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1. Introduction

Does the slope of the term structure — the yield spread between

longer-term and shorter-term interest rates — predict future changes in

interest rates? And if so, is the predictive power of the yield spread

in accordance with the expectations theory of the term structure?

These questions are important, both for forecasting interest rates and

for interpreting shifts in the yield curve. If the expectations theory

is an adequate description of the term structure then expectations of

future interest rates are the dominant force determining current long-

term interest rates. On the other hand, if the expectations theory is

very far from accurate, then predictable changes in excess returns must

be the main influence moving the ten structure. It makes sense to

thoroughly explore the validity of the simple expectations theory before

undertaking a detailed study of the sources of predictable time variation

in excess returns)

The literature on the term structure contains a bewildering variety of

answers to these questions. Almost all studies statistically reject the

expectations theory of the term structure; but some studies suggest that

the yield spread does predict interest rate movements in roughly the way

one would expect if the expectations theory is true, while other studies

We refir to "the" expectations theory of the term structure One

proble. that has hampered empirical work is that in fact there are many

different versions of the expectations theory, as emphasized by Cox.
Ingersoll, and Ross [19811 and others, we have however argued elsewhere

that these different expectations theories are in important respects very

similar, and are all closely approximated by a single linear expectations
theory (Shiller [1979], Shiller, Campbell, and Schoenholtz (1983]

Campbell (1986]). Mote also that we are including the hypothesis of

rational expectations in our definition of the expectations theory. This

contrasts with the usage of some authors (e.g. Froot [1989]).
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reach the opposite conclusion. Different studies use different

econometric niethods, test different implications of the expectations

theory, and look at different interest rate maturities.

In this paper we show that certain statements can be made quite

generally. For any pair of maturities n and m, where n exceeds m (so

is the "long-term" rate and rn is the "short-terw rate), the following is

true: When the spread between the n-period rate and the rn-period rate is

relatively high, the yield on the n-period bond tends to fall over the

life of the in-period bond. This runs counter to the expectations theory.

At the same tine, rn-period rates tend to rise over the life of the n-

period bond, in accordance with the expectations theory. in plain

English, when the spread is high the long rate tends to fall and the

short rate tends to rise.

The data set used here consists of continuously compounded yields on

riskless pure discount bonds. These yields were calculated by Mcculloch

(1.981) from raw data on U.S. Treasury bill, note and bond prices.

measured over the period 1952:l-lg87:2 at the end of each month.2 We

will present results for all possible pairs of maturities in the range 1,

2, 3, 4, 6, and 9 months and 1, 2. 3, 4, 5, and 10 years. Thus, the

results in this paper are a group of two-dimensional tables of

evaluations of the linear expectations theory. While the main findings

hold over all possible sets of maturities, there are some interesting

differences between the behavior of the short end of the term structure

2 McCulloch's data actually begin in 1946:12. but we drop the data
from the period before the Treasury Accord of 1951.
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(maturities less than one year) and the long end of the term structure

(maturities greater than one year). We discuss these further below.

The organization of the paper is as follows. In section 2 we derive

the implications of the expectations theory of the term structure for the

relation between yield spreads and subsequent interest rate movements.

We discuss several ways in which these implications can be tested,

including regression methods and a modification of the vector

autoregressive approach of Campbell and Shiller 11987]. In section 3 we

apply these methods to the McCulloch term structure data. We also use a

Monte Carlo study to check the finite-sample properties of our

procedures. In section 4 we try to interpret our results further. We

argue that one simple alternative, in which the yield spread equals its

value under the expectations theory plus orthogonal. noise, is not

consistent with the data. We suggest another alternative, which makes

the yield spread a constant multiple of its value under the expectations

theory. This sodel could be generated by time-varying risk premia which

are correlated with expected increases in short-term interest rates, or

by a failure of rational expectations in our sample period.
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2. The Expectations Theory of the Term Structure

The expectations theory of the term structure of interest rates is a

relationship between the n-period interest rate and u-period

interest rate ,
where n/n is an integer. In the case of pure discount

bonds, as with our data here, this is:

(1) — (1/k) + c, Ic — n/rn.

Equation U) states chat the n-period rate is a constant plus a simple

average of the current and expected future rn-period rates up to n-rn —

(k-1)m periods in the future. Note that the sum of the coefficients of

the rn-period interest rates is one. The parameter c reflects a term

premium, that is a predictable excess return on the n-period bond over

the rn-period bond. The term premium may vary with ii and n but is assumed

to be constant through time.

Equation (1) can be obtained directly if one assumes that expected

continuously compounded yields to maturity on all discount bonds are

equal, up to a constant; this is the approach taken by Fama [19841.

Equation (1) can also be derived as a linear approximation to any of

several different nonlinear expectations theories of the term structure.

The approximation is quite adequate for most purposes (Shiller, Campbell.

and Schoenholtz 119831. Campbell [1986]). For example, if one assumes

that the expected total return over a periods on buying an n-period bond

and selling it rn periods later equals the return on holding an rn-period

bond to maturity plus a constant, then one finds that the expectation of
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a nonlinear expression in and equals plus a constant.

Linearizing this expression around Rn) — m) — 0, one gets a rational

expectations model that if solved forward yields (14.

It should be noted that (I) is a time-consistent model, If the model

holds for rn—i and all n, then it holds for all in 1 and all n. This is

an important property of the model; many time series models (as for

example most ARIMA models) are not time consistent: an AR(2) model with

monthly data is not consistent with an AR(2) model with quarterly data.

There is no such problem here.

The spread as a forecast of chanzes in interest rates

Our purpose is Co state in the simplest possible terms what elements

of truth can be found in the expectations theory of the term structure.

We therefore concentrate our attention on the behavior through time of a

simple measure of the shape of the term structure: the spread between the

n-period rate and the rn-period rate, 5(Thm) — 411) - (m) The spread is

of course proportional to the slope of the term structure between in and

11.

The expectations theory of the term structure implies that the spread

is a constant risk premium, plus an optimal forecast of changes in future

interest rates. We can test the model by regressing the appropriate

changes onto the spread and testing whether the coefficient equals one.

And we can, apart from testing the model, evaluate its usefulness by

checking to what extent the spread resembles an optimal forecast of the

changes in interest rates.

There are several ways to write the spread as a forecast of future

changes in interest rates. First, the spread predicts the m-period

S



change in yield on the longer-term bond. This bond has n periods to

maturity at time t, so it has n-rn periods to maturity at time t+m.

According to the expectations theory.

(2) (m/(n-rn))S"' — -

where for simplicity we are suppressing constant terms. The intuition

behind equation (2) is that if the yield on the n-period bond is expected

to rise over the next in periods, this will give a capital loss to holders

of the bond. To equate expected returns over m periods, the n-period

bond has to have a higher current yield than the rn-period instrument.

