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ABSTRACT

The prevailing view in finance is that the evidence for long-horizon stock return predictability is

significantly stronger than that for short horizons. We show that for persistent regressors, a

characteristic of most of the predictive variables used in the literature, the estimators are almost

perfectly correlated across horizons under the null hypothesis of no predictability. For example, for

the persistence levels of dividend yields, the analytical correlation is 99% between the 1- and 2-year

horizon estimators and 94% between the 1- and 5-year horizons, due to the combined effects of

overlapping returns and the persistence of the predictive variable. Common sampling error across

equations leads to ordinary least squares coefficient estimates and R2s that are roughly proportional

to the horizon under the null hypothesis. This is the precise pattern found in the data. The asymptotic

theory is corroborated, and the analysis extended by extensive simulation evidence. We perform joint

tests across horizons for a variety of explanatory variables, and provide an alternative view of the

existing evidence.
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I. Introduction 

Over the last two decades, the finance literature has produced growing evidence of stock return 

predictability, though not without substantive debate. The strongest evidence cited so far 

comes from long-horizon stock returns regressed on variables such as dividend yields, term 

structure slopes, and credit spreads, among others. A typical view is expressed in Campbell, 

Lo, and MacKinlay’s standard textbook for empirical financial economics, The Econometrics 

of Financial Markets (1997, p.268): 

 

At a horizon of one month, the regression results are rather unimpressive: The 

R2 statistics never exceed 2%, and the t-statistics exceed 2 only in the post-

World War II subsample. The striking fact about the table is how much 

stronger the results become when one increases the horizon. At a two-year 

horizon the R2 statistic is 14% for the full sample … at a four-year horizon the 

R2 statistic is 26% for the full sample. 

 

However, there is an alternative interpretation of this evidence: Researchers should be 

equally impressed by the short- and long-horizon evidence for the simple reason that the 

regressions are almost perfectly correlated. For an autocorrelation of 0.953 for annual dividend 

yields, we show analytically that the 1-year and 2-year predictive estimators are 98.8% 

correlated under the null hypothesis of no predictability. For longer horizons, the correlations 

are even higher, reaching 99.6% between the 4- and 5-year horizon estimators. This degree of 

correlation manifests itself in multiple-horizon regressions in a particularly unfortunate way. 
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Since the sampling error that is almost surely present in small samples shows up in each 

regression, both the estimator and R2 are proportional to the horizon.  

This paper provides analytical expressions for the correlations across multiple-horizon 

estimators, and then shows, through simulations, that these expressions are relevant in small 

samples. The analytical expressions relate the correlations across these estimators to both the 

degree of overlap across the horizons and the level of persistence of the predictive variable. 

Our findings relate to an earlier literature looking at joint tests of the random walk hypothesis 

for stock prices using multiple-horizon variance ratios and autocorrelations, among other 

estimators (see, e.g., Richardson and Smith (1991, 1994) and Richardson (1993)). This earlier 

literature stresses accounting for the degree of overlap. The problem here is much more severe. 

In the univariate framework, the predictive variable—past stock returns—is approximately 

independently and identically distributed (IID).  In this paper’s framework, the predictive 

variable, e.g., dividend yields, is highly persistent.  

Our simulations show that any sampling error in the data under the null hypothesis of no 

predictability appears in the same manner in every multiple-horizon regression when the 

predictive variable is highly persistent. Using box plots and tables describing the relation 

across the multiple horizon estimates and R2s, we show the exact pattern one should expect 

under the null hypothesis: The multiple-horizon estimates are monotonic in the horizon 

approximately two-thirds of the time, and the mean ratios of the 2- to 5-year estimators to the 

1-year estimator are 1.93, 2.80, 3.59, and 4.32, respectively. Consider the actual estimated 

coefficients for the regression of 1- to 5-year stock returns on dividend yields over the 1926–

2004 sample period: 0.131, 0.257, 0.390, 0.461, and 0.521. These correspond to monotonically 

increasing estimates with corresponding ratios of 1.96, 2.98, 3.53, and 3.99. We show that 
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these estimates lie in the middle of the distribution of possible outcomes under the null 

hypothesis. 

The theoretical and simulation analyses stress the importance of interpreting the evidence 

jointly across horizons. We develop an analytical expression for a joint test based on the Wald 

statistic. While a high level of persistence means that it can be dangerous to interpret 

regressions over multiple horizons, the joint tests show that this persistence may lead to 

powerful tests for economies in which predictability exists. Such predictability may take a 

particular form, in which the multiple-horizon coefficients are much less tied together than the 

null hypothesis implies. Applying the joint tests to commonly used predictive variables, we 

point out various anomalies and contrast our results with the conclusions of the existing 

literature. 

Among the standard set of variables, none generate joint test statistics that are significant at 

the 10% level under the simulated distribution. Interestingly, the only variable that is 

significant at the 10% level under the asymptotic distribution is the risk-free rate, despite the 

fact that the associated horizon-by-horizon p-values are larger and the R2s are smaller than for 

many of the other variables, including the dividend yield and the book-to-market ratio. Among 

more recently developed variables, joint tests confirm the ability of both the net payout yield 

(Boudoukh, Michaely, Richardson, and Roberts (2005)) and the equity share of new issuances 

(Baker and Wurgler (2000)) to forecast stock returns across all horizons. 

The paper proceeds as follows. In Section 2, we provide the expressions for analyzing 

multiple-horizon regressions and show that the basic findings carry through to small samples. 

The small sample results are especially alarming in the context of the existing literature. 
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Section 3 applies the results to a number of data series and evaluates existing evidence using 

joint tests of predictability. Section 4 concludes. 

 

II. Multiple Horizon Regressions 

A. The Existing Literature 

Fama and French (1988) is the first paper to document evidence of multivariate stock return 

predictability over multiple horizons.1 In brief, they regress overlapping stock returns of one 

month to four years on dividend yields, reporting coefficients and R2s that increase somewhat 

proportionately with the horizon. As it documents what has become one of the dominant 

stylized facts in empirical finance, the paper has over 250 citations to date. To illustrate the 

consensus view, consider part of John Cochrane’s description of the three most important facts 

in finance in his survey, “New Facts in Finance” (1999, p.37). 

 

Now, we know that … 

[Fact] 2.  Returns are predictable. In particular: Variables including the 

dividend/price (d/p) ratio and term premium can predict substantial amounts 

of stock return variation. This phenomenon occurs over business cycle and 

longer horizons. Daily, weekly, and monthly stock returns are still close to 

unpredictable… 

 

This fact is emphasized repeatedly in other surveys (see, e.g., Fama (1998, p.1578), 

Campbell (2000, p.1522 and 2003, p.5) and Barberis and Thaler (2003, p.21), among others), 

                                                 
1 See also Campbell and Shiller (1988). 
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is often used to calibrate theoretical models (see, among others, Campbell and Cochrane 

(1999, p.206), Campbell and Viceira (1999, p.434), Barberis (2000, p.225), Menzly, Santos, 

and Veronesi (2004, p.2), and Lettau and Ludvigson (2005, p.584)), and in motivation for new 

empirical tests (e.g., Ferson & Korajczyk (1995, p.309), Patelis (1997, p.1951), Lettau & 

Ludvigson (2001, p.815), and Ait-Sahalia and Brandt (2001, p.1297)). 

