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Aggregate productivity is procyclical. Explaining this stylized fact is crucial for explaining
business cycles; indeed, choosing among the explanations for cyclical productivity is almost
tantamount to choosing among the major hypotheses in business-cycle theory.

There are three prominent explanations for procyclical productivity. First, observed changes in
productivity may reflect exogenous changes in efficiency — technology shocks — that drive the
cycle. Second, cyclical productivity may reflect endogenous changes in efficiency that occur
because the economy operates with increasing returns to scale; with increasing returns, productivity
rises whenever inputs rise.! Third, changes in measured productivity may in fact be caused by
systematic, unmeasured changes in capacity utilization or labor effort. In booms, actual input use
then rises more than we observe.

These three explanations have different implications for the impulses and propagation
mechanisms driving business cycles. Standard real-business-cycle models show how shocks to
technology can serve as impulses leading to fluctuations even in a competitive economy. Models
based on imperfect competition and increasing returns, by contrast, can potentially generate
endogenous fluctuations driven by sunspots or self-fulfilling changes in expectations if increasing
returns are sufficiently large. In any case, the existence of imperfect competition and increasing
returns helps propagate exogenous shocks throughout the economy. On the other hand, measured
changes in productivity driven by variations in utilization are not equivalent to procyclical efficiency,
however defined. Nevertheless, cyclical utilization can also serve as a propagation mechanism for
exogenous shocks. These models complement traditional Keynesian theories of money-driven
fluctuations by explaining why such fluctuations would induce measured changes in productivity.

Macroeconomic models embodying one or more of these interpretations generally share one
common feature, however: they assume the existence of a representative producer. Of course, no one
assumes that exact aggregation is possible, but one generally hopes that failures of aggregation will

not lead to first-order problems in estimating and calibrating macro models. We show that this hope

1 Imperfect competition without increasing returns can also lead to procyclical productivity since productivity
calculations incorrectly weight the contribution of different inputs (Hall, 1988). Given the absence of large pure
profits, however, we view a significant degree of imperfect competition as possible only with increasing returns.
This seems to be the view of Hall (1990).



is in vain. Aggregation bias affects the measurement of many parameters that are critical inputs to
recent business-cycle models.

The intuition for this conclusion is straightforward. We find that sectors of the U.S. economy
are characterized by significant heterogeneity in productivity levels, factor prices, and returns to scale.
We also find that inputs flow predictably from low- to high-productivity uses as the business cycle
goes from trough to peak. For example, the capital-intensive durable-goods industries have
comparatively high returns to scale. Durable-goods output is also highly procyclical. Thus, much of
the procyclicality of productivity (especially within manufacturing) comes from the reallocation of
inputs to these industries over the business cycle.

Therefore, interpreting aggregate data within a representative-firm paradigm leads to highly
misleading conclusions. In a real-business-cycle context, one can misinterpret the positive correlation
between productivity and output as evidence for the importance of high-frequency technology
shocks, even if demand shocks drive business cycles. In an increasing-returns setup one might
observe the same correlation, and conclude that each firm produces with very large returns to scale.
But this conclusion would also be wrong, since it confuses reallocation of inputs between firms with
production at a single representative firm.

On the other hand, aggregation effects allow us to explain several empirical puzzles in the recent
macro productivity literature. For example, we can explain why estimated returns to scale are larger
at higher levels of aggregation without invoking high-frequency technological spillovers.2 This
literature also finds strongly diminishing returns to scale in several industries (notably non-durable
manufacturing).? As a statement about firm-level parameters this finding is a puzzle, but in our
framework it is easy to explain.

From the standpoint of calculating technical change or estimating structural parameters,
composition effects are just a source of bias. But aggregate productivity change is a meaningful
economic quantity, even though it cannot be given a production-function interpretation. It represents

the change in an economy's ability to produce final consumption or investment goods from a given

2 Caballero and Lyons (1992) offer the spillovers interpretation,
3 For example, Burnside (1994).



quantity of primary inputs, and hence is a natural measure of welfare change. Under the standard
conditions of perfect c&mpetition and constant returns, productivity changes only if technology
changes. But in general, technical progress is only one of many ways in which an economy can
produce more output from given primary inputs. In particular, with imperfect competition,
increasing returns, or factor immobility, an economy can produce more output from a more efficient
distribution of existing inputs. This improved distribution contributes to aggregate productivity
growth.

Although largely ignored by the recent macroeconomic literature, some previous productivity
literature makes related points. For example, Jorgenson, Gollop and Fraumeni (1987) decompose
aggregate productivity change into sectoral technology changes plus reallocation effects. They focus
on long-run growth, however, and do not present results at a cyclical frequency. They also assume
constant returns and perfect competition. We, by contrast, find that in U.S. data, the effects of small
sectoral deviations from constant returns and perfect competition are the most important causes of the
differences between aggregate productivity and aggregate technology. Some industry-level work
does study cyclical productivity, and also emphasizes issues of aggregation.* By their nature,
however, these papers cannot examine the implications for aggregate productivity, and are typically
constrained by data limitations to study labor productivity rather than total factor productivity. TFP
is, however, the right concept for studying most macroeconomic issues. There is also a
microeconomic literature that derives necessary conditions for an aggregate production function to
exist when technology is embodied in vintage capitél or when some factors are not mobjle.5 This
literature is less relevant, since the conditions necessary to aggregate production functions are much
more rigorous than those needed to aggregate productivity growth,

The paper is structured as follows. In Section I, we provide simple examples to motivate our
discussion. In Section II, we present the determinants, technological and otherwise, of firm-level
value-added productivity. Section III shows how aggregate productivity is related to firm-level

productivity, demonstrating how imperfect competition and reallocation effects change aggregate

4 See Olley and Pakes (1992), Aizcorbe and Kozicki (1995), and especially Bertin, Bresnahan and Raff (1995).
5 For example, Fisher (1993) and Sato (1975).



productivity. In Section IV, we present examples suggesting that the standard measure of aggregate
productivity, although not generally a measure of technology, does have economic interpretation as a
measure of welfare. In Section V, we discuss the data and parameters we use to implement our

productivity decomposition. Section VI contains our results, and Section VII concludes.

I. Composition Biases in Aggregate Data: Some Examples

As we argued, composition effects can cause one to draw highly misleading inferences from
aggregate data. In this section, we illustrate this point with several examples. For simplicity, our
examples use only one of the biases we identify in our general derivation of Section III.

Consider an industry that comprises two firms, A and B. Both have the production function

Y,=L' i=AB.
Firm A has returns to scale of 1.5 (7, =1.5) and firm B has returns to scale of 2 (¥, =2).
Aggregate industry data on input and output are the sums of the inputs and outputs of the two firms.

For simplicity, we assume that only one firm produces at any given time. If both firms made
exactly the same product, a social planner would always allocate all inputs to firm B. Butin a
decentralized equilibrium with imperfect competition the social optimum will generally not prevail.
Also, it is possible that the two firms make slightly different products (e.g. high-quality and low-
quality shoes) that are nevertheless lumped together into a single aggregate industry, much as
Lincolns and Chevrolets are treated as one product, Motor Vehicles. In this case, even the social
optimum could require that both firms produce,

Our first example gives a possible distribution of firm and industry inputs and outputs across

booms and recessions:

Labor in Labor in Qutput Qutput
Busts Booms in Busts in Booms
Firm A 3 0 5.2
Firm B 0 4 0
Industry 3 4 5.2




In this example, firm A produces only in booms and firm B only in recessions. Now suppose a
researcher uses any standard method (e.g. the one proposed by Hall [1990]) to estimate the degree of

returns to scale of the "average firm" in the industry. One can estimate firm-level returns to scale, 7,

using firm-level data, as i:n:,
n

Applying this method to industry data, however, gives an estimated

returns to scale of 0.64.

This example thus demonstrates two important points. First, the returns to scale estimated from
aggregate data need not bear any resemblance to the firm-level parameters one wants to estimate.
Second, the aggregate data can lead one to find strongly diminishing returns to scale in an industry
where all firms have increasing returns. Hence, composition effects can explain one of the puzzles
we noted in the introduction. This is important, since diminishing returns makes no economic sense
as a firm-level statement: it implies that firms produce, on average, above efficient scale. Also, profit-
maximization implies that price must equal or exceed marginal cost, while diminishing returns means
marginal cost exceeds average cost. Hence, returns to scale of, say, 0.7 (which are sometimes
estimated) imply that at least 30 percent of output is pure profit. There is no evidence of such huge
profit rates in U.S. data.

Next, suppose we reverse the distribution of inputs while keeping aggregate inputs the same.

Now inputs and outputs are given by:

Labor in Labor in Output Output
Busts Booms in Busts in Booms
Firm A 2 0 2.83 0
Firm B 0 3 0 9
Industry 2 3 2.83 9

Suppose we again estimate returns to scale from industry data. We find ¥ = 2.88 — now much
larger than the returns to scale of either firm. Interestingly, this difference between sectoral and
aggregate returns to scale is a stylized fact documented for U.S. manufacturing by Caballero and
Lyons (1992). They interpret the higher degree of returns to scale in aggregate data as evidence for

productive spillovers between sectors that are internalized at higher levels of aggregation. As this



example shows, their interpretation need not be correct: returns to scale using aggregate data may be
overestimated because of composition biases. This result leads us to hope that we can explain another
puzzle: why returns to scale estimates rise with the level of aggregation.

