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1 Introduction

Even well managed emerging market economies are subject to an occasional “sudden stop” of net

capital inflows. That is, at a moment’s notice these economies may be required to reverse the

capital inflows that supported the preceding boom.

The deep contractions triggered by this sudden tightening of external financial constraints have

great costs for these economies, and therefore represent one of the main macroeconomic policy-

problems for emerging market economies. There are many domestic and external factors behind

these sudden stops in net capital inflows. While there is substantial agreement on the kind of policy

adjustments that reduce domestic risks, there is less consensus on what are the adequate external

liability management strategies to deal with external shocks. In Caballero and Panageas (2005)

we analyzed reserves accumulation and hedging mechanisms to soften the impact of sudden stops

once these take place. In this paper we focus on a different aspect of the problem: We argue that

there are substantial fluctuations in the likelihood of a sudden stop, and that in many instances

these fluctuations are correlated with persistent external variables which offer hedging possibilities

free of moral hazard or (emerging market specific) informational concerns (see Sections 5 and 6 for

evidence).

The main technical contribution of the paper is a model that is stylized enough to allow exten-

sive analytical characterization, but is also flexible and realistic enough to generate quantitative

guidance. The model has two central features: First is the sudden stop, which we characterize as

a probabilistic event that, once triggered, requires the country to reduce the pace of external (net)

borrowing significantly. This specification of sudden stops captures well policymakers’ concerns not

only with the stock of external liabilities but also with the size of current account deficits (a flow

variable). Second is a signal, which describes the likelihood of sudden stop at each point in time.

We characterize the impact of changes in this signal on optimal precautionary savings, and the

role of different hedging opportunities in reducing the extent of fluctuations due to precautionary

actions and the direct cost of sudden stops.

On one extreme, if the country has no access to hedging instruments, the only tool at hand

is a sort of precautionary contraction. As external indicators of the likelihood of a sudden stop

worsen, the country slows down the pace of borrowing. Of course, in reality many countries choose
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to ignore these signals and experience deeper contractions once sudden stops take place. Others are

excessively prudent, and tighten monetary and fiscal policy beyond what many see as reasonable.

The first of our goals in this paper is normative, and it is to take a step in the direction of offering

an empirically based metric to evaluate how much prudence is reasonable.

On the other extreme is the case where the country can hedge both the (jump) sudden stop

directly and (diffusive) fluctuations in the price of such hedge as the signal fluctuates. In this case

the country has maximal insurance. However, since our constraint is directly on the current account

deficits, such insurance does not remove sudden stop entirely but only reduces the country’s level

of external liabilities at the onset of the sudden stop, at minimal cost. What it does do, is to

remove the need for precautionary contractions and it limits the extent of a sudden stop to a level

that removes jumps in the value of a marginal dollar at the time of the sudden stop (since the

reduction in external liabilities raises utility in the post-sudden stop stage enough to compensate

for the welfare loss from reduced consumption during the sudden stop).

In an intermediate range, is the more feasible scenario where the jump cannot be hedged but

smooth diffusive hedging is available. In this case the country still can remove the bulk of precau-

tionary contractions and reduce the cost of sudden stops, but it remains exposed to the realization

of the latter. One of the quantitative contributions of the paper is to show that this type of hedging

can go a long way in reducing the overall costs of living in a sudden stop prone environment.

The case of Chile, a prudent emerging market economy, provides a useful framework of reference.

Chile’s business cycle is highly correlated with the price of copper, its main export good; so much

so that this price has become a signal of aggregate Chilean conditions to (foreign and domestic)

investors and policymakers alike. As a result of the many internal and external reactions to this

signal, the decline in Chilean economic activity when the price of copper falls sharply is many times

larger than the annuity value of the wealth effect of the price decline. This contrasts with the

scenario in Australia, a developed economy not exposed to the possibility of a sudden stop, where

similar terms-of-trade shocks are fully absorbed by the current account, with almost no impact on

domestic activity and consumption.1 Chile is a natural candidate for the type of hedging strategies

we propose.

We do not attempt to explain why international financial markets treat Chile and Australia

1See , e.g., Caballero (2001).
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so differently, or even why the signal for the sudden stops should be so correlated with the price

of copper. Instead, we take the “sudden stops” feature as a description of the environment and

characterize the optimal risk management strategy under different assumptions about imperfections

in hedging markets.2

We estimate Chile’s probability of facing a sudden stop as a function of the price of copper and

calibrate the parameters to match observed consumption fluctuations. We then describe different

hedging strategies and their impact on the volatility and levels of consumption. We start by

showing that in the absence of hedging instruments, Chile should exhibit a significant precautionary

business cycle. For example, more than half of the deep reduction in the current account deficit in

Chile during the 1998/99 crisis can be accounted for by the optimal response to the fear (not the

realization) of a sudden stop.

We then go on to show the benefit of adding contingencies to liability management. For a wide

range of scenarios the gains associated with hedging are equivalent to reducing Chile’s net external

liabilities (of about 50 percent of GDP) by a third. Similarly, we find that the required risk premia

to justify for a country like Chile to not adopt an active hedging strategy exceeds 800 basis points

for the simplest strategies and several thousand basis points for richer ones.3

Of course the benefits of these strategies are not limited to the case of Chile, which is only

illustrative. As another example, we show for a panel of emerging markets that the likelihood of

sudden stops – as identified by Calvo et al (2005)– exhibits large time variation, and that the

latter is strongly correlated with lagged US high yield spreads.

2We focus on the aggregate financial problem vis-a-vis the rest of the world, in an environment where domestic

policy is managed optimally and decentralization is not a source of problems. Needless to say, these assumptions

seldom hold in practice. Such failures compound the problems we deal with in this paper by exacerbating the country’s

exposure to sudden stops. See, e.g., Caballero and Krishnamurthy (2001, 2003) and Tirole (2002) for articles dealing

with decentralization problems. The literature on government’s excesses is very extensive. See, e.g., Burnside et al

(2003) for a recent incarnation.
3 In his Nobel lecture, Robert Merton (1998) highlights the enormous savings than can be obtained by designing

adequate derivatives and other contracting technologies to deal with risk management. He also argues that emerging-

market economies stand to gain the most. Our findings in this paper fully support his views. See also, e.g., Krugman

(1988), Froot, Scharfstein, Stein (1989), Haldane (1999), Caballero (2001), for articles advocating commodity index-

ation of emerging markets debt. The contribution of this paper relative to that literature is to offer a quantitative

framework and to link the hedging need not to commodities per se, but to the signal aspect of much costlier financial

constraints.
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In section 2 we describe the environment and characterize the optimization problem once a

sudden stop has been triggered – this provides the boundary conditions for the “precautioning

phase.” In section 3 we study the phase that precedes a sudden stop when the country self-insures.

The main goal of this section is to characterize precautionary contractions. Section 4 describes

aggregate hedging strategies under different degree of imperfections in these markets. Section 5

illustrates our results through an application to the case of Chile. Along the way, we outline

an econometric approach to gauging the likelihood of a sudden stop and its correlation with an

underlying signal. Section 6 provides empirical evidence for a panel of emerging market economies

on the large time variation in the likelihood of sudden stops and its correlation with persistent (and

exogenous) global indices. Section 7 concludes and is followed by an extensive technical appendix.

2 Preliminaries

Intertemporal smoothing implies that emerging economies typically experience substantial needs for

external borrowing from abroad. For a variety of reasons that we do not model here, this dependence

on borrowing is a source of fragility. The sudden tightening of financial constraints generates large

drops in consumption. In this section we formalize such environment and characterize the value

function of consumers once a sudden stop has occurred. This serves as a boundary condition for

the pre-sudden stop problem faced by the country, which is our main concern in this paper.

2.1 Endowment and Preferences

Let the endowment grow at some constant rate, g > 0, during 0 ≤ t <∞:

yt = y0e
gt. (1)

This specification of the income process excludes feedback effects from aggregate demand to output

and from output to sudden stops (although we recover some of the latter channel in the signal

process, see below), and hence underestimate the impact of the phenomenon we study. Nonetheless

we adopt it because its simplicity allows us to isolate the direct effect of sudden stops more cleanly.

Reflecting emerging markets’ net debtor position, the country starts with financial wealth,
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X(0) = X0 < 0. However the country’s total wealth
³
Xt +

yt
r−g
´
must be positive at all times:

Xt > − yt
r − g

t ≥ 0,

where r denotes the riskless interest rate and it exceeds the rate of growth of the endowment, r > g.

Let ct and c∗t represent date t consumption and “excess” consumption, respectively, with:

c∗t ≡ ct − κyt, 0 ≤ κ < 1.

The representative consumer maximizes:

Et

∙Z ∞

t
u(c∗s)e

−δ(s−t) ds
¸

(2)

with

u(c∗t ) =
c∗1−γ

1− γ
, δ > 0, γ > 0.

The parameters δ and γ are the discount rate and risk aversion coefficient, respectively. For

simplicity, we assume r = δ throughout. The functional form of the utility function captures an

external habit formation, with a habit level that is increasing at the rate of the country’s growth

rate. The habit term plays two roles: First, it raises the effective risk aversion of the country

in a manner similar to Campbell and Cochrane (1999) and thus brings the demand for hedging

to realistic magnitudes. Second, it introduces a trend in consumption which allows us to reduce

borrowing demand to reasonable levels without introducing overlapping generations or gaps between

the interest and discount rates which would complicate the analysis.4

A frictionless benchmark

It is instructive to pause and study the solution of problem (2) subject to a standard intertem-

poral budget constraint (and absent a sudden stop constraint):

dXt = (rXt − c∗t + y∗t ) dt (3)

X0 given
4Accordingly, this type of utility function implies that the indebtedness of the country at any point in time will

be larger than − (1−κ)yt
r−g :

Xt > − (1− κ)yt
r − g

t ≥ 0.
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with y∗ ≡ (1− κ)y.

By standard reasoning we have that in such case:

c∗t = r

µ
X0 +

y∗0
r − g

¶
for all t > 0,

and the “total resources” of the country remain constant throughout:

Xt +
y∗t

r − g
= X0 +

y∗0
r − g

(4)

so that

lim
t→∞

Xt

y∗t
= − 1

r − g

and, accordingly:

lim
t→∞

Xt

yt
= −1− κ

r − g
.

Moreover, for any level of Xt
yt
above its limit value, the ratio Xt

y∗t
decreases monotonically to

− 1
r−g .

This case serves as a frictionless benchmark in what follows.

2.1.1 Sudden Stops

We place no limits on the country’s borrowing ability up to the stochastic time τ . At this time, the

country faces a “sudden stop.” We do not model the informational or contractual factors behind

this constraint, or the complex bargaining and restructuring process that follows once the sudden

stop is triggered. Since our goal is to produce a quantitative assessment of the hedging aspects of

the problem, we look for a realistic and fairly robust (across models) constraint. For this, we simply

model the sudden stop as a temporary and severe constraint on the rate of external borrowing. In

particular, since the “natural” aggregator of a country’s total wealth is the net present value of its

total resources, we place the constraint on:

Xτ +
y∗τ

r − g
.

