bond). Most importantly, we confirm the earlier evidence of a risk
premium on announcement days; returns on such days average 0.033%, 0.017%, and 0.026% higher for the
three bonds. All three return series behave similarly, and the results over the different time periods are

similar, indicating stability of the data-generating process.

Estimation of (3) reveals a statistically significant impact of the announcement; on average volatility

increases by 69% on announcement days for the 10-year bond. In addition, conditional variance is highly

11 This is because there is no one obvious choice of exogenous starting value available. Fixing the starting
value at the sample estimate of the unconditional variance, as suggested in Engle and Bollerslev [1986], yielded
similar results.



persistent; we cannot reject the hypothesis that the model is IGARCH(1,1) in favor of a covariance-stationary

GARCH(1,1) model.

As mentioned above, we are interested in the different persistence properties on announcement days rel-
ative to non-announcement days. We use three metrics to examine the relative persistence of announcement
day shocks to non-announcement day shocks. One standard measure of persistence comes from the j-step

ahead forecast of conditional variance (this is noted in Andersen and Bollerslev [1994]):
thiy; — 0 = (a + BY (he — 07),

where hiy; is the expectation at time ¢ of conditional volatility at time ¢ + j and o2 is the unconditional
variance. If @ + § < 1 this can be used to compute a half-life, that is, the time it takes on average for

conditional variance h; to revert halfway to its unconditional value. This is computed by setting (a+8)} = %;

in(2
in(a48)’

(so that j would be negative), we can still use this measure to determine relative persistence. For example,

a + 8 equals 0.996, 1.002, and 1.00 for the 5-, 10-, and 30-year bonds, respectively. Thus using this metric,

the half-life j is thus defined as — Although our estimated parameter values imply a value of a4+ > 1

we would conclude that in all three assets, there is a high degree of persistence. The implied half-life for the

5-year bond is 173 days.

Second, we consider decomposing the first notion of persistence into two pieces: @, which we call
the “direct” or “immediate” effect, and 3, which we call the “indirect” effect. The intuition behind this
nomenclature is that a shock today can influence tomorrow’s conditional volatility directly through the
af?_hi—1 term of (3). Subsequent effects of é2_,, however, will arise through lagged values of the conditional
variance, that is, through the gh,_, term. For example, for the 5-year bond, the direct effect of a shock on

tomorrow’s conditional volatility is .082; this effect decays at rate .914 subsequently.

Our third definition of persistence considers the decay of shocks to conditional volatility, in the spirit of

a half-life, but useful both in the case of a + § < 1 and @ + 8 > 1. In particular, a recursion of (3) gives
o0 . o0
h, =w2ﬂ1 +a2ﬂ’s;"_l_i.
j=0 j=0

00

The total effect of a shock €; willbe o }_ B/ = ﬁ We are interested in determining the number of periods
j=0

s that it takes for half of the effect of ¢¢ to impact h, that is, find the value of s such that g*+! = 1.1 Thus

__h@ _
= Tin(p)

12 Because the decay rate is exponential, it will take 2s periods for three-quarters of the effect of €, to impact
hy.

(4)




The higher is 3, the larger s will be and the longer it will take for &; to reach the half-impact stage. Using
this metric, s = 6.71, 7.77, and 12.80 days, for the 5-, 10-; and 30-year bonds, respectively. Here the 30-year
bond is the most persistent, due to the higher value of 8 (note a does not determine persistence in this

metric; only the indirect effect governs the decay rate).

The obvious benefit to the latter two notions of persistence is that they allow us to differentiate between
the direct effect and the indirect effect.!® In particular, larger direct effects may correspond to smaller
indirect effects and vice versa. Thus while all three assets in model (1)-(3) display similar levels of overall
persistence (as measured by the first metric), the 30-year bond sample has a slower decay rate and a smaller
direct impact of shocks than do the other 2 series (recall that its sample period differs from that of the 5-
and 10-year bonds). We can similarly turn equation (3) around to ask what fraction of the total impact of
€? will arise within the first month following its arrival; in this case, 79% of a shock to the 30-year bond will

be felt in the first month and 91-94% for the other two series.

Are announcement day volatility shocks more or less persistent than shocks on other days? To answer

this question, we generalize the benchmark GARCH(1,1) model in several ways.

First, because our announcement days are anticipated, one way to explicitly model potential persistence
is to include leads and lags of the announcement dummy in (2), in the spirit of column (3) in Tables 2 and

3. That is, we modify (2) in the following way:

F
(2a) H(1+5 A, H 1+ & 1F).
i=-1 k=T
Note that if we exclude JA |, A, IA |, (2a) becomes (2), implying no change in volatility behavior before

or after announcements.

Results for this model are given in Table 5. A robust Wald test of the joint hypothesis that §_; = 0,6, =
0, and é; = 0 is equal to 2.488, 0.951, and 0.698 for the 5-year, 10-year, and 30-year bonds, respectively.
The five percent x2(3) critical value is 7.81, so that (2) is not rejected in favor of (2a). In addition, none
of these coefficients is individually significantly different from zero. The estimates of the other coefficients
in the model are very close to those obtained from estimation using (2). All three measures of persistence

reproduce the results obtained with (2).14

13 This is one of the many distinctions between, for example, an IGARCH(1,1) model and an I(1) pro-
cess; in the latter, the rate of decay is exponentially related to the coefficient on the lagged dependent
variable (and the corresponding impulse response depends on one parameter) whereas in the IGARCH(1,1)
model, the impulse response will depend both on an immediate effect due to a and a rate of decay 8.

