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with a model in which the spread is a multiple of the value implied by
the expectations cheory. This model could be generated by cime-varying
risk premia which are correlated with expected increases in shorc-term

interest rates, or by a failure of rational expectations in our sample

period.
John Y. Campbell Robert J. Shiller
Financial Markets Group Cowles Foundaciom
London School of Econcmics Yale Universicy
Houghton Screet Box 2125 Yale Staction
London WC2A 2AE New Haven, CT 06320
United Kingdon (203)432-3708

(01)405-7686, ext. 3106



1. Introduction

Does the slope of the term structure — the yleld spread between
longer-term and shorter-term interest rates = predict future changes in
interest rates? And if so, is the predictive power of the yleld spread
in accordance with the expectations theory of the term structure?

These questions are important, both for forecasting interest rates and
for interpreting shifts in the yield curve. If the expectations theory
is an adequate description of cthe term structure, chen expectations of
future interest rates are the dominant force determining current long-
term interest rates. On the other hand, if the expectations theory is
very far from accurate, then predictable changes in excess returns must
be the main influence moving the term structure. It makes sense to
thoroughly explore the validity of the simple expectations theory before
undertaking a detailed study of the sources of predictable time variacion
in excess returns.

The literature on the term structure contains a bewildering variety of
answers to these questions. Almost all studies statistically reject the
expectations thecory of the term structure, but some studies suggest that
the yield spread does predict interest rate movements in roughly che way

one would expect Lf the expectations theory is true, while other studies

1 ge refer to "the" expectations theory of the term structure. One
preblem that has hampered empirical work is that im fact there are many
different versions of the expectations theory, as emphasgized by Cox,
Ingersoll, and Ross [1981] and others. We have however argued elsewhere
that these different expectations theories are in important respects very
similar, and are all closely approximated by a single linear axpectations
theory (Shiller [1979], Shiller, Campbell, and Scheenholtz (1983],
Campbell {1986]). Note also that we are including the hypothesis of
rational expectations in our definition of the expectations theory. This
contrasts with the usage of some authors {e,g. Froot [1989]).
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reach the opposite conclusion. Different scudies use different
econometric methods, test different implications of the expectations
theory, and look at different interest rata macurities.

In this paper we show that certain statements can be made quite
generally. For any pair of maturities n and m, where n exceeds m (So n
is the "long-term” rate and m is the "short-cerm” rate), the following Is
true: When the spread between the n-period rate and the m-period rate is
relactively high, the yield on the n-period bond tends to fall over the
life of che m-period bond. This runs counter to the expectations theory.
At the same time, m-period rates tend to rise over the life of the n-
period bond, in accordance with the expectacions theory. In plain
English, when the spread is high the long rate tends to fall and che
short rate tends to rise.

The data set used here consists of continuously compounded yields on
riskless pure discount bonds, These yields were calculated by McCulloch
(1987) from raw data on U.S. Treasury bill, note and bond prices,
measured over the period 1952:1-1987:2 at the end of each month.2 Ve
will present results for all possible pairs of maturities in the range 1,
2, 3, 4, 6, and 9 months and 1,I2, 3, 4, 5, and 10 years. Thus, the
results in this paper are a group of two-dimensional tables of
evaluations of the linear expectations theory. While the main findings
hold over all possible sets of maturities, there are some interescing

differences between the behavior of the short end of the term structure

2 McCulloch's data actually begin in 1946:12, but we drop the data

from the period before the Treasury Accord of 1951.
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(maturities less than one year) and the long end of the term structure
(maturities greater than one year). We discuss these furcher below.

The organization of the paper is as follows. In section 2 we derive
the implications of the expectations theory of the term structure for the
relation between yield spreads and subsequent interest rate movements.
We discuss several ways in which these implications can be tested,
including regression methods and a modification of the vector
autoregressive approach of Campbell and Shiller [1987]. In section 3 we
apply these methods to the McCulloch term structure data. We alsc use a
Monte Carlo study to check the finite-sample preperties of our
procedures. In section 4 we try to interpret our results further. We
argue that one simple alternative, in which the yield spread equals its
value under the expectations theory plus orthogenal noise, is not
consistent with the data. We suggest another alternative, which makes
the yield spread a constant multiple of its value under the expectations
theory. This model could be generated by time-varying risk premia which
are correlated with expected increases in short-term interest rates, Or

by a failure of ratiomal expectations in our sample period,



2. The Expectations Theory of the Teym Structure

The expectations theory of the term structure of interest rates is a

{n)

c and m-period

relacionship between the n-period interest rate R

{m)

c where n/m is an integer. In the case of pure discount

interest rate R

bonds, as with our data here, this is:

k-1

(n) (m)
(1) Rt - {(1/k) 130 EtRc+mi + e, k = n/m.

Equation (1) states that the n-period rate is a comstant, plus a simple
average of the current and expected future m-period rates up to n-m =
(k-1)m periods in the future. Note that the sum of the coefficients of
the m-period interest rates is one. The parameter ¢ reflects a term
premium, that is a predictable excess return on the n-period bond over
the m-period bond. The term premium may vary with m and n but is assumed
te be constant through cime.

Equation (1) can be obtained directly if one assumes that expected
continuously compounded yields to maturity on all discount bonds are
equal, up to & constant; this is the approach taken by Fama {1984],
Equation (1) can also be derived as a linear approximation to any of
several different nonlinear expectations theories of the term structure.
The approximation is quite adequate for most purposes (Shiller, Campbell,
and Schoenholtz {1983], Campbell [1986]). For example, if one assumes
that the expected total return over m periods on buying an n-periocd bond
and selling it m periods later equals the return on holding an m-pericd

bond to maturity plus a constant, then one finds thact che expectation of



a nonlinear expression in Rin) and Ré:;m) equals Rém) plus a constant,
Linearizing this expression around Rﬁn) - RE:;N) = 0, one gets a rational

expectations model that if solved forward yields (1).

Tt should be noted that (1) is a time-consistent model. If the model
holds for m=l and all n, then it holds for all m = 1 and all n. This is
an important property of the model; many time series models (as for
example most ARIMA models) are not time consistent: an AR(2) model with
monthly data is not consistent with an AR(2)} model with quarterly data.
There is no such problem here.

s as orec of cha in s

Qur purpose is to state in the simplest possible terms what elements
of truch can be found in the expectations theory of the term structure.
We therefore concentrate our attention on the behavior through time of a
simple measure of the shape of the term structure: the spread between the

(n,m) _ REU) . R(m)_ The spread is

n-period rate and the m-period rate, St N
of course proportional to the slope of the term structure between n and
n.