One might ask how these two effects can simultaneously be at work. We conjecture that the first
effect is at work at a very disaggregated level — within narrowly-defined industry groups, recessions
“cleanse" industries of inefficient firms, as in the model of Caballero and Hammour (1994). But we
see the second effect at work at higher levels of aggregation. For example, there are good economic
reasons for durable-goods output to be procyclical relative to non-durables output. We also find that
durable-goods industries have larger average returns to scale. This combination of factors makes
aggregate productivity seem procyclical for the reasons given in the second example.

As these examples show, composition effects can potentially explain many of the puzzles of
cyclical productivity. We now derive the full relationship between aggregate productivity and firm-
level technology and begin to apply it to the data in an effort to see whether composition effects are

empirically important.

II. Firm-Level Productivity

This section analyzes the determinants of measured firm-level productivity growth. The next
section then uses these microfoundations to analyze aggregate productivity growth. At both the firm
and aggregate level, we measure productivity in terms of real value added output and primary inputs
of capital and labor. At a disaggregated level, the use of value-added data requires some explanation,
since real value added is an artificial construct. The natural measure of firm output is gross output,
not value added. Real value added is bread without flour; books without paper or ink; shoes lacking
leather. Technology shocks, as well, are most naturally thought of as affecting the ability of a firm or
sector to produce gross output, not the ability to produce value added.

It is useful, however, to focus on firm-level value added because of our ultimate interest in

aggregates. The natural measure of aggregate output is aggregate final expenditure, since this



measures the amount that society can consume today or save for tomorrow, i.e., the aggregate of
private and public consumption, investment, and net exports. Because of the national accounts
identity, we know that aggregate final expenditure equals aggregate firm-level value added:
intermediate-input use cancels out, since the quantity of goods and services that are sold as
intermediate inputs to other firms necessarily equais the amount of intermediate inputs that these
firms purchase. Thus, aggregating over firm value added allows us to derive an economically
sensible aggregate.

In nominal terms, it is clear how to define firm-level value added and hence the aggregate index.
Nominal value added in a firm, P'V,, is defined as the difference between the value of gross output
and the cost of the intermediate inputs used to produce it:

EvVi = QY - hM,.
Y; is sectoral gross output and @, is its price; M; is the quantity of intermediate inputs used in a
sector and P, is its price. Aggregate value added is then the arithmetic sum of firm-level value
added.

In real terms, however, there are several internally consistent index-number methods that can be
used to calculate constant-dollar measures of firm value added and aggregate final expenditure. The
national accounts identity holds in constant prices as long as we use the same index number method
to calculate real value added as we use to calculate real final expenditure. Analytically, the Divisia
index method is the most useful.® Divisia indices are defined in terms of growth rates, so define dy;
and dm; as the growth rates of gross output and intermediate inputs. Then the Divisia definition of

real value added growth, dv,, is implicitly defined by writing output growth as a weighted sum of

6 In 1995, the Bureau of Economic Analysis announced plans to report real GDP in the National Income and
Product Accounts (NIPA) as a chain-linked Fisher index, so that sectoral value added will also be calculated as chain-
linked indices. Chain-linked Fisher indices are one method of approximating in discrete time the continuous-time
Divisia definitions used here. NIPA historically used a Laspeyres (or double-deflated) index of value added. Divisia
indices (or their discrete time approximations) have better index number properties on both the expenditure and the
product side, leading NIPA to change its accounting methods. Of particular relevance here, the Divisia method is
also analytically simpler for productivity analysis. Nevertheless, none of the analytic conclusions in this section or
the next would be affected by the use of other measures of value added; the algebraic expressions would be identical
except that there would be additional additive terms. See, for example, Basu and Fernald (1995a, Appendix).
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intermediate input growth and output growth, using as weights shares in the value of gross output.

Hence, we can write this as:

=By, - =y - (,‘,‘;'

(1)

As one would expect, this expression tells us that if intermediate inputs grow at the same rate as gross
output, then value added grows at this same rate. Similarly, if intermediate inputs grow faster than
gross output, then value added grows slower than gross output.

As we emphasize below, this standard definition of real value added does not in general have an
interpretation as a measure of production. It is useful as a national accounting device, however, since
it properly accounts for the fact that the aggregate quantity of output used as intermediate input
equals the aggregate quantity of intermediate inputs used by all firms. The appropriateness of this
standard construction of real value added does not require any assumptions about optimizing
behavior, let alone any assumptions about technology or market structure. Because national
expenditure is closely related to welfare, the aggregate of this standard definition of firm real value
added is also useful for studying welfare. (We pursue this point in Section IV.)

By making assumptions about cost-minimizing behavior, production technology, and market
structure, we can relate changes in real value added to changes in inputs and technology. We begin
by specifying the primals of the production technology. We assume that production by each firm is
characterized by a gross-output production function:

Y,=F(K;, L.M,T,), 2)
where Y is gross output, K, L and M are inputs of capital, labor, and materials, and T is an index of
technology. The firm's production function F may be homogeneous of arbitrary degree yin K, L,
and M. 7yis not constrained to be one, so F may have non-constant returns to scale. Output by each
firm may be sold with a markup, 4, above marginal cost: y; = P./MC;, where P is price and MC is

marginal cost. There are N such firms.”

7 We shall assume throughout that the number of firms is fixed. This assumption greatly simplifies the derivations
in Section III, below, and does not constrain our empirical implementation.
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We now define several measures of input shares that are useful in the derivations below. First,

define s;; as the share of costs for input J (J=K,L,M) in total revenue of firm i:

Sp '%E:T' | (3)

Second, define cj; as the share of cost of input J in total cost of firm i:

Cr = PJi'Ii
" PoKi+ Puli+ PuM;

4)

Third, define "value added" cost shares, c}'i. as the shares of cost of inputs J (J=K,L) in total primary-
input cost:
|4 PJI" i
Cr&8——"——.
PyK; + Pyl

(5)
In equations (3) through (5), the input prices are all defined as market prices or market rental rates.
In particular, if the firm makes economic profits that are paid out to owners of capital, these profits
are excluded from the rental price of capital. We assume that firms are price takers in factor markets,
so the observed prices of labor and materials inputs equal the cost of these inputs. Thus the only
difference between total revenue and total cost lies in the treatment of payments to capital. Rather
than assuming that required payments to capital are identically equal to the residual after other
factors are paid, we construct a required rental rate series for the capital stock of each sector. As well
as assuming price-taking in factor markets, we assume that all factors are freely variable (i.e., there are
no quasi-fixed factors).8

Following Hall (1990), we decompose output growth into the contribution of inputs plus the

contribution of technology shocks. Cost minimization® implies that the growth rate of output, dy,

equals returns to scale, ¥, multiplied by the cost-share-weighted growth in inputs, dx, plus gross-

8 Quasi-fixity of inputs, where factors are sunk in the short run, matters here only if we allow for time-variation of
the cost shares in equation (5). In continuous time, the shares are of course constant for infinitesimal changes. We
also assume they are constant in discrete time for finite changes. This can be viewed as a first-order log-linear
approximation to equation (5). To a first approximation all production functions are Cobb-Douglas and the Cobb-
Douglas production function implies that output elasticities are constant, making quasi-fixity irrelevant for
groductivity calculations.

Contrary to some of the statements in the literature, the derivation does not require profit-maximization. Hence
the relationship we derive below is robust to any form of price-setting behavior; for example, it allows for sticky
output prices and for complex dynamic pricing strategies derived from supergames (e.g. Rotemberg and Saloner
[1986]). See Basu and Fernald (1995b, Appendix).



output-augmenting productivity growth, FTT —L_dt. Thatlis, if dl, dk, and dm are the growth rates of L,

K, and M, then

‘)’,[del +Cxxdk +(1 Cb CK' dm ]+_Ldt

Fir (6)
=7, dx, + L dr,.
i i Fi

This is the standard Hall estimating equation for returns to scale. Since our ultimate interest is in
value added, it is useful to rewrite this equation in terms of primary input growth and the growth in
the materials-to-output ratio. First, write this as:

71 (1 ch )dxv +71 chd’n +— F}T dtn (7)

where dx! equals the cost-share-weighted growth of primary inputs. Second, subtract yc,,dy; from

both sides, and divide through by 1-7;c,,. Output growth can then be written as:

1-c FiT, :
dy, = ﬂ_w) dx! + _Yiui dm; - dy,)+—- di (8)
1-7:cu 1-Yicu: F' 1-y,cy

Hence, we can write the growth rate of real value added from equation (1) as follows:

i\l —Cui ; T,
dv, =dy, - 1 —Hi(dm, —dy,) I:ﬂ_“ljla. Y'C’” - ](dm dy').,._r__ﬂi_

-..‘

sM, 1-7:C0 —YiChi 1 = Sui F' 1-7.c
)
To aid interpretation, note that the first-order conditions for firm optimization imply that
¥:Cpi = MiSyi» SO WE can write this expression as
v, =[M]‘b‘-" (1 —‘)[ " ]("’"f _dy)eTh A (10)
1-7;cy (1= psp (1~ Sui) F' 1-7icpm

Although this expression looks complicated, we can make several qualitative statements about the
terms on the right-hand-side. First, under constant returns and perfect competition, the first term

equals dx}’ , and the second term disappears. Hence, with constant returns and perfect competition,

value-added growth equals primary input growth plus technological change, and it may be reasonable

to interpret value added as a measure of "net output.” Second, the term multiplying (dm; —dy,) is

necessarily non-negative, and is positive in the presence of imperfect competition, when p; exceeds

10



one. Third, if returns to scale are not constant, then the term multiplying primary input growth is
mapped away from unity (for example, if ¥, equals 1.1 and c,; equals 0.6, then this term equals
about 1.29.)