14 We also estimated a GARCH-M model. Although the newly included coefficient is significant, the values

9



Because the relevant & coefficients are indistinguishable from zero, this model suggests that the an-
nouncement has no unusual effect on volatility other than on the event day. However, the key weakness of
this specification is that it deals with pre- and post-announcement days deterministically. That is, while
variances are allowed to differ across days, announcement shocks and non-announcement shocks affect the

following day’s conditional variance identically. There is no scope for differing persistence of a shock.

Thus, an alternative way to model the effects of announcements would be to allow the coefficient « in
the conditional variance equation to take on a different value following announcements. That is, we now
estimate the model (1) and (2) above, except that we specify the evolution of the conditional variance process

as
(35) hi =w+ [aalf; + an(l = TA )€ 1hey + Bhiy.

Note that if a4 = 0, this implies that there is no persistence of the announcement shock, whereas if a4 =
ap, (3b) reduces to (3), which implies that shocks have the same persistence, regardless of announcement
status. To compare volatility dynamics on announcement and non-announcement days, we must consider

our summary measures of persistence.

For the most part, the direct impact of announcement shocks is noticeably different from that of non-
announcement shocks. Table 6 shows that a4 < ay for the 10- and 30-year bonds. In addition, a4 is
significantly different from zero for the 5- and 10-year bonds, implying that announcement shocks exhibit
persistence. Conditional variance on the announcement day is 64% above the non-announcement variance h,
for the 10-year bond. It is 69% and 117% greater for the 5- and 30-year bonds, respectively. The influence of
an announcement day shock to the 10-year bond on the following day variance (day t+1) is multiplied by the
factor a4(1 + 8;) and is .085, compared with .082 for a non-announcement shock, roughly 4 percent higher.
For the 5-year bond this difference is even more dramatic — the effect of an announcement day shock is .145
compared with .082, roughly 77% higher. For the 30-year bond, the additional effect of an announcement
day shock is .061 versus .052 for a non-announcement day shock, representing a 17% increase. Interpreted
another way, average volatility of the 10-year and 30-year bonds on the day following an announcement will
be approximately one percentage point higher than average volatility following a non-announcement day,

suggesting minimal additional persistence of announcement day shocks.

Comparing (3b) to (3), the robust t-statistic of the hypothesis that a4 = an is .098, 1.364, and 1.143,
failing to reject the null hypothesis that the coefficients are the same for all 3 bond rates. Thus there does

of the other coefficients did no change appreciably and we could not reject the model of (1), (2a), and (3) in
favor of the GARCH-M using a likelihood ratio test. We therefore estimate regular GARCH(1,1) models as
in (1) and (3) throughout the paper, as they have known asymptotic properties and do not fall under the sensi-
tivity to misspecification noted in footnote 7.

10



not appear to be a distinction between the long-run impact of announcements versus non-announcements in

(3b). In addition, all three persistence measures are qualitatively similar to those of (3).

In summary, Table 6 indicates that (deseasonalized) announcement day shocks are the same as non-
announcement shocks, in terms of their implication for future volatility. This is surprising. If markets are
able, within the space of a complete trading day, to digest fully new information, then we would expect that
the size of the announcement day shock would not affect volatility in subsequent days. Yet we can reject

this hypothesis (for the 5- and 10-year bonds).

So far, both of the alternatives to the benchmark model that we have considered have limited the way
that announcement shocks affect conditional variance. We now allow for the possibility that the process
governing the evolution of conditional variance due to announcement shocks differs from the process that
describes the impact of non-announcement shocks. We do not, however, want to use a switching model (e.g.,
Hamilton [1989)]), since that would imply that conditional volatility on announcement days depends on its
previous values, ignoring effects from shocks in the intervening (non-announcement) period. Put another
way, announcement day volatility changes less frequently than non-announcement day volatility (on average,
only every 13th day). We would instead prefer that the model allow for differential persistence, but with
conditional variance defined as the sum of announcement-related conditional variance and non-announcement

related conditional variance.

This suggests a mixture model, which allows an announcement shock to feedback into future conditional

variance. The model consists of (1), (2), and the following specification of the conditional variance:

(3¢) hy =w+hN + A2
h{v =an(l - ItA—l)ff—lht—l + ﬁNhfl—l

hf = asIf (62 1 hy_1 + Bahi .

Note that if B4 = Bn (3c) reduces to (3b) whereas if ay = a4 and B4 = By (3c) reduces to model (3)
(the magnitude of the estimated constant term, w, would decrease by a factor 1 — 84). Thus the models
(1), (2), (3) and (1), (2), (3b) are nested in the specification (1), (2), (3c). This latter model allows for
differences in both the direct and indirect effects of non-announcement shocks. It extends and is similar in
spirit to the model of Lamoureux and Lastrapes {1990], which allows for deterministic shifts in the mean
of the conditional variance process. In contrast, our model specifies time-dependent response parameters

governing the ARCH process.