We assume that at time τ , financial markets require the country to increase its total resources by

ζ,

egT ≤ ζ ≤ erT
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within T periods. Formally: µ
Xτ+T +

y∗τ+T
r − g

¶
≥ ζ

µ
Xτ +

y∗τ
r − g

¶
. (5)

It is apparent that this constraint will be always binding because, as we showed above, at the

unconstrained benchmark
³
Xt +

y∗t
r−g
´
remains constant at all times. It is then straightforward to

show that this constraint can be expressed as a constraint on the maximum allowable amount of

debt/gdp at time τ+T , as a function of the debt/gdp ratio at time τ . To see this, simply rearrange

(5) to obtain
Xτ+T

y∗τ+T
≥ ζe−gT

Xτ

y∗τ
+ (ζe−gT − 1) 1

r − g
(6)

Higher levels of ζ make the constraint tighter. At its minimum, ζ = egT , the constraint literally

reduces to the requirement that debt/gdp cannot grow any further between τ and τ + T :5

Xτ+T

y∗τ+T
≥ Xτ

y∗τ

Finally, it is interesting to note that one can think of (6) as a constraint on the minimum

balance-of-trade surpluses the country has to accumulate over the next T periods. To see this,

start with the intertemporal budget constraint:Z τ+T

τ
e−r(t−τ)(y∗t − c∗t ) dt = e−rTXτ+T −Xτ

and replace (6) into it, to obtain:Z τ+T

τ
e−r(t−τ) (y∗t − c∗t ) dt ≥ (ζe−gT − 1)

y∗τ
r − g

e−(r−g)T − (1− ζe−rT )Xτ .

This gives us the constraint in terms of the balance-of-trade surpluses required from a country

that is faced with a sudden stop. These required surpluses rise with the country’s endowment, with

ζ, and with the level of debt at the time of the sudden stop (recall that Xτ < 0 when the country

is a net debtor).

That is, we have arrived to a flow constraint rather than to a conventional stock constraint.

This specification not only facilitates our analysis but also captures well policymakers’ concerns

with current account deficits regardless of the level of external indebtedness. In practice we observe

5Even for the ζ = egT case the constraint we consider is binding at the time of the sudden stop. This follows from

the fact that the debt/gdp ratio is always growing for an unconstrained country as we showed above.
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a wide array of debt-to-gdp ratios but warnings emerge quickly as soon as current account deficits

(a flow) crosses certain thresholds. There is at least one good reason for this concern with flows

above and beyond stocks: while there is always some space for stock renegotiation, financing new

flows is much harder to obtain during distress.

As we mentioned above. note that while the constraint is on the flows, stocks do matter. A

higher debt-to-gdp ratio at the outset of the sudden stop requires a larger consumption sacrifice

since debt-servicing is more expensive. This is key for our results below, as the main reason for

countries to slow down in anticipation of a sudden stop is to reduce this debt-burden cost. Note

also that as ζ goes to its upper limit erT , the effectiveness of the changes in the initial stock of debt

in affecting the constraint is diminished but excess consumption during the sudden stop approaches

zero, and hence the value of even small contributions to the relaxation of the constraint have great

value. If γ > 1, which we assume throughout, the latter effect dominates and the incentive to

adjust debt before a sudden stop rises with ζ.

2.2 The Sudden Stop Value Function (A Boundary Condition)

We solve the optimization problem in three steps. Starting backwards, we first solve for the post-

crisis period, then for the sudden-stop period, and finally for the period preceding the sudden stop.

In this section we summarize the results of the first two steps. The goal of these is to find the value

function at the time of the sudden stop, V SS(Xτ , yτ ), which we then use to find the solution of the

optimization and hedging problems before the crisis takes place. Since our concern in this paper is

with the latter phase, we assume that there is only one sudden stop, which simplifies the analysis

without sacrificing much insight.

Lemma 1 Let V SS(Xτ , y
∗
τ ) denote the value function at the the time of the sudden stop and set

γ > 1. Then:

V SS(Xτ , y
∗
τ ) = K V +(Xτ , y

∗
τ ) (7)

where V +(Xτ , y
∗
τ ) denotes the value function in the benchmark frictionless case:

V +(Xτ , y
∗
τ ) =

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ

and the constant K is

K = (1− e−rT )γ(1− e−rT ζ)1−γ + e−rT ζ1−γ , (8)
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such that

K = K(ζ) with K > 1;K 0 > 0. (9)

We leave the proof for the appendix. Note that the value function does not depend on Xτ and

yτ independently, but instead it depends on the net present value of resources
³
Xτ +

y∗τ
r−g
´
. This

observation will prove convenient later on, because it will allow us to reduce the dimensionality of

the dynamic programming problem. Moreover, up to the constant K, we have arrived at a value

function that is identical to the one in the problem without sudden stops. Lastly, for γ > 1, which

we assume throughout, K > 1 and increases with ζ.6

While the particular simplicity of our formulae is due to stylized assumptions, the basic message

is more general. The model also can be understood as an approximation to a potentially more

complicated specification of constraints that result in higher marginal disutility of debt in the event

of a crisis.

3 Precautionary Contractions

Let us now address our main concern and begin to characterize the country’s problem prior to

the sudden-stop phase. If there are no hedging instruments, the country’s only mechanism for

reducing the cost of a sudden stop is to cut consumption and borrowing before the sudden stop

takes place. We show that if sudden stops are somewhat predictable, the amount of self-insurance

varies over time. This time varying precautionary savings implies that when the signal of a sudden

stop deteriorates, the country falls into a sort of “precautionary contraction.” That is, into a sharp

reduction in consumption to limit the cost of the potential sudden stop.

Let st represent a publicly observed sudden stop signal that follows a diffusion process:

dst = µdt+ σdBt.

6Observe that for γ > 1 the function Z1−γ
1−γ is negative for all Z > 0. Thus K > 1 reflects that the constrained

value function is lower than the continuation value function for the unconstrained problem. The reason we need

γ > 1 is that the flow aspect of the constraint implies that having a higher Xτ does not relax the constraint one for

one, because the lender does not reduce its demands by the same amount during the sudden stop. When γ is below

one, this effect is strong enough to discourage saving for the crisis.
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This signal is imperfectly related to the sudden stop process. Concretely, the stochastic time τ

depends on the realization of a stochastic jump process, the intensity of which is given by

λt = exp(α0 − α1st); α1 ≥ 0.

We can now write the dynamic programming problem as:

V (Xt, st, y
∗
t ) = max

c∗u
E

∙Z τ

t

c∗u
1−γ

1− γ
e−r(u−t) du+ e−r(τ−t)V SS(Xτ , y

∗
τ )|Ft

¸
(10)

where

τ = inf{t ∈ (0,∞) :
Z t

0
λ(su)du < z}, λ(st) = eα0−α1st , z ∼ exp(1). (11)

and the evolution of (Xt, st, yt) is given by:

dXt = (rXt − c∗t + y∗t ) dt (12)

dy∗t = y∗t g dt (13)

dst = µdt+ σdBt. (14)

From the previous section we know that once the sudden stop takes place, the value function

takes the form:

V SS(Xτ , y
∗
τ ) = K

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ
.

Hence the HJB equation for the value function is:

0 = max
c∗

½
c∗1−γ

1− γ
− VXc

∗
t

¾
− rV + VX(rX + y∗) +Vy∗y

∗g+Vsµ+
1

2
σ2Vss+λ(st)

£
V SS − V

¤
. (15)

with first order condition:

c∗t = (VX)
−1/γ . (16)

In Proposition 5 in the appendix we show that the solution to the HJB takes the simple form:

V = b(st)
γ

³
Xt +

y∗t
r−g
´

1− γ

1−γ

. (17)

for an appropriate function b(st). The function b(st) captures all the economics of the problem and

we study it in more detail in what follows.
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3.1 Precautionary Savings

Assume first that sudden stops are totally unpredictable, α1 = 0, so that λt = exp(α0) = λ. Since

in this case b(s) is no longer a function of the signal s, replacing the function V in the HJB equation

yields a simple algebraic equation for b:

1− rb+
b

γ
λ

∙µ
b

b

¶γ

− 1
¸
= 0 (18)

where

b ≡ K
1
γ

µ
1

r

¶
b captures the jump in the value function once the country enters into a sudden stop. Let us

relegate the proof of the following lemma to the appendix:

Lemma 2 Equation (18) has a unique solution in
£
1
r , b
¤
.

It is now straightforward to obtain the (excess) consumption function from the envelope theo-

rem:

c∗t =

³
Xt +

y∗t
r−g
´

b
. (19)

This result —combined with Lemma 2— demonstrates the presence of precautionary savings: b is

larger than 1
r , yet smaller than b. Hence consumption is less than what it would be in the absence

of sudden stops. Yet, it is more than what it would be if the country experienced a sudden stop.

This reflects the country’s desire to accumulate extra savings (compared to the no-sudden stop

case) in order to smooth out the effects of these extreme events.

By time-differentiating (19) and using (1), (3), and (18) we obtain the country’s (excess)

consumption process:
dc∗t
c∗t

=
1

γ
λ

∙µ
b

b

¶γ

− 1
¸
dt > 0

That is, the (excess) consumption process prior to a sudden stop has an upward drift: This in

turn reflects a precautionary savings demand attributable to the uncertainty generated by the risk

of a sudden stop taking place in the next instant. But, because this probability is not correlated

with the signal s, there are no precautionary contractions. In this case, the pattern of saving for

self-insurance is not a source of business cycles.
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3.2 Time Varying Precautionary Savings

Let us now return to the general case, where α1 > 0. After a few simplifications, substituting

the function V of equation (17) into the HJB equation (15) shows that b(s) satisfies the following

ordinary differential equation (ODE):

1− rb+ bsµ+

"
(γ − 1)(bs)

2

b
+ bss

#
1

2
σ2 +

b

γ
λ(st)

∙µ
b

b

¶γ

− 1
¸
= 0. (20)

The boundary conditions reflect the facts that as the signal becomes extremely positive, the

problem approximates the frictionless (no sudden stops) benchmark, while when the signal is ex-

tremely negative, the problem converges to that at the sudden stop time. Let

b∗ = lim
s→∞ b(s). (21)

b∗ = lim
s→−∞ b(s). (22)

where b∗ and b∗ are given by:

b∗ =
1

r

b∗ = K1/γ 1

r
.

We can easily obtain the solution to the ordinary differential equation (20) numerically. We

plot this function (multiplied by r) in the top subplot of Figure 1. The function b(s) is decreasing

with respect to s. As the signal deteriorates, this function rises rapidly, reflecting the increasing

marginal value of wealth when a sudden stop is likely in the near future.