It is fairly well known since Fama and French (1988), and in particular from Campbell 

(2001), that the key determinants of long-horizon predictability are  

(i) The extent of predictability at short horizons, and  

(ii) The persistence of the regressor.  

The R2s at long horizons relative to a single-period R2 are a function of (ii).  Holding 

everything else constant—single-period predictability in particular—higher persistence results 

in a higher fraction of explainable long-horizon returns. As a function of the horizon, the R2 

first rises with the horizon, but eventually decays, due to the exponential decline in the 

informativeness of the predictive variable. As we show below, (ii) also matters in the case of 

no predictability, but in the presence of sampling error. Nevertheless, this important fact has 

not been used as the main line of attack against evidence supporting the multivariate 

predictability of stock returns. 

Three principal alternative lines of criticism have been put forward in the literature. The 

first involves data snooping, which is perhaps best described by Foster, Smith, and Whaley 

(1997). The idea is that the levels of predictability found at short horizons are not surprising, 

given the number of variables from which researchers can choose. A variety of papers support 

these findings somewhat, including Bossaerts and Hillion (1999), Cremers (2002), and Goyal 

and Welch (2003).  
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A second approach looks at the small sample biases of the estimators. Stambaugh (1999) 

shows that the bias can be quite severe, given the negative correlation between 

contemporaneous shocks to returns and the predictive variable, which usually involves some 

type of stock price deflator. His findings suggest much less predictability once the estimators 

are adjusted for this bias. However, Lewellen (2004) argues that the effect of the bias may be 

much smaller if one takes the persistence of the predictive variable into account. Lewellen’s 

approach is similar to Stambaugh’s (1999) Bayesian analysis of the predictability problem. 

While both of these papers certainly question the magnitude of the predictability, they do not 

address long-horizon predictability per se. 

The third line of criticism, first explored by Richardson and Stock (1989) in a univariate 

setting, uses an alternative asymptotic theory, in which the horizon increases with the sample 

size. Valkanov (2003) argues that long-horizon regressions have poor properties relative to 

standard asymptotics.2 He shows that the estimators may no longer be consistent, and have 

limiting distributions that are functionals of Brownian motions; in fact, the distributions are 

not normal, and are not centered on the true coefficient. Valkanov then shows that this 

alternative asymptotic theory works better in small samples. His results can be viewed as the 

theoretical foundation for earlier simulated distributions by Kim and Nelson (1993) and 

Goetzmann and Jorion (1993), and for the intuition put forward by Kirby (1997), who uses 

standard asymptotics. 

Aside from these three methodology-based lines of criticism of the stock return 

predictability literature, there is scant evidence of empirical-based critique of long horizon 

predictability, one recent exception being Ang and Bekaert (2005).   Our paper focuses on a 
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different methodological aspect of predictability, examining the joint properties of the 

regression estimators across horizons. The conclusions here closely resemble those of 

Richardson and Smith (1991) and Richardson (1993) regarding long-horizon evidence against 

the random walk in Fama and French (1998) and Poterba and Summers (1988). In many ways, 

the arguments here are more damaging, because we show that the degree of correlation across 

the multiple-horizon estimators is much higher than it is in the case of long-horizon tests for 

the random walk.  In fact, the null hypothesis of no predictability implies the exact pattern in 

coefficients and R2s found in papers presenting evidence in favor of predictability. We show 

these results in the next two subsections. 

 

B. Multiple Horizon Regressions: Statistical Properties 

We consider regression systems of the following type: 
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where JttR +,  is the J-period stock return, tX  is the predictor, e.g., the dividend yield, and Jtt +,ε  

is the error term over J periods. As is well known from Hansen and Hodrick (1980) and 

Hansen (1982), among others, the error terms are serially correlated due to overlapping 

observations. Using the standard generalized method of moments calculations under the null 

hypothesis of no predictability and under conditional homoskedasticity (e.g., Richardson and 

                                                                                                                                                          
2 Ang and Bekeart (2005) show that the statistical significance of long horizon regressions is overstated once the 
researcher adjusts for heteroskedasticity and the overlapping errors by imposing the null in estimation. 
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Smith (1991)), Appendix A derives the covariance matrix for any two horizons, J and J*, of 

Jβ̂  and *
ˆ

Jβ : 
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where JJ >*  and lρ is the lth-order autocorrelation of Xt. The above expression for the 

covariance matrix of the estimators is not particularly intuitive, though it is immediately 

apparent that for J close to J* the estimators are almost perfectly correlated. Less obvious is 

the fact that for 2),cov( Xltt XX σ≈−  the estimators are also almost perfectly correlated 

irrespective of the horizon. Intuitively, the persistence of Xt acts in much the same way 

overlapping horizons do regarding independent information across multiple horizons. 

A popular simplification is to assume that Xt follows an AR(1) (see, among others, 

Campbell (2001), Boudoukh and Richardson (1994), Stambaugh (1993), and Cochrane 

(2001)). Under the AR(1) model, 22),cov( X
l

Xlltt XX σρσρ ==−  where ρ is the autoregressive 

parameter for Xt. The covariance matrix in (2) reduces to a much simpler form: 
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For the special case J = 1, the correlation between J and J* is 
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For example, for J = 1 and J* = 2, we get 2
1 ρ+ . In our sample, the autocorrelation of the 

dividend yield is 0.953, which yields a correlation of 0.988 between the 1- and 2-year 

estimators. It does not get much better as the horizon J* increases to 3, 4, and 5 years, 

producing correlations of 0.974, 0.959, and 0.945, respectively.3  Even at a 10-year horizon, 

the correlation is over 87%. With the types of sample sizes faced by researchers in the field of 

empirical finance, these results suggest that one has to be extremely cautious in interpreting 

the coefficients separately (as has been the case in the existing literature). 

For the typical 1- through 5-year horizons examined in the literature, we provide the 

analytical covariance matrix of the estimators under the null hypothesis of no predictability 

and the dividend yield’s ρ of 0.953: 

( )






















=−

1
996.01
986.0995.01
970.0982.0993.01
945.0959.0974.0988.01

ˆVar 2

2

51
X

RT
σ
σβ .                            (5) 

Several observations are in order. First, the high degree of correlation across the multi-

period estimators implies that, under the null hypothesis, the regressions are essentially 

redundant. This is important because there is little doubt that the literature has not taken this 

view. Second, under the null hypothesis, the estimators are asymptotically distributed as 

multivariate normal with a mean of zero. While this is clearly not true in small samples,4 

consider using this distribution to understand the effect of sampling error across the equations. 