The expectations theory of the term structure implies that the spread
is a constant risk premium, plus an optlmal forecast of changes in future
{nterest rates. We can test the model by regressing the appropriate
changes onto the spread and testing whether the coefficient equals omne.
And we can, apart from testing the model, evaluate its usefulness by
checking ta what extent the spread resembles an optimal forecast of the
changes 1n interest rates.

There are several ways to write the spread as a forecast of future

changes in interest rates. Flrst, the spread predlcts the m-period



change in yield on the longer-term bond. This bond has n periods to
maturlcy at time t, go it has n-m pericds to maturity at time t+m.

According to the expectations theory,

(n,m) _ g gplom  p(m)

(2) (m/(n'm))st t t+m t

where for simplicity we are suppressing constant terms. The intuition
behind equation (2) is that if the yield on the n-period bond is expected
to rise over the next m periods, this will give a capital loss to helders
of the bond. To equate expected returns over m periods, the n-period
bond has to have a higher current yield than the m-period instrument.

onto a constant and its

One may test (2) by regressing rF™ Rin)

t+m

(n,m)

predicted value s¢ (n,m)

defined as: s = {m/(n-m)}8

(n,m)

e The slope

coefficient should be one.
Second, by subtracting Rim) from both sides of equation (1) and
rearranging terms, one can show that the spread forecasts a weighted

(n,m)*

average St of changes in shorter-term (m-period) interest rates over

n periods:

(n,n) (n,m)*
(1) s, - E:Sc ,

k-1 & k-1
(n,m)* m _(m) m (m)
s (k) SCza™rR™y - = a-i/ka"Rr™ .
¢ -1 j=1  cH® fal t+in

The notation A" indicates that a change is measured over m periods, so

m o (m) (m) (m)
for example A Rt+m - Rt+u - Rt .



{(n,m)*

The wvariable St

may be called the "perfect foresight spread",
since it is the spread that would obtain given the model if there were
perfect foresight about future interest rates. With perfect foresight,
if m-period rates are going to rise over the life of the n-period bond,
then the n-period yield needs to be higher than the current m-perioed
yield to equate the returns on the n-peried bond, held to maturicy, and a
sequence of m-period bonds. Below we shall regress the perfect foresight
spread onto a constant and the actual spread to evaluate the model. The
slope coefficient should be one.

Equations (2) and (3) are complete characterizations of the
expectations theory of the cterm struccure; if (2) holds for all m and n,
then (3) holds for all m and n, and vice versa. However ic is important
to note that for any partigular values of m and n, the validity of (2}
does not generally imply the validicy of (3) or vice versa.

An exception to this statement occurs when n = 2m, a case thac is

often studied in empiriecal work.3 In this case equations (2) and (3)

(m)

t+m

(n—m)
t+m

(2), while the weighted sum on the right hand side of (3) has only one

take particularly simple forms because R equals R in equation

elemenc. FEquation (2) becomes

(n,m) _ g @ _glm)

(4) St C t+m t

and {3) beccmes

3 See for example Shiller, Campbell, and Schoenholtz [1983], who
look at 3} and 6 moncth Treasury bills,



() si“"“’ - e - (1/2)5‘:[11&’;“:II - v,

Equation (4) says that the spread equals the difference between the
optimal forecast of the m-period rate-m periods from now and the n-
period rate ctoday, while equation (5) says that the spread equals one-
half the optimal forecast of the change in the m-period rate over the
next m periods. 1f (4) holds for a particular @ and n, then (5) must
also hold, and vice versa. (To see this, just subtracc Rim) from both
sides of (4) and rearrange.)

Since (4) and (5) are special cases of (2) and (3), they can be tested
using the same regression approach. If the regression coefficient for
the test of (4) is written b, the regression coafficient for the test of
(5) will be (1+b)/2.

e or a

Regression tests of the expectations theory have the great merit of
simplicity. 8ut they also have some serious disadvantages. First, the
regression of the perfect foresight spread onto the actual spread
involves n-period overlapping errors. One only has an entirely
independent observation of the forecast power of the term structure every
n periods. While econometric methods are available to correct regression
standard errors for overlap, they do not work well when the degree of
overlap is large relative to the sanple size. (See for example Stock and
Richardson [1989}.) Since n can be as large as 10 years, and we have
only 35 years of data, this is a worrisome problem.

Secondly, regression tests do not tell us how similar are the

movements of the actual spread to the movements implied by the



expectations theory. We would like to evaluate the ability of the
expectations theory to explain the shape of the term structure, and
regression tests are not well suited for this purpose.

In earlier work (Campbell and Shiller [1987]), we proposed a vector
autoregressive (VAR) approach for evaluating present value models. That
paper dealt with the case in which n is infinice, but the approvach can
easily be modified to handle a finite value of n. The VAR approach
avoids the need to estimate regressions with overlapping errors. The VAR
includes the l-period change in the m-period interest race, and the
actual yield spread. From the estimaced VAR coefficlents, one can
compute the optimal forecast of m-period interest rate changes over any
horizon; the long-run behavior of interest rates is inferred from their
short-run behavior in the sample period, rather than being estimated
directly. The appropriate weighted average of forecast interest rate
changes (che "theoretical spread”) can be calculated, and compared with
the actual spread. If the expectations theory is true, the two variables
should be the same.

The details of the VAR approach are given in Campbell and Shiller
{1987); here we merely summarize the method and show how we can apply it
to the expectations theory with a finite horizon n. We assume first of
all that Akgm) is a stationary stochastic process, from which it follows

(m) S(n,m)} is a statlonary vector stochastic process. We

that X, = [aRt N

shall suppose that it can be represented as a p'th order VAR. This

system can be rewritten as a first-order VAR in the companion form z, -

(m)

Azt_l + U, where z, has 2p elements, first ARt

and p-1 lags and then



Sgn‘m> and p-1 lags. Multi-period interest rate forecasts are easily

. k
computed from the companion form, since Etzt+k = A z,.

(n,m)

We next define vectors g and h such that g'z, = St

dh' -
and h zt

ﬁREm). Then using (3) we can compute the VAR forecast of the perfect

(n,m)

foresight spread; we write this forecast S_ Tedious algebra shows

(n,m)

that Sé can be expressed asa

(6) s;(“-m’ - h'A[I-(m/n)(I-An)(I-Am)-l](I-A)-lzt.
We call Sé(n'm) the "theoretical spread”, since it is the spread which
would obtain if the expectations theory were true. The expectations

theory implies

(n,m) ] ,(n,m)
{(7) St - g zt - St .

Note that (7} should hold even if economic agents are using more
information to forecast than is contained in the vector zZ.. since the
actual spread is contained in the vector z,.