This setup allows for an explicit characterization of the optimal consumption policy in feedback

form. Given the value function, it follows from (16) that the optimal consumption policy takes the

form:

c∗t =

³
Xt +

y∗t
r−g
´

b(st)
. (23)

The effect of the signal can be seen clearly in this expression. As s rises, b(s) falls toward

its frictionless limit and hence consumption increases for any given level of wealth. Conversely,

when the signal worsens, consumption falls for any given level of wealth causing a precautionary

contraction.
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Figure 1: The top subplot depicts rb(st) for a wide range of values of st normalized by its (yearly)

standard deviation. Similarly, the bottom panel focuses on a more narrow range of values for st

(normalized by the yearly standard deviation), and plots rb(st) (dashed line - measured on the left

axis) and the hazard rate (solid line - measured on the right axis).
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Finally, applying Ito’s lemma to the right hand side of (23) using (20), (3), and (1) we obtain

the country’s (excess) consumption process before the sudden stop:

dc∗t
c∗t

=

"
γ + 1

2

µ
σbs
b

¶2
+
1

γ
λ(st)

∙µ
b

b

¶γ

− 1
¸#

dt− bs
b
σdBt (24)

The drift term includes a precautionary term
³
1
γλ(st)

h³
b
b

´γ − 1i´, which we also found in the
case α1 = 0, and captures precautioning against the Poisson jump event that can occur at any

time. However, now there are two additional terms associated with the sensitivity of the likelihood

of a sudden stop to the signal. For the reasons explained above, bs
b is strictly negative, so that a

deteriorating signal increases the need to accumulate resources and accordingly makes consumption

respond more to a one-standard-deviation increase in the signal by a factor of − bs
b σ. There is

also an extra precautionary savings term in the drift in response to the additional uncertainty in

consumption created by precautionary contractions. In the application section of the paper we

quantify these effects.

3.3 Ignoring time varying hazards

Before we turn to hedging, we shall develop a framework to measure the costs associated with

simply ignoring time-variation in the hazard rate. In order to quantify these costs, assume that

a country chose to ignore time variation in the hazard rate and determines its policies as if the

hazard rate was given by a constant λ. In that case, the country’s “optimal” policy would be given

by:

c∗ =

³
Xt +

y∗t
r−g
´

d

where d would be a solution to equation (18) with λ replacing λ. If the hazard rate is truly time

varying, this policy will be clearly suboptimal. We can evaluate the expected utility V sub associated

with this suboptimal policy by plugging it (instead of the optimal policy (23)) into the Bellman

equation (15). This results in the partial differential equation:

0 =
(c∗)1−γ

1− γ
−rV sub+λ(st)

³
V SS − V sub

´
+V sub

X (rXt + y∗t − c∗)+V sub
y∗ gy∗t +V sub

s µ+
σ2

2
V sub
ss (25)

An informed guess about the solution to this equation is:

V sub = [f(st)]
γ

³
Xt +

y∗t
r−g
´1−γ

1− γ

15



Plugging back this conjecture into (25) and simplifying, shows that V sub solves (25) if and only if

f solves:

0 =
1

γ

"µ
f

d

¶1−γ
+ (γ − 1)f

d

#
− rf +

λ(st)

γ
f

ÃÃ
K

1
γ

rf

!γ

− 1
!

+fsµ+
σ2

2
(γ − 1) f

2
s

f
+

σ2

2
fss

In the application section we solve this differential equation numerically and evaluate the welfare

loses of ignoring time variation in the hazard rate.

4 Aggregate Hedging

Precautionary savings and contractions are costly and imperfect self-insurance mechanisms for

smoothing the impact of a sudden stop. In this section we enlarge the options of the country and

allow it to hedge using insurance contracts and derivatives. Of course, the effectiveness of the

hedging strategy depends on the contracts and instruments that are available to the country, and

how accurate the crisis-signal is. In this section we provide a framework to explore a variety of

scenarios in a unified framework.

4.1 A unified model of hedging

There are two fundamental sources of risk in our framework. The first type are risks that are

associated with variations in the signal s. Since s follows a diffusion process, we shall refer to those

as “diffusive” risks. The second source of risks are those that are associated with the actual arrival

of the random sudden stop time τ . We shall refer to this type of risk as “jump” risk. The ability

of the country to mitigate the effects of sudden stops will critically depend on both the availability

of markets to hedge against these risks and the costs of such strategies.

Let us assume that diffusive risks can be hedged in futures market. That is, a country can enter

into contracts with payoffs given by:

dFt
Ft

= φ1dt+ σdBt

where φ1 is a risk premium, that could depend on st. If the diffusive risks are not associated with

global risks, then φ1 = 0 and the futures price is a martingale. In the presence of futures contracts,
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the dynamic budget constraint becomes:

dXt = (rXt − c∗t + y∗t )dt+ πtdFt

where πt denotes the number of futures contracts that the country wishes to purchase. Defining

the portfolio process as pt = πtFt, we obtain the new dynamic budget constraint:

dXt = (rXt − c∗t + y∗t + ptφ1)dt+ ptσdBt (26)

Let us assume that jump risks are hedged through “insurers” who are willing to enter into an

(instantaneous) contract of duration dt in the following terms: If the country enters into a sudden

stop over the next interval dt, then the insurer pays 1 unit of consumption to the country, else

nothing. In exchange for this contract the country pays an amount equal to λ(st)(1 + φ2)dt to the

insurer per contract purchased. Similar to φ1, the parameter φ2 should be viewed as a markup

or a risk premium. If insurance is actuarially fair, then φ2 = 0. Else the insurer charges φ2 > 0.

Allowing for markets in both diffusive and jump risks, the evolution of assets becomes:

dXt = (rXt − c∗t + y∗t + ptφ1 − λ(st)(1 + φ2)It)dt+ ptσdBt + ItdNt (27)

where Nt is identically equal to 0 and jumps to 1 when the country enters into a sudden stop, and

It denotes the amount of insurance contracts purchased (in units of the numeraire). The dynamic

budget constraint (27) includes equations (26) and (3) as special cases. If we assume away the

presence of insurers, then It = 0 and (27) reduces to (26). Furthermore, if we assume away the

presence of futures markets to hedge against diffusive risk, then (26) becomes (3).

4.2 The general case

Let us solve the country’s problem subject to the dynamic budget constraint (27), and then turn to

study important subcases. If the budget constraint is modified to (27), then the Bellman equation

for the country becomes:

0 = max
c∗

(
(c∗)1−γ

1− γ
− VXc

∗
)

(28)

+λ(st)max
I

©
V SS (Xt + I)− VX(1 + φ2)I

ª
+max

p

½
σ2

2
VXXp

2 + VXspσ
2 + pVXφ1

¾
+VX (rXt + y∗t ) + µVs +

σ2

2
Vss + Vy∗gy

∗
t − [r + λ(st)]V
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The first order conditions for this problem are:

(c∗)−γ = VX (29)

V SS
X = VX(1 + φ2) (30)

p = − VX
VXX

φ1
σ2
− VXs

VXX
(31)

The first optimality condition is the familiar Euler equation. The second equation captures

the country’s attempt to equate the marginal value of a dollar pre- and post- sudden stop, which

is fully accomplished if φ2 = 0. Finally, the last condition is identical to Merton’s formula. The

optimal portfolio of futures consists of two parts: The first part is positive (since VXX < 0, VX > 0)

and captures the willingness to accept some volatility in return for a risk-premium. By contrast, a

simple intuitive argument shows that the second term captures a hedging demand and is negative.

The reason is that the marginal value of wealth will become higher the more likely it becomes

that a sudden stop is imminent. This happens as s decreases and hence VXs < 0. A particularly

interesting case is φ1 = 0, i.e. when the signal is uncorrelated with the world economy. Then p < 0,

since only the hedging motive prevails.

To solve (28) we proceed as in Section 3 and conjecture that the value function has a separable

form:

V = d(st)
γ

³
Xt +

y∗t
r−g
´1−γ

1− γ
(32)

With this conjecture, equations (29) through (31) become, respectively:

c∗t =
1

d(st)

µ
Xt +

y∗t
r − g

¶
(33)

I =

"
1

rd

µ
(1 + φ2)

K

¶− 1
γ

− 1
#µ

Xt +
y∗t

r − g

¶
(34)

p =

µ
1

γ

φ1
σ2
+

ds
d

¶µ
Xt +

y∗t
r − g

¶
(35)

It will be useful to define:

i =
I³

Xt +
y∗t
r−g
´

Plugging back (32) into (28), using the above four equations and performing several simplifications,
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shows that V satisfies (28) if and only if d(st) satisfies the equation:

0 = 1− rd+ µds +
σ2

2
dss + (36)

+
1− γ

γ

"
d
γσ2

2

µ
1

γ

φ1
σ2
+

ds
d

¶2
− γσ2

2

(ds)
2

d

#

+
1− γ

γ
λ(st)

(µ
γ

1− γ

¶Ã
K

1
γ

r

!
(1 + φ2)

1− 1
γ + (1 + φ2)d−

d

1− γ

)

Equation (36) is a non-linear second order differential equation which is to be solved under

the boundary conditions (21) and (22). Even though it does not have an analytical solution, we

can still characterize several properties of the solution. Of particular interest is the behavior of

consumption, for which we have:

Lemma 3 The excess consumption process evolves according to:

dc∗

c∗
= −1

d

∙
1− rd+ λ(st)(1 + φ2)id+

µ
µ+

φ1
γ

¶
ds +

σ2

2
dss

¸
dt (37)

+

µ
1

γ

φ1
σ

¶
dBt

Let us now analyze a few special cases to understand the different component of the consumption

process.

4.3 No restrictions on hedging

The natural starting point is when φ1 = φ2 = 0. In other words, markets exist for both types of

risks and the risks that threaten the country are diversifiable. The following Lemma shows that in

this case pre-sudden stop consumption will be constant:

Proposition 1 If φ1 = φ2 = 0, then

dc∗t = 0, 0 ≤ t < τ.

This result asserts that consumption will be constant prior to a sudden stop if a country can

hedge perfectly in markets for both diffusive and jump risks. This result is hardly surprising. If the

country can costlessly trade in contingent claims, then it will be able to stabilize its consumption

stream pre-sudden stop. Precautionary savings ceases to be necessary as a mitigation mechanism.
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Let us pause and note that both markets need to be costelessly accessible in order to obtain

the above result. This may seem surprising at first. Why should there be a need for a market

for diffusive risks as long as the country can costelessly contract with insurers on the amounts it

desires upon the arrival of the sudden stop? After all, variations in s are only useful in predicting

the likelihood of a jump, and are otherwise useless. The resolution of this puzzle is that the

cost of insurance is time varying. Since the contracts with the insurers are instantaneous, there

is uncertainty about the terms under which these contracts can be rolled over in the future. If

s decreases, then the actuarially fair insurance will become more costly. Therefore, futures are

needed in order to hedge against such variations in the price of insurance.

To see this, let us momentarily set φ2 = 0, but

φ1 = −γσ2
ds
d

In the appendix we show that in this case the (excess) consumption process has the following

properties:

Proposition 2 Assume that φ2 = 0 and φ1 = −γσ2 dsd . Then

dc∗

c∗
=

1

d

"
(γ + 1)

σ2

2

(ds)
2

d

#
dt

−ds
d
σdBt

for d(st) that solves (36) with φ2 = 0 and φ1 = −γσ2 dsd .

That is, the consumption process is a non-degenarate diffusion (in the sense that it has a non-

zero “dB00t term). This shows that in the presence of time variation in the likelihood of a sudden

stop both markets (for diffusive and jump risk) will contribute towards hedging. Neither will be

sufficient in isolation.

Let us not return to the case with φ1 = φ2 = 0. An alternative way to arrive at Proposition 1

is to use the martingale methods developed by Cox and Huang (1989) and Karatzas et.al. (1987).