Although it is not necessary to make further assumptions about the firm's technology, doing so
allows us to provide economic interpretation to the terms in equation (10). Suppose that the

production function in (2) takes the following separable form:

Y, = F'(K, L, M, T,) = G'(V"(K,, L,T), H'(M,)), (2"
Following the logic we used to derive equation (6), we can write av’ in terms of the cost-weighted
growth in primary inputs dx", plus technology shocks (without loss of generality we normalize to
one the elasticity of productive value added V? with respect to technology):

dvf =yl dx! +dt;. (11)
vY equals the sum of elasticities of V¥ with respect to capital and labor. We cannot, in general, make
any statements about the magnitude of this parameter. To do so, we make the further substantive
assumption that all returns to scale are in v*, arising perhaps from overhead capital or labor. This

requires that G be homogeneous of degree one in v? and H, and that H be homogeneous of degree

one in M. The sum of output elasticities with respect to all inputs is %, which in turn is the sum of

(1 —'ycM)yV and yc,,. Hence, the relationship between y and rYis

1-¢,,
14 Mi
=y — 12
Vi =t 1=%:Cp 12
Returning to equation (10), we can now rewrite it as follows:
7’.VC " S,
dv, =7y dx! +| 2~ —2 < dm, —dy,) +dt,. (13)
(=) (I=5)

Real value-added growth depends on primary input growth, changes in the materials-to-output ratio,
and technology. The first term shows that primary inputs are multiplied by value-added returns to
scale. The second term reflects the extent to which the standard measure of value added differs from
v?, and hence does not properly measure the productive contribution of intermediate inputs.

Intuitively, the standard measure of value added subtracts off intermediate input growth using

11



revenue shares, whereas with imperfect competition the productive contribution of these inputs
exceeds the revenue share. The third term is the value-added-augmenting technology shock.

Our focus is productivity measurement, so we now define the firm's productivity residual. We
follow Hall (1990), and define the cost-weighted value-added productivity residual, dp, as dv—dx" .

Hence,
v
Y Cui Saii

1- cm) - (1 - sm)

Firm-level productivity growth measured in terms of value added depends in part on returns to scale,

dp,

=(y" -1)dx + ( dm, - dy,) + dt,. (14)

as emphasized by Hall. In the presence of imperfect competition, however, productivity growth also

depends positively on changes in the relative intensity of intermediate-input use.

III. Aggregate Productivity Measurement with Increasing Returns and Imperfect Competition

We now aggregate from the firm level to the economy-wide level. We find that technology
shocks are only one contributor to changés in measured aggregate productivity. Other non-
technological effects on aggregate productivity in general depend on changes in aggregate primary
inputs, changes in the average intensity of intermediate input use, and finally changes in the
distribution of inputs and outputs across firms.

Hence, aggregate productivity in general measures many things other than technology. In
particular, aggregate productivity growth may be procyclical even if aggregate technology is fixed
and the average sector has constant returns to scale. The cyclicality of aggregate productivity
depends especially on changes in the distribution of inputs and output across sectors, and indicates
changes in the economy’s ability to produce final consumption goods from given quantities of
primary inputs. Thus, we conclude that the common pracﬁce of using changes in aggregate

productivity to calculate technology change or estimate returns to scale is seriously flawed.

12



A. Definitions

We first define the relationships between firm-level and aggregate quantities.!® Aggregate
inputs are defined as simple sums of the firm-level quantities:
N
K= 21=1 K”
N
L= ZH L.
These definitions are consistent with the methods used by the BEA to construct its estimates of the
capital stock and labor input.
We define the aggregate (rental) prices of capital and labor as the factor payments divided by

aggregate quantities:

N

P = Zi=1 PKI'Ki
X —N K ’

P E——Z‘E‘P’"’Iﬁ .
L L

We define the growth rate of aggregate value added as a Divisia index of the underlying sectoral
value-added growth rates:
dv = Zﬁl widv;,
where w; is the sector’s share of nominal value added:
= P ivVi
) le ivV" .

We now define the analogue of w; for an industry's share in the total cost of producing

aggregate value added:
< P KiKi +P Li L,

Y ST (Puki+Puly)

11

We allow each firm to face different input costs for capital and labor; this would occur, for
example, if there were monopoly unions with different degrees of market power in different sectors.
Allowing for sector-specific prices, we can now define the aggregate cost shares for capital and labor

in the cost of producing value added:

10 As noted above, we abstract from entry and exit and assume a fixed number of firms,

13



V Z,=1PK1Ki
" (PuK+ PuL)’

V= ZZI PL .
y ZHPKiKi "'Puli)

B. Derivation

Our objective is to measure the rate of technological progress at the aggregate level. We follow
Hall (1990) and calculate a cost-based Solow (1957) residual. Hence aggregate productivity growth,
dp, is defined as:
dp=dv—cpdk—cydl. (15)
With some algebraic manipulation, we can write the product of the aggregate labor cost share cy

and the growth of aggregate labor input dl as

cyd=Y" wit, [ ]dl
Ll

Deriving the analogue for capital, we can now sum sectoral productivity growth dp; using weights w;:

thl Wi dp’ le:l w'c dV 2 w"" L [ PL ]dl + 2 cKl[ ]dk
Kt

By adding and subtracting aggregate productivity, dp, from the right-hand side, we can rewrite

this expression as
2,-1”’ dp; = dp+z (w5 =w,)av,
.v[P,-P N ov|[Pg-P (16)
“Zm wi Z[—“P%]d’i-Z;ﬂWiC;i[—xp—_K]dk;
Li Ki
Hence aggregate productivity growth equals:
dp = ZN wfdp-+ZN (w-—w-c)dv-
j=l 3 i i=] i i i
cVPI.a PL CVPKI PK
+2'=1W [ P dl +Z =1 W, Ck; P_K‘ dk,

L

an
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The aggregate residual is a weighted sum of the sectoral residuals, plus input and output
reallocation terms. Substituting our final expression for sectoral productivity, equation (14), into

equation (17), we find:

dp= 2:1 wi (an -1) + Z.-lwi [(7 C».;) _(lJf.sT)](dmi "d)’i)

+ ZZI(Wi —w,.‘)dv,- +2:ilwfc [ ]dl + z wic ,‘;,[P"'P Px]dk,
Ki
+2:: Wi dt;
(18)

Equation (18) forms the basis for our discussion of aggregate productivity. It shows that in
general aggregate productivity measures many things other than the weighted average of sectoral
technology shocks. Nevertheless, (18) shows that aggregate productivity does measure only
technological progress if there are constant returns and perfect competition in every sector as well as
perfect competition and free mobility in factor markets. Under these assumptions total cost equals
total revenue. Thus the first and second terms on the right-hand side of (18) are clearly zero: returns
to scale are 1 and c,, =s,,. Since there are no profits w{ =w;,, so the third term disappears, The third
and fourth terms are zero if labor and capital receive the same wages and rents in all sectors. With
perfect competition and free mobility in factor markets, these last two terms are zero as well.ll

We can decompose these terms further, separating out the mean effects of the first two terms
from their reallocation effects. For example, note that two conceptually distinct effects are at work in
the first term of (18). First, if every sector has identical returns to scale and if this degree of returns
to scale is larger than 1, then productivity is procyclical because each sector is taking advantage of
increasing returns. This is the effect stressed by Hall (1990). On the other hand, suppose that sectors
have different degrees of returns to scale but the mean returns to scale is zero. Even so, the first term
can contribute to aggregate productivity growth if the sectors with above-average returns to scale

experience above-average input growth; this is just the intuition of our example in Section L

11 See also Jorgenson, Gollop and Fraumeni (1987), who derive an analogous equation under the assumption of
constant returns to scale in production and perfect competition in output markets. Thus the first three terms in (18)
are identically zero in their setup; the fourth and fifth terms may be non-zero.
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C. Intuition

Equation (19) is rather complex, and we discuss its economic interpretation in two parts. Here
we discuss the intuition for why each term contributes to measured productivity. In Section IV, we
present examples of economies in which different terms from equation (19) are economically
significant.