                                                 
3 Of course, these correlations increase even further as J increases for a fixed J*. 
4 See Stambaugh (1999) for small sample bias and Valkanov (2003) for non-normality of the distributions of the 
estimators. 
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Specifically, conditional on 1̂β  being some given or estimated 1β , what do we expect *
ˆ

Jβ  to 

be equal to under the null? Using properties of a bivariate normal, we can write  

11
)1*1(1]11

ˆ|*
ˆ[ β

ρ
ρρβββ
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JE .                                (6) 

For ρ close to 1, the coefficients should basically be proportional to the horizon. As an 

example, for ρ =0.953, the *
ˆ

Jβ ’s you would expect in terms of 1β  are 1.953 1β , 2.861 1β , 

3.727 1β , and 4.552 1β  for the 2-, 3-, 4-, and 5-year horizon regressions, respectively. 

Similarly, for the R2 of the regression, 
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For ρ close to 1, the R2s also increase significantly with the horizon. The ratios of the R2s are 

1.907, 2.729, 3.472, and 4.143 for the 2-, 3-, 4-, and 5-year horizon regressions, respectively. 

The intuition is straightforward. Compare the regression of 1, +ttR on tX  to that of KttR +,  on 

tX . The former regression involves summing the cross product of the sequence of 1, +ttR  

and tX for all t observations. Note that for a persistent series tX , there is very little information 

across the sequence of Xt values. Thus, when an unusual draw from 1, +ttR  occurs (denote 

it 1**, +ttR ), and this observation happens to coincide with the most recent value of the predictive 

variable, *tX , it will also coincide with all the surrounding tX variables such 

as ,1*−tX ,2*−tX and .3*−tX  Since 1**, +ttR shows up in K of the long-horizon returns KttR +, within 
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the sample period (i.e., in 1*,1* +−+ tKtR , 2*,2* +−+ tKtR ,…, KttR +**, ), the impact of the unusual draw will 

be roughly K times larger in the long-horizon regression than in the one-period regression. 

 

C. Multiple Horizon Regressions: Joint Tests 

At first glance, the results in Section II.B provide a fairly devastating critique of the strategy of 

running multiple long-horizon regressions. However, this view is not necessarily accurate. 

Because the regressions are linked so closely under the null hypothesis, joint tests may have 

considerable power under alternative models.  

What are these alternatives? The models must be such that the long horizons pick up 

information not contained in short horizons. The standard model, in which short-horizon 

returns are linear in the current predictor and that predictor follows a persistent ARMA 

process, is clearly not a good candidate. It would be better to focus on estimating the short-

horizon and the ARMA process directly in this case (see, e.g., Campbell (2001), Hodrick 

(1992), and Boudoukh and Richardson (1994), among others). It should be noted, though, that 

the standard model is often chosen for reasons of parsimony rather than on an underlying 

theoretical basis.  

Consider testing the null of no predictability in the regression system given in equation (1), 

i.e., .01 ===== KJ βββ LL  The corresponding Wald Test statistic for this hypothesis is 

βββ ˆ)ˆ(ˆ 1' −VT where ( )KJ ββββ ˆˆˆˆ
1

' LL=  and )ˆ(βV  is the covariance matrix of the 

β̂ estimators with typical element of Jβ̂  and *
ˆ

Jβ  given by )*
ˆ,ˆ(Var JJ ββ  as described in 



   12

equation (2).5 The statistic follows an asymptotic chi-squared distribution with degrees of 

freedom given by the number of horizons used in estimation. Note that )ˆ(βV  is a function of 

the autocorrelation structure of the Xt variable (i.e., its persistence) as well as the degree of 

overlap between horizons, i.e., J versus J*. Aside from the magnitude of the β̂  estimators, 

what matters is whether the pattern in β̂ across horizons is consistent with the correlation 

implied by )ˆ(βV .  

To see this, consider performing a Wald Test of the hypothesis .021 == ββ  The 

corresponding Wald statistic is given by 

( )








−

−+ +

ρ
βββ

σ
σ ρ

β

1
22 211

2
22

1
2

2

R

XT .          (8) 

For a given sample size T and estimated coefficient 11
ˆ ββ = , this statistic is minimized at 

12 )1(ˆ βρβ += . Since a low value of the statistic implies less evidence against the null, this 

result means that we not only expect a nonzero 2β̂  under the null but that it should be of a 

magnitude greater than the 1β̂  estimate. In fact, for a highly persistent regressor, the Wald 

statistic is minimized when the 2-period coefficient is almost double the one-period 

coefficient. Of course, the denominator of the test statistic goes to zero as the autocorrelation 

approaches one, so even small deviations from the predicted pattern under the null may 

generate rejections if the regressor is sufficiently persistent. 

These results provide important clues in searching for powerful tests against the null of no 

predictability. If the alternative hypothesis does not imply coefficient estimates that increase at 

                                                 
5 For other examples of joint tests in the predictability framework, see, for example, Richardson and Smith 
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the same rate across horizons or that are not as heavily tied to the predictive variable’s 

persistence, one can find evidence of predictability even with modestly sized coefficients. But 

the fact that the no predictability null and the standard ARMA predictive model imply similar 

coefficient patterns (and thus low power) does not mean the null is false. 

Treating the individual coefficient estimates separately in a joint setting can lead to very 

misleading conclusions. The null hypothesis of no predictability as described by the Wald Test 

is most supported in the data when we observe monotonically increasing/decreasing 

coefficient estimates that can be described by the horizon and persistence of the predictive 

variable. This is the exact pattern documented in the original Fama and French (1988) and 

Campbell and Shiller (1988) papers. One wonders how the finance literature would have 

treated these papers if armed with this fact, especially given the weak evidence of 

predictability at short horizons and also in the context of the previously mentioned data 

snooping arguments (e.g., Foster, Smith, and Whaley (1997)) and small sample bias 

(Stambaugh (1999)), both of which suggest that short-horizon significance is overstated. 

 

D. Multiple Horizon Regressions: Simulation Evidence 

The theoretical results in Sections II.B and II.C are based on asymptotic properties of fixed-

horizon estimators. A priori there is reason to be wary of these results in small samples, 

particularly because of the considerable evidence of a bias in the coefficient estimators and of 

non-normality as discussed in Section II.A. Therefore, it is useful to evaluate the small sample 

properties of the estimators in general, and the patterns in sampling error across equations in 

                                                                                                                                                          
(1991), Hodrick (1992) and Ang and Bekeart (2005), among others. 
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particular. Previewing the results to come, the basic tenet of equations (2) and (3), namely, the 

dependence across equations, carries through to small samples. 

We simulate the model in equation (1) under the assumption of no predictability, an AR(1) 

process on tX , and 75 years of annual data. The analysis is performed over 1- to 5-year 

horizons with the AR parameter ρ, the standard deviation of tX  and εt,t +1, and the correlation 

between εt,t +1 and ut,t +1 ≡ Xt +1 − ρXt( ) chosen to match the data.6 The simulations involve 

100,000 replications each. 