This methodology is particularly attractive when dynamic trading allows one to span all possible

stochastic payoffs.
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Formally, these methods start by solving an inherently static problem. Namely:

max
c∗u,Xτ

E

∙Z τ

t

c∗u
1−γ

1− γ
e−r(u−t) du+ e−r(τ−t)V SS(Xτ , y

∗
τ )|Ft

¸
(38)

subject to the intertemporal budget constraint:

E

∙Z τ

t
e−r(u−t)c∗udu

¸
+E

³
e−r(τ−t)Xτ

´
≤ Xt +E

∙Z τ

t
e−r(u−t)y∗udu

¸
(39)

This is an inherently static problem. Adjoining a lagrange multiplier k to the budget constraint

(39) and maximizing (38) over c∗u,Xτ gives:

c∗u = k−
1
γ , t ≤ u ≤ τ (40)

Xτ =
1

r

µ
k

K

¶− 1
γ

− y∗τ
r − g

(41)

There are at least two observations that deserve comment. First, observe that the (excess)

consumption process is equal to a constant for all times between t ≤ u ≤ τ . This is just a restatement

of Proposition 1. Second, observe that the optimal level of financial wealth at time τ can be

decomposed into two components:

Xτ =

∙
1

r
k−

1
γ − y∗τ

r − g

¸
| {z }

Optimal Wealth in the absence of SS

+
1

r
k−

1
γ

h
(K)

1
γ − 1

i
| {z }

Extra insurance needed to cover SS

Since K > 1 the second term is clearly positive and it captures the demand for insurance. Com-

bining (39), (40) and (41) we can solve for c∗u = k−
1
γ

c∗t = k−
1
γ =

r
³
Xt +

y∗t
r−g
´

1 +
³
K

1
γ − 1

´
Ee−r(τ−t)

This formula shows that optimal (excess) consumption will be lower in an economy that is exposed

to sudden stops compared to an economy that is not exposed to such events by the factor:7

1

1 +
³
K

1
γ − 1

´
Ee−r(τ−t)

(42)

7 It is interesting to cross-check that dynamic programming and the martingale methods produce the same answer

for the consumption process. To see this note that the martingale methods in conjunction with (33) imply that d(st)

is given by :

d(st) =
1

r
+
1

r
K

1
γ − 1 Ee−r(τ−t)
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The reason is intuitive: Even when all hedging possibilities are unconstrained, the country still has

to pay for such insurance, and hence it will have to cut back consumption somewhat in order to

be able to finance this insurance. However, this insurance will allow the country to eliminate the

volatility of its consumption process subsequently. An interesting feature of (42) is that it allows

us to determine the cost of “hedging” as a percentage of excess consumption. That cost is given as

r
³
Xt +

y∗t
r−g
´
− c∗t

c∗t
=

1− 1

1+ K
1
γ −1 Ee−r(τ−t)

c∗t
=
³
K

1
γ − 1

´
Ee−r(τ−t)

This formula allows a simple “back of the envelope” computation. Note that Ee−r(τ−t) is the

moment generating function of the random time τ . Accordingly:

Ee−r(τ−t) = 1− rE(τ − t) +O(r2)

Ignoring the last term in the above equation, the cost of insurance as a percentage of excess

consumption is given approximately as:³
K

1
γ − 1

´
(1− rE(τ − t)) (43)

This formula is quite intuitive. It says that the cost of hedging is proportional to the sever-

ity of the sudden stop (as captured by K1/γ) and the constant of proportionality is given by

(1− rE(τ − t)) . Hence, the longer is the expected distance to the sudden stop (say because s is

high) the less is the cost of insurance.

To see that dynamic programming will produce the same answer, note that according to the Bellman equation (36)

and the fact that φ1 = φ2 = 0 :

0 = 1− rd+ µds +
σ2

2
dss + λ(st)

K
1
γ

r
− d

According to the Feynman Kac Theorem the solution to this linear ODE is given by:

d(st) = E
τ

t

e−r(s−t)ds+Ee−r(τ−t)
K

1
γ

r

which in turn is equal to:

d(st) = E
τ

t

e−r(s−t)ds+
∞

τ

e−r(s−t)ds +E e−r(τ−t)
K

1
γ

r
−

∞

τ

e−r(s−τ)ds

and therefore

d(st) =
1

r
+E e−r(τ−t)

K
1
γ

r
− 1

r

This is exactly the same expression as the one produced by the martingale approach.
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4.4 Restricted insurance

One could reasonably argue that the hedging of jump risks may be infeasible in practice. Insuring

sudden stops directly probably requires to overcome a long list of moral hazard and informational

concerns. One possibility is to do proxy-hedging using exogenous variables, as described by Ca-

ballero and Panageas (2005), but there will always be an important residual that probably can only

be insured (and to a limited amount) by international financial institutions rather than by private

markets.

However, if one can find tradeable variables (such as the price of copper) that are useful in pre-

dicting the arrival of a sudden stop, then hedging “diffusive” risk alone can still provide significant

benefits.

The easiest way to see this is to impose the constraint I = 0, but continue to maintain the

assumption that φ1 = 0. Let us enforce the constraint I = 0 by assuming that φ2 satisfies:

φ2 =
K

(rd)γ
− 1 (44)

If φ2 is given by this process, then clearly I = 0 by (34). It is most useful to think of φ2 not as a

risk premium but as the Lagrange multiplier associated with the constraint I = 0. The following

result shows that even in this case the consumption process is less volatile than in Section 3.

Proposition 3 Assume that φ2 is given by (44) so that I = 0. Furthermore assume that φ1 = 0.

Then the optimal consumption process is given by:

dc∗

c∗
=
1

γ
λ(st)

(Ã
K1/γ

rd

!γ

− 1
)
dt

where d solves (36) with φ2 given by (44) and φ1 = 0.

A key observation about the above proposition is that the consumption process has no quadratic

variation. This is in contrast to Section 3 where we allowed precautionary savings only (compare

with equation (37)). This means that hedging with futures achieves the goal of mitigating pre-

cautionary contractions, even in the complete absence of markets that insure against the arrival of

sudden stops (jump risk).

Note, however, that relative to the φ2 = 0 case, the consumption process still has a drift reflect-

ing the presence of precautionary savings due to the presence of unhedged jump risk. Moreover,
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there is still (smooth) variation in the consumption rate pre-sudden stop since both λ and d depend

on st.

4.5 Pure Precautionary savings as a special case

In the previous section we postulated equation (44) for φ2 in order to impose the constraint I = 0.

In this section we shall additionally postulate that p = 0, so that the country is excluded from

hedging possibilities altogether. From equation (35) we set p = 0 by setting:

φ1 = −γσ2
ds
d

(45)

That is, φ1 is the appropriate “shadow” risk premium that ensures that p = 0 throughout. The

next proposition shows that under the joint assumptions (44) and (45) we recover the result in

section 3.2 .

Proposition 4 Assume that (44) and (45) hold. Then d(st) solves the same equation as b(st) in

section 3.2 and the consumption process is given by

dc∗

c∗
=

1

d

"
1

γ
λ(st)d

(Ã
K1/γ

rd

!γ

− 1
)
+ (γ + 1)

σ2

2

(ds)
2

d

#
dt

−ds
d
σdBt

which is identical to equation (24).

The value of this proposition is to embed the results in Section 3 in the same framework as the

one that we used in this section and, more importantly, to identify the necessary assumptions on

“shadow” risk premia in order to justify no hedging.

4.6 Discussion

We can now view the results that we have obtained thus far in a unified framework. In Section 3 we

eliminated every hedging possibility. Therefore, the country was left with precautionary savings as

its sole protection against sudden stops. The country’s consumption pre-sudden stop was affected

by both variations in the hazard rate (diffusive risk) and the random arrival of the sudden stop

conditional on the hazard rate (jump risk). At the polar opposite, Section 4.3 allowed for the
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presence of an insurer and a market to hedge against diffusive risk. This helped eliminate the

effects of both sources of risk on consumption. Hence consumption pre-sudden stop was constant.

Subsection 4.4 helped demonstrate that even in the absence of an insurer, the presence of hedging

markets can help eliminate the effects of diffusive risk on consumption. However, the consumption

process will still be affected by the non-insurability of jump risk which leaves a random drift in the

consumption process.

Importantly, Sections 4.4 and 4.5 helped to demonstrate that the assumptions on the presence or

absence of markets are equivalent to making appropriate assumptions on the prevailing “shadow”

risk premia on these markets. This will facilitate robustness checks after we calculate optimal

hedging strategies.

5 An Illustration: The Case of Chile

In this section we illustrate our main results through an application to the case of Chile. This is a

good case study since Chile is an open economy, with most of its recent business cycle attributable

to capital flows’ volatility. Moreover, the price of copper (its main export) is not only an important

source of income fluctuations but, more importantly for us, it is an excellent indicator of investors

attitude toward Chile. In fact, Caballero (2001) shows that the typical contraction in Chilean

aggregate demand and net capital flows after a sharp decline in the price of copper is many times

larger than the corresponding annuity value of the decline in Chilean wealth due to the drop in

copper prices.

5.1 Calibration

While our purpose here is only illustrative, and hence our search for parameters is rather informal,

we spend some time describing our estimation/calibration of the key function λ(s).

5.1.1 Estimating λ(s)

Sudden stops are severe but rare events, which makes it hard to estimate λ(s) with any precision.

However, we still highlight our procedure because it provides a good starting point for an actual

implementation. Similarly, a key issue is determining the components of the signal, s. Given
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the limited goal of this section, we use only the logarithm of the price of copper. In a true

implementation it also would be worth including some global risk-financial indicator, such as the

U.S. high yield spread, the EMBI+ or the VIX (see Section 6 below), and removing slow moving

trends from the price of copper.8

With these caveats behind us, let us describe the reduced-form Markov regime switching model

we use to estimate λ(s). Unlike the standard regime-switching model, ours has time-varying tran-

sition probabilities. Our left-hand side variable is aggregate demand, Yt (which we will proxy with

GDP data but it does not make any difference for our purpose of identifying the likelihood of a

sudden stop at each point in time) and is generated by the process:

Yt = µ0 + 1{zt=1}µ1 + σztε, ε ∼ N(0, 1), µ1 < 0.