The mixture model is also related to time series models that exhibit long memory. A process exhibits long
memory if shocks die out at a slower than exponential rate. Such long memory in volatility has been observed

in asset return series (examples include Ding, Granger, and Engle [1993] and Bollerslev and Mikkelsen [1995]).
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In terms of modelling, Baillie, Bollerslev, and Mikkelsen [1995] obtain a slow hyperbolic rate of decay for
the influence of lagged squared innovations using a fractionally integrated GARCH (FIGARCH) model.

Fractional integration and mixtures are closely related. Specifically, Granger [1980] shows that a frac-
tionally integrated ARMA process can be written as a mixture of a continuum of simpler AR(1) processes with
different decay rates. Extending the analogy to the second moment, our mixture of two simple GARCH(1,1)

models may capture some of the dynamics in the FIGARCH model.

Results for this model are given in Table 7. It is clear from a comparison of the likelihood ratios that
(1) and (2) combined with (3c) outperforms both (1) and (2) combined with (3) and (1) and (2) combined
with (3b) (it is not directly comparable to (1), (2a), (3) since the models are not nested); the values of the
likelihood ratio statistic comparing models (3) and (3c) are 7.158, 49.33, and 24.10 for the 5-year, 10-year,
and 30-year bonds, respectively, which exceed the x?(2) five percent critical value of 5.99. Even though
we would expect the likelihood ratio statistic to be oversized in this context, we view these numbers as
sufficiently large to reject (3) in favor of the mixture model (3c). As an additional check, we computed
robust Wald statistics as in Lumsdaine [1995] for the joint null hypothesis that a4 = any and 84 = By and
similarly strongly reject this hypothesis for all three series (the value of the statistic is 18.956, 31.215, and
24.148 for the 5-, 10-, and 30-year bonds, respectively). Comparing model (3b) to (3c), the values of the
robust Wald statistics are 9.44, 31.21, and 23.55 for the 5-, 10-, and 30-year bonds, respectively, rejecting the
null hypothesis that §4 = Bx for all three series (the statistic is distributed x2(1) under the null hypothesis;

the five percent critical value is 3.84).15

Returning to our measures of persistence, the value of a4 + 84 is 1.011, 1.005, and 1.003 for announce-
ment shocks in the 5-, 10-, and 30-year bonds, respectively, suggesting a high degree of persistence, similar
across the three assets. Alternatively, for non-announcement shocks, our first persistence measure yields
values of 0.990, .995, and .996. Thus with this metric, announcement shocks are more persistent than

non-announcement shocks; non-announcement conditional volatility follows a covariance-stationary process.

The second and third measures of persistence tell a similar story. While the direct impact is insignif-
icantly different from zero on announcement days, for all three assets, the impact of announcement shocks

persists far into the future (as seen by the indirect effect, 34) with only half the impact arising within the

15 We also investigated subsample stability by estimating this model over three subperiods, with breaks
at 8/15/79 and 8/15/87. Although there is evidence of instability, the announcement effects and qualitative
conclusions regarding persistence remain largely unchanged. While in other contexts inference is sensitive to
misspecification of structural change (see, for example, Perron [1989], and Banerjee, Lumsdaine, and Stock
[1992]), this does not appear to be the case with regard to the question we are investigating here. More
broadly, we view this as a potentially important issue for future research but in the current context, it is be-
yond the scope of this paper.

12



first 42, 114, and 172 days, for the 5-, 10-, and 30-year bonds, respectively. In contrast, non-announcement
shocks typically have a much larger direct effect (as evidenced by the much larger value of ay relative to
a4), but their impact is short-lived, with half of the impact occurring within the first 5-10 days.!® Put
another way, in the month following an announcement shock, only 12-39% of its impact will have been felt,

compared with 86-96% absorption in the month following a non-announcement shock.

The mixture model of (1), (2), and (3c) leads to quite different conclusions about announcement per-
sistence than simpler models. If only the a parameter is allowed to vary as in (3b), we conclude that
announcement shocks and non-announcement shocks are indistinguishable in terms of their persistence. Us-
ing the mixture model, on the other hand, we find that these shocks are qualitatively different. However,
our results can be interpreted in two ways. One interpretation is based on the fact that we cannot reject the
hypothesis that announcement shocks do not persist at all (i.e., @4 = 0). If this is the case, then 84 is not
separately identifiable from w and the associated announcement day conditional variance is homoskedastic.
Under the null hypothesis that a4 = 0, our results agree with those of Ederington and Lee (1993, 1995) that
market prices quickly incorporate the information in these macroeconomic announcements, and that volatil-
ity quickly returns to pre-announcement levels. At least for this subset of information, the null hypothesis of
a s = 0 is consistent with the hypothesis that the trading or information-gathering process does not generate
volatility on succeeding days. This interpretation suggests that in general, autocorrelated volatility is due

to autocorrelated news.