The first two terms on the right-hand side of (19) reflect the contribution of increasing returns.
As we discussed earlier, there are two such effects: a "mean effect” and a “"redistribution (covariance)
effect." We find below that the redistribution effect is significant. For example, durable-goods
industries are much more cyclical than industries producing non-durables. Basu and Fernald
(1995b) also show that durable-goods industries have higher returns to scale, So even though they
find that manufacturing industries have constant returns to scale overall, the fact that in booms a
greater share of the marginal output is produced by industries with increasing returns can help us

explain why aggregate manufacturing productivity is procyclical.
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The next two terms represent the extent to which measured real value added depends on the
intensity of intermediate-input use. As we discussed in Section II, firm-level value added is useful for
national accounting, regardless of technology or market structure. With imperfect competition,
however, changes in the materials-to-output ratio in general affect a firm's value added since the
marginal product of these intermediate inputs exceeds their cost. Since this otherwise-uncounted
marginal product represents real goods, the change in value added in turn affects aggregate output
and aggregate productivity. Thus, the degree of vertical integration can have real economic
consequences in an economy with imperfect competition. We again separate this effect into a mean
énd a redistribution effect.

The next three terms, in the third line of equation (19), come from differences in productivity
levels (or marginal products) across firms. Suppose one firm is more efficient than another. This
difference in efficiency must be reflected in differences in returns to at least one factor: to owners of
the firm, in the form of profits; to owners of labor, in the form of wages; or to owners of capital, in
the form of rents.

The first of the three terms says that aggregate productivity grows if a firm making above-
average profits expands. The high profit rate implies that this firm is unusually efficient in turning
inputs into output, so aggregate productivity rises if these efficient firms account for a higher share of
output growth, In this context, "efficiency” just means that the firm's output commands a high
relative price; the first example in the next section shows that a firm that succeeds in charging high
markups is also efficient in this sense. However, we show that it is efficient (in the economic sense)
for such firms to have above-average output growth.

The next two terms are relatively straightforward. They represent gains in productivity from
redistributing factors of.production from low-rent to high-rent firms. From the point of view of
productivity analysis, this is quite sensible. Suppose that factors are homogeneous, but in one firm
they are paid more than in other firms. Since we assume that employers act competitively in factor
markets, the firm with high-priced capital and labor uses less of these inputs and thus ceteris paribus

has higher marginal products of these factors. Then if that firm expands disproportionately, more of
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the primary inputs are being used in a firm where they have high marginal product. Naturally
aggregate productivity rises.

Why might labor, say, be paid a higher wage in one firm than another? First, efficiency wage
considerations may lead to differences in wages across firms in different industries, as emphasized by
Katz and Summers (1989). Second, labor may not be fully mobile across sectors. Third, a union
with monopoly power might choose to charge different wages to different firms. Whatever the
reason, shifting resources from firms where labor is relatively unproductive to firms where labor is
relatively more productive increases aggregate output, even if total input does not change.

Finally, from the point of view of applying this derivation to data, note that we have assumed
there is no unobserved utilization. That is, we assumed that the dr; defined in equation (14) is a true
firm-level technology shock. Of course, this assumption is almost certainly not true: variable capacity
utilization and unobserved changes in labor effort have always been prominent among the proposed
explanations for the puzzle of procyclical productivity. Burnside, Eichenbaum and Rebelo (1995)
and Basu (1995b) show how to adjust these residuals for capacity utilization. Thus, we should not
expect that correcting for aggregation biases alone will give us a true measure of technology change.

However, we focus on aggregation effects because that is the novel contribution of our paper.

IV. Welfare Interpretation of the Aggregate Productivity Residual

In this section, we ask whether aggregate productivity is an economically meaningful concept.
We illustrate the economic intuition behind equations (18) and (19) via three examples. We show that
in fairly general cases the terms in (18) do have natural economic content, and the aggregate Solow
residual has an interpretation as a measure of welfare.

Since we have already examined the effects of returns-to-scale differences in Section I, all of

our examples feature constant-returns production. Thus, the terms in (18) that depend on (yv —1)

are always zero in our examples. In the first and third examples we also abstract from materials use,
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so the terms that depend on (dm —dy) are also identically zero. For simplicity, we focus on one-

period examples where capital is not a factor of production.12
A. Example 1: Markup Pricing and Factor Rents

Suppose the economy consists of two firms, each producing one type of good which is only for
final consumption. There are two distortions — markups and labor rents — that each lead firm 1 to
produce less than is socially optimal relative to firm 2. In this example, shifting resources towards
firm 1 raises both productivity and welfare.

The representative consumer has a Cobb-Douglas utility function over the two types of goods:

U=CrC™. (20)

The consumer inelastically supplies L units of 1abor. Although labor is homogeneous, workers in
each firm may be paid a different wage. In particular, we assume that workers in firm 1 may be able
to raise their wages above the Walrasian level. For the purposes of this example, it is not necessary to
specify exactly how this is done. The labor market in firm 2 is competitive. Thus the consumer
maximizes (19) subject to the budget constraint

PC +P,C,=W,L +W,(L-L)+I1,+I1,, (21)
where the IT; are the profits of the two firms. Following our convention, the aggregate wage is

defined as:

w=—b_wai+t_w,
L+L, ' L+L

Both firms have identical production functions:
Y=L i=1,2, (22)
However, both firms sell their output at a markup over marginal cost, ;. Assume 4, 2 U,.

Again, it is not necessary to specify the details of the game that allows firms to have markups.

Substituting into equation (18), we can find the growth rate of aggregate productivity, dp, in

this economy:

12 In future work, we shall show that under quite general conditions welfare is equivalent to a particular measure of
productivity, which reduces to the cost-based Solow residual if there are zero profits. This result holds even when
capital is a factor of production and leisure enters the utility function.
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Note that productivity increases with labor input in sector 1 if the markup is strictly higher in firm 1

(23)

(4, > p,) or if the wage is strictly higher in firm 1 (W, > W,) or both. Equation (23) says that a pure
reallocation — increasing the size of firm 1 which, since aggregate labor input and technology are
constant, must imply a decrease in the size of firm 2 — increases productivity.

Why should we wish to increase aggregate productivity, as defined by the cost-based residual?
It is easy to show that productivity thus defined is an exact measure of welfare in this economy.
Taking log differences of the utility function (20) and noting that dL, +dL, = dL =0, we find:

du = ady, +(1 - a)dy,

PY, PY,
= »+ dy,
Pl Yl + PZY2 PI Yl + PzY2 . (24)
= dy
= dp

This result is intuitive: since distortions are larger in firm 1 its output is even lower relative to the
social optimum than the output of firm 2. Thus welfare increases if we devote relatively more
resources to producing good 1. The social production possibilities frontier is a straight line with
slope -1. Given the utility function, the social optimum dictates that a fraction & of the total labor of
the economy should be devoted to the production of good 1, and (1—- @) to the production of good
2. Butif g, >u, or W, >W,, thenl, < a L, so the representative consumer has lower utility than at
the social optimum.!3

Interestingly, in this example the increase in welfare from optimal policy also corresponds to an
increase in productivity as measured by the cost-based Solow residual. Hulten (1978) shows that

under perfect competition aggregate productivity represents a welfare improvement because it is a

13 Our example is related to the literature on domestic distortions and "industrial policy™: e.g. Bhagwati,
Ramaswami and Srinivasan (1969). Bulow and Summers (1985) update this literature by using efficiency wages to
justify intersectoral wage differentials, and Katz and Summers (1989) try to measure labor rents in different
industries. We later use the Katz-Summers estimates for our decomposition.
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shift of the social PPF coming from changes in production technology. Our example shows that
when resource allocation is distorted, increases in productivity as well as welfare can come from shifts
along the PPF — better allocation of existing resources — and need not come from shifts of the PPF.
One special feature of this example is that there is no distortion if x, =u, (and W, =W,). This
result may be surprising, given that markups of any size usually imply some distortion. That is not
the case here because labor is supplied inelastically. If leisure were a third good in the utility
function (and the labor market was competitive), then the existence of markups (of any size) would

distort the consumption-leisure decision.
B. Example 2: Production of Commodities by Means of (Manufactured) Commodities

We now concentrate on the terms in equation (18) that depend on (dm —dy). In this example,
we show that markup pricing of intermediate inputs causes the economy to produce within its
production possibilities frontier. Cyclical reductions in markups move the economy closer to the
PPF, thereby increasing productivity as well as welfare.