One may test (2) by regressing - onto a constant and its

predicted value 5,m) defined as: 4,m) • (rn/(nm))Sin). The slope

coefficient should be one.

Second, by subtracting Rm) from both sides of equation (1) and

rearranging terms, one can show that the spread forecasts a weighted

average 5,,m)* of changes in shorter-term (rn-period) interest rates over

n periods:

(3) (n.m) — E
C tt

k-i i k-i
(n rn)* m (m) a (m)

St
— (1/k) E ( I a a • ) — E (t-i/k)A R

t+ja t In

The notation indicates that a change is measured over a periods, so

for exampie aM — -
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(n m)*
The variable St may be called the "perfect foresight spread,

since it is the spread that would obtain given the model if there were

perfect foresight about future interest races. With perfect foresight

if rn-period rates are going to rise over the life of the n-period bond.

then the n-period yield needs to be higher than the current rn-period

yield to equate the returns on the n-period band, held to maturity, and a

sequence of rn-period bonds. Below we shall regress the perfect foresight

spread onto a constant and the actual spread to evaluate the model. The

slope coefficient should be one.

Equations (2) and (3) are complete characterizations of the

expectations theory of the term structure; if (2) holds for all m and n,

then (3) holds for all rn and n, and vice versa. However it is important

to note that for any particular values of m and n, the validity of (2)

does not generally imply the validity of (3) or vice versa.

An exception to this statement occurs when n — 2m, a case chat is

often studied in empirical work.3 In this case equations (2) and (3)

(n—rn) (m)
talc. particularly simple forms because Rt+m equals Rt+m in equation

(2), while the weighted sum on the right hand side of (3) has only one

element. Equation (2) becomes

(4) 5(nm) — E (m) -t tt+m C

and (3) becomes

See for example Shiller, Campbell, and Schoenholtz [1983) who
look at 3 and 6 month Treasury bills.
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(5)
— (l,z)Ea4: — (l/2)Et[R2 -

Equation (4) says that the spread equals the difference between the

optimal forecast of the rn-period rate-rn periods from now and the n-

period rate today, while equation (5) says that the spread equals one-

half the optimal forecast of the change in the m-period rate over the

next m periods. If (4) holds for a particular m and n, then (5) must

also hold, and vice versa. (To see this. Just subtract Rm) from both

sides of (4) and rearrange.)

Since (4) and (5) are special cases of (2) and (3). they can be tested

using the same regression approach. If the regression coefficient for

the test of (4) is written b, the regression coefficient for the test of

(5) will be (l+b)/2.

The theoretical spread

Regression tests of the expectations theory have the great merit of

simplicity. But they also have some serious disadvantages. First, the

regression of the perfect foresight spread onto the actual spread

involves n-period overlapping errors. One only has an entirely

independent observation of the forecast power of the term structure every

n periods. While econometric methods are available to correct regression

standard errors for overlap, they do not work well, when the degree of

overlap is large relative to the sample size. (See for example Stock and

Richardson (19891.) since n can be as large as 10 years, and we have

only 35 years of data, this is a worrisouse problem.

Secondly, regression tests do not tell us how stalin are the

movements of the actual spread to the movements implied by the
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expectations theory. We would like to evaluate the ability of the

expectations theory to explain the shape of the tern structure, and

regression tests are not well suited for this purpose.

In earlier work (Campbell and Shiller [1987]) we proposed a vector

autoregressive (VAR) approach for evaluating present value models. That

paper dealt with the case in which n is infinite, but the approach can

easily be modified to handle a finite value of n. The VAR approach

avoids the need to estimate regressions with overlapping errors. The VAR

includes the 1-period change in the rn-period interest rate, and the

actual yield spread. From the estimated VAR coefficients, one can

compute the optimal forecast of rn-period interest rate changes over any

horizon; the long-run behavior of interest rates is inferred from their

short-run behavior in the sample period, rather than being estimated

directly. The appropriate weighted average of forecast interest rate

changes (the "theoretical spread") can be calculated, and compared with

the actual spread. If the expectations theory is true, the two variables

should be the same.

The details of the VAR approach are given in Campbell and Shiller

fl98fl; here we merely suwnarize the method and show how we can apply it

to the expectations theory with a finite horizon n. We assume first of

all that is a stationary stochastic process, from which it follows

that — (AR(m) 5ti,m)1 is a stationary vector stochastic process. We

shall suppose that it can be represented as a p'th order VAR. This

system can be rewritten as a first-order VAR in the companion form —

Azi + Ut, where has 2p elements, first and p-I lags and then
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S° and p-I lags. Multi-period interest rate forecasts are easily

computed from the companion form, since Etzt+k —

We next define vectors g and h such that gz — and hz —

(m) Then using (3) we can compute the VAR forecast of the perfect

fonsight spread; we write this forecast stm). Tedious algebra shows

that can be expressed as4

(6) 5,(nm) — h.A(I_(D/fl)(IAt1)(t_Am)l]cI_A)tz.

We call m) the "theoretical spread. since it is the spreadwhich

would obtain if the expectations theory were true. The expectations

theory implies

(7) sm) — gz — (n.m)

Note that (7) should hold even if economic agents are using more

information to forecast than is contained in the vector since the

actual spread is contained in the vector z.

The equality of the actual spread and the theoretical spread puts a

set of nonlinear restrictions on the coefficients of the estimated VAR.

These can be tested formally using a Ilald test (Campbell and Shiller

(1987)). We do not pursue this approach hers, since the regression

methods discussed above are simpler if one's purpose is merely to test

the model. Instead, we use the VAR to compare the historical behavior of

Note that this expression reduces to the much simpler formula in
Campbell and Shiller (1987) when n is infinite.
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and s,(T1,m)• We compute the correlation of 5,m) and

and the ratio of their standard deviations. it equals of

course, the correlation and the standard deviation ratio should both

equal one.

Some previous results

We found in our earlier work (Shiller [19791, Shiller, Campbell and

Schoenholtz [1983)) that for very large n and small m when - (n)
(nm) . (nm)

is regressed on s then the coefficient of s tends often to be

significantly different from one. In fact, the point estimate Ls

negative. We concluded that the theory was very far off track, that the

expectations theory of the term structure is just wrong.5

In later work (Campbell and Shiller [1987]). we used a different

metric Co evaluate the expectations theory for large n and small in, and

we found that the expectations theory seemed to work fairly well. We

computed the correlation between (n.m) and 5t,m) and found it to be

quite high. This suggests that the actual spread behaves much as it

should according to the expectations model.6 The correlation between

(nm) and s;im) can be high and still we may get a wrong sign in a

regression test of equation (2); for example, this can happen if

equals (h1.m) plus a small serially uncorrelated noise term.