If, on the other hand, the true value of a4 is nonzero, our interpretation is considerably different. A
small positive a4 with 34 close to one suggests a small direct effect that is very persistent. While we could
argue that potential homoskedasticity may be interpreted as infinitely persistent, we attempt to distinguish
between these interpretations by estimating a constrained version of model (1), (2), and (3c), restricting
ay = Pa = 0, so that conditional variance depends on and evolves according to non-announcement days

only. This restricted model consists of equations (1), (2), and the following:
(3d) he =w +hy, hY = an[l— L, 060_1heo1 + BuhiL,.

The results are contained in Table 8 for the 10-year bond; the value of the likelihood ratio statistic is
64, rejecting the null hypothesis of homoskedasticity on announcement days.!” The results of Table 8
lend credibility to the second interpretation. Therefore, we conclude that announcement-day shocks are
qualitatively different than shocks on non-announcement days, that is, while it may take a longer time for

announcement shocks to be absorbed, they have only a small immediate impact on conditional volatility.

16 5.94 for the 5-year, 5.59 for the 10-year, and 10.01 for the 30-year.
17 As noted elsewhere in this paper, the likelihood ratio statistic is likely to be oversized in this context.
Relative to a x?(1) critical value of 5.99, however, we view the magnitude to be sufficiently high in spite of this.
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Conclusions

One interpretation of this low-level, strongly persistent announcement effect is that our original assump-
tion — that announcement news is by definition non-autocorrelated — is misleading. Under this interpretation,
a big announcement day shock would raise the volatility of other (non-announcement) news shocks. So if the
unemployment rate rises this month, perhaps this signals the economy is entering a recession. Thus rational
agents would attach greater significance to subsequent news events, even though the next employment report
will not come for another month. This “regime shift” explanation does not require that the trading process

itself generates autocorrelated volatility.

A second interpretation is that announcement day volatility causes long-term changes in trading strate-
gies. So when the unemployment rate rises, traders not only learn about the true state of the economy, they

also observe the reactions of other traders and thus draw inferences about those traders’ private information.

What conclusions do we draw from Table 7, our best specification for modelling the announcement day
effect? First, we note that two obvious features of the data appear to be robust over all our specifications
and survive into this refinement. The first feature is that conditional volatility is higher on announcement
days. The second feature is that, at least at the short-end of the yield curve, there are significant positive

excess returns on announcement days.

Tables 7 and 8, combined with intra-day data such as Ederington and Lee (1993,1995) give us a fairly
complete picture of the life cycle of a macroeconomic announcement. Traders are frenzied in the first few
minutes. After a few hours, prices stabilize. Our results suggest that the volatility effect persists for a long
time thereafter. Our reading of the estimated parameters is that on subsequent days, announcement day

shocks have a relatively small but long-lasting effect.

Finally, our results have direct implications for modeling conditional heteroskedasticity in asset returns.
In particular, we find strong evidence that return shocks vary in their persistence in predictable ways.
Ignoring this variation results in model misspecification and is likely to lead to inferior estimates of conditional

volatility. This has practical considerations as well, most obviously in the area of option pricing.

14



References

Andersen, Torben G. and Tim Bollerslev [1994)], “Intraday seasonality and volatility persistence in financial

»

markets,” working paper, Northwestern University.

Back, Kerry [1992], “Insider Trading in Continuous Time,” Review of Financial Studies 5, 387-409.

Baillie, Richard T., Tim Bollerslev, and Hans O. Mikkelsen [1995], “Fractionally integrated generalized

autoregressive conditional heteroskedasticity,” unpublished, Northwestern University.

Banerjee, Anindya, Robin L. Lumsdaine, and James H. Stock [1992], “Recursive and Sequential Tests of the
Unit-Root and Trend-Break Hypotheses: Theory and International Evidence,” Journal of Business and
Economic Statistics 10, 271-287.

Bollerslev, Tim [1986], “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Economet-

rics 31, 307-327.

Bollerslev, Tim, Ray Y. Chou and Kenneth F. Kroner [1992], “ARCH Modeling in Finance: A Review of

the theory and empirical evidence,” Journal of Econometrics 52, 5-59.

Bollerslev, Tim, Robert F. Engle, and Jeffrey M. Wooldridge [1988]), “A Capital Asset Pricing Model with
Time Varying Covariances,” Journal of Political Economy 96, 116-131.

Bollerslev, Tim and Hans O. Mikkelsen [1995], “Modeling and pricing long-memory in stock market volatil-
ity,” unpublished, Northwestern University.

Bollerslev, Tim, and Jeffrey M. Wooldridge [1992], “Quasi-Maximum Likelihood Estimation and Inference

in Dynamic Models with Time-Varying Covariances,” Econometric Reviews 11, 143-172.

Brock, William A. and Blake D. LeBaron [1995], “A Dynamic Structural Model for Stock Return Volatility
and Trading Volume,” NBER Working Paper #4988.

Campbell, John Y., Sanford Grossman, and Jiang Wang [1993], “Trading Volume and Serial Correlation in
Stock Returns”, Quarterly Journal of Economics 108, 905-39.

Campbell, John Y., and Ludger Hentschel [1992], “No News Is Good News: An Asymmetric Model of
Changing Volatility in Stock Returns,” Journal of Financtal Economics 31, 281-318.

Ding, Z., Clive W.J. Granger, and Robert F. Engle [1993], “A long memory property of stock market returns

and a new model,” Journal of Empirical Finance 1, 83-106.