The equality of the actual spread and the theoretical spread puts a
set of nonlineer restrictions on the coefficients of the estimated VAR.
These can be tested formally using a Wald test (Campbell and shiller
[1987]). We do not pursue this approach here, since the regression
methods discussed abgve are simpler if one’s purpose is merely to test

the model. Instead, we use the VAR to compare the historical behavior of

Note that this expression reduces to the much simpler formula in
Campbell and Shiller [1987] when n is infinite.
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Sin,m) and Sé(n’m). We compute the correlation of Sin.m) and Sé(n.m)‘
and the ratio of their standard deviations. If Sin,m) equals Sé(n'm), of

course, the correlation and the standard deviation ratio should both

equal one.

Some previous results
e found in our earlier work (Shiller [1979], Shiller, Campbell and
Schoenholtz {1983]) that for very large n and small m when Rif;m) - Rin)

{n,m)

then the coefficient of Se

En-m) tends often to be

is regressed on s
significantly different from onme. In fact, the point estimate is
negative. We concluded that the theory was very far off track, that the
expectations theory of the term structure is just erng.5

In later work (Campbell and Shiller [1987]), we used a different
metric to evaluate the expectations theory for large n and small m, and

we found that the expectations theory seemed to work fairly well. We

(n,m) {n,m)

N and found it to be

computed the correlation between § and Sé

quite high. This suggests thar the accual spread behaves much as it

should according to the expectations model.6 The correlation between

{n,m) (n,m)

S¢

and S; can be high and still we may get a wrong sign in a

regression test of equation (2); for example, this can happen if Sin,m)

(n,m) plus a small serially uncorrelated noise term.

equals St
Other recent work has also emphasized the ability of the yield spread
to forecast short rate changes over long horizons. Fama and Bliss [1987]

set m = 1 year and n = 2, 3, and 4 years. They work with "forward

3 See also Mankiw and Summers [1984] and Froot [1989].

6 Shiller [1989a] uses plots of the actual spread and the perfect
foresight spread to make the same point.
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premia®”, which are linear combinations of two different yield spreads.
According to the expectations theory, forward premia should forecast
unweighted averages of changes in short rates, as opposed to the weighted
averages forecast by yield spreads. Fama and Bliss regress the
appropriate short rate changes onto forward premia, and find that the
forecasting power of the term structure improves as the horizon n
increases. They attribute this to a slowly mean-reverting lnterest rate
process which is more easily forecast over long time periods tham over
short intervals.

A largely unrelated literature has looked at the short end of the term
structure, with m up to 12 months. Shiller, Campbell, and Schoenholtz
[1983) found that the yield spread between 3 and 6 month Treasury bill
rates helps to forscast the change in the 3 month bill rate, but not as
strongly as the expectations theory requires. Fama [1984] found some
evidence that the slope of the term structure predicts interest rate
changes over a few months, but the predictive power seemed to decay

rapidly with the horizan.7

7 Mishkin [1988a] has updated the results in Fama [1984), Fama
[1988] and Mishkin {1988b,c]} extend the analysis to look at the forecast
power of the yleld curve, at both short and long horizons, for future
inflation rates. See Shiller [1989b] for a survey of other research on
the term structure.
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3. al Resu

The McCulloch monthly term structure data [1987) give pure discount
(zero coupon) bond yields for U. §. Government securities over the period
1946:12-1987:2. We use the sample 1952:1-1987:2, to allow for lags and
to exclude data from before the Treasury Accord of 1951. The data
include maturicies of 0, 1, 2, 3, 4, 5, 6, and 9 months, and 1, 2, 3, 4,
5, and 10 years. Longer maturitles are available only for part of the
sanple. These data are continuously compounded yields to maturity,

0f course, pure discount government bonds of long maturity do not
exist, But existing government bonds may be regarded as portfolios of
pure discount bonds, bonds maturing on all coupon dates and the maturity
date. One may suppose that they are priced, except for some tax
considerations, as the sum of the values of the constituent bonds in the
portfolio. Omne can therefore infer the prices (and thus the yields) of
the constituent bonds. There are problems in making this inference:
there may be more than one way to infer the yield of a certain discount
bond (giving possibly different answers in practice) and no way to infer
the yield of other discount bonds (since coupon and maturity dates may
not be evenly spaced through time), Thus, McCulloch [1987] inferred the
discount yields by an interpolation method using cubic splines.8

McCulloch’s data are very clean in the sense that they are unaffected
by differing coupons, coupon dates, or differing co;npoundi.ng conventions

across maturities. They are ideally suited to the kind of analysis we

8 Fama and Bliss [1987) infer yields on pure discount bonds using
the assumption that instantaneous forward rates are step functions of
maturity. This is an alternative to McCulloch’s procedure. Our results
below are similar to those of Fama and Bliss for the maturities they
consider.
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wish to do here over a broad range of maturities. The data are not
interval averaged, but are observed at the end of each month.
o sting th e longer-

Table la confirms that the slope of the term structure between almeost
any two maturities (m and n, where n > m) gives the wrong direction of
forecast for the change in yield of the longer term (n-period) bond o;er
the life of the shorter term (m-period) bond.9 Asymptotic standard
errors, which have been corrected for heteroskedasticity and equation
error overlap in the manner of Hansen and Hodrick [1980} and White
[1984], show that almost all the coefficients are significantly different
from one at conventional significance levels. Thus, earlier conclusions
in Shiller [1979) and Shiller, Campbell and Schoenholtz [1983] for some
maturities are found to extend to just about all maturity pairs m and n.
By this metric, the expectations theory of the term structure is a
resounding failure.

The general tendency for wrong signs to appear throughout the table is
robust to the sample period. 1In Table lb we report results for the case
m = 1 over a variety of subsamples, including the 1952-78 period (the
longest possible subsample which avoids the 1979 monetary policy regime
shift) and the shorter periods 1952-59, 1960-69, 1970-78 and 1979-87. We
find a predominance of wrong signs in every period except 1952-39.