Other recent work has also emphasized the ability of the yield spread

to forecast short rate changes over tong horizons. Faa and Bliss [1987]

set m — 1 year and n — 2, 3, and 4 years. They work with 'forward

See also Mankiw and Summers (1984] and Froot [1989]

6 Shiller [l989a] uses plots of the actual spread and the perfect
foresight spread to make the same point.
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prenia", which are linear combinations of two different yield spreads.

According to the expectations theory, forward preinia should forecast

unweighted averages of changes in short rates, as opposed to the weighted

averages forecast by yield spreads. Fama and Bliss regress the

appropriate short rate changes onto forward premia, and find that the

forecasting power of the term structure improves as the horizon n

increases. They attribute this to a slowly mean-reverting interest rate

process which is more easily forecast over long time periods than over

short intervals

A largely unrelated literature has looked at the short end of the term

structure, with n up to 12 months. SMiler, Campbell. and Schoenholtz

(1983) found that the yield spread betveen 3 and 6 month Treasury bill.

rates helps to forecast the change in the 3 month bill rate, but not as

strongly as the expectations theory requires. Paina [1984) found some

evidence that the slope of the term structure predicts interest rate

changes over a few months, but the predictive power seemed to decay

rapidly with the horizon.7

Mishicin [l9BBa] has updated the results in Faa (19841. Farna

[19881 and Mishkin (1988b,c) extend the analysis to look at the forecast

power of the yield curve, at both short and long horizons, for future

inflation rates. See Thiller (1989b] for a survey of other research on
the term structure.
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3. Data and Ernirical Results

The KcCul].och monthly term structure data [1987] give pure discount

(zero coupon) bond yields for U. S. Government securities over the period

1946:12-1987:2. We use the sample 1952:1-1987:2. to allow for lags and

to exclude data from before the Treasury Accord of 1951. The data

include maturities of 0. 1 2. 3. 4. 5, 6. and 9 months, and 1, 2. 3, 4

5, and 10 years. Longer maturities are available only for part of the

sample. These data are continuously compounded yields to maturity.

Of course, pure discount government bonds of long maturity do not

exist. But existing government bonds may be regarded as portfolios of

pure discount bonds, bonds maturing on all coupon dates and the maturity

date. One may suppose that they are priced, except for some tax

considerations, as the sum of the values of the constituent bonds in the

portfolio. One can therefore infer the prices (and thus the yields) of

the constituent bonds. There are problems in making this inference:

there may be more than one way to infer the yield of a certain discount

bond (giving possibly different answers in practice) and no way to infer

the yield of other discount bonds (since coupon and maturity dates may

not be evenly spaced through time). Thus, McCu].loch (19871 inferred the

discount yields by an interpolation method using cubic splines.8

McCullochs data are very clean in the sense that they are unaffected

by differing coupons, coupon dates, or differing compounding conventions

across maturities. They are ideally suited to the kind of analysis we

8
Fama and Bliss (1987] infer yields on pure discount bonds using

the assumption that instantaneous forward rates are step functions of
maturity. This is an alternative to McCulloch's procedure. Our results
below are similar to those of Fama and Bliss for the maturities they
consider.
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wish to do here over a broad range of maturities. The data are not

interval averaged, but are observed at the end of each month.

Forecastinz the chane in the lonzer-tera yield

Table la confirms that the slope of the term structure between almost

any two maturities (m and n, where n > m) gives the wrong direction of

forecast for the change in yield of the longer term (n-period) bond over

the life of the shorter term (rn-period) bond.9 Asymptotic standard

errors, which have been corrected for heteroskedasticity and equation

error overlap in the manner of Hansen and Hodricic (1980) and White

[1984), show that almost all the coefficients are significantly different

from one at conventional significance levels. Thus, earlier conclusions

in Shiller [1979] and Shiller, Campbell and $choenholtz (1983] for some

maturities are found to extend to just about all maturity pairs u and n.

By this metric, the expectations theory of the tent structure is a

resounding failure.

The general tendency for wrong signs to appear throughout the table is

robust to the sample period. In Table lb we report results for the case

m — 1 over a variety of subsamples, including the 1952-78 period (the

longest possible subsample which avoids the 1979 monetary policy regime

shift) and the shorter periods 1952-59. 1.960-69, 1970-78 and 1979-87. We

find a predominance of wrong signs in every period except 1952-59.

As a check on the McCulloch data, these results can be compared with

earlier results using different monthly data on U.S. Treasury

The lower left-hand part of the table, where a is large and a is

small, uses the approximation that — In the rest of the

table we give results only where we observe directly.
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obligations. Shiller. Campbell, and Schoenholtz (1983) found that when

the three month change in the three month rate is regressed on the

predicted change implicit in the spread between six-month and three-month

rates, with data January 1959 to June 1979, the slope coefficient was

0285. Here, the slope coefficient in Table Ia for m—3 and n—6 is

b — -1279. The implied slope coefficient for the regression run by

Shiller, Caapbell. and Schoenholtz is (1+b)/2 — -0.140. If we use the

January 1959 to June 1979 sample our estimated b is -0.302 so that

(l+b)/2 — 0.348, which compares reasonably well with the earlier result.

Fama (19841 found that when the actual change over one month in the one-

month rate is regressed using data 1959-82 on the predicted change the

slope coefficient is 0.46. Our (l+b)/2 from Table la is 051, and if b

is reestimated using their sample period b — -0.302 and (14-b)/2 — 0.54.

Fama and Bliss [1987) found that when the actual change in the one year

rate over one year is regressed 1964-84 on the predicted change the slope

coefficient is 0.09. Using our Table la, (l+b)/2 — -0.14. using their

sample period b — -0.882 and (l+b)/2 — 0.06. These comparisons show chat

the McCulloch data give similar results to results with other data sets.

Forecastinf chantes in short rates

Table 2 shows the results of regressing 501.m)* on for

combinations of n and m that are represented in the McCulloch data, for

which n is an integer multiple of m. The regression coefficients should

be one if the expectations hypothesis is valid. In fact, the

coefficients are almost always positive but also deviate substantially

from one when the maturity n of the longer-term bond is below 3 or 4

years. At this short end of the term structure, asymptotic standard
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errors imply rejection of the expectations theory at conventional

significance levels. At the long end of the term structure, the

regression coefficients are very close to one and the expectations theory

is not rejected.