We again consider a two-good example, but to aid intuition we now assume that the goods are
perfect substitutes in consumption. So the consumer's utility function is

U=C+C,. (25)
Labor is again supplied inelastically, but we now assume that the 1abor market is competitive and
consequently the wage, W, is the same for all firms,

Again suppose there are two firms, but now assume that each firm needs to use materials to
produce output. Firms can use either their own output or the other firm's output, but in either case
they must purchase the output at the market price. Since the goods are perfect substitutes they have
the same price, so we follow the convention that each firm uses the other firm's output as materials
input. Both firms mark up their output above marginal cost. Firm 1's production function is

Y, =L"M"°, (26)
where M, is part of the output of firm 2. Firm 2's production function is

Y,=IMP (27)

21



We assume f > a. Since the goods are perfect substitutes P, = P,, so > a implies g, > u,.

Since the goods are the same from the standpoint of final consumption, final output is just
Ye=(Y, - M,)+(Y, - M,). (28)

Repeated use of the conditions for cost-minimization and some tedious algebra show that

dp =dyp —dl

_ 1, ¥,-M, (1-5)-F* ;
Ml a

YF Y, ﬁ(l -7 Yr N a(l—T)

e [ ﬁ]d'-

F YF

) ﬁ(dw dp,) + =+

Some substitution shows that the right-hand side of (29) equals the third and fourth terms on the
right-hand side of (18).

We can now give the economic intuition behind these terms. Note that in this model economy
there is only one distortion; materials are sold with markups.!4 This has two effects. First, materials
are underused relative to primary inputs; thus, aggregate productivity could be increased by shifting
to more materials-intensive production. Second, since markups are higher in firm 2, aggregate
productivity could be increased by having firm 2 grow relative to firm 1. This would cause firm 1 to
become more materials-intensive relative to firm 2, which would also increase efficiency.

The first two terms in (29) capture the first effect. Focusing on the first term, note that the
difference between (1—-f) and -yl is the difference between the elasticity of output with respect to
materials in firm 2 and the share of materials in production in that firm. Materials share is less than
its elasticity because of markup pricing in the firm using materials: as usual, markup pricing leads to
underuse of inputs. Given that materials are being underused, productivity would rise if production
became more materials-intensive; the size of the effect is proportional to the markup in firm 2.
Materials use will increase if the price of good 1, the materials input to firm 2, falls relative to the

price of labor: that s, if the markup falls in firm 1. (Note that f(dw—dp,) equals (dm, —dy,).) The

second term in (29) is symmetric, with the roles of the two firms reversed.

14 The fact that final consumption goods are priced above marginal cost is not a distortion because labor supply is
inelastic. Since the goods are perfect substitutes and are sold at the same price, their different markups also do not
cause distortions in the allocation of aggregate consumption across goods.
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In terms of understanding equation (18), we find that the contribution of the (dm —dy) term to

productivity growth depends on the level of the markup in the materials-using firm, and the
cyclicality of the markup(s) in the materials-supplying firm(s).!> So while the size of this effect
depends on the extent of the inefficiency in the initial equilibrium, we also need the degree of that
inefficiency to change over the business cycle. Obviously, the size of the effect depends on the
importance of intermediate goods in production, i.e. on the sizes of (1~f) and (1-a). Italso
depends on another technological feature of the production function, the elasticity of substitution
between materials and other inputs in production. If the production function is Leontief in materials,
as Rotemberg and Woodford (1995) assume, then dm =dy always, and this effect disappears.

In this example, the production possibilities frontier now represents quantities of goods
produced for final consumption. The distortion from markups implies that the economy generally is
within the PPF (not just at an inefficient point on it, as in Example 1). Reductions in the markup
move the economy closer to the PPF, again increasing both welfare and productivity.

Now we discuss the second effect at work in (29), which is embodied in the third and fourth
terms of that equation. We argued that for the first two terms to be positive, we had to have positive
markups in the materials-using firm. But what if the production structure were linear, rather than
circular as in equations (26) and (27)? That is, instead of all firms using the outputs of other firms in
production, suppose there were an upstream firm producing materials using only labor, and a
downstream firm using those materials and labor to produce final consumption goods. Suppose
furthermore that the upstream firm sells its output with a markup, but the downstream firm does not.
As long as the downstream firm can substitute between materials and labor there is clearly a distortion
in this economy, but it is not captured by the (dm —dy) terms, which are always zero.!6

Note, however, that in order to generate the upstream-downstream example we had to invoke
asymmetric behavior. The third and fourth terms in (29) (and in general the third term in (18))

capture asymmetries in production and pricing. In the upstream-downstream example, since the

'5 Thus we confirm the intuition of Basu (1995a), who presents a symmetric example where this effect is at work.
6 These terms are zero because the upstream sector does not use materials, while the downstream sector does not
price with a markup.
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upstream firm has a value-added share larger than its cost share, relative growth in that firm increases
productivity. In our original example of equations (25)-(27), since good 2 is sold with a higher
markup than good 1, productivity also rises if firm 2 grows relative to firm 1. The intuition is the

same as in Example 1 above.

C. Example 3: Level Effects

Finally, we consider the effects of differences in the levels of productivity across establishments.
It might seem that the simplest composition effect is the possible reallocation of inputs between high-
and low-productivity plants, but it is not immediately apparent from (18) how this would change our
measure of aggregate productivity. This example may be quite significant empirically.
Establishment-level studies often find large differences in productivity levels between plants in the
same four-digit industry.!” Baily, Hulten and Campbell (1992) conduct an establishment-level study
and show that a large fraction of long-run productivity growth comes from increases in the share of
output produced by the most efficient firms. If this effect is also significant at higher frequencies, it
may be responsible for a large fraction of the procyclicality of aggregate productivity.

We again use the specification of preferences in (25), in order to focus on an example where
both firms produce the same type of good. Now assume

Y, =AL i=12, (30)

Furthermore, assume A, > A,. Again, since the goods are perfect substitutes, P, = P, Then the
equilibrium must involve a higher markup in industry 1, or higher wages, profits, or capital rents in
industry 1, or both. We have already seen in Example 1 how these differences contribute to both
productivity and welfare changes. So differences in productivity levels do affect our measure of
productivity growth, because they are captured by one of the three reallocation terms in equation
7).

Note that in order for level effects to matter in this way they must lead to differences in

marginal factor products. For example, if the production functions in (30) had diminishing returns

17 Baily, Hulten and Campbell (1992), Caves and Barton (1990).
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to scale, differences in productivity levels would be consistent with a competitive equilibrium in which
firm 1 produces relatively more output and marginal products equalize across firms. In that case,
despite the differences in productivity levels, there would be no reallocation effects in aggregate
productivity. However, Baily, Hulten and Campbell (1992) find that large differences in productivity
levels coexist with essentially constant returns to scale. Thus, level effects are probably an important

component of composition bias.

V. Data and Method

A. Data

Having discussed the theory of aggregation, we now investigate its empirical significance. We
construct a "true" aggregate technology series, the last term in equation (18), and compare it to the
conventional measure of aggregate productivity, dp. We do so by constructing estimates of the other
terms on the right-hand side of (18) using data at two levels of aggregation. We first define our
"aggregate" as the private U.S. economy, and our "firms" as 34 industries at roughly the two-digit SIC
level. To facilitate comparison with previous work and to take advantage of the superior data quality
in manufacturing, we also close our model within U.S. manufacturing. This makes the "aggregate”
total manufacturing, and our "firms" 21 mostly two-digit manufacturing industries.!8

The average two-digit manufacturing industry comprises about 18,000 firms, so it may seem
odd to consider an industry as a firm. We do this for reasons of data availability: there are no firm-
level data sets that span the economy. In principle, one could focus on a subset of the economy, and
use data from the Longitudinal Research Database, say; doing so, however, requires sacrificing not
only breadth, but also panel length and data quality. Our work, by focusing on aggregates,
complements existing work (such as Bertin, Bresnahan, and Raff (1995)) that looks at highly

disaggregated data for a small subset of the economy. Nevertheless, it is worth emphasizing that

18 There are only 20 two-digit manufacturing industries. However, we divide S.1.C. 37 into Motor Vehicles (S.I.C.
371) and Other Transport Equipment (S.1.C. 372-79).

25



aggregation effects of the type we identify are likely to be important even within the disaggregated
sectors that we use. We return to this point in the conclusion.

We use unpublished data provided by Dale Jorgenson and Barbara Fraumeni on industry-level
inputs and outputs. These data consist of a panel of 34 industries (including 21 manufacturing
industries) that constitute the U.S. private business economy for the years 1949-1989. These sectoral
accounts seek to provide accounts that are, to the extent possible, consistent with the economic theory
of production. Output is measured as gross output, and inputs are separated into capital, labor,
energy, and materials. For our purposes, an essential aspect of the data is their inclusion of
intermediate inputs. Basu and Fernald (1995a) contains a brief description of the data set; for a
complete description, see Jorgenson, Gollop, and Fraumeni (1987).