Table 1A reports the simulated correlation matrix of the multiple-horizon estimators. 

Consistent with the theoretical analytical calculations in Section II.B, the correlations tend to 

be high, even for the most distant horizons. The simulated correlations between the 1-year and 

2- to 5-year horizon estimators are 0.966, 0.926, 0.885, and 0.843, respectively, showing that 

the correlation calculations under the fixed-horizon asymptotics hold in small samples. Thus, 

the estimators’ almost perfect cross-correlation leads to little independent information across 

equations, and the sampling error that is surely present in small samples shows up in every 

equation in (1).  

As shown in Section II.B, persistence (i.e., ρ) is an important determinant of the magnitude 

of the correlation matrix of the multiple-horizon estimators. Figure 1A graphs the correlation 

between the 1-year and 2- to 5-year horizon estimators for values ρ = 0.953, 0.750, 0.500, 

0.250, and 0.000. Consistent with the asymptotic theory, the correlations decrease as ρ falls. 

The drop-off can be quite large as the horizon increases. As a function of the above ρ values, 

                                                 
6 Specifically, for the regression of annual stock returns on the most commonly used predictive variable, namely, 
dividend yields, we estimate .712.0 and 154.0 0.202,= ,953.0 −=== uu εσσεσρ  While the magnitudes of 
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the 1- and 2-year estimators have correlations of 0.966, 0.917, 0.849, 0.776, and 0.698, 

respectively, and the 1- and 5-year estimators have correlations of 0.843, 0.684, 0.544, 0.465, 

and 0.429. Even when the predictive variable has no persistence, the correlation can still be 

quite high due to the overlapping information across the multiple-horizon returns. 

However, the staggering result in Table 1A is that 66% of all the replications produce 

estimates that are monotonic in the horizon. That is, almost two-thirds of the time, the data 

produce coefficients increasing or decreasing with the horizon, coinciding with the predictions 

from the asymptotic theory. To understand how unlikely monotonicity is, suppose that the five 

different multiple-horizon estimators were IID. In this setting, the probability of a monotonic 

relation is 0.83%, approximately 1/78th of the true probability for the multiple-horizon 

estimators. Even with overlapping horizons, monotonicity drops sharply as ρ falls, i.e., from 

66% to 37%, 20%, 11%, and 6% for ρ = 0.750, 0.500, 0.250, and 0.000, respectively. This 

result further highlights the importance of persistence in the predictive variable for generating 

these patterns. 

One possible explanation for this finding is that the small sample bias increases with the 

horizon (e.g., Stambaugh (1999), Goetzmann and Jorion (1993), and Kim and Nelson (1993)). 

Table 1A confirms that the small sample bias increases with the horizon, with the means of the 

1- to 5-year coefficients equal to 0.055, 0.106, 0.153, 0.196, and 0.235, respectively. To 

investigate whether the monotonicity is due to this bias, Table 1B duplicates Table 1A under 

the assumption that σεu = 0. For this value, the small sample bias is theoretically zero, and the 

estimates are unbiased in our simulations. Interestingly, the monotonicity falls only slightly, to 

                                                                                                                                                          
σ u  and σε  do not matter, this is not true for either the persistence variable ρ  (Boudoukh and Richardson (1994)) 
or the correlation σεu  (e.g., Stambaugh (1999)). Thus, we also investigate different values for these parameters. 
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57%. Furthermore, Table 1B shows that the correlation matrix across the multiple-horizon 

estimators is virtually identical to that in Table 1A. Thus, the monotonicity is driven by the 

almost perfect correlation across the estimators and the increasing horizon, not by the small 

sample bias. 

As described in Section II.A, much of the literature has argued for predictability by 

focusing on the increase in the coefficient estimates as a function of the horizon. Both 

theoretically and in simulation, we show that this result is expected under the null hypothesis 

of no predictability. An alternative measure of predictability also considered in the literature is 

the magnitude and pattern of R2s across horizons. While the R2 is linked directly to the 

coefficient estimate, it is nonetheless a different statistic of the data. Table 2A reports the 

simulated correlation matrix of the multiple-horizon R2s as well as their means, medians, 

standard deviations, and monotonicity properties.  

Similar to Table 1A, the R2s are all highly correlated across horizons. For example, the 

simulated correlations between the 1-year and 2- to 5-year horizon R2s are 0.949, 0.889, 0.828, 

and 0.767, respectively. This degree of correlation leads to R2s that are monotonic in the 

horizon 52% of the time under the null hypothesis—the exact pattern documented in the 

literature. This result is not due to the Stambaugh (1999) small sample bias, as both the degree 

of correlation and monotonicity also appear in the simulated data without the bias (see Table 

2B, where the cross-equation correlation is zero). Also, analogous to the evidence for the 

multiple-horizon coefficient estimators, the degree of cross-correlation and monotonicity 

depends crucially on the level of persistence ρ of the predictive variable.  

Figures 1A and 1B show the correlation coefficients between the 1- and the J-period β 

estimates and R2s. The correlations are plotted for different persistence parameters, and the 
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figures illustrate both the monotonicity and near linearity one would expect and the 

dependence of this effect on the persistence parameter. 

The theoretical calculations of Section II.B imply an even stronger condition than 

monotonicity. For ρ close to 1, the coefficients and R2s should increase one-for-one with the 

horizon under the null hypothesis. Because this is the typical pattern found in US data, it 

seems worthwhile to investigate this implication through a simulation under the null 

hypothesis of no predictability. We compare the ratio of the 2- to 5-year coefficient and R2 

estimates to the 1-year estimates. Since there are numerical issues when using denominators 

close to zero, we run the analysis under the condition that the 1-year estimate have an absolute 

value greater than 0.01, or an R2 greater than 0.5%. Approximately 88% and 62% of the 

simulations respectively satisfy these criteria.  

Table 3A contains the results. As predicted by the theory, the mean ratios of the estimates 

are 1.93, 2.80, 3.59, and 4.32 for the 2-, 3-, 4-, and 5-year horizons, respectively. The R2s are 

equally dramatic, with corresponding ratios of 1.96, 2.88, 3.77, and 4.61.7  Note that these 

simulations are performed under the null hypothesis of no predictability. The βs are zero, but 

the other parameters are calibrated to match the joint distribution of stock returns and dividend 

yields in the data. How do these results compare with the estimated coefficients and R2s from 

the actual data? In the data, the ratios for the 2-, 3-, 4-, and 5-year horizons are 1.96, 2.98, 

3.53, and 3.99 for the β estimates, and 1.85, 3.07, 3.51, and 4.02 for the R2s. The similarities 

are startling.  