We thus see an apparent paradox: the slope of the term structure

almost always gives a forecast in the wrong direction for the short-term

change in the yield on the longer bond, but gives a forecast in the right

direction for long- term changes in short rates. We next use our VAR

procedures in order to judge how the spread moves through time in

relation to an unrestricted forecast of changes in short rates.

Table 3a reports correlations between the actual spread and the

estimated theoretical spread For each estimated correlation we

first ran a fourth order vector autoregression for the vector [ARm),

using monthly data from January 1952 to February 1987 and used

the result to form the A matrix for the companion form. This estimate of

A was then substituted into equation (7) to arrive at sdh1m), and the

correlation with %m) computed. An asymptotic standard error was

calculated in the way described in Campbell and Shiller [1987]. The

correlation is almost always positive and often very high. This result

also holds up in subsamples, as shown in Table 3b.

Table 4a shows the standard deviation of 5i,m) divided by that of

(nm) We find that the coefficient is typically around one-half,

regardless of m and n. Thus, the spread is too variable to accord with

the simple expectations model. Similar results hold in all subsamples

(Table 4b), except for large n in the 1952-59 period.
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These results can be compared to results in table 2 in the following

way. The product of an element in Table 3a (the correlation of SLOIm)

and Sh1m)) and the corresponding element in Table 4a (the standard

deviation of divided by the standard deviation of sthm)) is the

(n,m) . (nm)
regression coefficient when St is regressed on This

regression coefficient should be (except for sampling error) the same as

that in table 2. We find that they are about the same when n is small.

but diverge substantially when n is large.

There are two possible explanations for this discrepancy. First, in

(n,m)* (nm)
order to regress St on St we must truncate the sample enough to

allow computation of s%,m)* which requires data n-rn periods into the

future. (For this reason we do not try to apply the approach of Table 2

in subsamples.) to do the calculations in Tables 3 and 4 there is no

such need to truncate the sample. Thus, the discrepancy in results might

just be due to different sample periods, and our estimates with shorter

samples in Tables 3b and 4b show that this is a large part of the

explanation.

A second possible reason for the discrepancy is that perhaps our

vector autoregression truncated after four months is too short, and thus

our estimate of Qm) is subject to error. In our previous work we

have suggested that long lags may be useful in forecasting interest rates

(Campbell and Shjfler (1984fl. When we increase the lag length to eight

months we find that the estimated standard deviation ratio is roughly

unchanged; the estimated correlation tends to fall, but is less precisely

estimated. Overall, the increase in lag length does not reduce the

discrepancy between the results in Table 2 and those in Tables 3 and 4.
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The effect of the forecast horizon

Fama and Bliss [1987] have emphasized that the forecast power of the

term structure for changes in short rates improves as the forecast

horizon increases from 2 years to 5 years. Our study of the full range

of maturities confirms this result, but shows that in fact below 1. year

the forecast power deteriorates with the horizon. The forecast power

reaches its minimum at 9 to 12 months, and then starts to improve. This

effect can be seen in the "U-shaped" pattern of coefficients as one moves

down the first column of Table 2 Table 3a, or Table 4a. It is evident

also in most of the subsamples in Tables 3b and 4b.

The movements of longer-term yields, however, do not display this U-

shaped pattern. In Tables la and lb the coefficients become increasingly

negative as the horizon increases. The tendency of the long rate to fall

when the spread is high is quite robust to the maturity of the longer-

term instrument.

Monte Carlo results

Our VAR approach can also be used to generate artificial data for

Monte Carlo simulations. It is known that there can be small-sample bias

in standard errors of regressions with predetermined but not exogenous

variables. (See Kankiw and Shapiro (19861 and Stambaugh (19861 for a

discussion of this in the context of rational expectations models.) The

problem is particularly serious when asymptotic corrections are used to

handle equation error overlap which is large relative to the sample size

(Stock and Richardson (19891). Monte Carlo simulations are an appealing

way to avoid excessive reliance on asywptotic distribution theory.
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To generate data which match the moments of the actual data while

obeying the restrictions of the expectations theory, we start by drawing

normal random errors and feeding them through the VAR system estimated on

the actual data. This gives us artificial time series for apm) and

5(n,m) We then replace with s;m), calculated using the true

VAR coefficients (those estimated on the actual data and which generate

the artificial, data). This procedure can be used whenever n/rn is an

integer. It gives us artificial data which obey the expectations theory

in population, but not necessarily in each artificial sample.

Tables La, 2a, 3a, and 4 give two numbers for each entry which

suw.marize the results of the Monte Carlo experiment. The first number is

the fraction of 1000 runs which produced an estimated regression

coefficient (or correlation, or standard deviation ratio) which was

further away from one in the same direction (that is, usually, smaller)

than the coefficient obtained in the data. This is a "one-sided"

empirical significance level for the coefficient. The second number is

the fraction of 1000 runs in which a t test of the expectations theory,

computed using the asymptotic standard error on the coefficient, rejected

the null more strongly than the t test on the actual data. This is a

"two-sided' empirical significance level for the expectations theory t

test. One can compare the empirical significance level with the

significance Level from the normal distribution to evaluate the quality

of the asymptotic standard errors in the tables.

The Monte Carlo results show that there is some finite-sample bias in

asymptotically valid regression tests of the expectations theory. The

bias is particularly noticeable when the order of equation error overlap
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is Large (that is, for large in on the right hand side of Table 1 and for

Large n at the bottom of Table 2). In these parts of the tables, the

asymptotic standard errors greatly understate the true uncertainty about

the regression coefficients.

However this bias is not enough to overturn our conclusions about the

expectations theory. In Table I the expectations theory is rejected very

strongly at the short end, and comfortably at the long end. In Table 2

the theory is rejected at the short end but not the long end. The VAR

procedures generally give weak evidence that the actual and theoretical

spreads are imperfectly correlated, and stronger evidence that the actual

spread has higher variability than the theoretical spread.

One interesting feature of the Monte Carlo results is that the two

empirical significance levels are sometimes quite different from one

another. For example, in Table 3a with rn—I and n—24, only 21 out of 1000

runs delivered a correlation between 1m) and that was lower

than the one estimated in the data. But 749 out of 1000 runs delivered a

correlation which was further from one when normalized by its asymptotic

standard error. In this table, it seems that the artificial data sets

tended to deliver higher correlations between sh1m) and and

smaller standard errors than are found in the actual data. We conjecture

that this J.s due to heteroskedasticity in the actual data which is not

captured by our Monte Carlo experiment.
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4. Further tnteroretatiofl

We have documented the fact that for any pair of maturities the yield

spread fails to correctly predict subsequent movements in the yield on

the Longer term bond, yet it does forecast short rate movements in

roughly the way implied by the expectations theory. The purpose of this

section is to explore some possible explanations for this fact. The

explanations we will consider are not finance-theoretic models of time-

varying risk premia, but simply econometric descriptions of ways in which

the expectations theory might fail.