As a check on the McCulloch data, these results can be compared with

earlier results using different monthly data on U.S. Treasury

I The lower left-hand part of the table, where n is large and m is
(om) _ ,(n)
small, uses the approximation that R i; R, iar In the rest of the

table we give results only where we observe Réz;u) directly.
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obligations. Shiller, Campbell, and Schoenholtz [1983] found that when
the three month change in the three month rate is regressed on the
predicted change implicit in the spread between six-month and three-month
rates, with daca January 1959 to June 1979, the slope coefficient was
0.285. Here, the slope coefficient in Table la for m=3 and n=6 is

b= -1.279. The implied slope coefficient for the regression run by
Shiller, Campbell, and Schoenholrz is (1+b)/2 = -0.140. TIf we use the
January 1959 to June 1979 sample our estimated b is -0.302 so thac
(1+b) /2 = 0.348, which compares reasonably well with the earlier resulct.
Fama [1984] found that when the actual change over one month in the one-
month rate is regressed using data 1959-82 on the predicted change the
slope coefficient is 0.46. Our (1+b)/2 from Table la is 0.51, and if b
is reestimated using their sample period b = -0.302 and (l+b)/2 = 0.54.
Fama and Bliss [1987] found that when the actual change in the one year
rate over one year is regressed 1964-84 on the predicted change the slope
coefficient is 0.09. Using our Table la, (1+b)/2 = -0.1l4, using their
sample period b = -0.882 and (l+b)/2 = 0.06. These comparisons show that
the McCulloch data give similar results to results with other data sets.

o ates

(n,m)* on s(n.m) for

Table 2 shows the resulcs of regressing S,

combinations of n and m that are represented in the McCulloch data, for
which n is an integer multiple of m. The regression coefficients should
be one if the expectations hypothesis is valid. In fact, the
coefficients are almost always positive but also deviate substantially
from one when the maturity n of the longer-term bond is below 3 or 4

years. At this short end of the term structure, asymptotic standard
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errors imply rejection of the expectations theory at conventional
significance levels. At the long end of che term structure, the
regression coefficients are very cleose ro one and rhe expectations theory
is not rejected.

We thus see an apparent paradeox: the slope of the term structure
almost always gi;es a forecast in the wrong direction for the short-ternm
change in the yield on the longer bond, but gives a forecast in the right
direction for long-term changes in short rates. We next use our VAR
procedures in order to judge how the spread moves through time in
relation to an unrestricted foracast of changes in short rates.

)

Table 3a reports correlations between the actual spread Sén'm and the

estimated theoretical spread S;(n.m)_ For each estimated correlation we

(m)

first ran a fourth order vector autoregression for the veccor [ARc .

sén,m)], using monthly data from January 1952 to February 1987 and used
the result to form the A matrix for the companion form. This estimate of

{n.,m)

A was then substituted into equation (7) to arrive at Sé , and the

correlation with Sin‘m)

computed. An asymptotic standard error was
calculated in the way described in Campbell and Shiller [1987]. The
correlation is almest always pesitive and often very high. This resulc
also holds up in subsamples, as shown in Table 3b.

Table 4a shows the standard deviation of Sétn‘m) divided by that of
Sén.m)_ We find that the coefficient is typically around one-half,
regardless of m and n. Thus, the spread is too variable to accord with

the simple expectations model. Similar results held in all subsamples

(Table 4b), except for large n in the 1952-59 period.
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These results can be compared to results in Table 2 in the following

way. The product of an element in Table 3a (the correlation of Sé(n.m}

and Sén,m)) and the corresponding element in Table 4a (the standard

(n,m) (n,m)

deviation of Sc c

divided by the standard deviation of § ) is the

S,(n.m) (n.m).
t

regression coefficient when c

is regressed on S This

regression coefficient should be (except for sampling error) the same as
that in Table 2. We find that they are about the same when n {s small,
but diverge substantially when n is large.

There are two possible explanations for this disc¢repancy. First, in

(n,m)*

order to regress Sc (n,m)

t

on §

(n,m)}*
t

we must truncate the sample enough to
allow compucation of § which requires data n-m perieds into cthe
future. (For this reason we do not try to apply the approach of Table 2
in subsamples.) To do the calculacions in Tables 3 and 4 there is no
such need te truncate the sample. Thus, the discrepancy in results might
jusc be due to different sample periods, and our estimates with shorter
samples in Tables 3b and 4b show that this {s a large part of the
explanation.

A second possible reason for the discrepancy i{s that perhaps our
vector autoregression truncated after four months is teo short, and thus
our estimate of S;(n.m) is subject to error. In our previous work we
have suggested that long lags may be useful in forecasting interest rates
(Campbell and Shiller [1984]). When we increase the lag length to eight
months, we find that the estimated standard deviation ratio is roughly
unchanged; the estimated correlation tends to fall, but is less precisely

estimated. Overall, the increase in lag length does not reduce the

discrepancy between the results in Table 2 and chose in Tables 3 and 4.
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e o e fo ast ho o

Fama and Bliss [1987] have emphasized that the forecast power of the
term structure for changes in short rates improves as the forecast
horizen increases from 2 years to 5 years. Our study of the full range
of maturities confirms this result, but shows that in fact below 1 year
the forecast power deteriorates with the horizon. The forecast power
reaches its minimum at 9 to 12 months, and then starts to improve. This
affect can be seen in the "U-shaped” pattern of coefficients as one moves
down the first column of Table 2, Table 3a, or Table 4a. It is evident
also in most of the subsamples in Tables 3b and 4b.

The movements of longer-term yields, however, do not display this U-
shaped pattern. In Tables la and lb the coefficients become increasingly
negative as the horizon increases. The tendency of the long rate to fall
when the spread is high is quite robust to the maturity of the longer-
term instrument.

Monte Carlo regults

Qur VAR approach can alsoc be used to generace artificial data for
Monte Carleo simulatisns. It is known that there can be small-sample bias
in standard errors of regressions with predetermiﬁed but not exogenous
variables. (Sea Mankiw and Shapiro [1986] and Stambaugh [1986] for a
discussion of this in the context of rational expectations models.) The
problem is particularly serious when asymptotic corrections are used to
handle equation error overlap which is large relative to the sample size
(Stock and Richardson [1989}). Monte Carlo simulations are an appealing

way to avoid excessive reliance on asymptotic distribution theory.
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To generate data which mateh the moments of cthe actual data while
obeying the restrictions of the expectatioms theory, we start by drawing

normal random errors and feeding them through the VAR system estimated on

the actual data. This gives us artificial time series for ARim) and
Sin.m)‘ We then replace Sin.m) with Sé(n'm), calculated using the true

VAR coefficients (those estimated on the actual data and which generate
the artificial data). This procedure can be used whenever n/m is an
integer. It pives us artificial data which obey the expectations theory
in population, but not necessarily in each artificial sample.

Tables ia, 2a, 3a, and 4 give two numbers for each entry which
summarize the results of the Monte Carlo experiment. The first number is
the fraction of 1000 runs which produced an estimated regression
coefficient {or correlation, or standard deviation ratio) which was
further away from one in the same direction (that is, usually, smaller)
than the coefficient obtained in the data. This is a "one-sided"
empirical significance level for the coefficient. The second number is
the fraction of 1000 runs in which a t test of the expectations theory,
computed using the asymptotic standard error on the coefficient, rejected
the null more strongly than the t test on the actual data. This is a
"two-sided” empirical significance level for the expectatioms theory t
test. One can compare the empirical significance level with the
significance level from-éhe noreal distribution to evaluate the quality
of the asymptotic standard errors in the tables.