The growth rate of Yt depends on an unobserved regime zt that takes values 0 and 1. When the

value of the regime is 0, the regime is “normal” and growth is just a normal variable with mean µ0

and variance σ20. Otherwise, the regime is “abnormal” and growth has a lower mean, µ0 + µ1, and

a variance σ21. The transition matrix between the two states is assumed to be the following:

Pr(zt+1 = 0|zt = 0,Xs,s∈(t,t+1)) = exp−
t+1
t λ(xu)du = p00 Pr(zt+1 = 1|zt = 0,Xs,s∈(t,t+1)) = p01

Pr(zt+1 = 0|zt = 1,Xs,s∈(t,t+1)) = p10 Pr(zt+1 = 1|zt = 1,Xs,s∈(t,t+1)) = q

where p01 = 1− p00, p10 = 1− q, and Xt stands for the regressors that enter the hazard function

(the logarithm of the price of copper in this application).9 For the purpose of estimating λ(s), we

use annual GDP data starting from 1976 to 1999 and monthly copper data for the same period

(source, International Financial Statistics).10

8Removing the slow moving trend not only seems to improve the fit but also is a key ingredient in designing

long run insurance and hedging contracts. Few investors/insurers are likely to be willing to hold long-term risk on a

variable that may turn out to be non-stationary.
9Strictly speaking the quantity exp−

t+1
t λ(xu)du is unobservable, since we cannot observe the continuous path of

copper, only discrete points. However, we can obtain copper data at reasonable high frequencies so that we can safely

ignore this issue and calculate the integral by a Rieman sum as

exp−
t+1
t λ(xu)du ≈ exp− λ(xu)∆u

10There is a caveat here. Our extended-sample starts from 1972, but all the years up to 1976 are part of a deep
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For estimation, we use a Bayesian approach that is suitable for the very few datapoints that

we have. Bayesian inference seems natural in this context, since it allows exact statements that

do not require asymptotic justification. To estimate the parameters of interest (namely (α0, α1))

we use a multimove Gibbs Sampler as described in Kim and Nelson (1998,1999) and is based on

the filtering algorithm of Hamilton (1989). For details we refer the reader to these references. The

basic idea is to augment the parameter set by treating the unobserved states as parameters. Then

we fix a draw from the posterior distribution of (µ0, µ1, σ0, σ1, q, α0, α1) and conditional on these

parameters we draw from the posterior distribution of the states in a single step as described in

Kim and Nelson (1999). Given the draw from the posterior distribution of the states we sample

the conditional means µ0, µ1 using a conjugate normal / truncated normal prior which leads to

a normal / truncated normal posterior.11 Conditional on the states and the draw from (µ0, µ1)

se sample from the posterior distribution of (σ0, σ1) using inverse gamma priors which lead to

posteriors in the same class. Similarly, fixing the states and the draw from (µ0, µ1, σ0, σ1) we draw

q using a conjugate beta prior leading to conjugate beta posterior. The sampling of (α0, α1)

presents the difficulty that there does not seem to be a natural conjugate prior to use and thus

we use a Metropolis Hastings-Random walk-accept-reject step where we sample from a bivariate

normal centered at the previous iterations’ estimate as described in Robert and Casella (1999).

This provides us with a new draw form (µ0, µ1, σ0, σ1, q, α0, α1) and conditional on this new draw

we can iterate the algorithm by filtering the states again, based on the new draw etc. It is then a

standard result in Bayesian computation that the stationary distribution of the parameters sampled

with these procedure (treating the unobserved states as parameters too) coincides with the posterior

distribution of the parameters.12

contraction due to political turmoil combined with extremely weak external conditions. However, since the extended-

sample starts during abnormal years these do not influence the estimation of λ(s) (which is estimated from the

transitions from normal to abnormal states). It is in this sense that the sample relevant for the estimation of the

latter starts in 1976. For details see below.
11For details see Albert and Chib (1993).
12To reduce computational time and satisfy the technical conditions required for the applicability of the Gibbs

Sampler, we used proper priors for (µ0, µ1) and (α0, α1) and improper priors for the rest of the parameters. The

proper prior for (µ0, µ1) was Normal / Truncated normal with means (0,0) and a diagonal covariance matrix. The

standard deviations where chosen to be roughly 5 times the range of the sample, so that the priors had effectively no

influence on the estimation. Similarly for (α0, α1) we used independent normal priors centered at 0 with a standard
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A first output of this procedure is Figure 2 which plots the probability of being in an abnormal

state.The model recognizes roughly three years out of the 24 as abnormal years: the early 1980s

and the recent episode following the Asian/Russian crises. The early 1980s episode corresponds to

a devastating debt-crisis, and was significantly more severe than the recent one. In fact, the recent

episode appears to be a mix of a milder sudden stop and a precautionary recession.

An interesting observation about these probabilities is that they allow us to identify the abnor-

mal regimes with great confidence. To improve the tightness of the posterior confidence intervals

concerning the parameters of interest (α0, α1) we observe that conditional on the states the (log-)

likelihood function becomes:

X
zi=0

[χi log(p00(α0, α1)) + (1− χi) log(p01(α0, α1))]

where χi takes the value 1 if there is no transition to state 1, and takes the value 0 otherwise. It is

interesting to notice that the likelihood for (α0, α1) depends on the data only through the filtered

states. In other words all other parameters of the model including the GDP-data are relevant for

our purpose of estimating (α0, α1) only to the extent that they influence the identification of the

states. In other words if we were to condition directly on the states we would be able to get rid of

the noise introduced by filtering.

Given the few data points and the quite clear identification of the abnormal states we report

directly the posterior distribution of (α0, α1) conditional on the early 80’s and 1999 being the

abnormal states. we report the posterior distributions of the parameters (α0, α1) conditional on

the states that are identified as abnormal.13 Table 1 reports these results.

Correspondingly, in what follows we use α0 = 2.5, α1 = 5.2 as our benchmark values for the

function λ(s).

deviation of 10. Even when we experimented with more diffuse priors the algorithm produced virtually identical results

but computational time was significantly increased, because convergence was significantly slower. Most importantly

though, for the results that we report in Table 1 and that we use in the calibration exercise we used completely flat

priors.
13 I.e., states that have a posterior probability of being abnormal above 0.75. The conditioning is done in order to

increase the precision of the estimates and seems to be warranted just by a visual inspection of Figure 2.
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Figure 2: Probability of abnormal regime

Posterior Distributions

mean std. Deviation 10 25 50 75 90

α0 -2.522 1.067 -3.826 -3.027 -2.316 -1.789 -1.420

α1 -5.170 3.387 -9.259 -6.802 -4.708 -3.040 -1.515

Table 1: Posterior Distributions of the Parameters (α0, α1) Conditional on the States that are

Identified as Abnormal. 10, 25 etc. refer to the respective quantiles.
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5.1.2 Other parameters

We calibrate ζ and T to generate the average cumulative consumption drop caused by the sudden

stops in the sample, which is about 8-10% of GDP. One such configuration is T = 1 and ζ =

egT + 0.35(erT − egT ).

The parameters κ and γ are calibrated to generate reasonable amounts of steady-state debt

(and hence reasonable amounts of insurance needs) together with significant precautionary fluctu-

ations (see below, in particular, to explain much –but not all– of the precautionary contraction

experienced by Chile at the early stages of the 1998-9 episode). For this, we set κ = 0.8 and γ = 7.

The interest rate r is set to 0.09 to capture the high cost of borrowing faced by the typical

emerging market and the growth rate g is set to 0.03. The latter is a constant-rate approximation

to a path that grows significantly faster than that level for a few years, while the country is catching

up, and then decelerates below that level forever. We normalize initial GDP (y0) to 1, and set the

initial debt-to-GDP ratio to 0.5 (i.e., X0 = −0.5).
Finally, we approximate the process for copper by a driftless Brownian motion with constant

volatility σ, which we estimate using monthly data from 1972 to 1999 (source, IFS). We find a

value of roughly σ = 0.23 and normalize the initial value of s to 0.

5.2 Aggregate Hedging

Given these parameters, we now turn to a quantitative evaluation of the effectiveness of the various

strategies described in Sections 3.2 and 4.

5.2.1 Precautionary Savings and Hedging

Let us illustrate the impact of the different hedging strategies in steps: In the first one we illustrate

the gains from going from a pure precautionary savings strategy to one that incorporates diffusion

risk hedging. In the second one we enrich the strategy further by adding jump risk hedging.

We start by drawing a random path for st, plotted in panel (a) of Figure 3. The path runs for

8 years and no sudden stop takes place in it. The main features of this path are not too different

from the realization of the price of copper during the 1990s. In particular, the large rise in s near

the middle of the path followed by a sharp decline toward the end of the period is reminiscent of
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the path of the price of copper in the second half of the 1990s. The path starts at s0 = 0, which

corresponds to the empirical mean of st in the data.

The two lines in subplot (b) illustrate the corresponding paths of (excess) consumption generated

for the precautionary savings only case (dashed line) and the diffusive risk hedging case (solid line).

The former tracks the signal closely while the latter manages to avoid precautionary contractions.

Note, however, that both paths have positive slope, reflecting precautionary savings against the

jump risk (both) and precautionary contractions risk (the case without diffusion hedging) .

Subplot (c) shows the the paths of the currents account deficits do not differ much in both

scenarios. In both cases the current account deficit is “procyclical,” in the sense that as the signal

worsens the current account deficit shrinks. Of course, in our context income does not change

with the signal but the point we are isolating is the sensitivity of consumption to news signifying

a tightening of credit conditions. The analysis would not be changed in any substantive way

by adding some correlation between such news and income shocks. We chose to keep income a

deterministic process, in order to illustrate in the simplest possible way that variations in the price

of exported commodities can have an effect above and beyond their direct income effect (which we

have effectively “normalized” to 0 for simplicity), as long as they are useful in predicting the arrival

of sudden stops.

Importantly, the procyclical behavior of the current account deficit does not reflect the same

behavior of consumption in the two scenarios.

In the absence of diffusion risk hedging, it is consumption that does the adjustment. Chile is

a point in case: When the price of copper collapsed at the end of the 1990s, Chile reduced rather

than increased its current account deficit — exactly the opposite behavior of that of Australia, a

developed economy which was facing similar terms of trade shocks.14 Moreover, the sharp decline

in the current account deficit from 6 to about 3.5 percent of GDP toward the end of the sample,

suggests that about half of the current account adjustment observed in Chile during the 1998-9

crisis can be accounted by optimal precautionary behavior in the absence of hedging.15

While the current account does follow a similar path when diffusive risk is hedged, the adjust-

14See Caballero, Cowan and Kearns (2005).
15The rest of the adjustment could be accounted for by excess adjustment (some have argued that the central bank

contracted monetary policy excessively during this episode) and by the partial sudden stop itself (the “sovereign”

spread tripled during this episode).
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Figure 3: Subplot (a) depicts the path of the state variable (normalized by its yearly standard deviation) as a

function of time. Subplot (b) depicts the path of excess consumption when income at time 0 is normalized to

1 and κ = 0.8. The solid line depicts the path of excess consumption when the country uses diffusive hedging.

The dashed line depicts the path of excess consumption when the country uses exclusively precautionary

savings exclusively. Subplot (c) plots the current account rXt− c∗t +y∗t for the same two scenarios. Subplot

(d) plots the path of the debt/gdp ratio for the two scenarios. Throughout the solid line refers to diffusive

hedging and the dashed line to precautionary savings.
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ment variable is not consumption but the net asset position. To see this note that the current

account is given by:

CAt = rXt − c∗t + y∗t

If this quantity remains practically unchanged across the two scenarios, it means that the

behavior of rXt−c∗t is roughly similar across them. However, as we have seen already, the volatility
of c∗ is dramatically different across the two alternatives. This must mean that the net asset position

Xt has to become more volatile as we move from the precautionary savings case to diffusive hedging.

Subplot (d) confirms this conjecture. In the absence of hedging, the country’s net asset position Xt

is smooth, while it fluctuates when the country is hedging. As the state variable deteriorates, the

debt to GDP ratio improves under hedging. Hence the increased volatility of the net asset position

is just a natural consequence of what hedging is meant to achieve in the first place: Namely, to

transfer resources between states of the world where they are less needed to states of the world

where they are needed the most. As we increase hedging, a substantial portion of consumption

volatility is “absorbed” by the procyclical variability of the net asset position.