15



Ederington, Louis H. and Jae Ha Lee [1993], “How Markets Process Information: News Releases and Volatil-

ity,” Journal of Finance 48, 1161-91.

Ederington, Louis H. and Jae Ha Lee [1995], “The Short-Run Dynamics of the Price Adjustment to New

Information,” Journal of Financial and Quanlitative Analysis 30, 117-34.

Engle, Robert F. [1982], “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of
U.K. Inflation,” Economeirica 50, 987-1008.

Engle, Robert F., and Tim Bollerslev [1986], “Modelling the Persistence of Conditional Variances,” Econo-

melric Reviews 5, 1-50.

Engle, Robert F., Takatoshi Ito, and Wen-Ling Lin [1990], “Metor Showers or Heat Waves? Heteroskedastic
Intra Daily Volatility in the Foreign Exchange Market,” Econometrica 58, 525-542.

Engle, Robert F., David M. Lilien, and Russell P. Robins [1987], “Estimating Time Varying Risk Premia in
the Term Structure: The ARCH-M Model,” Economeirica 55, 391-407.

Engle, Robert F., and Victor K. Ng [1993], “Measuring and Testing the Impact of News and Volatility”
Journal of Finance 48, 1749-1778.

Fama, E.F. [1970], “Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of Finance
30, 383-417.

French, Kenneth R. [1980], “Stock returns and the weekend effect,” Journal of Financial Economics XX,
55-69.

French, Kenneth R., and Richard Roll [1986], “Stock Return Variances: the Arrival of Information and the
Reaction of Traders” Journal of Financial Economics 17, 5-26.

Granger, Clive W.J. [1980], “Long memory relationships and the aggregation of dynamic models,” Journal
of Econometrics 14, 227-238.

Hamilton, James D. [1989], “A New Approach to the Economic Analysis of Nonstationary Time Series and
the Business Cycle,” Econometrica 57, 357-384.

Hong, Che-Hsiung [1987], “The Integrated Generalized Autoregressive Conditional Heteroskedastic Model:
The Process, Estimation, and Monte Carlo Experiments,” unpublished manuscript, University of Cali-

fornia, San Diego.

16



Ibbotsen and Associates [1994]. Stocks, Bonds, Bills, and Inflation Yearbook. Chicago: Ibbotson Associates
[annually updates work by Roger G. Ibbotson and Rex A. Sinquefeld].

Kyle, Albert S. [1985], “Continuous Auctions and Insider Trading,” Econometrica 53, 1315-35.

Lamoureux, Christopher G., and William D. Lastrapes [1990], “Persistence in Variance, Structural Change,
and the GARCH Model,” Journal of Business and Economic Statistics 8(2), 225-234.

Lumsdaine, Robin L. [1995], “Finite Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1)
and IGARCH(1,1) Models: A Monte Carlo Investigation,” Journal of Business and Economic Stalistics
13(1), 1-10.

Lumsdaine, Robin L. [1996], “ Consistency and Asymptotic Normality of the Quasi Maximum Likelihood
Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models,” forthcoming, Economet-

rica.

McQueen, Grant and V. Vance Roley [1993], “Stock Prices, News, and Business Conditions,” Review of
Financial Studses 6(3), 683-707.

Mitchell, Mark L., and J. Harold Mulherin [1994], “The Impact of Public Information on the Stock Market,”
Journal of Finance 49(3), 923-950.

Nelson, Daniel B. [1990], “Stationarity and Persistence in the GARCH(1,1) Model,” Econometric Theory 6,
318-334.

Newey, Whitney K., and Kenneth D. West [1987], “A Simple Positive Semi-Definite, Heteroskedasticity and

Autocorrelation Consistent Matrix,” Econometrica 55, 703-8.

Pagan, Adrian R., and Hernando C.L. Sabau [1987], “On the Inconsistency of the MLE in Certain Het-

eroskedastic Regression Models,” unpublished manuscript.

Perron, Pierre [1989], “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis,” Econometrica
57(6), 1361-1401.

Ross, Stephen A. [1989], “Information and Volatility: The No-Arbitrage Martingale Approach to Timing

and Resolution Uncertainty,” Journal of Finance 44, 1-17.

Rudebusch, Glenn D. [1995], “Federal Reserve Interest Rate Targeting, Rational Expectations, and the Term

Structure,” forthcoming, Journal of Monetary Economics .

17



White, Halbert [1980], “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for
Heteroskedasticity,” Econometrica 48, 817-38.