The Monte Carlo results show that there is some finite-sample bias in
asymptotically valid regression tests of the expectations theory. The

bias is particularly noticeable when the order of equation error overlap
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ts large (that {s, for large m on the right hand side of Table 1 and for
large n at the bottom of Table 2). In cthese parts of the tables, the
asymptotic standard errors greatly understate the true uncertainty about
the regression coefficients.

However this bias is not enough to overturn our conclusions about the
expectations theory. In Table 1 the expectations theory is rejected very
strongly at the short end, and comfortably at the long end. In Table 2
the theory is rejected at the short end but not the long end. The VAR
procedures generally give weak evidence that the actual and theoretical
spreads are imperfectly correlated, and stronger evidence that the actual
spread has higher variability than the theoretical spread.

One interesting feature of the Monte Carlo results is that the twe
empirical significance levels are sometimes quite different from cne

another. For example, in Table 3a with m=l and n=24, only 21 out of 1000

{(n,m) {(n,m)

t

runs delivered a correlation between 5 and Sé that was lower
than the one estimated in the data. But 749 out of 1000 runs delivered a
correlation which was further from one when normalized by its asymptotic

standard errer. In this table, it seems that the artificial data sets

(n

/) and S,(n,m) and
t t

tended to deliver higher correlations between S
smaller standard errors than are found in the actual data. We conjecture
that this is due to heteroskedasticity in the actual data which is not

captured by our Monte Carlo experiment.
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4, r r retation

We have documented the fact that for any pair of maturities the yield
spread fails to correctly predict subsequent movements in the yield on
the longer term bond, yet it does forecast short rate movements in
roughly the way implied by the expectations theory. The purpose of this
section is to explore some possible explanations for this fact. The
explanations we will consider are not finance-theoretic models of time-
varying risk premia, but simply econometric descriptions of ways in which
the expectations theory might fail.

One obvious alternative to the expectations theory is a model of the

form

(n,m) _ {(n,m)*

(8) 5

(n,m)*

where Ve is an er-or term which is orthogonal to Etsc

Equation (8)

can generate a negative coefficient when Ri:;m) - Rgn) is regressed on
sgn,m). since the error term v, appears positively in the independent

variable and negatively in the dependent variable of this regression.

(n,m)*

¢ is

Equation (8) also implies that the regression coefficient when S5

regressed on Sin,m) {s 1/(14VR), where VR is the ratio of the variance of

(n,m)*

. The correlation coefficient between

v, to the variance of S

(n,m)*

*
Etsgn,m) and S(n,m) and the ratio of the standard deviation of Etst

t
to the standard deviation of Sin'm) both equal the square root of
1/(1+VR),

The VAR results in Tables 3 and 4 do not suggest that this model fits

the data, since we found that the correlation coefficient was very clese
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to one while the ratio of standard deviations was roughly one half. It
is also possible to test (8) more directly, if we impose extra
orthogonality conditions on the error term V.- For example, if we assume
that v, is white noise, then any variables dated t-1 or earlier can be
used as instruments in an instrumental variables regression of

g(om) Rén) (n,m)

ctm onto s . These lagged variables will be orthogonal to

v,. so the IV coefficient should be one as implied by the expectations
theory. Alcernatively, if we assume that Ve follows an MA(q) process,
then any variables dated t-q-1 or earlier can be used as instruments.

In Table 5 we report the results of instrumental variables regressions
of Rf:::“) - Rf:“) onto sf:“'“‘). We set m = 1 and use the full 1952-87
sample. For comparison, the first column reports the OLS regression
results from Table la. The next three columns give IV regression
coefficients with standard errors, where the instruments are the spread
lagged 1 month, 6 months, and 12 months respectively. The results are
not encouraging for the model (8); the IV coefficients are always
negative and ofcen more so than the QLS coefficients. Standard errors
increase with che lag length of the instrument, but this does not provide
any positive evidence in favor of (3).10

An alternative orthogonality condition would be that V. is orthogonal
to current and past short-term interest ractes. If this i{s so, then the
projection of the yield spread onto the history of short rates has the

form implied by the expectaticns theory; the failure of the expectations

theoxry is caused by the behavior of the error term in this projection.

10
These results are consistent with those reported in Campbell and

Shiller [1987] using a VAR approach to test (8).
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We can test this idea by using curreat and lagged short rates as

(h—m)

n) {(n,m)
t+m .

(
- R
. onto s

(1)
t L]

instruments in the IV regression of R In the

last two columns of Table 5 we use the level of R

(L
t

less a 12-month or

60-month backwards moving average of R , a5 an instrument. We write

these variables as thlz and xt.ﬁo, respectively. xt.12 is a better

instrument for shorter-term yield spreads, while X is a better

t,60
instrument for longer-term yield spreads. But neither set of results is
very encouraging for the model. At least over the period 1952-87, it
appears that the component of the yield spread which is correlated with
past short rates is at least partly responsible for the failure of the
expectations t:heory.11

These results suggest that equation (8) may be too restrictive to

explain the data. A more promising model may be

{(n,m) (n,m)*
(9) 8 - kEtsc

+ 1
t [+

where the coefficient k is greater than one. This model can also

(n—m) _  (n)
t

generate a negative coefficient when R is regressed on

t+m
*
sén,m)‘ It implies that the regression of sén.m) on sén.m) will give a
coefficient of 1/k. The correlation of EtSEn’m)* and Sgn,m) will be one,

but the ratio of their standard deviations will be 1/k. This model

roughly fits the results from Tables 2, 3, and 4, except that the Table 2

1 We analyzed this question earlier in Campbell and Shiller [1984].
Using & different approach, we reached a similar conclusion for the
period 1959-82. Over the period 1959-79, however, we found no evidence
against equation (9) with an error term orthogonal to short rates.

Indeed an IV regression of the type reported in the last column of Table
5 does give some positive ccefficients over the shorter sample peried,
but the standard errors are quite large.
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regression coefficients tend to exceed the Table & standard deviation
ratios for long horizoms.

Equation (9) could be described as an gverreaction model of the yield
spread. It says that the long rate differs from the short rate in the
direction implied by the expectarions theory; however, the spread between
the two rates is larger than can be juscified by rational expectations of
future short rate changes.