Let us now turn to the second step and add the possibility of jump risk hedging. As we showed in

Section 4, with full hedging possibilities excess consumption becomes constant prior to the sudden

stop. This means that the country insulates itself from the sudden stop signal – it uses jump risk

hedging to reduce the decline in consumption at the sudden stop, and diffusive hedging to offset

fluctuations in the price of jump risk hedging as the signal changes. The top left subplot in Figure

4 reproduces the signal path in the previous figure, while the top right subplot illustrates the paths

of the country’s net foreign liabilities: The solid line shows the path of debt/gdp which fluctuates

with the signal as the price of jump-risk insurance fluctuates. The important concept, however,

is the dashed line which corresponds to the debt/gdp ratio the country will have if a sudden stop

takes place. That it is, it includes the return from the jump-risk hedges. This dashed line is smooth

and trending as the frictionless model would.

The bottom plots show the gains from jump risk hedging over and above diffusive hedging at

the time of the sudden stop. To generate these panels we ran 500 simulations for ten years, and

kept only those that yielded a sudden stop during that interval. The left panel shows the histogram

of difference in consumption levels at the time of the sudden stop between the full hedging case

and the diffusive-hedging only case. The right panel does the same for the consumption drops at
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the time of the sudden stop. Both panels have the common message that the possibility of jump

risk hedging can significantly improve the outcome during a sudden stop.

5.2.2 Welfare calculations

We now summarize the different gains by evaluating the value functions of a country under different

hedging scenarios. For this, let V H and V HH denote the value function of a country that has access

to markets for diffusive risk only and to diffusive and jump risk, respectively. As a benchmark, V

denotes the value function of a country that only accumulates savings without accessing hedging

markets of any kind. We now ask the question: How much resources would be required to

compensate a country for its lack of access to hedging possibilities? Formally, when contrasting

with the diffusive risk hedging only scenario, we solve for the amount W such that:

V H(st,Xt, y
∗
t ) = V (st,Xt +W,y∗t ) (46)

We do the same for other scenarios as well (with V HH instead of V H , and so on) . It will be useful

to define:

w =
W

Xt +
y∗
r−g

(47)

Then, using (17), (32), the definition of w and (46) yields:

dγ = (1 + w)bγ (48)

where b solves the differential equation (20) and d is determined as in sections 4.4 or 4.3 depending

on whether we want to allow jump risk hedging or not. Finally equation (48) leads to

w =

µ
d

b

¶γ

− 1

from which we can determine W by using (47).

Figure 5 presents W (normalized by gdp), when the country is allowed to hedge diffusive risks

only, both diffusive and jump risks and when it is only allowed to accumulate precautionary savings.

(Clearly in the third case the welfare gain is zero by construction) Finally we also report the welfare

loss when the country ignores predictability altogether, as we described in section 3.3 and hence

adopts suboptimal precautionary savings.16

16To determine the constant hazard λ, we ran a simulation to determine the probability that the country enters
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Figure 4: The top left subplot is identical to the top left plot of figure 3. It depicts the path of the signal

normalized by its yearly standard deviation. The top right subplot depicts debt to GDP as a function of

time. The various lines capture the level of debt to GDP assuming the country were to go into a sudden

stop at time t. The bottom left figure depicts results from a simulation. Conditional on s0 = 0, we draw

500 paths for a duration of 10 years. Keeping those paths where the country enters in to a SS within 10

years the bottom left subplot shows the differences in the level of consumption at the time of the sudden

stop between the perfect hedging scenario and the diffusive hedging scenario. Similarly, the bottom right

figure shows the differences in consumption drop upon entering the sudden stop between the two scenarios.
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The figure shows that for a range of values of s corresponding to the range of the (log) price

of copper in our sample, the gains from hedging are substantial. Using hedging in place of pre-

cautionary savings typically results in values of W between 8 and 10% of GDP, if only “diffusive”

hedging is used and are potentially up to 18% when both “jump” and “diffusive” hedging is used.

To put this in perspective, notice that the debt/gdp ratio for the country under consideration is

50%. This implies that using hedging instead of precautionary savings is equivalent to reducing the

debt to GDP ratio of the country from 50% to a number between 32% and 40%.

Another important observation about the figure is that most of the benefits of hedging accrue

for intermediate values of the state variable. As the state variable approaches ±∞ all hedging

strategies start becoming irrelevant. The reason is intuitive. If st →∞ then the hazard rate goes

to 0 and the expected time to the next sudden stop approaches infinity. Hence, the sudden stop is

“very far away”. Therefore any comparative benefits of one strategy over the other get so heavily

discounted, that they become essentially 0. By a similar reasoning, as st → −∞ the sudden stop

becomes imminent (and insurance against it too expensive).

A reassuring feature of Figure 5 is that the welfare benefits of only hedging diffusive risks is

significant and covers more than half of the distance to perfect hedging, irrespective of the level

of the state variable. This suggests that the benefits of hedging will accrue even when there is no

explicit insurance against jump risk. This is important since developing markets for jump (sudden

stop) risk is substantially harder than for diffusive risk, which are readily available in many cases.

Finally, note from the lowest line (with crosses) that ignoring hedging and the variability of

the sudden stop hazard –essentially accumulating precautionary savings at a constant rate– is

not too costly when the likelihood of a sudden stop is high as long as the country has the right

sense of the unconditional (on the signal) likelihood of a crisis: neither precautionary savings only

strategy is good at handling the sudden stop. However the cost of a non-contingent precautionary

savings strategy takes places during good times (high s), when the country overaccumulates costly

non-contingent resources when the low risk of a sudden stop does not justify it.

into a sudden stop in the next 10 years conditional on s0 = 0. We then determined the constant hazard rate λ so

that it will produce exactly the same probability.
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Figure 5: Equivalent variation for a “typical” range of values of st (normalized by its yearly standard

deviation). For a precise definition of the notion of equivalent variation see the text.
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5.2.3 Decomposing the Gains

Let us not decompose the gains from different hedging strategies. Our model produces a clear

demarcation of time into three stages: Before a sudden stop, during a sudden stop, and after a

sudden stop. The marginal value of a dollar is highest during the sudden stop, somewhat lower in

the phase that precedes it and lowest in the post-sudden stop phase. Hence, a strategy produces

welfare gains if it manages to “shift” resources into the sudden stop and also into the phase before

the sudden stop.

Table 2 reports the results of a simple simulation exercise: We start with s0 = 0, and simulate

a number of paths for st for 10 years. We also simulate the arrival of sudden stops by drawing

independent exponential variables and using formula (11) to determine the time of arrival of sudden

stops. In about 67% of the simulated paths for st we observe a sudden stop within 10 years. We

then compute the behavior of c∗t ,Xt along the path, consumption immediately following the sudden

stop c∗τ+ and the associated consumption drop upon entering the sudden stop. Results are reported

for the four strategies of the previous section from worst to best: suboptimal precautionary savings,

optimal precautionary savings, diffusive hedging only, and perfect hedging. The first column shows

initial (excess) consumption, which is highest for perfect hedging and second highest for diffusive

hedging. The reason for this is that perfect hedging does not require precautionary savings, while

that of diffusive hedging requires less precautionary savings than the other two. It is the next three

columns that capture the most important results, however. The second column shows the level of

consumption at the time of the sudden stop, with a clear advantage for the hedged strategies; the

third column shows that the drop of consumption at the time of the sudden stop is significantly

lower in the case of diffusive and jump risk hedging. The reason why the difference in drops is

greater than that of levels at the time of sudden stop is important: In all but the full insurance

case, consumption rises over time as precautionary savings accumulate. But this also means that

in all the cases but the jump risk hedge case, the economy is relatively vulnerable if the sudden

stop happens in the near future, when the country has not had the time to accumulate resources.

This is reflected in the last column of the table, which shows the correlation between the time it

takes for the sudden stop to arrive and the level of consumption at the sudden stop. With jump

risk hedge, there is no correlation. With all the rest, this correlation is positive, although diffusive

hedging can also reduce it significantly.

38



c∗(0) mean c∗(τ+) mean ∆c∗τ cov(c∗+τ , τ)

Suboptimal Precautionary Savings 19.99 12.00 9.39 0.99

Optimal Precautionary Savings 19.83 12.04 8.37 0.98

Only Diffusive hedging 20.24 12.66 9.00 0.67

Diffusive+Jump hedging 20.64 13.02 7.60 0

Table 2: Initial (excess) consumption c∗(0), (excess) consumption at the time of the sudden stop c∗τ+ ,

standard deviation of the consumption path leading to the sudden stop (std(c∗t )) and instantaneous

consumption drop upon entering the sudden stop (∆c∗τ ) for various hedging scenarios.

5.2.4 Introducing risk premia

Up to now we have assumed no risk-premia on either diffusive or jump risk hedging. In this section

we go to the opposite extreme and ask: how large would the risk premia have to be for the country

to give up hedging?

The framework we developed in Section 6 is well suited to answer this question. In particular,

equation (45) shows that the “critical” risk premium that would render diffusive hedging pointless

is:

φ1 = −γσ2
ds
d

and equation (44) shows that the critical overestimation of the hazard (risk premium) for “jump”

hedging is:

φ2 =
K

(rd)γ
− 1.

Since d = b if p = 0 (no diffusive risk hedging) and I = 0 (no jump risk hedging) we can replace d

with the function b from Section 3.

Figure 6 reports the results when one computes the “critical risk premiums” φ1 and φ2 as

implied by the above formula, for the range of (log) price of copper observed in our sample. The

top panel shows that the critical risk premium for diffusive hedging is about 8%. The bottom panel

shows that the critical risk premium for jump risk hedging typically exceeds 100%. These large

critical premia confirm the benefits of hedging. For diffusive risks, which in many cases already

have up-and-running markets, 8% is very large when compared with reasonable premia in liquid
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Figure 6: Critical Risk Premia for diffusive hedging and jump hedging. The top plot depicts

the critical risk premium φ1 = −γσ2 dsd which would make it optimal to avoid diffusive hedging

altogether. The bottom line depicts φ2 =
K
(rd)γ − 1, i.e. the percentage by which the true hazard

rate would have to be “over-estimated” by insurers in order to make jump hedging too expensive.
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markets.17 For jump risk hedging, a premium above 100% reflects the large potential gains of

developing such markets.

6 Sudden stops: Time variation in hazard rates and traded vari-

ables

In this section we argue that Chile is not an exception in terms of the usefulness of our analysis. For

this, we document two important ingredients for our framework: that there is a significant element

of predictability in sudden stops, and that this predictability is correlated with readily available

and tradable indices which are largely beyond the control of individual emerging market economies

(hence moral hazard is of limited concern). Moreover, we conduct this analysis in a simple reduced

form framework, so that our conclusions here are not intertwined with our specific methodology in

the rest of the paper.

6.1 Time Variation and Predictability of the Likelihood of Sudden Stops

We identify the sudden stop hazard using the data and methodology from Calvo, Izquierdo and

Mejia (2004). They identify sudden stops based on a number of cutoffs and indicators, which they

then use to run (probit) regressions against country specific variables (dollarization, openness etc.)

and time effects. Their data are yearly and span the period 1990-2001 for 32 countries, of which

15 are emerging markets (Argentina, Brazil, Chile, Colombia, Czech Republic, Ecuador, Indonesia,

Mexico, Nigeria, Peru, Philippines, South Africa, South Korea, Thailand and Turkey). We focus

exclusively on the 15 emerging markets.