We need to construct the cost shares defined above. To estimate the required payments to
capital, we follow Hall and Jorgenson (1967), Hall (1990), and Caballero and Lyons (1992), and
compute a series for the user cost of capital r. The required payment for any type of capital is then
rPyK , where PyK is the current-dollar value of the stock of this type of capital. In each sector, we
use data on the current value of the 51 types of capital, plus land and inventories, distinguished by the
BEA in constructing the national product accounts. Hence, for each of these 53 assets, the user cost
of capital is

~ITC. -
r,=(p+5,)(l(lf—'r)rd’), S= 11053,

p is the required rate of return on capital, and §, is the depreciation rate for this asset. ITC, is the
asset-specific investment tax credit, 7 is the corporate tax rate, and d, is the asset-specific present
value of depreciation allowances. We follow Hall (1990) in assuming that the required return p
equals the dividend yield on the S&P 500. Jorgenson and Yun (1991) provide data on /TC, and d,
that is specific to each type of capital good. Given required payments to capital, computing the cost
shares is straightforward.

To perform some of the estimation and to assess our series for the aggregate technology shock,

we need demand-side instruments. We use versions of the Hall-Ramey instruments: the growth rate of
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the price of oil deflated by the GDP deflator; the growth rate of real government defense spending;

and the political party of the President.

B. Estimating Returns to Scale

In order to construct the first two terms on the right-hand side of (18), we must know 7V. Since
7" is not data, we estimate it for each sector using the method of Basu and Fernald (1995b), which is
a correction of the ingenious procedure of Hall (1990).

We actually estimate the gross-output returns to scale, ¥ for each sector by running the
regression in equation (5). In order to avoid the "transmission problem" of correlation between
technology shocks and input use, we use the Hall-Ramey instruments noted above. We use the
current value and one lag of each instrument.

The estimated values of ¥ are listed in Table 1. We see that median returns to scale are 0.98,
very close to constant returns, Having estimated ¥, we construct 7V using equation (12). Although
the s are assumed to be constant over the sample period, the 7¥s change over time because we treat
the materials share as time-series data. Basu and Fernald (1995b, Appendix) discuss the pros and

cons of estimating ¥ as opposed to estimating 7" directly.
C. Capital and Labor Rents

In order to estimate the contributions of capital and labor reallocation to productivity growth,
we need measures of above-market rents earned by capital and labor.

Our method of constructing required payments to capital implicitly assumes that the user cost of
capital does not vary across sectors. Thus, the "reallocation of capital” term is identically zero. This
point bears explanation. We certainly allow capital to earn rents: capital is the residual claimant in
each sector, and may earn economic profits. This possibility is what forces us to construct the rental
rate series above. But for the reallocation term to be non-zero, it is necessary that the rents to capital
be allocative: that is, there must be differences in the required return to capital across sectors. We

assume that there are no such differences.
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However, we do allow for allocative labor rents, of the kind stressed by Katz and Summers
(1989). They examine payments to categories of labor across industries, controlling for observable
differences, and find that some industries exhibit substantial wage premia. They list their estimates of
these industry wage premia in their Table 6. We use their estimates to construct the contribution of

labor reallocations across indu‘su'ies to aggregate productivity.!9

V1. Results

We now adjust the cost-based Solow residual dp, as required by equation (18), to get a series dp°
that should correspond to true technology growth. We find that our corrected series is less volatile,
and less correlated with both input and output growth. It better fits our priors about technology; for
example, it is less correlated with oil price changes or monetary contractions. Composition effects
also explain why we find approximately constant returns at the micro level but large increasing
returns in macro data.

True aggregate technology growth is the weighted average of the sectoral technology shocks,
the last term on the right-hand side of (19). Creating this true technology series requires us to
construct the first four terms on the right-hand side of (18) (recall that our method makes the fifth
term identically zero), using the methods we discussed in the previous section.2 We call the sum of

these adjustment terms €. Thus

SV el \ax? + 3V we| L=
g"zl'=lwl (71 l)dxa +Z;=1wl (l—c;':){(l—l.:{h) (dml d)’1)

. N ,j
N N , [ 2 PLL
+ Z‘.=1(W,' - wf)dv,- + 2].:1 wf " _(:‘I(;lbll. - JPI‘LL

di; (31)

=6 +8,+83+¢&,.

19 Qutside the manufacturing sector, our industry definitions are often different than those used by Katz and
Summers. Where they do not cover a particular industry (e.g. agriculture), we set the labor rents to zero. In cases
where their industry definitions are broader than ours we assume that all the sub-industries within a particular
industry have the same labor rents.

20 An alternative method would be to aggregate the residuals from estimating equation (6), since by hypothesis they
are true technology shocks. However this procedure would not allow us to investigate the different components of
our adjustment, nor would it allow us to examine the issue of returns to scale.
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We then subtract this sum from the standard measure of productivity, dp, to create the true measure of
technology change, dp™:
dp* =dp-§ (32)

We also examine the properties of a series that includes all the corrections except for the average
returns-to-scale effect:

§=&-7'dx". 33
&’ provides a measure of our new correction to the usual productivity series, since the returns.-to-
scale adjustment is now almost standard.

As noted above, we close the model at two different levels of aggregation: at the level of the
entire private economy, and at the level of one-digit manufacturing.

Table 2a presents summary statistics for aggregate private output growth, dv, weighted average
of primary input growth, dx*, the standard cost-based Solow residual for measuring productivity
growth, dp, and our corrected series dp’. Table 2b is a correlation matrix for these variables.

Table 2a shows that at the aggregate level our corrected technology series, dp’, has a
significantly lower variance than the cost-based Solow residual: about 75 percent of the variance of
dp. It also has a considerably lower mean: about 80 percent of aggregate productivity growth
actually comes from sectoral miscalculation and aggregation effects, not technology change.

The correlations in Table 2b show some of the striking differences between dp’ and dp. Note
first that the two series are fairly highly correlated, with a correlation coefficient of 0.85. But while
dp has a correlation with aggregate output growth of 0.84, the corrected measure dp’ has an output
correlation of only 0.59. And while the standard measure has a positive correlation with aggregate
inputs of 0.25, the corrected measure shows basically no correlation: -0.02.

In Tables 3a and 3b we present the analysis in Tables 2a and 2b, but now closing the model in
manufacturing only. The results here are similar: the variance of technology shocks falls by about
25 percent after our corrections, as does mean technology growth (though only about 30 percent).
The correlations also tell the same story: the output correlation falls even more than in the economy-

wide data (by almost one-half), and the input correlation is again almost exactly zero.
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In conjunction, these findings show that the standard technology-driven real-business-cycle
model is even farther from fitting the data than one normally thinks, These models anyway tend to
generate a higher correlation between output and the Solow residual than the data show: if the true
correlation falls by 30 percent or more, then they are that much further from the truth. More
importantly, business-cycle models must display the standard characteristic of business cycles: a
comovement between output and inputs. If inputs and output move independently in response to a
technology shock then technology shocks cannot be the dominant impulse driving business cycles.

However, there is one possible caveat to this conclusion. We have shown that accounting for
composition bias reduces the variance of true technology shocks, but it is possible that composition
effects themselves are a major new propagation mechanism for technology shocks.2! For example, a
positive technology shock in a multi-sector dynamic general-equilibrium model may boost output by
more in durable-goods sectors than in non-durables. So although we show that output is less
correlated with contemporaneous technology shocks after our composition corrections, it is possible
that many of those composition changes are themselves driven by lagged technology shocks. Thus,
our results might actually support technology-driven models by reducing the size of technology
shocks without reducing their ability to explain output fluctuations.

To investigate this possibility, we regress the "reallocation only" component of & &’, on our
derived series of lagged technology shocks. The results are in Table 4. The signs are generally
consistent with the hypothesis that composition changes are propagation mechanisms for lagged
technology shocks, but the coefficients are small and insignificant.2?

We proceed to investigate whether the technology shocks we compute better fit our a priori
notions about technology change. In Tables 5 and 6 we regress the two measures of technology

shocks — dp and dp® — on sources of fluctuations that are plausibly identified as not being

21 We are indebted to Marty Eichenbaum and Michael Horvath for suggesting this possibility.

22 We do find that our lagged technology shocks significantly predict aggregate input growth. However, recall that
our "technology shocks" also include variations in the utilization of inputs. Most optimizing models of input
variation imply that lagged utilization changes should predict future input growth: in the short run, firms react to a
demand shock mostly by increasing utilization, but in the long run utilization falls back to its steady-state level and
firms accommodate the shock along the extensive margin only.
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technological in nature. First, we use current and lagged growth rates of real oil prices.?? Second, we
use two lags of the Romer and Romer (1989) dates that identify monetary contractions.24 The two
series generally respond quite differently to both sets of variables.

At the level of the private economy, dp’ falls by 0.027 percent in response to a one percent rise
in oil prices, but the coefficient is not significant and neither is the F-statistic for the regression. The
standard series, however, falls about twice times as much — 0.063 percent — and the coefficient and
the regression are both significant. The results are even stronger within manufacturing: the elasticity
of dp* with respect to oil prices is again -0.027, while the elasticity for dp is -0.11.