An alcernative way to describe equation (9) is to say that long rates
upderreact to short-term interest rates. This incterpretation was offered
in Campbell and Shiller [1984], although the empirical results in chat
paper were not as comprehemsive as those here. We argued there that long
rates are fairly well described as a distributed lag on short rates,
where the distributed lag weights are all positive and their sum is very
close to one. (It should be exactly one if predictable excess resturns
are stationary and the shert-term interest rate follows a stochastic
process with a unit root.) Relacive to the predictions of the
expectations cheory, the estimated distributed lag gives too little
weight to the current short rate, and too much weight to lagged short
rates. In this sense the long racte underreacts to the current level of

the short rate.12

2
t Mankiw and Summers [1984] described & similar underreaction medel

in ‘which the long rate gives too much weight to expected fucture short
rates, as opposed to lagged short rates. The underreaction stery is net
what one would expect given the evidence for "excess volatility” of long
rates presented by cone of the authors (Shiller [1979}). However that
evidence depended on the assumption that the short-cterm interest rate is
stationary, which is probably inappropriate for the postwar period in the
U.s. See Shiller [1989] for further discussion.
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To see that the Campbell and Shiller [1984] model is consiscent with
our results here, consider its implicatcions for the spread between the
long rate and the short rate. The spread will be a distributed lag on
past short rates with negative weight on the current short rate and
positive weight on the distributed lag of past short rates, where all
weights sum to zero. The Campbell and Shiller [1984] model implies that
the spread's distributed lag representation would conform more closely to
the expectations theory if the absolute value of all weights were scaled
dovn towards zero. This alsc follows from equation (9).13

The deviation from the expectations theory described by equation (9)
could be caused by time-varying risk premia which are correlated with
expected inersases in short-term interest rates. Alternatively, it is
possible that in our sample period the bond market underestimated the
persistence of movements in short rates (and thus overestimacted the
predictability of future short rate changes). Variations in the long-
short spread were due primarily to sudden movements in short rates, and
in this sample period long rates reacted too sluggishly to these sudden

movements, so that the consequential movements in the spread were too

large to be in accordance with the expectations theory.

13 Equation (9) is stronger in that it implies that the compomnent of
the spread which is orthogonal to current and lagged short rates should
also be scaled dowm.
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.238)
.000
.000
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.362)
.001
.001
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.569)
.000
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029
531
.boo
.000

.21%a
.598)
.019
.000

.181a
.683)
.038
.000

.815a
.151)
.122
.017

.23%a
.bb&)
122
.037

Regression of R

-0.361
(0.502)

-0.611
(0.562)
0.011
0.005

-1.276
(0.557)
0.000
0.000

-1.592a
€0.712)
0.064
0.000
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-2.164a
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0.104
0.032
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-1.
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-1.
(0.
.004
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-1.
(0.
.003
.000

-1.
(0.
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.007

-1.
(1.
0.
0.

C+m

.452
(0.

166)

294
400)

682
486)

867
601)

694a
$39)

922a
210)
109
022

(n—m)

Table la

-1.203
(0.130%)

-1.482
(0.311)

-1.482a
(0.842)
0.150
0.010

-1.6%2a
(1.065)
0.128
0.035
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Table la (Continued)

\ {(n—m) n \ ,
Regression of Rt+m - RE ) on Predicted Change sgn m)
m ==
1 2 3 4 6 12 24 60
n-
48 -2.665a -2.56la -2.208a -1.960a -1.447a -1.736 -0.725 ---
(l1.634) (l1.662) (1.392) (1.206) (0.991) (1.027) (1.233)
0.087 0.055 0.091 0.093 0.129 0.019 0.115
0.023 0.046 0.028 0.032 0.033 0.033 0.353
60 -3.099a -2.94la -2.525a -2.276a -1.750a -2.022 -0.811 ---
(1.749) (1.795) (1.523) (1.318) (1.096) (1.205) (1.369)
0.079 0.070 0.080 0.088 0.099 0.024
0.019 0.043 0.030 0.028 0.038 0.049
120 ~5.024a -4.695a -4.298a -3.944a -3.198a .- --- 4.575
(2.316) (2.424) (2.107) (1.851) (1.673) (1.926)
0.029 0.032 0.028 0.047 0.060 0.148
0.009 0.024 0.015 0.019 0.027 0.3131

Noteg: This cable gives, in bold type, estimated regression slope coefficients

{(n—m) {n) {n,m)

+m - Rc onto sc - (m/(n-m))s(n'm).

of R N

According to the expectations
theory, these coefficients should eqgual one. Constant terms (not shown) are
included in all regressions, Hansen-Hodrick standard errors are below
estimated coefficients, in bold type and parentheses. For each regression, the
sample is the longest possible using data from 1952:1 through 1987:2. Where
n/m is an integer the ctable also gives, in ordinary cype, two numbers from a
Monte Carlo experiment. The firsc is the fraction of 1000 runs which produced
an estimated regression coefficient which was further away from one in the same
direction than the coefficient obtained in the data. The second number is the

fraction of 1000 runs in which a 2-sided t test of the hypothesis chat the

coefficient equals one rejected the null more stronmgly than the t test on the

R(n)_]

(o=m) _
actual data. [a. Uses approximatjon that Rt+n c+m
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Table 1b

(n—1)
t+l

Y (n, 1),
C

Regression of R on Predicted Change S. : Subsamples

Sample period (number of observations)

1952- 1952- 1952- 1960- 1970- 1979-
1987 1978 1959 1969 1978 1987
(421} (323) {(95) (119) (197) (97
n‘
2 0.002 -0.267 -0.271 -0.089 -0.436 0.347
(0.238) (0.151) (0.193) <(0.233) (0.419) (0.342)
3 -0.176 -0.471 -0.194 -0.381 -0.853 0.167
(0.362) (0.223) (0.284) (0.311) (0.691) (0.577)
4 -0.437 -0.509 -0.101 -0.481 -0.850 -0.287
(0.469) (0.283) (0.388) (0.333) (0.893) (0.789)
6 -1.029 -0.537  -0.121 -0.367 -0.981  -1.345
(0.537) (0.340) (0.542) (0.393) (0.982) (0.9902)
9 -1.21% -0.39%a 0.590a -0.598a -0.907a -1.826a
(0.598) (0.458) (0.633) (0.544) (1.124) (l.066)
12 -1.38la -0.6728 0.77la -1.044a -l.2l6a -1.778a
(0.683) (0.598) (0.752) (0.861) (1.307) (1.237)
24 -1.815a -1.031a 1.796a -2.876a -1.063a -2.218a
(1.151) (0.986) (1.557) (1.284) (1.594) (2.032)
36 -2,2398 -1.210a 3.02la -3.840a -1.243a =-2.79la
(l.444) (1.187) (2.379) (1.891) (1.774) (2.431)
48 -2.66% -1.272a 3.807a -4.373a -1.293a -3.468a
{l.634) (1.326) (2.852) (2.254) (1.936) <(2.714%)
60 -3,099a  -1.483s 4.138a -4.886a -1.424a -4.052a
{1.749) (l.442) (3.264) (2.535) (2.083) (2.894)
120 -5.024a -2.263a 3.099a -6.029a -2.103a -6.830a
(2.316) (1.869) (4.801) <(3.796) (2.550) (3.817)
Noteg: This table gives the same regression coefficients and standard errors as

Table la, except that m = 1 throughout the table and results are reported for
subsamples, No Monte Carlo results are reported.
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12