One obvious alternative to the expectations theory is a model of the

form

(8) 5(nln) — Es.m)* + . Vt.

where v is an er-or term which is orthogonal to E4tm)*. Equation (8)

can generate a negative coefficient when - is regressed on

5(n.m) since the error tern v appears positively in the independent

variable and negatively in the dependent variable of this regression.

Equation (8) also implies that the regression coefficient when is

regressed on is l/(l+VR). where yR is the ratio of the variance of

to the variance of Sm). The correlation coefficient between

ECsh1m)* and and the ratio of the standard deviation of

to the standard deviation of both equal the square root of

l/(l+VR).

The VAR results in Tables 3 and 4 do not suggest that this model fits

the data, since we found that the correlation coefficient was very close
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Co one whLle the ratio of standard deviations was roughly one half. It

is also possible to test (8) more directly, if we impose extra

orthogonality conditions on the error term v. For example, if we assume

that v is white noise then any variables dated t-l or earlier can be

used as instruments in an instrumental variables regression of

Rm) - onto 5(n,m) These lagged variables will be orthogonal to

so the IV coefficient should be one as implied by the expectations

theory. Alternatively if we assume that v follows an MA(q) process.

then any variables dated t-q-t or earlier can be used as instruments.

In Table 5 we report the results of instrumental variables regressions

of - onto 5(n,m)• We set m — I and use the full 1952-87
t+m t t

sample. For coinparLson, the first column reports the OLS regression

results from Table la. The next three columns give IV regression

coefficients with standard errors, where the instruments are the spread

lagged 1 month. 6 months, and 12 months respectively. The results are

not encouraging for the model (8); the IV coefficients are always

negative and often more so than the 01.3 coefficients. Standard errors

increase with the lag length of the instrument, but this does not provide

any positive evidence in favor of

An alternative orthogonality condition would be that v is orthogonal

to current and past short-term interest rates. If this is so, then the

projection of the yield spread onto the history of short rates has the

form implied by the expectations theory; the failure of the expectations

theory is caused by the behavior of the error term in this projection.

10
These results are consistent with those reported in Campbell and

Shiller (1987] using a VM approach to test (8).

22



We can test this idea by using current and lagged short rates as

instruments in the IV regression of - onto (nm) In the

last two columns of Table S we use the level of less a 12-month or

60-month backwards moving average of as an instrument. We write

these variables as and X60, respectively. X12 is a better

instrument for shorter-term yield spreads, while tt 60 is a better

instrument for longer-term yield spreads. But neither set of results is

very encouraging for the model. At least over the period 1952-87, it

appears that the component of the yield spread which is correlated with

past short rates is at least partly responsible for the failure of the

expectations theory.
11

These results suggest that equation (8) may be too restrictive to

explain the data. A more promising Model may be

(9) sh1m) — kE4t1m) +

where the coefficient Ic is greater than one. This model can also

generate a negative coefficient when - is regressed on

(nm) It implies that the regression of 8h1,m)* will give a

coefficient of 1/k. The correlation of ESThm)* and will be one,

but the ratio of their standard deviations will be 1/k. This model

roughly fits the results from tables 2, 3, and 4, except that the Table 2

1.1 We analyzed this question earlier in Campbell and SMIler (1984)
Using a different approach, we reached a similar conclusion for the
period 1959-82. Over the period 1959.79, however, we found no evidence
against equation (9) with an error term orthogonal to short rates.
Indeed an IV regression of the type reported in the last column of Table
5 does give some positive coefficients over the shorter sample period,
but the standard errors are quite large.
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regression coefficients tend to exceed the Table 4 standard deviation

ratios for long horizons.

Equation (9) could be described as an overreaction model of the yield

spread. It says that the long rats differs from the short rate in the

direction implied by the expectations theory; however, the spread between

the two rates is larger than can be justified by rational expectations of

future short rate changes.

An alternative way to describe equation (9) is to say that long rates

underreact to short-term interest rates. This interpretation was offered

in Campbell and Shiller [1984], although the empirical results in that

paper were not as comprehensive as those here. We argued there that long

rates are fairly well described as a distributed lag on short rates,

where the distributed lag weights are all positive and their sum is very

close to one. (It should be exactly one if predictable excess returns

are stationary and the short-term interest rate follows a stochastic

process with a unit root.) Relative to the predictions of the

expectations theory the estimated distributed lag gives too little

weight to the current short rate, and too much weight to tagged short

rates. In this sense the long rate underreacts to the current level of

the short rate)2

12
Mankiw and Summers [1984) described a similar underreaction model

in which the long rate gives too much weight to exoected future short
rates, as opposed to lagged short rates. The underreaction story is not
what one would expect given the evidence for "excess volatility" of long
rates presented by one of the authors (Shiller (1979)). However that
evidence depended on the assumption that the short-term interest rate is
stationary, which is probably inappropriate for the postwar period in the
U.S. See Shiller (1989) for further discussion.
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To see that the Campbell and Shiller [1984] model is consistent with

our results here, consider its implications for the spread between the

long rate and the short rate. The spread will be a distributed lag on

past short rates with negative weight on the current short rate and

positive weight on the distributed lag of past short rates, where all

weights sum to zero. The Campbell and Shiller [1984] model implies that

the spreads distributed lag representation would conform more closely to

the expectations theory if the absolute value of all weights were scaled

down towards zero. This also follows from equation

The deviation from the expectations theory described by equation (9)

could be caused by tine-varying risk premia which are correlated with

expected increases in short-term interest rates. Alternatively, it is

possible that in our sample period the bond market underestimated the

persistence of movements in short rates (and thus overestimated the

predictability of future short rate changes). Variations in the long-

short spread were due primarily to sudden movements in short rates, and

in this sample period long rates reacted too sluggishly to these sudden

movements, so that the consequential movements in the spread were too

large to be in accordance with the expectations theory.