                                                 
7 Similar to the earlier tables, Table 3b shows that these findings are not due to the Stambaugh bias and hold 
equally well for .0=uεσ  
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Figures 2A and 2B plot the ratios as a function of the persistence parameter ρ. For large ρ, 

both the coefficient estimates and R2s increase linearly with the horizon, with fairly steep 

slopes (albeit not quite one-for-one). As persistence drops off, the slope diminishes 

dramatically. For ρ = 0, the ratio plot is actually flat. Nevertheless, given the high persistence 

of the predictive variables used in practice, the more relevant ratios would be those 

corresponding to steep slopes. These graphs show the mean of the ratio; however, 

understanding the full distribution allows us to examine whether the actual estimates fall 

within the empirical null distributions. 

To better understand the statistical likelihood of the observed evidence in light of the 

distribution of the various relevant coefficients under the null hypothesis, Figures 3A and 3B 

show box plots of the distribution of the multiple-horizon coefficient estimates and R2s 

conditional on the 1-year coefficient estimate and R2 being close to the actual values (i.e., β̂ = 

0.131 and R2 = 5.16%). The box plots show the median, the 25th and 75th percentiles, and the 

more extreme 10th and 90th percentiles of the distribution. Several observations are in order. 

First, consistent with Figures 2A and 2B, the percentiles linearly increase at a fairly steep rate. 

Second, the actual values of the coefficients and R2s from the data (marked as diamonds in the 

graph) lie uniformly between the 25th and 75th percentiles. Given some amount of sampling 

error, the hypothesis of no predictability produces precisely the pattern one would expect in 

the coefficients under the alternative hypothesis. Because the sample sizes are relatively small, 

the presence of sampling error is almost guaranteed. Third, the plots show that what matters is 

the magnitude of the coefficient at short horizons. In the voluminous literature on stock return 

predictability in finance, no researcher has ever considered the short-horizon evidence to be 

remarkable. 
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III. Empirical Evidence 

The theory and corresponding simulation evidence in Section II suggests that it will be very 

difficult to distinguish between the null hypothesis of no predictability and alternative models 

of time-varying expected returns that involve persistent autoregressive processes. The reason is 

that sampling error produces virtually identical patterns in both R2s and coefficients across 

horizons. However, this finding does not necessarily imply that joint tests will not distinguish 

the null from other alternatives. Recall that the null hypothesis implies highly correlated 

regression coefficient estimators, which induce the coefficient pattern. Even with 

unremarkable coefficient estimators, yet nonconforming coefficient patterns, one might find 

strong evidence against the null hypothesis of no predictability. 

In this section, we look at a number of commonly used variables to test the predictability 

of stock returns. For stock returns, we use the excess return on the value-weighted (VW) 

CRSP portfolio, where excess returns are calculated at a monthly frequency using the 1-month 

T-bill rate from the CRSP Fama risk-free rate file. For predictors, we use the log dividend 

yield on the CRSP VW index, three other payout yields adjusted for repurchases and new 

equity issues, the log earnings yield on the S&P500, the default spread between Baa and Aaa 

yields, the term spread between long-term government bond yields and T-bill yields, the log 

book-to-market ratio, the aggregate equity share of new issuances, and the 1-month T-bill 

yield.8 

                                                 
8 See Boudoukh, Michaely, Richardson, and Roberts (2005) for a detailed description of the various measures of 
payout yield. The data for the first 4 variables are available on Michael Roberts’ website 
http://www.finance.wharton.upenn.edu\mrrobert\public_html\Research\Data. See Goyal and Welch (2003) for 
details on variables 5 to 8. We thank Amit Goyal for graciously providing the data. See Baker and Wurgler 
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The regression analysis corresponds to equation (1), and covers return horizons of 1 to 5 

years over the period 1926–2004. We use the same number of observations for each horizon; 

therefore, the predictor variables span the period 1925–1999 (75 observations) when 

available.9 For each set of multiple-horizon regressions, we calculate the coefficient, its 

analytical standard error (using equation (2)), its asymptotic p-value, and its simulated p-value 

under an AR(1) with matching parameters.10 The AR(1) coefficient used in the simulations is 

the estimated first-order autocorrelation, corrected for the small sample bias (Kendall (1954)), 

TC
1

11
ˆ31ˆˆ ρ

ρρ
+

+= .          (9) 

In addition, we conduct a joint Wald test across the equations, using both asymptotic and 

simulated p-values. Throughout, asymptotic standard errors, p-values, and test statistics are 

calculated using the uncorrected sample autocorrelation function. The results are reported in 

Table 4. 

Most of the series show the much-cited pattern of increasing coefficient estimates and 

corresponding R2s. For the dividend yield, the payout yield including total repurchases, the 

payout yield including treasury stock-adjusted repurchases (all on the CRSP VW index), the 

earnings yields on the S&P500, the default spread, the term spread, the book-to-market ratio, 

and the risk-free rate the increases in R2 from the 1-year to the 5-year horizon are 5.16% to 

20.76%, 8.66% to 25.83%, 7.73% to 25.83%, 3.33% to 11.80%, 0.31% to 6.42%, 3.04% to 

                                                                                                                                                          
(2000) for a description of the equity share of new issuances. The data are available on Jeff Wurgler’s website 
http://pages.stern.nyu.edu/~jwurgler/. The 1-month T-bill yield comes from the CRSP Fama risk-free rate file. 
9 The four payout yield series start in 1926 (74 observations) and the equity share series starts in 1927 (73 
observations). 
10 Because the equations involve overlapping observations across multiple horizons, small sample adjustments for 
coefficient estimators and standard errors (e.g., Amihud and Hurvich (2004) and Amihud, Hurvich, and Wang 
(2005)) are no longer strictly valid. As developing methods for our particular regression system lies outside the 
scope of this paper, we rely on simulated p-values as a correction for both the correlation (e.g., Stambaugh 
(1999)) and long-horizon (e.g., Valkanov (2003)) biases. 
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13.90%, 3.66% to 18.52%, and 3.11% to 12.65%, respectively. However, the (corrected) 

persistence levels of the associated variables are 95.3%, 88.7%, 91.9%, 79.1%, 83.8%, 64.2%, 

93.4%, and 95.7%, respectively (see Table 5). It should not be surprising that many of the 

series have significant coefficients using asymptotic p-values across most of the horizons. 

Under the null hypothesis, the regressions at each horizon are virtually the same.  

Table 5 is an alternative representation of the results in Table 4, i.e., the ratios of the 

coefficient estimates and R2s across horizons. For the series cited above (except for the default 

spread), the ratios for both quantities are similar to the simulated ratios under the null 

hypothesis of no predictability. In all cases, the ratios (and therefore the underlying coefficient 

estimates and R2s) increase with the horizon. Thus, the finding that some of the 1-year 

regressions are significant, and that the same variables produce virtually identical patterns at 

longer horizons, is actually evidence that the annual regression results are due to sampling 

error.11 The joint tests confirm this phenomenon by generally producing higher p-values, e.g., 

0.18, 0.16 and 0.20 for the three payout yield variables on the CRSP VW index, 0.39 for the 

earnings yield on the S&P500, 0.65 for the default spread, 0.32 for the term spread, 0.32 for 

the book-to-market ratio, and 0.08 for the risk-free rate, the only variable significant at the 

10% level. 