We essentially replicate the Calvo et al steps by running logit and probit regressions of the form:

yit = Pr(SS = 1) = F (x0itβ)

We use the most significant variables reported in their paper, namely the degree of dollarization,

openness, and terms of trade, as well as time fixed effects. After running the regressions, we isolate

the predicted probabilities F (x0bβ) and the actual regressor values x0bβ.
17For example, the corresponding Sharpe ratio is 0.35 which is nearly twice the Sharpe ratio for the long sample

of the US stock market (see, e.g. Campbell and Cochrane (1999)).
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Assuming that the conditional probabilities F (x0bβ) capture well the variation in the likelihood of
running into a sudden stop, we investigate whether there is significant time variation in the hazard

rates. Columns 1 and 2 of Table 3 show that indeed the bulk of the variation is in the within (across

time) dimension as opposed to the between (across country) variation. Also, the standard deviation

of 0.24 indicates that the conditional probabilities of sudden stops vary substantially across time.

Time variability in the conditional probabilities is however not synonymous with predictability.

If there is little or no serial correlation in the conditional probabilities, then there is little benefit

from time varying precautionary accumulation of reserves, hedging etc. All these measures are

effective if there is some persistence in the process that generates the conditional probabilities. The

next four rows in Table 3 report results from a dynamic panel data regression of the form:

yit = αi + β1yit−1 + β2yit−2 + εit

Rows 2 and 3 are simple fixed effects regressions with robust standard errors. The next two rows

report the equivalent results when one uses the estimator of Arellano and Bond (1999), to avoid

the well known biases of dynamic panel data models. Uniformly, the results indicate substantial

persistence and hence predictability of the conditional probabilities.

6.2 Traded Variables and the variation of the conditional likelihood of Sudden

Stops

Sofar we have only examined whether there appears to be enough variation and persistence in the

conditional probability of sudden stops to justify time varying precautionary measures. A separate

question is whether traded instruments can be used to hedge away these risks. One way to answer

this question is to investigate whether there exist traded instruments that can “predict” the time

variation in the conditional probabilities. Table 4 addresses this question.

We use HYt−1 to denote the difference between Aaa and Baa bonds (high yield spread) as

reported in the historical series H.15 of the Federal Reserve. Columns (1) and (2) use the predicted

values x0bβ and F (x0bβ) obtained using a probit model similar to Calvo et al. (2004) to run the
regressions:
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Logit Probit Logit Probit

(1) (2) (3) (4)

Between /Within 0.06/0.24 0.07/0.23

Prob (Lag1) 0.51 0.53

(5.32)** (5.45)**

Prob (Lag2) -0.48 -0.48

(-5.89)** (-5.89)**

Prob (Lag1) Arellano -Bond 0.46 0.46

(4.64)** (4.65)**

Prob (Lag2) Arellano - Bond -0.67 -0.68

(-5.12)** (-5.30)**

R-squared 0.37 0.37

Table 3: Columns (1) and (2): Ratio of variation (reported as ratio of standard deviations) attribut-

able to the within (accross time) dimension as opposed to the between (accross panel) dimension.

Columns (3) and (4): Regressions of predicted probabilities on their lagged values using regular

regession and the Arellano-Bond estimator.
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(1) (2) (3) (4)

D.regressors D.lprob D.regressors D.lprob

L.HY -16.90 -83.30 -71.62 -70.20

(-4.54)** (-4.30)** (-4.53)** (-4.40)**

Observations 135 135 135 135

R-squared 0.20 0.17 0.19 0.19

Table 4: Column (1): Regressions of first differences in the regressors x0itβ used in Calvo et al.

(2004) on the lagged difference between Baa and Aaa bonds (L.HY ). Column (2) Same as column

(1) with the sole exception that we use differences in the (log) predicted probability log .F (x0itβ)

in place of x0itβ. Columns (3)-(4): Same as columns (1)-(2) using a logit instead of a probit model.

For all regressions we use panel corrected standard errors allowing for heteroskedasticity and con-

temporaneous correlation across panels. A constant is included but not reported.

∆(x0itbβ) = α0 + α1HYt−1 + εit

∆ log(F (x0itbβ)) = α0 + α1HYt−1 + εit

The first regression is a projection of the change in the regressors entering the probit model of

Calvo et. al. (2004) on the high yield spread at t − 1. The second regression performs a similar
exercise for the predicted probabilities. If, for instance, increases in the high yield spread coincide

with periods of high risk and risk aversion, then emerging markets might be exposed to contagion

risk. Hence, in a manner similar to copper for Chile, variations in the HY can be used to form a

hedging strategy.

As Table 4 shows, the R-squared of these regressions is close to 20%. Hence, 20% of the inno-

vations in the conditional probabilities are predicted by a variable that belongs to the information

set of agents at time t− 1 and has a liquid market. To put this in perspective, in Table 3 the total
predictable variation in the conditional probabilities was about 37% of their variation in the sample.

Comparing the two numbers reveals a substantial co-variation between the predicted hazard and

HYt−1.

Note that the coefficient has the expected sign since HY is mean reverting, thus a high degree
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of HY today predicts a lower HY tomorrow and hence a lower likelihood of a sudden stop. To see

this point more clearly, suppose that there is positive contemporaneous correlation between ∆x0itbβ
and ∆HYt, i.e. suppose that:

E(∆x0itbβ) = α0 + eα1E(∆HYt) with eα1 > 0 (49)

Now assume that HYt is a simple AR(1) process:

HYt = ρHYt−1 + εV,t with ρ < 1

so that:

∆HYt = HYt −HYt−1 = (ρ− 1)HYt−1 + εV,t

and also:

E (∆HYt) = (ρ− 1)HYt−1 (50)

Plugging (50) into (49) shows that:

E(∆x0itbβ) = α0 + eα1(ρ− 1)HYt−1

Hence the regressions in Table 4 produce a negative sign on lagged HY since eα1(ρ− 1) < 0.
The main reason why HY performs well in terms of predictive power is that it captures well the

common variation of the arrival of sudden stops across countries. To illustrate this, we computed

the average yearly difference in the probability of a sudden stop as implied by the probit model.

Then we plotted the (negative of) the high yield (lagged once) against it. Figure 7 illustrates the

strong comovement between the two series.

7 Final Remarks

In this paper we characterized several aspects of sudden stops, precautionary contractions, and

the corresponding aggregate hedging strategies. For this, we built a model simple enough to shed

analytical light on some of the key issues but realistic enough to provide some quantitative guidance.

We showed that even after removing all other sources of uncertainty, the optimal path of aggre-

gate demand in an unhedged emerging market economy exhibits large precautionary contractions.

That is contractions that precede sudden stops. We then argued that smooth diffusive hedging could

remove much of these fluctuations even in the absence of more complex jump hedging mechanisms.
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The gains from these hedging strategies are large, which raises the question of why aren’t

countries already doing this in a significant manner. Our somewhat informed belief is that the

problem is mostly one of coordination, which could be reduced significantly with the involvement

of the international financial institutions (IFIs).

On one end, hedging along the lines we have suggested is not standard practice for external

liability management: Any sensible policymaker knows that the political (and personal) cost of

something going wrong while implementing an unorthodox strategy is many times larger than that

of failing while following the standard recipe. The IFIs can help by modernizing their advice on

standard practices.

On the other, while one can imagine many indicators that could be used to start improving

hedging strategies immediately, such as the price of commodities, the high yield spread (HY), the

volatility index (VIX), indicators of US and other developed regions activity, and so on, some of

these markets are not nearly as large as they would need to be (recall that the issue is not to

hedge the income effect of commodity price fluctuations but the sudden stop, which is significantly

lager, and probably not just as a multiplier but also as a bellwether). Market creation requires

coordination, and the development of a few general indices that can ensure adequate liquidity.

Again, the IFIs can help develop these markets. For example, the IMF could modify its contingent

credit lines to index them to indicators that could eventually be adopted by the private sector and

traded in open markets.
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A Appendix

A.1 Proofs for section 2.2

Proof. (Lemma 1) Since we made the simplifying assumption that the country suffers only one

financial crisis, the maximization problem post sudden stop (t > τ + T ) is simply:

V +(Xτ+T , y
∗
τ+T ) =max

c∗t

Z ∞

τ+T

c∗t
1−γ

1− γ
e−r(t−(τ+T )) dt (51)

s.t.Z ∞

τ+T
c∗t e

−r(t−(τ+T )) dt = Xτ+T +

Z ∞

τ+T
y∗t e

−r(t−(τ+T )) dt (52)

This problem has the trivial solution:

c∗t = rW e
2 τ + T < t <∞ (53)

with

W e
2 = Xτ+T +

y∗τ+T
r − g

. (54)

This constant can be interpreted as the “excess” wealth at date τ +T (that is, the wealth in excess

of that which is needed to cover the reservation-consumption level κyt). During the sudden stop

(τ ≤ t ≤ τ + T ) we can use the continuation value function, V (Xτ+T , y
∗
τ+T ), from above, to write

the maximization problem for the sudden stop phase:

V SS(Xτ , y
∗
τ ) =max

c∗t

Z τ+T

τ

c∗t
1−γ

1− γ
e−r(t−τ) dt+ e−rTV +(Xτ+T , y

∗
τ+T )

s.t.Z τ+T

τ
c∗t e

−r(t−τ) dt = Xτ +

Z τ+T

τ
y∗t e

−r(t−τ) dt− e−rTXτ+T

Xτ+T ≥ Xτ+T . (55)

where

Xτ+T = ζ

⎛⎝Xτ +
y∗τ
³
1− egT

ζ

´
r − g

⎞⎠
by (5). Since the country is growing and wishes to expand its consumption at a faster rate than the

constraint allows, it can be easily shown18 that the sudden stop constraint, (55), is always binding

Xτ+T = Xτ+T . (56)
18For details see Caballero and Panageas (2003)
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Given this result, the optimization problem is straightforward. It is a deterministic consumption

problem subject to a final wealth condition. A few steps of algebra show that:

c∗t =
r

1− e−rT
W e
1 , τ < t < τ + T (57)

with

W e
1 = Xτ +

y∗τ (1− e−(r−g)T )
r − g

− e−rTXτ+T .

It is easy to see from these expressions that as Xτ+T rises, c∗t falls. The country has to cut back

consumption during the crisis in order to satisfy a tighter sudden-stop constraint. We are now ready

to determine the sudden-stop value function:

V SS(Xτ , y
∗
τ ) =

Z τ+T

τ

(rW e
1 )
1−γ

1− γ
e−r(t−τ) dt+ e−rT

Z ∞

τ+T

(rW e
2 )
1−γ

1− γ
e−r(t−(τ+T )) dt (58)

=
(rW e

1 )
1−γ

1− γ

µ
1− e−rT

r

¶
+
(rW e

2 )
1−γ

1− γ

µ
e−rT

r

¶
. (59)

It is easy to verify that our careful choice of the constraint pays off at this stage. The value function

simplifies to:

V SS(Xτ , y
∗
τ ) = K

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ

= K V +(Xτ , y
∗
τ ) (60)

where V (Xτ , y
∗
τ ) denotes the value function in the absence of a sudden-stop constraint and K is

the constant given in the statement of the proposition. K > 1 is a straightforward consequence of

the fact that the value function (which is negative if γ > 1) has to be lower than the value function

in the absence of the constraint (55) A simple differentiation shows that Kζ > 0 as long as γ > 1.