13
Equation (9) is stronger in that it implies that the component of

the spread which is orthogonal to current and lagged short rates should
also be scaled down.
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Table La

Regression of - on Predicted Change 5(flm)

1 2 3 4 6 12 24 60

2 0.002

(0.238)
0.000
o 000

3 -0.176 -0,361

(0.362) (0.502)
0.001
0.001

4 -0.437 -0.611 -0.452

(0.469) (0.562) (0.366)
0.000 0.011
0.002 0005

6 -1.029 -1.276 -1.294 -1203
(0.537) (0.557) (0.400) (0.309)
0.000 0.000 0.001

0.000 0.000 0.000

9 -1.219. --- -1.682 -1.482 -0,654

(0.598) (0.486) (0.311) (0.508)
0.019 0.004

0.000 0.000

12 -1.381. -1.592. -1.967 --- -0.913
(0.633) (0.712) (0.601) (0.657)
0038 0.064 0.003 0.056

0.000 0.000 0.000 0013

24 -1.815. -1.919a -1.694. -1.482. -0.893. -1.034
(1.151) (1.142) (0.939) (0.842) (0.143) (0.620)
0.122 0.099 0.114 0.150 0.134 0.047

0.017 0.011 0.007 0.010 0.041 0.042

36 -2.239. -2.164. -1.922. -1.692. -1.184. -1.396 -0.465

(1.444) (1.462) (1.210) (1.065) (0.877) (0.883) (1.086)
0.122 0.104 0.109 0.128 0.128 0.034

0.037 0.032 0.022 0.035 0.034 0.034
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Table la (Continued)

Regression of - on Predicted Change

1 2 3 4 6 12 2'. 60

48 -2.665. -2.561. -2.208. -1.960. -1.447. -1.736 -0.725

(1.634) (1.662) (1392) (1.206) (0.991) (1.027) (1.233)
0.087 0.055 0.091 0.093 0.129 0.019 0.115
0.023 0.046 0.028 0.032 0.033 0.033 0.353

60 -3,099a -2.941. -2.525a -2.276. -1.750* -2.022 -0.811
(1.749) (1.795) (1.523) (1.318) (1.096) (1.205) (1.369)
0.079 0.070 0.080 0.088 0099 0.024
0.019 0.043 0.030 0.028 0038 0.049

120 -5.024. -4.695. -4.298. -3944. -3.198. --- --- 4.575
(2.316) (2.424) (2.107) (1.851) (1.673) (1.926)
0.029 0.032 0.028 0.047 0.060 0.146
0.009 0.024 0.015 0.019 0027 0331

Notes: This table gives, in bold type, estimated regression slope coefficients

of tm) - (urn) — (m,(nm))Shtm). According to the expectations

theory, these coefficients should equal one. Constant terms (not shown) are

included in all regressions. Hansen-Hodrick standard errors are below

estimated coefficients, in bold type and parentheses. For each regression, the

sample is the longest possible using data from 19S2:l through 1987:2. Where

n/rn is an integer the table also gives, in ordinary type, two numbers from a

Monte Carlo experiment. The first is the fraction of 1000 runs which produced

an estimated regression coefficient which was further away from one in the same

direction than the coefficient obtained in the data. The second number is the

fraction of 1000 runs in which a 2-sided t test of the hypothesis that the

coefficient equals one rejected the null more strongly than the t test on the

actual data. (a. Uses approximation that —
I
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Table lb

Regression of R11 - Rn) an Predicted Change 4h11): Subsamples

Sample period (number of observations)

1.952- 1952- 1952- 1960- 1.970- 1979-

1987 1978 1959 1969 1978 1987

(421) (323) (95) (119) (107) (97)

2 0.002 -0.267 -0.271 -0.089 -0.436 0.347

<0.238) (0.151) (0.193) (0.253) (0.419) (0.342)

3 -0.1.76 -0.471 -0.194 -0.381 -0.855 0.167
(0.362) (0.223) (0.284) (0.311) (0,691) (0.577)

4 -0.437 -0.509 -0.101 -0.481 -0.850 -0.287
(0.469) (0.283) <0.388) (0.333) (0.893) (0.789)

6 -1029 -0.537 -0.121 -0.567 -0.981 -1.345
(0.537) (0.340) (0.542) (0.393) (0.982) (0.902)

9 -1.219. -0.394. 0.590. -0.598. -0.907. -1.826.
(0.598) (0.458) (0.633) (0.544) (1.124) (1.066)

12 -1.381. -0.672. 0.771. -1.044. -1.216. -1.778.
(0.683) (0.598) (0.752) (0.661) (1.307) (1.237)

24 -1.815. -1.031. 1.796. -2.876. -1.063. -2.218.
(1.151) (0.986) (1.557) (1.284) (1.594) (2.052)

36 -2.239. -1210. 3.021. -3.840. -1.245. -2.791a
(1.444) (1.187) (2.379) (1.891) (1774) (2.431)

48 -2.665. -1.272. 3.807. -4.373. -1.293. -3.468.
(1.634) (1.326) (2.852) (2.254) (1.936) (2.714)

60 -3.099. -1.483. 4.138. -4.886. -1.424. -4.052.
(1.749) (1.442) (3.264) (2.535) (2.083) (2.894)

120 -5.024. -2.263* 3.099. -6.029. -2.103. -6.830.
(2.316) (1.869) <4.801) (3.796) (2.650) (3.817)

Notes: This table gives the same regression coefficients and standard errors as

Table Ia, except chat m — 1 throughout the table and resu1s are reported for

subsamples. No Monte Carlo results are reported.
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Table 2

Slope Coefficients in Regression of on

1 2 3 6 6 12 24 60

2 0.501

(0.119)
0.000
0.000

3 0.446

(0.1.90)
0.000
0.006

4 0.436 0.195

(0.238) (0.281)
0.001 0.011
0022 0.005

6 0.237 0.021 -0.147

(0167) (0.163) (0.200)
0.000 0.010 0.001
0.000 0.001 0.000

9 0.151 --- -0.008
(0.165) (0.147)
0.001 0.015
0.000 0.000

12 0.161 0.078 0.044 -0.056 0.044

(0.228) (0.192) (0.189) (0.115) (0.329)
0.006 0.033 0,023 0.022 0.056
0.019 0.004 0.005 0.000 0.013

24 0.302 0.287 0269 0.229 0.186 -0.017

(0.212) (0.210) (0.230) (0.262) (0.324) (0.372)
0.031 0.096 0.116 0.117 0.073 0.047
0.067 0.063 0.086 0.098 0.100 0.042

36 0.614 0.642 0.610 0.568 0.526 0.257

(0.230) (0.243)* (0.101) (0.174) (0.225) (0.408)
0.151 0.211 0.225 0.210 0.193 0.119
0.318 0.368 0.070 0.194 0.223 0.250
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Table 2 (continued)

Slope Coefficients in Regression of s,m)* 5(n.m)

1 2 3 4 6 12 24 60

a—

48 0.873 0.929 0.951 0.959 0.942 0.720 0.137

(0.291) (0.271) (0.240) (0.205) (0.088) (0.335) (0.617)
0.256 0.289 0.299 0.321 0299 0230 0.115

0.817 0.868 0898 0.913 0.697 0.613 0.353

60 1.232 1.289 1292 1.297 1.242 1.130

(0.192) (0.168) (0.161) (0.141) (0.161) (0.193)
0.581 0.574 0.576 0.594 0.630 0.677

0.501 0.418 0.370 0.334 0474 0.698

120 1.157 1.207 1.223 1.227 1.228 1.274 1.345 2.788

(0.094) (0.093) (0.095) (0.097) (0.101) (0.113) (0.169) (0.963)
0.713 0.685 0.667 0.681 0.690 0.673 0.618 0.146

0.583 0.463 0.437 0.443 0.429 0.423 0.429 0.331

Notes: 5,m)*, the perfect foresight spread, is defined in equation (3) in the

text. The elements given in bold type are the slope coefficients in a

regression with a constant ten, and associated Hansen-Hodrick standard errors.