24

36

Slope Coefficients In Regression of Sén'm)* o

.501
.119)
.000
.000

446
.1%0)
.000
. 006

436
.238)
.001
.022

.237
.167)
.000
.000

.151
.165)
.00l
.000

.161
.228)
.006
.019

.02
.212)
.031
.067

.814
.230)
.151
.318

2
0.195 --
(0.281)
0.011
0.005
0.021  -0.147
(0.163) (0.200)
0.010  0.001
0.001  ©0.000
.- -0.008
(0.147)
0.015
0.000
0.078  0.044
(0.192) (0.189)
0.033  0.023
0.004  ©0.005
0.287  0.269
(0.210) (0.230)
0.096  0.116
0.063  0.086
0.642  0.610
(0.243)% (0.101)
0.211  0.225
0.368  0.070

Table 2

N =
4 6
-0.056 0.044
(0.185) (0.329)
0.022 0.056
0.000 0.013
0.229 0.186 -0
(0.262) (0.324) (O
0.117 0.073 0.
0.098 0.100 0.
0.568 0.526 0.
(0.174) (0.225) (0.
0.210 0.193 0.
0.194 0.223 0.

29

12

017
.372)
047
042

257
408)
119
250

n §

(n,m)
t

24
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Table 2 (Continued)

Slope Coefficients in Regression of Sin.m)* on Sén,m)
m-
1 2 3 4 6 12 24 60
n-
48 0.873 0.929 0.951 0.959 0.942 0.720 0.137 .-
(0.291) (0.271) (0.240) (0.205) (0.088) (0.335) (0.617)
0.256 0.289 0.299 0.321 0.299 0.230 0.115
0.817 0.868 0.898 0.913 0.697 0.613 0.353
60 1.232 1.289 1.292 1.297 1.242 1.130 --- -
(0.182) (0.168) <(0.161) (0.141) (0.161) (0.193)
0.581 0.574 0.576 0.59% 0.630 0.677
0.501 0.418 0.370 0.33 0.474 0.698
120 1.157 1.207 1.223 1.227 1.228 1.274 1.345 2.788
€0.094) (0.093) (0.095) (0.097) ¢0.101) ¢0.113) (0.169) <(0.963)
0.713 0.685 0.667 0.681 0.690 0.673 0.618 0.146
0.583 0.463 0.437 0.4463 0.429 0.423 0.429 0.331
Notes: Sin’m)*. the perfect foresight spread, is defined in equation (3) in the

text. The elements given in bold type are the slope coefficients in a
regression with a constant term, and associated Hansen-Hodrick standard errors.
By the expectations theory, the slope coefficlents should be one. The sample

period for each element is the longest possible sample using data from 1952:1

(n,m)*

to 1987:2. Since computation of St

requires data extending n-m periods
into the future, the sample in the regression ends n-m months before 1987:2.
The table also gives, in ordinary type, two numbers from a Monte Carlo
experiment. These are constructed in the same way as the Monte Carlo results

reported in Table la. [*. Newey-West [1987] correction used because Hansen-

Hodrick procedure gave a negative standard error on constant or spread. ]
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24

16

.736
.148)
.000
.094

.761
.190)
.002
437

.720
.213)
.001
.285

.4B6
.373)
.003
.210

374
.421)
005
.181

.391
.468)
007
.237

. 543
.764)
.021
L7469

.770
.531)
.021
L749

Correlation of Sé

0.502
(0.451)
0.063
0.545

0.058
(0.566)
0.012
0.118

0.282
(0.909)
0.049
0.603

0.629
(0.941)
0.088
0.920

0.851
(0.431)
0.088
0.920

oo

.355
.556)
000
.015

.156
. 904)
.008
.269

.126
.211)
.017
.663

. 612
.148)
.102
.953

.860
.662)
.102
.953

Table 3a

-0.
(1.
.017
.576

[« = 2l -

072
309)

.5312
.565)
.108
.964

.833
.594)
.108
0.

964

1

(n,m)

and §

111
&94)
015
.514

409
.960)
.062
.980

176
L917)
.062
.980

(n,m)

~
SO O

12

.212
.865)
.023
.930

. 643
.31
023
.930
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Table 3a (Continued)

Correlation of SE(“'M) and sin.m)
m =
1 2 3 4 6 12 2 o
n =
48 0.867 0.920  0.930  0.923  0.900  0.839  0.896

(0.328) (0.210) (0.189) (0.231) (0.363) (0.580) (0.348)
0.101 0.192 0.232 0.249 0.224 0.182 0.301
0.861 0.801 0.763 0.804 0.885 0.908 0.852

60 0.912 0.948 0.956 0.954 0.939 0.893 --- ---
(0.218) (0.128) (0.109) (0.128) (0.209) (0.375)
0.1135 0.213 0.271 0.270 0.232 0.206
0.810 0.737 0.731 0.766 0.863 0.869

120 0.979 0.986 0.988 0.988 D.984 0.975 0.983 0.990
(0.045) (0.027) (0.021) (0.023) (0.038) (0.062) (0.041) (0.020)
0.159 0.250 0.290 0.3135 0.284 0.235 0.312 0.624
0.667 0.642 0.568 0.593 0.698 0.680 0.708 0.623

{n,m)

Notes: This table gives, in bold type, correlation coefficients of S¢ with

(n,m) (n,m)

t

s and estimated standard errors (in parentheses). SE is computed
from equation (6) in the text based on a vector autoregression starting in
1952:1 and ending in 1987:2. The vector autoregression had four lags. The
table also gives, in ordinary type, two numbers from a Monte Carlc experiment.
The first number is the fraction of 1000 runs in which the difference between
the estimated correlation and one was larger than in the actual data. The
second number is the fraction of 1000 runs in which the difference between the

estimated correlation and one, divided by its standard error, was larger than

in the actual data.
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Table 3b

Correlation of Sé(n'l) and Sén.l): Subsamples

Sample period (number of observations)

1952- 1952- 1952- 1960- 1970- 1979-

1987 1978 1959 1969 1978 1987

(421) (323) (95) (119) (107) 97)

n-

2 0.738 0.626 0.668  0.785 0.303  0.696
(0.148)  (0.115) (0.134) (0.170) (0.169) (0.138)

3 0.763 0.585 0.717  0.687 0.256 0.707
(0.189) (0.172) (0.192) (0.218) (0.378) (0.184)

4 0.723 0.604  0.729  0.589 0.538 0.675
(0.212)  (0.204) (0.254) (0.283) (0.406) (0.228)

6 0.493 0.583 0.712  0.513  0.657 0.395
(0.372) (0.279) (0.353) (0.421) (0.495) (0.348)