18



TABLE 1
Summary statistics: Treasury bond daily excess returns

XR, is the daily log excess return of the relevant constant maturity Treasury security over the three month Treasury
bill. Returns are expressed in percent terms, i.e., multiplied by 100. For 5 and 10 year securities, the sample
extends from February 1, 1969 to December 31, 1993; the sample for the 30-year extends from February 16, 1977
to December 31, 1993,

S-yr 10-yr 30-yr

XR, XR?  |xR| XR,  XR*  |XR] XR, XR?  |XR]

{4

Full Sample (N = 6212 or N = 4209)

Mean 0.005 0.116 0.225 0.005 0235 0323 0.010 0552 0.516
Std Dev 0.341 0368  0.256 0.484 0.701  0.361 0.743 1.458  0.534
Min -2.493  0.000  0.000 -3.674  0.000 0.000 3946  0.000  0.000
Max 3.016 9.095 3.016 4694 22034 4.694 7.255 52.631 7.255
Rho 0.115 0.183  0.237 0.093 0.163 0.257 0.054  0.058 0.137
Kurtosis 8.025 6.926 4.982

Skewness 0.379 0.369 0.310

Employment Report Announcement Dates (N = 295 or N = 198)

Mean 0.110 0220 0.333 0.129 0413 0454 0.122 0940 0.738
Std Dev 0.457 0475 0331 0.631 0.843 0.456 0.964 1457  0.630
Rho (ttot+1) 0.139  0.184  0.176 0.101 0203 0.254 0.067 0.116 0.120

PPI Announcement Dates (N =293 or N = 196)

Mean 0.065 0.155 0.273 0.081 0344 0407 0.154 0.824 0.6%4
Std Dev 0.3890 0340 0.284 0.582 0.735 0423 0.897 1.327  0.587
Rho (ttot+1) 0.128  0.143  0.165 0.092 0.140 0.264 0.137 0.112  0.205

Announcement Dates (N = 552 or N = 374)

Mean 0.084 0.183 0.301 0.098 0363 0426 0.132 0.862 0.712
Std Dev 0420 039 0304 0.595 0737 0.426 0920 1.347 0.598
Rho(ttot+1) 0.123  0.181  0.179 0.082 0179 0.248 0.077 0.124  0.153
Non-announcement Dates (N = 5660 or N = 3835)

Mean -0.003 0.110 0.218 0004 0222 0312 0,002 0521  0.497
Std Dev 0.331 0.365 0.250 0471  0.697 0.353 0.722 1465 0.524

Rho (ttot+1) 0.115  0.182  0.244 0.095 0.160 0.258 0.082 0052 0.134




TABLE 2
Treasury bond return volatility by day of week and event day

Mean values of the volatility of the daily log excess return of the relevant constant maturity Treasury security over
the three month Treasury bill. Retumns are expressed in percent terms, i.e., multiplied by 100. Announcement is a
dummy variable which equals one on the PPI and employment report announcement dates. For 5 and 10 year
securities, the sample extends from February 1, 1969 to December 31, 1993; the sample for the 30-year extends
from February 16, 1977 to December 31, 1993. Robust standard errors are given in parentheses.

5-yr 10-yr 30-yr

Panel A: Absolute value of excess returns

Monday 0.248 0.352 0.561
(0.010) (0.014) (0.027)
Tuesday 0.210 0.301 0.490
(0.007) (0.010) (0.019)
Wednesday 0.190 0.278 0.449
(0.006) (0.009) (0.016)
Thursday 0.218 0.321 0.516
(0.008) (0.011) (0.021)
Friday 0.251 0.348 0.518
(0.008) (0.011) (0.019)
Announcement(t+1) -0.028 -0.040 -0.067
0.011) (0.016) (0.030)
Announcement 0.064 0.092 0.199
(0.014) (0.019) (0.034)
Announcement(t-1) -0.008 -0.014 -0.015
(0.014) (0.019) (0.037)

Panel B: Squared excess returns

Monday 0.151 0.289 0.696
(0.016) (0.027) 0.072)
Tuesday 0.108 0.221 0.549
(0.011) (0.024) (0.072)
Wednesday 0.076 0.168 0.418
(0.006) (0.016) (0.039)
Thursday 0.102 0.217 0.522
(0.009) (0.018) (0.047)
Friday 0.135 0.255 0.500
(0.012) (0.020) (0.038)
Announcement(t+1) -0.023 -0.037 -0.112
(0.015) {0.029) (0.062)
Announcement 0.060 0.124 0.367
(0.018) (0.032) (0.073)
Announcement(t-1) -0.008 -0.021 -0.052

(0.022) (0.042) (0.097)




TABLE 3
Treasury bond daily excess returns by day of week and event day

Mean values of the daily log excess return of the relevant constant maturity Treasury Security over the three month
Treasury bill. Returns are expressed in percent terms, i.e., multiplied by 100. Announcement is a dummy variable
which equals one on the PPI and employment report announcement dates. For 5 and 10 year securities, the sample
extends from February 1, 1969 to December 31, 1993; the sample for the 30-year extends from February 16, 1977
to December 31, 1993. Robust standard errors are given in parentheses.

S-yr 10-yr 30-yr
Monday -0.042 -0.059 -0.075
(0.013) (0.018) (0.036)
Tuesday 0.010 0.018 0.048
(0.009) (0.013) (0.025)
Wednesday 0.001 -0.007 -0.015
(0.008) (0.012) (0.022)
Thursday -0.031 -0.030 -0.006
(0.010) (0.015) (0.030)
Friday 0.060 0.069 0.069
(0.011) (0.016) (0.028)
Announcement(t+1) -0.005 -0.010 -0.036
(0.014) (0.021) (0.041)
Announcement 0.045 0.051 0.077
(0.019) (0.027) (0.052)
Announcement(t-1) 0.017 0.027 0.010

(0.018) (0.025) (0.050)




TABLE 4
Benchmark deseasonalized AR(1)-GARCH(1,1) model of Treasury bond daily excess returns

Maximum likelihood estimates of the model

M) R=Y. w0l +0R, +(sh)7E,
@ s =+8IO[],a+81H.