We next look at the responses of these series to monetary contractions. At the economy-wide
level, dp® does fall by 1.7 percentage points in response to a lagged Romer date. This decline is
significant, but the F-statistic cannot reject the hypothesis that all coefficients are zero. (The same is
true when we use the contemporaneous date as well as two lags.) On the other hand, the standard
residual falls by 2.4 percentage boints in response to a lagged Romer date, and the coefficient and F-
statistic are both significant. This pattern repeats more strongly in manufacturing: dp* falls by 1.9
percentage points in response to a lagged Romer date, but dp falls by 4.3 percentage points.

Thus, by both the measures we use, dp is a better index of technological progress, though both
sets of regressions show that it is by no means perfect. Our computed series has some unavoidable
errors that come from using estimated rather than population parameters. But we conjecture that the
major reason why our corrected "technology” series behaves badly is that it still includes changes in
utilization as well as composition changes that occur below the two-digit level of aggregation.

We have argued that aggregate productivity is a bad measure of technology change. We now
show that it provides misleading estimates of returns to scale as well. This is a significant issue, since
the degree of returns to scale has become a crucial parameter in recent business-cycle models, A

number of recent influential papers have modeled business cycles as products of sunspots or

23 il prices may or may not represent "supply shocks” — the concept is vague — but they are not technology
shocks, since factor price changes do not shift production functions.

24 We also tried a specification using the contemporaneous date, but the contemporaneous variable was never
significant and there are good reasons to think that monetary policy affects the economy only with a lag.
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indeterminacy,?5 which can even result in monetary non-neutrality.26 A high degree of returns to
scale is critical for the success of most of these models — their ability to explain business cycle
fluctuations is not just reduced but eliminated if returns to scale are below a (high) minimum. Most
of these papers assume a production sector where identical firms produce a single commodity with
the same technology. Of course, a one-sector model of production is an abstraction from a world
with many sectors and heterogeneous technology. Thus, it is unclear how it should be calibrated.
One might take the model literally, and calibrate it using estimates from aggregate data alone.
Alternatively, one might think that the right way to calibrate such a model is to use the weighted sum
of sectoral returns to scale, thereby constructing the "representative producer.”" Only theory can
decide this issue, but we show that the results depend critically on which of these two approaches one
takes.

Trying the first approach, we regress aggregate productivity growth in the private economy on
aggregate input growth to estimate the degree of returns to scale (actually ¥ —1). The results are in
the first line of Table 7. Using the Hall-Ramey instruments, the standard series gives a point estimate
for y of 1.27, which is significantly different from 1 both statistically and economically. Note,
however, that this is the degree of returns to scale in the production of gross output. The right
parameter for one-sector models of indeterminacy is the degree of returns to scale in the production
of real value added — yV— which we calculate from 7y using equation (8).27 At the level of the
private economy, we calculate yV to be 1.98. This is extremely high, though representative of
numbers found elsewhere in the literature.2? Importantly, it is also more than large enough for the
sunspot models to display indeterminacy. Schmitt-Gréhé (1994) compares four such models, and
concludes that they require returns to scale of at least 1.50 if markups are acyclical, and 1.37 if

markups are countercyclical. By contrast, using the second approach of calculating the cost-share-

weighted sum of sectoral returns to scale, we find wa ¥i = 1.03. Converting this number to value-

25 For example, Benhabib and Farmer (1994), Farmer and Guo (1994), and Gali (1994).
26 Beaudry and Devereux (1994).

21 We cannot estimate yV directly, using data just on real value added and primary inputs of capital and labor, for

the reasons discussed in Section II.
28 E.g. Hall (1988, 1990); Domowitz, Hubbard and Petersen (1988).
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~\V
added returns, we get (wa'r,-) = 1.07 — too small even to be a major propagation mechanism, let

alone enough to produce indeterminacy. Thus, it appears that controlling for aggregation produces a
major change in this important parameter.2?

However, just comparing the estimated returns to scale at these two levels of aggregation does
not prove that aggregation effects alone are responsible for the different results. We therefore adjust
aggregate output growth as required by our derivation to eliminate aggregation biases. We use the
series &’, which adjusts the standard productivity series for all but the average returns-to-scale effect.
We estimate the regression

& =const+v¥dx",
and obtain a direct estimate of ?V corrected for composition effects. We find '}"V =1.20, larger than
the 1.07 we predicted by averaging the sectoral figures, but insignificantly different from either 1.07
or 1. The results for manufacturing are similar to those for the aggregate economy, but the changes
are less dramatic.

Note that by any of the measures we examine, the estimates of two-digit returns to scale are
much smaller than the conventionally-estimated aggregate returns to scale. This is the fundamental
stylized fact stressed by Caballero and Lyons (1992), who argue that it is evidence in favor of
externalities to production between 2-digit industries that become internalized at higher levels of
aggregation. This finding is the basis for their statistical model, which purports to find large
spillovers between two-digit manufacturing industries. We have shown that their explanation is not
the only one. The greater cyclicality of productivity at the 1-digit level results from aggregation

effects rather than positive spillovers.3? Several recent papers have used external rather than internal

29 Whatever the right way to calibrate a one-sector model might be, taking literally the assumption of returns to
scale as high as 1.98 produces unreasonable results. For example, if returns to scale are that large then true
technology growth at the aggregate level is not positive, but rather -1.3 percent per year. (Rotemberg and Woodford
[1995] show how one might reconcile short-run increasing returns to scale with long-run constant returns.)

30 Caballero and Lyons (1992) test their hypothesis directly by regressing sectoral value added on sectoral primary
input growth and aggregate output growth. Basu and Fernald (1995a) show that their test is flawed by their use of
value-added data, for the reasons discussed in Section II. Using the appropriate gross-output data, the evidence for
externalities disappears. However, Bartelsman, Caballero and Lyons (1994) find significant externalities in four-digit
gross-output data.
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increasing returns to model economic fluctuations.3! Our results demonstrate that, as written, these
models are no more plausible than those based on internal increasing returns.

One might ask whether the finding of constant returns and no externalities makes a large line of
recent theoretical work empirically irrelevant. Such a conclusion is warranted by most of the models
now extant, but we think it too hasty. We touch on this issue below.

Having noted that our corrections do in fact matter for computing productivity growth, we look
more closely at the components of our adjustment term, £&. Tables 8a and 8b provides summary
statistics for the four series that comprise & We see that the two terms with significant standard
deviation are the returns to scale term and the correction for the difference between the two concepts
of value added.

Comparing equations (18) and (19) we note that these two terms each comprise two effects.
One effect comes from the average error in calculating sectoral technology shocks, the other comes
directly from composition biases. We can ask which effect is more significant by one of the criteria
we used above. Suppose we correct the aggregate productivity series for all but the two "average
effects" defined in equation (19). Then, at the level of the private economy, the correlation of this
new series with aggregate output would be 0.74. This compares to the correlation of 0.84 for the
unadjusted series and 0.59 for the fully-adjusted series. So the aggregationlcorrections are somewhat
less important than the "average” ones at the economy-wide level. But the situation is reversed within
manufacturing, where the aggregation effects account for about 60 percent of the correlation with

output. Thus both sets of corrections contribute significantly our results.
VII. Conclusion
We have explored the theory, and a little of the practice, of calculating aggregate productivity

growth under non-constant returns and imperfect competition in output and factor markets. We

come to a number of important conclusions.

31 See, e.g., Baxter and King (1991) and Benhabib and Farmer (1994).
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The first is the crux of our paper: without factor price equalization, perfect competition, and
constant returns to scale in all sectors and markets, even the aggregate cost-based Solow residual is
not the right measure of an economy's technological change. Moreover, the aggregate residual does
not allow us to estimate the extent of the average sectoral departure from perfect competition and
constant returns.

Second, we show that the standard definition of productivity — which, as we noted, is not a
measure of aggregate technology change — is nevertheless an economically interesting quantity. It
measures the change in final output produced from a given set of primary inputs, and thus is a
natural measure of welfare. In fact, we present examples of economies with imperfect competition,
where productivity as well as welfare change without any change in production technology.

Third, we show how to create a proper measure of aggregate technology from information on
sectoral quantities. Unfortunately, simple summary measures of the sectoral quantities do not suffice:
we need to know the full distribution of inputs and outputs, as well as the extent of sectoral returns to
scale.

Fourth, we begin to apply our method to data. We show that aggregation effects explain much
of the cyclicality of aggregate productivity. We obtain an estimate of true technology shocks by
controlling for these aggregation effects. Compared with the cost-based Solow residual, true
technology shocks are less volatile, have a significantly smaller covariance with output, and have
almost no covariance with inputs. These changes matter for a number of issues at the heart of current
business-cycle theory, including the plausibility of real-business-cycle models, the extent of
increasing returns to scale, and the existence of productive externalities across sectors.

This paper stresses a negative view of composition effects by emphasizing the errors caused by
failing to account for aggregation bias. Plausibly, however, composition effects are important
economic mechanisms in their own right, and may contribute to the propagation of business cycles.
Consider the second example of Section I, where aggregation led to higher returns to scale in the

industry than in either firm. In a sense there really are "aggregate increasing returns” : the industry
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(or the economy) in fact produced almost 3 percent more output for each percent increase in labor
input. .