A.2 Proofs for section 3.1

Proof. (Lemma 2) We give a brief sketch of the proof. Differentiate the left hand side of (18) with

respect to b to obtain:

−r + (1− γ)
λ

γ

µ
b

b

¶γ

< 0
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since γ > 1. Moreover, at b = 1
r the left hand side of (18) is greater than 0 while at b = b it is less

than 0. This establishes existence and uniqueness of the solution to (18) by the intermediate value

Theorem.

A.3 Propositions and Proofs for section 3.2

Proposition 5 If there exists a function b(s) solving (20) subject to (21) and (22) then (17) solves

(15) and is the value function of the problem as long as:

lim
t→∞E

⎡⎢⎣e−rt1{τ > t}b(s)γ
³
Xopt
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ = 0 (61)

Proof. Substituting (17) into (15) and performing some obvious simplifications leads to (20).

The reason why b(st) has to satisfy the boundary conditions (21) and (22) follows from the next

proposition (proposition 6). Since (17) satisfies (15) for b(st) solving (20), a classical verification

theorem can be invoked to show that it must be the value function as long as the “tail” condition

(61) is satisfied (Fleming and Soner (1993) p.172).

The above proposition is a “place-holder” for all the properties that need to be verified in order

to establish that (17) is the value function of the problem. We start by showing that the boundaries

to b are given by (21) and (22).

Proposition 6 The value function of the problem with sudden stops for s > s satisfies:

lim
s→∞V (Xτ , s, y

∗
τ ) =

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ
(62)

lim
s→−∞V (Xτ , s, y

∗
τ ) = K

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ

Proof. We focus on the γ > 1 case. The proof proceeds in two steps. First one obtains an

upper bound on the value function of the problem with sudden stops, which in this case is naturally

given by the value function of the problem in the absence of sudden stops:

V NSS =

µ
1

r

¶γ

³
Xτ +

y∗τ
r−g
´1−γ

1− γ
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It tuns out that this expression is also a lower bound to the value function when st goes to infinity.

The lower bound is established upon observing that the consumption policy in the absence of

sudden stops c∗NSS
t , 0 < t < τ is still a feasible consumption /portfolio plan in the presence of

sudden stops (since it satisfies the intertemporal budget constraint and also Xt > − y∗t
r−g for all t ).

Accordingly we have the two inequalities:

V (Xt, st, y
∗
t ) ≥ Et

⎡⎢⎣Z τ

t
e−r(u−t)

¡
c∗NSS
u

¢1−γ
1− γ

du+ e−r(τ−t)1{τ <∞}K
µ
1

r

¶γ

³
XNSS
τ + y∗τ

r−a
´1−γ

1− γ

⎤⎥⎦
However by standard arguments it is easy to show that the right hand side of the above equation

goes to V NSS as s→∞ . To see that, note that Pr(τ < Q)→ 0 for all finite Q, and thus

lim
s→∞E

⎡⎢⎣Z τ

t
e−r(u−t)

¡
c∗NSS
u

¢1−γ
1− γ

du+ e−r(τ−t)K1{τ <∞}
µ
1

r

¶γ

³
XNSS
τ + y∗τ

r−a
´1−γ

1− γ
|Ft

⎤⎥⎦ =
= E

"Z ∞

t
e−r(u−t)

¡
c∗NSS
u

¢1−γ
1− γ

du|Ft
#
= V NSS(Xt, y

∗
t ) =

µ
1

r

¶γ

³
Xt +

y∗t
r−g
´1−γ

1− γ

Since the upper and the lower bound coincide to V NSS as s →∞, the claim is established. A

similar claim can be used to show the second result in the proposition.

Showing formally that b(st) possesses a unique solution subject to the two boundary conditions

(21) and (22) is a fairly hard mathematical task that is well beyond the scope of the present paper.

The next Proposition provides a sketch of how one would proceed to obtain a proof. For the

substantive results of the paper, we were always able to obtain numerically a solution to this ODE

at arbitrary precision levels.

Proposition 7 There exists a solution to the ODE (20) subject to (21) and (22).

Proof. (Sketch) First we transform the second order ODE into a system of ODE’s. Then

we compute the steady states at s = +∞ and s = −∞, linearize the system and compute its

eigenvalues. Using the stable manifold theorem around s = 0 twice (as s→ +∞ and as s→ −∞)
establishes the result. For more details see Caballero and Panageas (2003) Proposition 3.
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The last step in order to verify that (17) is indeed the Value function is to verify (61). To show

(61) we need two Lemmas:

Lemma 4 Consider a consumption policy that has the feedback form:

c∗t = A(st)

µ
Xt +

y∗t
r − g

¶
, K−1/γr ≤ A(st) ≤ r ∀st ∈ (−∞,+∞)

Then Xt ≥ XNSS
t , where XNSS

t is the asset process that results when one uses the optimal

consumption policy in the absence of sudden stops:

cNSS
t = r

µ
XNSS
t +

y∗t
r − g

¶
Proof. This result is trivial. One solves for the asset process that results from the two policies

to find that

XNSS
t = X0 − y∗0

r − g

¡
egt − 1¢

The equivalent calculation for the optimal policy ct conditional on a path of st gives:

d
³
e−(rt−

t
0 A(su)du)Xt

´
= −(r −A(st))e

−(rt− t
0 A(su)du)Xt + e−(rt−

t
0 A(su)du)dXt =

= e−(rt−
t
0 A(su)du)

∙
y∗0
r −A(st)− g

r − g
egt
¸

Now integrating both sides and rearranging gives:

Xt = X0 +
y∗0

r − g
e(rt−

t
0 A(su)du)

µZ t

0
e−((r−g)i−

i
0 A(su)du)(r −A(si)− g)di

¶
=

X0 − y∗0
r − g

³
egt − e(rt−

t
0 A(su)du)

´
The result now follows since A(st) ≤ r ∀st ∈ (−∞,+∞).

Lemma 5 The function b(s) is bounded between 1
rK

1/γ and 1
r .

Proof. We will derive the result by means of a contradiction. Suppose b(s) solves (20) subject

to the boundary conditions (21),(22). Since b(s) asymptotes to 1
r as s → ∞ and to b as s → −∞

this means that if there exists a b >b then there must be a s∗ such that b(s∗) >b and b(s∗) is a

local max. Similarly if there exists a b < 1
r then there must be a s

∗ such that b(s∗) < 1
r is a local
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min. Both are impossible though. We establish the first contradiction. The second is obtained

similarly. Indeed, suppose that there exists one point s∗ such that bs(s∗) = 0 and b(s∗) > b. Then

(20) becomes:

1− rb(s∗) +
b(s∗)
γ

λ(s∗)
∙µ

b

b(s∗)

¶γ

− 1
¸
= −bss1

2
σ2

which in turn implies that bss(s∗) > 0 since the left hand side of the above equation is negative.

Hence every extremum in the area b(s∗) > b must be a local minimum, and cannot be a maximum.

Similarly if b(s∗) < 1
r , a symmetric argument can be used, to show that is impossible to have a

local min in this region.

Now, we are in a position to establish the “tail condition” (61):

Lemma 6 Assume
¡
1
r

¢γ ≤ b(st)
γ ≤ K

¡
1
r

¢γ ∀st ∈ (−∞,+∞). Then

lim
t→∞E

⎡⎢⎣e−rt1{τ > t}b(st)γ
³
Xopt
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ = 0 (63)

Proof. For any t it is the case that

E

⎡⎢⎣e−rt1{τ > t}b(st)γ
³
Xopt
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ ≥

E

⎡⎢⎣e−rt1{τ > t}K
µ
1

r

¶γ

³
Xopt
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ ≥

KE

⎡⎢⎣e−rt1{τ > t}
µ
1

r

¶γ

³
XNSS
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ → 0

The first inequality follows from the assumption and the fact that
Xopt
t +

y∗t
r−g

1−γ

1−γ is a negative

number. The second from the previous lemma and the monotonicity of the value function and

the last limit follows from the fact that one can trivially show that in the standard model without

sudden stops e−rt
¡
1
r

¢γ XNSS
t +

y∗t
r−g

1−γ

1−γ → 0. To establish the result observe also that

E

⎡⎢⎣e−rt1{τ > t}b(st)γ
³
Xopt
t +

y∗t
r−g
´1−γ

1− γ

⎤⎥⎦ ≤ 0
irrespective of t, since γ > 1. Hence, it must be the case that (63) holds.
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A.4 Proofs for section 4

For all the value functions in this section one can apply similar verification arguments to the ones

given in the previous section. Hence, we just focus on the substantive proofs of the Lemmas and

the Propositions in the text.

Proof. (Lemma 3) The proof is a straightforward application of Ito’s Lemma in conjunction

with (27)

dc∗

c∗
=

cX
c
dXt +

cy∗

c
dy∗t +

p2tσ
2

2

cXX

c
dt+

cs
c
ds+

σ2

2

css
c
dt+ ptσ

2 cXs

c
dt =

=

"µ
r − 1

d

¶
− λ(st)(1 + φ2)i−

ds
d
µ+

σ2

2

"
2

µ
ds
d

¶2
− dss

d

#
− σ2

µ
1

γ

φ1
σ2
+

ds
d

¶
ds
d

#
dt

+

µ
1

γ

φ1
σ

¶
dBt

The claim now follows directly after some obvious cancellations

Proof. (Proposition 1). For φ1 = φ2 = 0 equation (37) becomes:

dc∗

c∗
= −1

d

∙
1− rd+ λ(st)id+ µds +

σ2

2
dss

¸
dt

Notice also that for φ1 = φ2 = 0, equation (36) becomes:

0 = 1− rd+ µds +
σ2

2
dss + λ(st)

(Ã
K

1
γ

r

!
− d

)

so that:
dc∗

c∗
= −λ(st)

d

(
id−

"Ã
K

1
γ

r

!
− d

#)
dt

Note finally that i is given by (34) as

(1 + i) =
K1/γ

rd

so that

id =
K1/γ

r
− d

and therefore
dc∗

c∗
= −λ(st)

d
{id− id} dt = 0
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Proof. (Proposition 2) Similar to Propositions 3 and 4 (see below)

Proof. (Proposition 3) Suppose φ1 = 0, and that

rd

K1/γ
= (1 + φ2)

− 1
γ

Then the Bellman equation (36) becomes:

0 = 1− rd+ µds +
σ2

2
dss +

+d
1

γ
λ(st)

(Ã
K1/γ

rd

!γ

− 1
)

and the consumption evolution (37) is:

dc∗

c∗
= −1

d

∙
1− rd+ dsµ+

σ2

2
dss

¸
dt =

= −1
d

"
−d1

γ
λ(st)

(Ã
K1/γ

rd

!γ

− 1
)#

dt =

=
1

γ
λ(st)

(Ã
K1/γ

rd

!γ

− 1
)
dt

Proof. (Proposition 4) Using (44) and (45) the Bellman equation (36) becomes:

0 = 1− rd+ µds +
σ2

2
dss +

− (1− γ)
σ2

2

(ds)
2

d

+
1

γ
λ(st)d

(Ã
K1/γ

rd

!γ

− 1
)

The result then follows upon using Lemma 3.
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