®  h=o+allh, +Bh,,

where R, is the daily log excess return of the relevant constant maturity Treasury security over the three month
Treasury bill, I are day-of-the-week indicator variables, and /* is an indicator variable equal to one on
employment or PPI announcement days. Returns are expressed in percent terms, i.e., multiplied by 100. For 5 and
10 year securities, the sample extends from February 1, 1969 to December 31, 1993; the sample for the 30-year
extends from February 16, 1977 to December 31, 1993. Robust standard errors are given in parentheses.

First moment parameters Second moment parameters
S-yr 10-yr 30-yr S-yr 10-yr 30-yr
o 0.135 0.146 0.067 o (x10%) 9.082 7.796 11.665
(0.014) (0.015) (0.016) (1.628) (1.476) (3.438)
Hm -0.031 -0.037 -0.045 o 0.082 0.080 0.049
(0.007) (0.010) (0.021) (0.016) (0.014) (0.010)
Mr 0.001 0.000 0.019 B 0.914 0.922 0.951
(0.007) (0.008) (0.019) (0.015) (0.013) {0.009)
Hw 0.003 -0.006 0.002 3 0.684 0.693 1.232
(0.006) {0.008) (0.017) (0.137) (0.139) (0.169)
Mg -0.032 -0.037 -0.024 S -0.166 -0.204 -0.058
(0.007) (0.009) (0.018) (0.085) (0.085) (0.113)
Wr 0.033 0.038 0.037 Sw -0.362 -0.320 -0.275
(0.008) (0.011) (0.019) (0.052) (0.074) (0.077)
0 0.033 0.017 0.026 O -0.214 -0.206 -0.174
(0.016) (0.017) (0.042) (0.071) (0.078) (0.069)
logL 4985.266 2919.139 -160.091 h 0.015 -0.046 -0.208

(0.078) (0.144) (0.068)




TABLE 5
GARCH(1,1) with additional announcement-related volatility seasonals

Maximum likelihood estimates of the model

1) R= E:=M Wtk +6I* +o,R_ +(s5,h)"E,,
@ 5= a+3L[, Q+815.

3  h=o+oflh, +Bh.,

where R, is the daily log excess return of the relevant constant maturity Treasury security over the three month
Treasury bill, /; are day-of-the-week indicator variables, and I is an indicator variable equal to one on
employment or PPI announcement days. Returns are expressed in percent terms, i.e., multiplied by 100. For 5 and
10 year securities, the sample extends from February 1, 1969 to December 31, 1993; the sample for the 30-year
extends from February 16, 1977 to December 31, 1993. Robust standard errors are given in parentheses.

First moment parameters Second moment parameters
5-yr 10-yr 30-yr S-yr 10-yr 30-yr
(VY 0.134 0.147 0.066 m(xlO"‘) 8.915 7.625 11.028
(0.015) (0.015) 0.015) (1.624) (1.382) (2.448)
Hm -0.031 -0.038 -0.047 o 0.083 0.080 0.049
(0.007) (0.010) (0.020) (0.016) (0.014) (0.007)
i 0.002 0.000 002 B 0912 0.922 0.952
(0.006) (0.008) (0.018) (0.016) (0.012) (0.005)
Hw 0.004 -0.006 0.002 8o 0.704 0.697 1.235
(0.006) (0.008) (0.016) (0.151) (0.137) (0.216)
Hr -0.032 -0.037 -0.025 Sr -0.181 -0.194 -0.098
(0.007) (0.009) (0.018) (0.079) (0.066) 0.129)
MU 0.033 0.038 0.037 Sw -0.331 -0.304 -0.253
(0.008) (0.011) (0.019) (0.063) (0.060) (0.089)
6 0.031 0.017 0.026 S -0.156 -0.186 -0.139
(0.015) (0.017) (0.038) (0.087) (0.070) 0.117)
O 0.042 -0.029 -0.185

(0.104) (0.082) (0.100)

o, -0.116 -0.002 -0.028
(0.095) (0.128) (0.282)

S, 0.140 0.114 0.128
(0.156) 0.117) (0.192)

logL 4991489  2920.712  -156.752 5, 0.129 0.002 0.180
0.157) (0.129) (0.340)




Maximum likelihood estimates of the model

6]
@

@3b)

TABLE 6

R1 = 2:;”“1[:‘ + eI‘A + ¢1Rt-l + (Sth‘t )1/2 ét’
5, =+ 8N, a+8,15,

= m+(aAI:1 +aN[1—I:1 )é:z-lh:—l +PBh,,

where R, is the daily log excess return of the relevant constant maturity Treasury security over the three month
Treasury bill, /] are day-of-the-week indicator variables, and /' is an indicator variable equal to one on
employment or PPl announcement days. Returns are expressed in percent terms, i.e., multiplied by 100. For S and
10 year securities, the sample extends from February 1, 1969 to December 31, 1993; the sample for the 30-year
extends from February 16, 1977 to December 31, 1993, Robust standard errors are given in parentheses.