For many macroeconomic purposes, the level of "aggregate returns" — including reallocation
effects — may be the relevant parameter. For example, existing models of indeterminacy often
require implausibly large firm-level increasing returns. However, a sufficiently large level of
aggregate returns may suffice to generate the indeterminacy result. Aggregate increasing returns can,
for example, arise from small differences in returns to scale across firms, or even from constant
returns but differences in productivity levels. As noted in Section IV, several industry studies find
roughly constant returns to scale within productive units but different levels of productivity across
units,

We plan to extend our work by applying it to economic models where factors of production are
quasi-fixed. Note that our "reallocation term" for labor used steady-state industry wage differentials.
But steady-state wage differences are likely to be small relative to cyclical differences induced by
changes in demand across sectors. With quasi-fixed primary inputs, payments to labor and capital
can differ across sectors even without imperfections in factor markets. And the sectors with the
highest wage premia would naturally experience maximum employment growth, reinforcing the
productivity effects of inter-industry wage differences. Thus, we hope to show that the mechanisms
we identify here can explain substantial procyclicality of productivity even in a purely neoclassical
multi-sector model without technology shocks.

We are most excited, however, at the prospect of extending our empirical work. Our measured
technology shocks, though less cyclical than the Solow residual, still contain two sources of cyclical
bias. First, we aggregated from roughly two-digit industries upwards, assuming that each of these
industries had an invariant production functions. Since each of these industries in fact comprises
thousands of firms, our "sectors” are themselves subject to potentially huge aggregation effects.
Second, although not emphasized in this paper, each productive unit likely experiences substantial
variations in capacity utilization that are usually--incorrectly--measured as technology change.

However, several authors show how one might correct for unobserved capacity utilization at the
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establishment level.32 The ultimate implication of our work is that if one wants a true technology
series, then in principle one should control for unobserved capacity utilization at the establishment
level, and aggregate upwards.

Such an undertaking, or as close to it as is feasible, is likely to explain even more of the puzzles
of cyclical productivity. These puzzles include the question of why some two-digit industries have
apparent decreasing returns to scale. We provided an example where all firms have increasing returns
to scale, but the industry as a whole has diminishing returns. This is a case where aggregation effects
make productivity appear less procyclical than is in fact the case.

Nevertheless, we believe that on net aggregation effects act to exaggerate, not damp, the
cyclicality of productivity. We conjecture that the ultimate explanation of cyclical productivity will
consist of at most a modest degree of increasing returns, some cyclical utilization, and a large
correction for aggregation. The residual that is left — the true measure of technology shocks — may

well be too small and acyclical to play much of a role in explaining business cycles.

32 For example, Basu (1995b), and Burnside, Eichenbaum, and Rebelo (1995).
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Table 1. Estimates of Returns to Scale by Industry

dy, = 7,dx, +dt,
|| Industry (Approx. SIC) ¥ i
Agriculture (01-09) 0.51
Metal Mining (10) 1.07
Coal Mining (11-12) 0.76
Oil & Gas Extraction (13) 0.02
Non-metallic minjng (14) 0.39
Construction (15-17) 1.06
Food (20) 0.98
Tobacco (21) 0.64
Textiles (22) 1.00
Apparel (23) 0.90
Lumber (24) 0.79
I Furniture (25) 1.08
Paper (26) 1.17
Printing & Publishing 27 0.76
Chemicals (28) 0.30 |
HPetroleum Products (29) 0.25
|Rubber & Plastics (30) 1.00
Leather (31) 0.64
Stone, Clay & Glass (32) 0.98
Primary Metal (33) 1.19
Fabricated Metal (34)
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Table 1 (cont'd)

Industry (Approx. SIC)

Non-Elect. Machinery (35) 0.89
Electrical Machinery (36) 1.04
IIMotor Vehicles (371) 1.20
IIOther Transport (372-79) 1.00
ulnstruments (38) 0.97
Miscellaneous Manuf. (39) 0.91
Transportation (40-47) 1.28
Communication (48) 1.06
| Electric Utilities (491) 1.65
Gas Utilities (492) 0.93
Wholesale and Retail (50-59) 1.43
Finance, Real Estate (60-67) 1.00
Services (various) 1.22
Weighted Average (Z w,-cf/,-) 1.03
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(1950-1989)

Table 2a. Standard and Corrected Measures of Technology Growth for the Private U.S. Economy

ﬁutput ﬁput Standard orrecte
Growth Growth Productivity | Productivity

v Growth Growth

(dv) (dx") (dp) (dp")

Mean 0.036 0.024 0.011 0.002
Std. Dev. 0.031 0.017 0.022 0.019
Maximum 0.10 . 0.052 0.065 0.055
Minimum -0.02 -0.01 -0.04 -0.03
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Table 2b. Correlations of Series in Table 2a.

(Private U.S. Economy, 1950-89)

Output Input Standard Corrected
Growth Growth Productivity | Productivity
dv) (dx") Growth Growth
@p) (dp")
Output
Growth 1
(@v)
Input
Growth 0.73 1
(dx")
Standard
Productivity 0.84 0.25 1
Growth
(dp)
Corrected
Productivity 0.59 -0.02 0.85 1
Growth
(dp")
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Table 3a. Standard and Corrected Measures of Technology Growth for U.S. Manufacturing

(1950-1989)

utput put tan orrec
Growth Growth Pr&ductivity Productivity
rowth Growth
d ' .
@) (&) (dp) (dp’)
Mean 0.038 0.017 0.021 0.016
Std. Dev. 0.055 0.036 0.034 0.028
Maximum 0.119 0.075 0.076 0.064
Minimum -0.074 -0.059 -0.081 -0.060
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Table 3b. Correlations of Series in Table 3a

(U.S. Manufacturing, 1950-89)

Output
Growth
(dv)

Input
Growth
(dx7)

Standard
Productivity
Growth

(dp)

Corrected
Productivity
Growth

(dp")

Output
Growth
(dv)

Input
Growth
(dx")

0.80

Standard
Productivity
Growth

(dp)

0.77

0.24

Corrected
Productivity
Growth

(dp')

0.43

-0.01°

0.71
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Table 4. Effects of Technology Shocks on Composition

& =c+pydpl, +Badpl,

Private Manufacturing
Economy
Independent
Variables

* 0.13 0.06

4 (0.10) (0.14)

dp* -0.04 0.06
2 (0.09) (0.14)

Sample period 1952-89.
Standard errors in parentheses.
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Table 5. Effects of Oil Price Changes on Standard and Adjusted Technology Shocks

dp™ =c+ B,d1n(Py, /P cor)+ Padn(Pou/Popp )'1

Private Economy

Manufacturing

(F% =3.26)

Sample period 1950-89.
Standard errors in parentheses.

Independent dp dp* dp dp’

Variables

_ -0.06 -0.03 -0.11

d1n(Pou/Pope ) (0.02) (0.02) (0.03)

dn(P,, /P -0.02 0.00 -0.03

(P “D’_’,) (0.02) (0.02) (0.03)
F-statistic

5.28 0.95 7.22

Table 6. Effects of Romer Dates on Standard and Adjusted Technology Shocks

dp(‘) =c +ﬂ1Romerdummy_1 +ﬂ2R0mrdumm)'—2

Private Economy Manufacturing
Independent dp . dp .
Variables . a
Romerdum_, -0.024 -0.017 -0.043 -0.019
(0.001) (0.008) (0.014) (0.012)
Romerdum_, 0.001 0.000 0.000 0.010
(0.001) (0.009) (0.015) (0.013)
F-statistic
(F327 =3.26) 4.08 2.17 4.99 1.39

Sample period 1950-89.
Standard errors in parentheses.
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Table 7. Returns to Scale Estimates with and without Composition Corrections
(IV, using Hall-Ramey instruments)

Apggregate Implied Witd. Avg. Implied Aggregate
Data (no Value-Added | of Sectors | Value-Added} Data with
Comp. Corr.) 5V cs. ~\V | Comp. Corr.

( ‘;’) ( Y ) (2 Wi 7!) (2 Wf‘}’i) ( ?Vt)
Private 1.27 1.98 1.03 1.07 1.20
Economy (0.08) (0.28)
Manufac- 1.13 1.53 1.01 1.03 1.13
turing (0.05) (0.22)

Sample period 1950-89.

Standard errors in parentheses.

Note: Value-added returns to scale are italicized.
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Table 8a. Components of Adjustment to Standard Technology Growth

(Private U.S. Economy, 1950-89)

&3

&4

0.00041

0.00027

Std. Dev.

0.0029

0.0014

Maximum

0.0065

0.0031

<0.0077

-0.0032

Table 8b. Components of Adjustment to Standard Technology Growth

(U.S. Manufacturing, 1950-89)

¢ &1 &2 &3 &4
Mean 0.0044 0.0011 0.0020 0.00086 0.00030
Std. Dev. 0.024 0.013 0.017 0.0031 0.0020
Maximum 0.050 0.030 0.052 0.0092 0.0066
Minimum -0.061 -0.032 -0.032 -0.0043 -0.0048
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