Several observations illustrate the nature of the joint tests. First, consider the regression 

results for the dividend yield versus the two payout yield measures on the CRSP VW index. 

By almost any eyeball measure, the evidence for the payout yield appears to be stronger. All of 

the horizons produce larger coefficient estimates and R2s and lower p-values. While four of the 

five p-values are less than 0.02 for the payout yield, none of the coefficients satisfy this 
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criterion for the dividend yield. Nevertheless, the p-value of the joint test for the payout yield 

is similar to that for the dividend yield. 

Second, the individual coefficient p-values and corresponding R2s of the one marginally 

significant variable (out of series cited above) under the joint cross-horizon test, i.e., the risk-

free rate, look less impressive if anything than those for the other series. Yet the significance 

level of the joint test is much higher.12 Why? The pattern in the coefficients, while monotonic, 

is much less linear and one-to-one than implied by the estimated autocorrelation function. This 

result illustrates the power of the joint test to uncover seemingly innocuous differences across 

horizons. 

Third, the simulated p-values in general show much less significance for both the 

individual and joint tests. For example, the risk-free rate is no longer significant at the 10% 

level. This mirrors the small sample findings of Goetzmann and Jorion (1993), Kim and 

Nelson (1993), and Valkanov (2003). As Tables 1A and 1B show, the correlation pattern 

across multiple-horizon estimators is robust to small sample considerations. 

Finally, two variables, the net payout yield (i.e., payout yield plus net issuance) and the 

equity share of new issuances, are strongly significant across horizons as evidenced by Wald 

statistics with p-values of 0.00 and 0.01, respectively. These results are consistent with the 

short-horizon findings of Boudoukh, Michaely, Richardson, and Roberts (2005) and Baker and 

Wurgler (2000), and show that this evidence continues to long horizons. Of some interest, 

while the coefficients and R2s are large across all horizons, the pattern is no longer monotonic. 

This finding provides even sharper evidence against the null since the series are positively 

                                                                                                                                                          
11 This conclusion has even greater support once the researcher takes into account the data-snooping arguments of 
Foster, Smith, and Whaley (1997). 
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autocorrelated at the relevant horizons. With this degree of autocorrelation and the overlapping 

horizons, one would have expected a pattern similar to the other predictive variables. 

 

IV. Conclusion 

Long-horizon stock return predictability is considered to be one of the more important pieces 

of evidence in the empirical asset pricing literature over the last couple of decades (see, e.g., 

the textbooks of Campbell, Lo, and MacKinlay (1997) and Cochrane (2001)). The evidence is 

set forth as a yardstick for theoretical asset pricing models and is slowly penetrating the 

practitioner community (for two recent examples, see Brennan and Xia (2005) and Asness 

(2003)).  

Long-horizon predictability has also been documented in other markets, which is perhaps 

not surprising, given our analysis. The highly cited work of Fama and Bliss (1987) and Mark 

(1995) document results similar in spirit to the ones discussed in this paper for bond returns 

and exchange rates, respectively. Both papers involve highly persistent regressors and 

document nearly linearly increasing βs and R2s. 

In this paper, we show that stronger long-horizon results, in the form of higher βs and 

increasing R2s, present little if any independent evidence over and above the short-horizon 

results for persistent regressors. Under the null hypothesis of no predictability, sampling 

variation can generate small levels of predictability at short horizons. This result is well 

known. Our research shows that higher levels of predictability at longer horizons are to be 

expected as well. 

                                                                                                                                                          
12 In a multivariate regression framework that includes both dividend yields and the short rate, Ang and Bekeart 
(2005) find that the short rate has predictive power across multiple horizons. 
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Appendix A 

Under the null hypothesis of no predictability, ,0*1 ===== LLL JJ βββ  we can rewrite 
regression equation system (1) for any J and J* horizons as: 
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Under the assumption of conditional homoskedasticity of the error terms above, one can apply 
the approach of Richardson and Smith (1991) (see also Boudoukh and Richardson (1994)) to 
analytically derive the asymptotic distribution of the estimators ( )LLL *

ˆˆ'ˆ
JJ βββ = . Applying 

results from Hansen (1982), the vector of regression coefficients )( 'ˆ 1ˆ
ˆ βαθ =  has an asymptotic 
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l ltftfES0 . Under these assumptions, it is possible to calculate 

0D and 0S analytically. Specifically, 
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where Xµ  is the mean of Xt, 2

Xσ is the unconditional variance of Xt, �l is the lth order 
autocorrelation of Xt, 2

Rσ  is the variance of single period returns Rt, and J*>J. Using 0D and 0S  
above, and performing the relevant matrix calculations, one gets the desired result given in 
equation (2). 
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Panel A: σεu = –0.712 
 

Coefficient estimates 
    Correlations 
    Horizon 
Horizon Mean SD Median 2 3 4 5 

1 0.055 0.076 0.043 0.966 0.926 0.885 0.843 
2 0.106 0.143 0.085  0.980 0.946 0.909 
3 0.153 0.203 0.126   0.985 0.957 
4 0.196 0.257 0.165    0.988 
5 0.235 0.307 0.203     
% monotonic 66.02      

 
Test statistics 

    Size 
 Mean SD Median 10% 5% 1% 

Wald 6.227 3.901 5.469 18.507 10.645 3.015 
P-value 0.403 0.288 0.361    

 
 

Panel B: σεu = 0 
 

Coefficient estimates 
    Correlations 
    Horizon 
Horizon Mean SD Median 2 3 4 5 

1 0.000 0.070 0.000 0.960 0.913 0.867 0.823 
2 0.000 0.133 0.001  0.977 0.940 0.900 
3 0.001 0.194 0.001   0.984 0.954 
4 0.001 0.251 0.002    0.988 
5 0.000 0.305 0.001     
% monotonic 57.30      

 
Test statistics 

    Size 
 Mean SD Median 10% 5% 1% 

Wald 5.949 3.876 5.142 16.813 9.684 2.773 
P-value 0.429 0.294 0.399    

 
 

Table 1: Distribution of Coefficient Estimates and Test Statistics 
Panel A reports the mean, standard deviation, and median of the coefficient estimates from the 
predictive regression (equation (1)), and the correlations between these estimates for horizons of 1 to 5 
years across 100,000 simulations. “% monotonic” is the percentage of the simulations that produce 
coefficients that are monotonic in the horizon. Panel A also reports the mean, standard deviation, and 
median of the joint Wald test statistic (across horizons), the associated p-values, and the percentage of 
statistics that reject the null hypothesis of no predictability at the 10%, 5%, and 1% levels. There are 75 
observations for each simulation, and simulations are performed under the null hypothesis of no 
predictability using the parameters ρ = 0.953, σε = 0.212, σu = 0.154, σεu = –0.712. Panel B reports the 
same statistics for σεu = 0 (all other simulation parameters are the same as in Panel A). 
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Panel A: σεu = –0.712 
 