By the expectations theory, the slope coefficients should be one. The sample

period for each element is the longest possible sample using data from 1952:1

to 1987:2. Since computation of 5,m)* requires data extending n-rn periods

into the future, the sample in the regression ends n-a months before 1987:2.

The table also gives, in ordinary type, two numbers from a Monte Carlo

experiment. These are constructed in the same way as the Monte Carlo results

reported in Table la. [*. Newey-West [1987] correction used because Hansen-

Hodrick procedure gave a negative standard error on constant or spread.]
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Table 3a

Correlation of and

1 2 3 4 6 12 24 60

2 0.736

(0.148)
0.000
0.094

3 0.761

(0.190)
o . 002
0.437

4 0.720 0.502

(0.213) (0.451)
0.001 0.063
0.285 0.545

6 0.486 0.058 -0.355

(0.373) (0.566) (0.556)
0.003 0.012 0.000
0.210 0.118 0.015

9 0.374 --- -0.156
(0.421) (0.904)
0.005 0.008
0181 0.269

12 0.391 0.282 0.126 -0.072 -0.111

(0.46$) (0.909) (1.211) (1.309) (1.494)
0.007 0.049 0011 0.017 0.01.5

0.237 0.603 0.663 0.576 0.51.4

24 0.543 0.629 0.612 0.512 0.409 0.212

(0.764) (0.941) (1.148) (1.565) (1.960) (1.865)
0.021 0.088 0.102 0.108 0.062 0.023
Q74g 0.920 0.953 0.964 0.980 0.930

36 0.770 0.851 0.860 0.833 0.776 0.645

(0.531) (0.431) (0.442) (0.594) (0.917) (1.311)
0.021 0.088 0.102 0.108 0.062 0.023
0.749 0.920 0.953 0.964 0.980 0.930
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table 3a (Continued)

Correlation of and

1 2 3 4 6 12 24 60

48 0.867 0.920 0.930 0.923 0.900 0839 0.896

(0.328) (0.210) (0.189) (0.231) (0.363) (0.580) (0.348)
0101 0.192 0.232 0.249 0.224 0.182 0.301

0.861 0.801 0.763 0.804 0.883 0.908 0.852

60 0.912 0.948 0.956 0.954 0.939 0.893

(0.218) (0.128) (0.109) (0.128) (0.209) (0.375)
0.115 0.213 0.211 0.270 0.232 0.206

0.81.0 0.737 0.731 0.766 0.863 0.869

120 0.979 0.986 0.988 0.988 0.984 0.975 0.983 0.990

(0.045) (0.027) (0.021) (0.023) (0.038) (0.062) (0,041) (0.020)
0.159 0.250 0.290 0.315 0.284 0.235 0.312 0.624

0.667 0.642 0.568 0.593 0.698 0.680 0.708 0.623

Notes: This table gives. in bold type, correlation coefficients of 5,(nn) with

(n,m) and estimated standard errors (in parentheses). is computed

from equation (6) in the text based on a vector autoregression starting in

1952:1 and ending in 1987:2. The vector autoregression had four lags. The

table also gives, in ordinary type, two numbers from a Monte Carlo experiment.

The first number is the fraction of 1000 runs in which the difference between

the estimated correlation and one was larger than in the actual data. The

second number is the fraction of 1000 runs in which the difference between the

estimated correlation and one, divided by its standard error, was larger than

in the actual data.
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Table 3b

Correlation of and (t•1); Subsamples

Sample period (number of observations)

1952- 1952- 1952- 1960- 1970- 1979-
1987 1978 1959 1969 1978 1987

(421) (323) (95) (119) (107) (97)

2 0.738 0.626 0.668 0.785 0.303 0.696
(0.148) (0.115) (0.134) (0.170) (0.169) (0.138)

3 0.763 0.585 0.717 0.687 0.256 0.707
(0.189) (0.172) (0.192) (0.218) (0.378) (0.184)

4 0.723 0.604 0.129 0.589 0.538 0.675
(0.212) (0.204) (0.254) (0.283) (0.406) (0.228)

6 0.493 0.583 0712 0.513 0.657 0.395
(0.372) (0.279) (0.353) (0.421) (0.495) (0.348)

9 0.386 0.561 0.742 0.41.7 0.628 0.282
(0.419) (0.394) (0.382) (0.646) (0.638) (0.383)

12 0.404 0.587 0.801 0.240 0.695 0.301
(0.463) (0.468) (0.342) (0.839) (0.653) (0.504)

24 0.558 0.829 0.963 -0.145 0.925 0.260
(0.743) (0.349) (0.088) (0.986) (0.241) (0.984)

36 0.779 0.922 0.957 -0.129 0.971 0.388
(0.509) (0.180) (0.021) (1.254) (0.103) (1.203)

45 0.872 0.968 0.991 -0.087 0.991 0.513
(0.313) (0.079) (0.009) (1.623) (0.035) (1.181)

60 0.914 0.986 0.993 0.116 0.997 0.626
(0.210) (0.037) (0.007) (2.087) (0.011) (1.006)

120 0.979 0.997 0.996 0.800 0.999 0.867
(0.044) (0.007) (0.004) (1.048) (0.003) (0.356)

Notes: This table gives the same statistics as table 3a, except that m — 1

throughout the table and results are reported for subsamples. No Monte Carla

results are reported.
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Table 4a

a—
1 2 3 4 6 12 24 60

2 0.681

(0.136)
o . 000
0.022

3 0.586
(0.145)
o . 000
0.008

4 0.607 0.388
(0.162) (0.216)
0.000 0.000
0.024 0.009

6 0.501. 0.357 0.404

(0.145) (0.196) (0.225)
0.000 0.000 0.001
0.004 0.002 0.024

9 0.424 0.311

(0.129) (0.168)
0.000 0.000
0.000 0.001

12 0.382 0.280 0.263 0.285 0.332

(0.119) (0.158) (0.153) (0.151) (0.155)
0.000 0.000 0000 0.000 0.000

0.000 0.000 0.000 0.001 0.000

24 0.303 0.255 0.236 0.224 0.238 0.272
(0.135) (0.249) (0.283) (0.262) (0.217) (0.135)
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.017 0.020 0.013 0.004 0.000