GARCH(1,1) with differing o parameter

Ut

15V

ur

Hw

HF

First moment parameters

5-yr

0.135
0.015)

-0.031
(0.007)

0.001
(0.007)

0.003
(0.006)

-0.032
(0.007)

0.033
(0.008)

0.033
0.017)

logL 4985.290

10-yr

0.146
(0.016)

-0.037
(0.010)

0.000
(0.008)

-0.006
(0.008)

-0.037
0.009)

0.038
0.011)

0.018
0.017)

2920.841

30-yr

0.067
(0.016)

-0.045
0.021)

0.019
0.019)

0.002
(0.017)

0.024
(0.018)

0.037
(0.020)

0.029
(0.041)

-158.770

o (x10)

oN

Ola

S

Second moment parameters

S-yr

9.082
(1.647)

0.082
(0.016)

0.086
(0.043)

0.913
(0.015)

0.691
(0.166)

-0.167
(0.080)

-0.362
(0.055)

-0.214
(0.069)

0.016
0.129)

10-yr

7,685
(1.438)

0.082
(0.016)

0.052
(0.019)

0.923
(0.013)

0.640
(0.156)

-0.203
(0.069)

-0.323
(0.062)

-0.208
(0.060)

-0.048
©0.072)

30-yr

12.350
(3.614)

0.052
0.011)

0.028
0.017)

0.951
(0.009)

1.173
(0.200)

-0.058
(0.111)

-0.278
{0.078)

0.177
0.077)

-0.209
(0.072)




TABLE 7
Mixture of announcement and non-announcement GARCH(1,1) models

Maximum likelihood estimates of the model

M R=Y W +6I +OR +(sh)"E,

@ 5 =0+8IN[,a+815,

(30) h=w+ th + hrA’ hrN = aN[l - I:I]atz—lht-l + Bthh-,v h:A = aAItélatz-lht-l + BAh:X’

where R, is the daily log excess return of the relevant constant maturity Treasury security over the three month
Treasury bill, I are day-of-the-week indicator variables, and I is an indicator variable equal to one on
employment or PPI announcement days. Returns are expressed in percent terms, i.e., multiplied by 100. For 5 and
10 year securities, the sample extends from February 1, 1969 to December 31, 1993; the sample for the 30-year
extends from February 16, 1977 to December 31, 1993. Robust standard errors are given in parentheses.

First moment parameters Second moment parameters
S-yr 10-yr 30-yr 5-yr 10-yr 30-yr
oY 0.136 0.147 0.066 ®(x10*) 88.08 70.11 189.68
(0.013) (0.015) (0.016) (12.43) (13.15) (55.27
Hm -0.030 -0.035 -0.043 On 0.085 0.095 0.057
(0.007) (0.010) 0.021) (0.013) 0.017) (0.012)
HT 0.000 -0.001 0.018 oA 0.027 0.011 0.007
(0.004) (0.008) (0.019) 0.027) (0.007) (0.004)
Hw 0.003 -0.006 0.002 Bx 0.905 0.900 0.939
(0.004) (0.008) 0.017) (0.015) 0.017) (0.012)
Hr -0.033 -0.037 -0.023 Ba 0.984 0.994 0.996
(0.005) (0.009) (0.018) (0.016) (0.003) (0.002)
e 0.032 0.037 0.036 &0 0.644 0.567 1.078
(0.006) (0.010) (0.020) (0.102) (0.128) (0.186)
0 0.032 0.023 0.030 &t -0.149 -0.200 -0.054
(0.010) (0.017) (0.040) (0.084) (0.070) 0.112)
Sw -0.366 -0.328 -0.274

(0.050) (0.057) (0.079)

3 0.219 -0.209 -0.178
0.069) (0.060) 0.077)

logL 4988.840 2943.805  -148.040 Ok 0.006 -0.053 -0.202
(0.090) (0.076) (0.071)




TABLE 8
Mixture model with no persistence of announcement-day shocks

Maximum likelihood estimates of the model
F
M R=Y, W +OI R  +(sh)"E,
@  s5=0+8IM]]_, a+8,15),
G h=o+h", B =o,[1-14]E A, + By,

where R, is the daily log excess return of the relevant constant maturity Treasury security over the three month
Treasury bill, l," are day-of-the-week indicator variables, and ],“ is an indicator variable equal to one on

employment or PPI announcement days. Returns are for the 10-year bond and are expressed in percent terms, i.e.,
multiplied by 100. The sample extends from February 1, 1969 to December 31, 1993. Robust standard errors are
given in parentheses.

ir; men meters Second moment parameters
) 0.144 ® 0.304
(0.015) (0.109)
(1} -0.037 oN 0.081
(0.010) (0.014)
Wy 0.000 Bx 0.928
(0.008) 0.011)
Hw -0.006 8o 0.640
(0.008) (0.138)
Ur -0.037 &¢ -0.198
(0.009) (0.069)
Ke 0.038 Sw -0.328
(0.011) 0.057)
0 0.021 O -0.217
(0.018) (0.059)
logL 2911.576 S -0.047

0.075)