    Correlations 
    Horizon 
Horizon Mean SD Median 2 3 4 5 

1 1.833 2.378 0.918 0.949 0.889 0.828 0.767 
2 3.469 4.348 1.816  0.969 0.918 0.861 
3 4.966 6.041 2.665   0.977 0.933 
4 6.337 7.525 3.454    0.981 
5 7.600 8.837 4.259     
% monotonic 52.21      

 
 

Panel B: σεu = 0 
 

    Correlations 
    Horizon 
Horizon Mean SD Median 2 3 4 5 

1 1.345 1.861 0.618 0.927 0.846 0.768 0.696 
2 2.525 3.400 1.203  0.957 0.892 0.821 
3 3.614 4.771 1.746   0.969 0.914 
4 4.626 5.995 2.280    0.976 
5 5.574 7.099 2.790     
% monotonic 42.58      

 
 

Table 2: Distribution of R2s 
Panel A reports the mean, standard deviation, and median of the R2s from the predictive regression 
(equation (1)) and the correlations between them for horizons of 1 to 5 years across 100,000 
simulations. “% monotonic” is the percentage of the simulations that produce R2s that are monotonic in 
the horizon. There are 75 observations for each simulation, and simulations are performed under the 
null hypothesis of no predictability using the parameters ρ = 0.953, σε = 0.212, σu = 0.154, σεu = –
0.712. Panel B reports the same statistics for σεu = 0 (all other simulation parameters are the same as in 
Panel A). 
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Panel A: σεu = –0.712 
 

 Coefficient estimate ratios R2 ratios 
Horizon Mean SD Median # of sim. Mean SD Median # of sim. 

2 1.934 0.874 1.919 88,495 1.957 0.813 1.875 62,126 
3 2.798 1.894 2.739 88,495 2.880 1.726 2.612 62,126 
4 3.592 3.056 3.472 88,495 3.766 2.744 3.237 62,126 
5 4.318 4.326 4.139 88,495 4.612 3.821 3.785 62,126 
% monotonic 70.38   % monotonic 60.40  

 
 

Panel B: σεu = 0 
 

 Coefficient estimate ratios R2 ratios 
Horizon Mean SD Median # of sim. Mean SD Median # of sim. 

2 1.872 1.154 1.887 87,058 1.905 0.959 1.783 54,599 
3 2.620 2.426 2.665 87,058 2.756 1.987 2.400 54,599 
4 3.269 3.846 3.350 87,058 3.552 3.082 2.887 54,599 
5 3.835 5.357 3.945 87,058 4.299 4.206 3.241 54,599 
% monotonic 61.27   % monotonic 49.00  

 
 

Table 3: Distribution of Coefficient Estimate and R2 Cross-Horizon Ratios 
Panel A reports the mean, standard deviation, and median of the coefficient estimate and R2 ratios (i.e., 

1
ˆˆ ββ i and R2

i/R2
1, i = 2,…,5) from the predictive regression (equation (1)) across the simulations out 

of the 100,000 for which 1̂β > 0.01 or R2
1 > 0.5%, respectively. “% monotonic” is the percentage of 

these simulations that produce coefficient estimates and R2s that are monotonic in the horizon. There 
are 75 observations for each simulation, and simulations are performed under the null hypothesis of no 
predictability using the parameters ρ = 0.953, σε = 0.212, σu = 0.154, σεu = –0.712. Panel B reports the 
same statistics for σεu = 0 (all other simulation parameters are the same as in Panel A). 
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 Horizon  
 1 2 3 4 5 Wald 

 Log dividend yield, CRSP VW 
β̂  0.131 0.257 0.390 0.461 0.521 7.576 

Std. err. 0.067 0.130 0.191 0.249 0.306  
Asym. p-value 0.025 0.025 0.021 0.032 0.044 0.181 

Sim. p-value 0.148 0.142 0.125 0.150 0.172 0.293 
R2 5.164 9.551 15.836 18.143 20.756  

  
  Log payout yield, CRSP VW, cash flow 

β̂  0.214 0.401 0.567 0.657 0.736 7.840 
Std. err. 0.085 0.162 0.235 0.304 0.370  

Asym. p-value 0.006 0.007 0.008 0.015 0.023 0.165 
Sim. p-value 0.046 0.045 0.044 0.059 0.072 0.211 

R2 8.664 14.530 20.912 22.997 25.829  
  
  Log payout yield, CRSP VW, Treasury stock 

β̂  0.188 0.354 0.510 0.601 0.682 7.309 
Std. err. 0.078 0.152 0.221 0.286 0.350  

Asym. p-value 0.008 0.010 0.010 0.018 0.026 0.199 
Sim. p-value 0.072 0.069 0.066 0.082 0.096 0.270 

R2 7.729 13.213 19.714 22.387 25.827  
  
  Log net payout yield, CRSP VW, cash flow 

β̂  0.718 1.321 1.536 1.537 1.512 19.024 
Std. err. 0.173 0.315 0.431 0.528 0.616  

Asym. p-value 0.000 0.000 0.000 0.002 0.007 0.002 
Sim. p-value 0.000 0.000 0.001 0.004 0.012 0.001 

R2 23.399 37.990 36.887 30.253 26.247  
  
 Log earnings yield, S&P500 

β̂  0.101 0.228 0.328 0.383 0.380 5.175 
Std. err. 0.064 0.120 0.171 0.218 0.262  

Asym. p-value 0.057 0.028 0.028 0.040 0.073 0.395 
Sim. p-value 0.125 0.073 0.066 0.081 0.129 0.430 

R2 3.334 8.065 11.757 13.373 11.798  
 
 

Table 4: Coefficient Estimates and R2s from Predictive Regressions 
The table reports results from the regression of 1- to 5-year CRSP value-weighted returns on various 
lagged predictor variables (equation (1)) for the period 1926–2004 (75 observations). β̂  is the 
estimated coefficient, with associated asymptotic standard error (equation (3)), p-value under the null 
hypothesis of no predictability, and the asymptotic Wald test and p-value for the joint hypothesis of no 
predictability across horizons. The table also reports simulated p-values (100,000 simulations) for both 
the individual coefficients and the Wald test. There are 75 observations for each simulation, and 
simulations are performed under the null hypothesis of no predictability using parameters estimated 
from the data. 
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 Horizon  
 1 2 3 4 5 Wald 

 Default yield spread 
β̂  1.372 4.961 7.111 9.982 12.512 3.335 

Std. err. 2.864 5.420 7.734 9.825 11.759  
Asym. p-value 0.316 0.180 0.179 0.155 0.144 0.648 

Sim. p-value 0.429 0.278 0.280 0.251 0.237 0.690 
R2 0.306 1.911 2.770 4.559 6.417  

  
 Term yield spread 

β̂  2.663 3.715 5.860 9.350 11.336 7.082 
Std. err. 1.763 3.157 4.260 5.136 5.853  