36 0.308 0.289 0.279 0.264 0.266 0.273
(0.225) (0.353) (0.398) (0.417) (0.427) (0.346)
0.000 0.000 0.001 0.000 0.000 0.000
0.020 0.116 0.130 0.185 0.141 0.091
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Table 4a (Continued)

C (S
m) a)

1 2 3 4 6 12 24 60

48 0.334 0.336 0.335 0.325 0.323 0.321 0.376
(0.274) (0,382) (0.422) (0.449) (0.481.) (0.444) (0.526)
0.000 0.001 0.006 0.004 0.002 0.001 0.008
0.070 0.188 0.212 0.217 0.239 0.188 0.286

60 0.357 0.365 0.367 0.358 0.353 0.340
(0.291) (0.381) (0.41.5) (0.441) (0.476) (0.450)
0.000 0.017 0.036 0.018 0011 0.003
0.093 0.168 0.219 0.250 0.261 0.215

120 0.474 0.481 0.488 0.487 0.485 0.478 0.523 0.552
(0.285) (0.337) (0.356) (0.372) (0.398) (0.383) (0.379) (0.385)
0.043 0.053 0.070 0.068 0.079 0.070 0.081 0.136
0.129 0205 0.228 0,236 0.281 0.232 0.255 0.275

Notes; This table gives, in bold type, the standard deviation of

divided by the standard deviation of and estimated standard errors of

this ratio (in parentheses). snIm) is computed from equation (6) in the text

based on a vector autoregression starting in 19S2l and ending in 1.987:2. The

vector autoregression had four lags. The table also gives, in ordinary type,

two numbers from a Monte Carlo experiment. The first is the fraction of 1000

runs which produced an estimated standard deviation ratio which was further

away from one in the same direction than the ratio obtained in the data. The

second number is the fraction of 1000 runs in which a 2-sided t test of the

hypothesis that the ratio equals one rejected the null more strongly than the t

test on the actual data.
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Table 4b

Subsamples

Sample period (number of observations)

1952- 1952- 1952- 1960- 1970- 1979-

1987 1978 1959 1969 1978 1987

(421) (323) (95) (119) (107) (97)

2 0.681 0.585 0.545 0.581 0.931 0.986

(0.136) (0,128) (0.123) (0.112) (0.365) (0.148)

3 0586 0.503 0.483 0582 0.674 0.922

(0.144) (0.132) (0.117) (0.1.12) (0.389) (0.144)

4 0.607 0.508 0.472 0.551 0.619 0.948

(0.162) (0.125) (0.142) (0.128) (0.376) (0.170)

6 0.500 0461 0.489 0.429 0.599 0824

(0.144) (0,099) (0.180) (0.102) (0.277) (0.200)

9 0.424 0.427 0.554 0.329 0.508 0.714

(0.129) (0.101) (0.217) (0.085) (0.234) (0.181)

12 0.382 0.400 0.649 0.309 0.441 0.621

(0.119) (0.100) (0.275) (0.103) (0.235) (0.165)

26 0.304 0.416 t.170 0.328 0.459 0.470

(0.138) (0.219) (0.566) (0.222) (0.408) (0.123)

36 0.311 0.473 1.510 0.316 0.504 0.392

(0.227) (0.272) (0.575) (0.238) (0.411) (0.142)

48 0.338 0.541. 1.578 0.277 0.579 0.370

(0.274) (0.295) (0471) (0.218) (0.401) (0.202)

60 0.360 0.589 1.539 0.235 0.637 0.365

(0.290) (0.293) (0.406) (0.115) (0.378) (0.260)

120 0.476 0.717 1.288 0.266 0.743 0.428

(0.284) (0.231.) (0.238) (0.351) (0.282) (0.354)

otes: This table gives the same statistics as Table 4a, except that m — 1

throughout the table and results are reported for subsamples.
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Table

Instrumental Variables Regression of Rj' - Rn) on Predicted Change 5(n,I)

Instruments

(ni) (ni) (rid)
st_i st6 5tl2 t,i2 t.6O

2 0.002 -1687 -1997 -0.106 0.309 -4.578

(0.238) (1.134) (1.484) (0.563) (1.561) (4.921)

3 -0.176 -1.373 -3491 -0.363 -0. 164
(0.362) (1.160) (2.166) (0.747) (1374) (

4 -0.437 -1.223 -4.490 -0.733 -0.309 4.610
(0.469) (1.046) (2.179) (1.017) <1.380) (10.931)

6 -1029 -1.678 -5.071 -1.664 -0.142 4.199

(0537) (0.953) (2.461) (1.574) (1.772) (10.071)

9 -1.219. -2.089. -6.937. -2.395. 0.060. 2.200.
(0.598) (1.027) (3.453) (2.283) (2.089) (5.364)

12 -1.381. -2.146. -6.000. -2.997. -0.061. 0.990.

(0.683) (0.959) (2.901.) (3.144) (1.919) (3.155)

24 -1.815. -2.262. -4.392. -4.219. -0.269. 0.078.
(1.151) (1.127) (2.552) (3.692) (2.049) (2.367)

36 -2.239. -2.328. -4.850. -4.586. -0.611. -0.559.
(1.444) (1.398) (2.588) (4.106) (2.153) (2255)

48 -2.665. —2.719. -5.767. -4.477. -1.067. -1.095.

(1.634) (1.598) (2.865) (4.251) (2.376) (2.313)

60 -3.099. -3.058. -6.205. -4.513. -1.518. -1.632.
(1.749) (1.728) (3.039) (4.433) (2.539) (2.384)

120 -5.024. -4.90*. -8.063. -4.909. -3.524. -3.839.
(2.316) (2.405) (3.968) (6.256) (3.394) (2.992)

Notes on next page.
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Table 5 gives, in bold type, estimated regression slope coefficients of

- onto rn) — Regressions were estimated

using instrumental variables, which are identified at the top of each

column. The first three columns use lagged spreads, the last two use the

difference between the current short rate and a 12-month backwards moving

average (Xi2) and the difference between the current short rate and a

60-month backwards moving average (X 6o According to the model given

in equation (8), the slope coefficients should equal one. Constant terms

(not shown) are included in all regressions. Hansen-Hodrick standard

errors are below estimated coefficients, in parentheses. For each

regression, the sample is the longest possible using data from 1952:1

through 1987:2. [a. Uses approximation that
—
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