9 0.386 0.561  0.742  0.417  0.628 0.282
(0.419)  (0.394) (0.382) (0.646) (0.638) (0.383)

12 0.404 0.587 0.801  0.240  0.695 0.301
(0.463)  (0.468) (0.342) (0.839) (0.653) (0.504)

24 0.558 0.829  0.963  -0.145 0.925 0.260
(0.743)  (0.349) (0.088) (0.986) (0.241) (0.984)

16 0.779 0.922  0.987 -0.129 0.971 0.388
(0.509) (0.180) (0.021) (1.254) (0.103) (1.203)

48 0.872 0.968 0.991 -0.087 0.991 0.513
(0.313)  (0.079) (0.009) (l.623) (0.035) (1.181)

60 0.914 0.986 0.993  0.116 - 0,997 0.626
¢0.210) (0.037) (0.007) (2.087) (0.0l1) (1.006)

120 0.979 0.997 0.996 0.800  0.999 0.867

(0.044)  (0.007) (0.004) (1.048) (0.003) (0.356)
Notes: This table gives the same statistics as Table 3a, except that m = 1
throughout the table and results are reported for subsamples. No Monte Carlc
results are reported. -
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12

24

35

681
.136)
.000
.022

. 586
.145)
.000
.oo8

.607
.162)
000
024

.501
.145)
000
. 004

424
.129)
.000
.000

.382
.119)
.000
.000

. 303
.135)
. 000
000

. 308
.225)
. 000
.020

0.388
(0.216)

0.000

0.009%

0.357
(0.196)
0.000
0.002

0.280
(0.158)
0.000
0.000

0.255
(0.249)
0.000
0.017

0.289
(0.353)
0.000
0.11s

a(St

404
.223)
.001
024

317
.168)
000
.001

.263
.133)
.000
. 000

236
.283)
.000
.020

279
.398)
.001
.130

Table f4a

(n.m))/a(si
m-
0.285 0
{0.151) (0
0.000 0
0.001 0
0.224 0
(0.262) (0
0,000 0
0.013 0
0.264 0
(0.417) (0
0.000 )
0.185 0

34

n,m))

.332
.153)
. 000
000

. 238
217)
.000
004

266
J427)
000
.14l

12

.272
.135)
ele]o
.000

.273
346)
000
.091

24

80



Table 4a (Continued)

(n,m) (n,m)
ar(St )/a(st )

m =
1 2 3 4 6 12 24 60
nm-=-
48 0.334 0.336 0.335 0.325 0.323 0.321 0.376 ---
(0.274) (0.382) (0.422) (0.449) (0.481) <(0.444) (0.526)
0.000 0.001 0.006 0.004 0.002 0.001 0.008
0.070 0.188 0.212 0.217 0.239 0.188 0.286
60 0.357 0.365 0.367 0.358 0.353 0.340 - ---
(0.291) (0.381) (0.415) (0.441) (0.476) (0.450)
0.000 0.017 0.036 0.018 0.011 0.003
0.093 0.158 0.219 0.230 0.261 0.215
120 0.474 0.481 0.488 0.487 485 0.478 0.523 0.552

0.043 0.053 0.070 0.068 .079 0.070 0.081 0.136

Q
(0.285) (0.337) (0.356) (0.372) (0.398) (0.383) (0.379) (0.385)
0
0.129 0.203 0.228 0,236 0.281 0.232 0.253 0.275

Notes: This table gives, iIn bold type, the standard deviation of Sé(n‘m>

divided by the standard deviation of s(n.m) and estimated standard errors of
¥ t

SE(n'm) is computed from equation (6) ln the text

this ratio (in parentheses).
based on a vector autoregression starting in 1952:1 and ending in 1987:2. The
vector autoregression had four lags. The table also gives, in ordinary type,
two numbers from a Monte Carlo experiment. The first is the fraction of 1000
runs which produced an estimated standard deviation ratio which was further

away from one in the same direction than the ratio obtained in the data. The
second number is the fraction of 1000 runs in which a 2-sided t test of the

hypothesis that the ratio equals one rejected the null more strongly than the t

test on the actual dara.
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Table 4b

o(s: D)0 Py

Subsamples

Sample period (number of observations)

1952- 1952- 1952- 1960- 1970- 1979-

1987 1978 1959 1969 1978 1987

(621) (323) (93) (119) (107) (97

n-

2 0.681 0.585 0.545 0.581 0.931 0.986
(0.136) €0.128) (0.123) (0.112) (0.365) (0.148)

3 0.586 0.503 0.483 0.582 0.674 0.922
(0.144) ¢0.132) (0.117) (0.112) (0.38%) (0.144)

4 0.607 0.508 0.472 0.551 0.679 0.948
(0.162) (0.125) (0.142) (0.128) (0.376) (0.170)

6 0.500 0.461 0.48% 0.42% 0.59¢% 0.824
(0.144) €0.099) (0.180) (0.102) (0.277) (0.200)

9 0.424 0.427 0.5334 0.32% 0.508 0.714
(0.12%9) €0.101) (0.217) (0.085) (0.234) (0.181)

i2 0.382 0.400 0.64% 0.30% 0.441 0.627
(0.119) (0.100) (0.275) (0.103) (0.235) (0.165)

24 0.304 0.416 1.170 0.328 0.45% 0.470
(0.138) €0.219) (0.566) (0.222) (0.408) (0.123)

36 0.311 0.473 1.510 0.316 0.504 0.392
(0.227) (0.272) (0.575) (0.238) (0.41l) (0.142)

48 0.338 0.541 1.578 0.277 0.579 0.370
(0.274) (0.295) (0.471) (0.218) (0.401) (0.202)

60 0.360 0.58% 1,539 0.235 0.637 0.365
(0.290) (0.293) (0.406) (0.115) (0.378) (0.260)

120 0.476 0.717 1.288 0.266 0.743 0.428

(0.284)  (0.231) (0.238) (0.351) (0.282) (0.354)
Notes: This table gives the same statistics as Table 4a, except that m = 1

throughout the table and results are reported for subsamples.
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Table 3 gives, in bold type, estimated regression slope coefficients of
Rézzl) - Rén) onto sén.m) - (m/(n-m))sin‘m). Regressions were estimated
using instrumental variables, which are identified at the top of each
column. The first three columns use lagged spreads, the last two use the
difference between the current short rate and a 12-month backwards moving
average (xc,lz) and the difference between the current short rate and a
§0-month backwards moving average (Xc'so). According to the model given
in equation (8}, the slope coefficients should equal one. Constant terms
(not shown) are included in all regressions. Hansen-Hodrick standard

errors are below estimated coefficients, in parentheses. For each

regression, the sample {s the longest possible using data from 1952:1

(m) _ p(n)

through 1987:2. [a. Uses approximation that Rt+m cbm’
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