Asym. p-value 0.065 0.120 0.084 0.034 0.026 0.215 
Sim. p-value 0.077 0.133 0.100 0.048 0.043 0.230 

R2 3.041 2.829 4.966 10.560 13.905  
  
 Log book-to-market ratio 

β̂  0.086 0.187 0.289 0.358 0.384 5.841 
Std. err. 0.052 0.100 0.146 0.189 0.229  

Asym. p-value 0.049 0.031 0.024 0.029 0.047 0.322 
Sim. p-value 0.225 0.180 0.155 0.164 0.208 0.441 

R2 3.665 8.295 13.988 18.023 18.520  
  
 Equity share of new issuances 

β̂  -0.741 -1.181 -1.311 -1.351 -1.189 16.161 
Std. err. 0.216 0.352 0.461 0.552 0.652  

Asym. p-value 0.000 0.000 0.002 0.007 0.034 0.006 
Sim. p-value 0.001 0.001 0.005 0.012 0.039 0.005 

R2 16.126 20.103 17.271 14.976 10.831  
  
 Risk-free rate 

β̂  -1.287 -1.812 -2.911 -4.234 -5.165 9.776 
Std. err. 0.842 1.644 2.420 3.176 3.918  

Asym. p-value 0.063 0.135 0.114 0.091 0.094 0.082 
Sim. p-value 0.075 0.141 0.119 0.094 0.094 0.145 

R2 3.112 2.946 5.367 9.485 12.646  
 
 

Table 4 Cont’d 
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  Horizon 
  2 3 4 5 

C1ρ̂  

ln (D/P) (CRSP VW) 1ˆ −iρ  0.901 0.780 0.687 0.637 0.953 
 

1
ˆˆ ββ i  1.962 2.982 3.527 3.986  

 R2
i/ R2

1 1.850 3.067 3.514 4.020  
ln (payout/P) (CRSP VW, CF) 1ˆ −iρ  0.837 0.674 0.574 0.508 0.887 

 
1

ˆˆ ββ i  1.869 2.645 3.065 3.432  
 R2

i/ R2
1 1.677 2.414 2.654 2.981  

Ln (payout/P) (CRSP VW, TS) 1ˆ −iρ  0.867 0.721 0.618 0.567 0.919 
 

1
ˆˆ ββ i  1.887 2.719 3.202 3.634  

 R2
i/ R2

1 1.710 2.551 2.897 3.342  
ln (net payout/P) (CRSP VW, CF) 1ˆ −iρ  0.670 0.280 0.108 0.128 0.713 

 
1

ˆˆ ββ i  1.839 2.138 2.139 2.105  
 R2

i/ R2
1 1.624 1.576 1.293 1.122  

ln (E/P) (S&P500) 1ˆ −iρ  0.746 0.565 0.405 0.318 0.791 
 

1
ˆˆ ββ i  2.250 3.234 3.774 3.746  

 R2
i/ R2

1 2.419 3.527 4.011 3.539  
Default spread 1ˆ −iρ  0.790 0.564 0.383 0.306 0.838 

 
1

ˆˆ ββ i  3.617 5.184 7.277 9.122  
 R2

i/ R2
1 6.250 9.060 14.912 20.990  

Term spread 1ˆ −iρ  0.603 0.213 0.008 -0.058 0.642 
 

1
ˆˆ ββ i  1.395 2.201 3.511 4.257  

 R2
i/ R2

1 0.930 1.633 3.472 4.572  
ln (B/M) 1ˆ −iρ  0.882 0.721 0.580 0.456 0.934 

 
1

ˆˆ ββ i  2.177 3.364 4.179 4.476  
 R2

i/ R2
1 2.263 3.816 4.917 5.053  

Equity share of new issuances 1ˆ −iρ  0.332 0.116 0.046 0.291 0.360 
 

1
ˆˆ ββ i  1.594 1.771 1.824 1.605  

 R2
i/ R2

1 1.247 1.071 0.929 0.672  
Risk-free rate 1ˆ −iρ  0.905 0.816 0.759 0.730 0.957 

 
1

ˆˆ ββ i  1.408 2.262 3.290 4.014  
 R2

i/ R2
1 0.947 1.725 3.048 4.064  

 
 

Table 5: Autocorrelation Estimates and Coefficient Estimate and R2 Ratios from Predictive 
Regressions 

The table reports the estimated autocorrelation function ( 1ˆ −iρ ), the corrected first-order autocorrelation 
( C1ρ̂ ), the coefficient estimate ratios ( 1

ˆˆ ββ i , i = 2,…,5) and the R2 ratios (R2
i/ R2

1, i = 2,…,5) from the 
regression of 1- to 5-year CRSP value-weighted returns on various lagged predictor variables (equation 
(1)) for the period 1926–2004. 
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Figure 1: Cross-Horizon Correlations between Coefficient Estimates and R2s 
The top panel plots the correlation between the coefficient estimate at the 1-year horizon and those at 
the 2- to 5-year horizons from the predictive regression (equation (1)) across 100,000 simulations for 
different values of ρ (the autocorrelation of the predictor variable). There are 75 observations for each 
simulation, and simulations are performed under the null hypothesis of no predictability using the 
parameters σε = 0.212, σu = 0.154, σεu = –0.712. The bottom panel plots the analogous correlations for 
the predictive regression R2s. 
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Figure 2: Mean Coefficient Estimate and R2 Cross-Horizon Ratios 
The top panel plots the mean coefficient estimate ratios (i.e., 1

ˆˆ ββ i , i = 2,…,5) from the predictive 
regression (equation (1)) across the simulations out of the 100,000 for which |ˆ| 1β > 0.01 for different 
values of ρ (the autocorrelation of the predictor variable). There are 75 observations for each 
simulation, and simulations are performed under the null hypothesis of no predictability using the 
parameters σε = 0.212, σu = 0.154, σεu = –0.712. The bottom panel plots the means of the analogous R2 
ratios (i.e., R2

i/ R2
1, i = 2,…,5) for simulations with or R2

1 > 0.5%. 
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Figure 3: Conditional Distribution of Coefficient Estimates and R2s 
The top panel provides a box plot of the simulated distributions of the coefficient estimates for horizons 
2- to 5-years from the predictive regression (equation (1)) for the 971 out of 100,000 simulations for 
which 0.115 < 1̂β < 0.119. The boxes show the median, 25th/75th percentiles, and 10th/90th percentiles. 
The diamonds mark the actual coefficient estimates from the first regression in Table 4. There are 75 
observations for each simulation, and simulations are performed under the null hypothesis of no 
predictability using the parameters ρ = 0.953, σε = 0.212, σu = 0.154, σεu =–0.712. The bottom panel 
plots the analogous simulated distributions for the predictive regression R2s for the 899 simulations for 
which 4.215% < R2

1 < 4.414% and the corresponding actual R2s. 
 




