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ABSTRACT

This paper develops two methods for estimating the effect of schooling on achievement test

scores that control for the endogeneity of schooling by postulating that both schooling and test

scores are generated by a common unobserved latent ability. These methods are applied to data on

schooling and test scores. Estimates from the two methods are in close agreement. We find that the

effects of schooling on test scores are roughly linear across schooling levels. The effects of

schooling on measured test scores are slightly larger for lower latent ability levels. We find that

schooling increases the AFQT score on average between 2 and 4 percentage points, roughly twice

as large as the effect claimed by Herrnstein and Murray (1994) but in agreement with estimates

produced by Neal and Johnson (1996) andWinship and Korenman (1997). We extend the previous

literature by estimating the impact of schooling on measured test scores at various quantiles of the

latent ability distribution.
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1 Introduction

There are two widely held and mutually inconsistent conceptions of ability and scholastic achievement

tests. The first view claims that cognitive ability is essentially fixed at a relatively early age (around

age seven) and is virtually unchanged afterward. According to this view, achievement tests and IQ tests

measure the same fundamental cognitive skill. The correlation between IQ and achievement tests is high

and proponents of this view use these two types of tests interchangeably. According to scholars who

advocate this point of view, schooling and other influences barely budge measured IQ. (See the evidence

summarized in Herrnstein and Murray, 1994, Appendix 2.) A consensus estimate in this literature is that

a year of schooling raises measured IQ by about one point (Jencks, 1972; Herrnstein and Murray, 1994).1

A second widely held view claims that schooling raises achievement measured by tests and more

successful types of schooling raise measured achievement more. This is the premise of large scale testing

programs designed to monitor the performance of schools. Debates about the effectiveness of vouchers and

interventions hinge on their effects on measured achievement (see, e.g., Hanushek, 2002). This literature

implicitly separates out latent ability (IQ) from measured ability and views schooling as a mechanism for

either enhancing or revealing ability. Proponents of this view argue that schooling can increase measured

ability by as much as 2 to 4 points (Winship and Korenman, 1997; Neal and Johnson, 1996), or 2.9 to 5.7

AFQT points (2.7 to 5.4 percentage points).

This paper presents evidence that the measure of IQ used by Herrnstein and Murray is strongly affected

by schooling. Postulating that latent ability cannot be affected by schooling, we test whether manifest

ability is affected by schooling when both schooling and manifest ability are affected by latent ability.

Manifest ability is widely regarded as a determinant of socioeconomic success. Gaps in test scores across

socioeconomic groups are widely viewed as a major source of social problems (Jencks and Phillips, 1998;

Herrnstein and Murray, 1994). We examine whether measured ability gaps can be eliminated by schooling.

Our measures of ability are the ASVAB achievement (competency) tests used to screen persons entering

the military. ASVAB stands for Armed Services Vocational Aptitude Battery and is described in more

detail below. We find that schooling, especially in the high school years, is an important determinant of

measured achievement. It operates differently at different latent ability levels.

In order to establish these conclusions, we need to address the problem of reverse causality. There

is a well-established empirical regularity that measured test scores predict schooling. Individuals choose

to attend school in part based on their own intelligence which is measured by test scores. In addition,

admission into colleges and fellowship support is based, in part, on scores on tests like the Scholastic

Assessment Test (SAT). The central econometric question addressed in this paper is how to characterize

and solve the problem of joint causality: schooling causing test scores and test scores causing schooling.
1IQ is assumed to have mean 100 and standard deviation 15. Many of the papers in the literature obtain estimates

using the Armed Forces Qualification Test (AFQT), the test used in this paper, which has a scale of 0-105. Typically
estimates are converted into “IQ points” by computing the effect of education in terms of standardized AFQT score and
then, assuming that a standard deviation increase in AFQT is equivalent to a standard deviation increase in IQ score, by
further multiplying by 15. Herrnstein and Murray (1994) estimate an increase of 1.1 IQ points per year of education, or

1.6 AFQT points (1.5 percentage points), using our estimate of the standard deviation of AFQT, 21.6.
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Our solution is based on a model of test scores as manifestations of latent ability (and other determinants)

with schooling determined by latent ability (and other determinants). Our framework accounts for ceiling

effects (on some easy tests, students with very different ability levels get perfect scores) and endogeneity

of schooling (which includes choice of date of entry into schooling as well as choice of final schooling level).

We find that the effects of schooling on test scores for a given level of ability are approximately linear

across schooling levels. Effects are slightly larger for those with lower ability. Schooling increases the

AFQT score on average between 2 and 4 percentage points. This is roughly twice as large as the effect

claimed by Herrnstein and Murray (1994).

The plan of this paper is as follows. Section 2 presents our framework and discusses some important

conceptual issues. Section 3 applies the method of control functions, developed by Heckman (1976, 1980)

and Heckman and Robb (1985, 1986), to identify schooling effects on tests using a special feature of the

National Longitudinal Survey of Youth (NLSY) data. A nonparametric version of the method is developed,

but it suffers from certain practical limitations in more general cases. Section 4 presents a parametric

econometric model motivated by choice theory for the joint determination of schooling and test scores.

This method allows us to supplement the nonparametric control function method to impose additional

identifying information to develop a method for determining the effects of schooling on test scores in more

general data sets than the NLSY and to account for ceiling effects on tests. Section 5 presents empirical

results. Section 6 concludes. Appendix A describes the data. The estimation algorithm for the control

function approach is presented in Appendix B. The likelihood and the Bayesian computational methods

used to estimate it are presented in Appendix C.

2 The Relationship Between Ability and Schooling

Let T (s) be the test score of a person with s years of schooling at the time the test is taken. For notational

simplicity, we keep implicit the conditioning on all other variables that determine T (s) except latent ability

f . The other variables might include age, socioeconomic status of the parents, and other environmental

and genetic factors. We account for some of these additional variables in our empirical work.

Our model of test scores is based on an extension of the factor analysis model used in psychometrics

(see e.g., Lord and Novick, 1968). Test score T (s) is a manifestation of latent ability f mediated by

schooling:

T (s) = µ(s) + λ(s)f + ε(s) (1)

where it is assumed that ε(s) is independent of f . Both f and ε(s) are assumed to have zero means. This

amounts to a normalization and a definition of the mean, µ(s). We extend the standard model of factor

analysis by allowing the level of s selected to depend on f . For externally-manipulated levels of schooling,

µ(s) in equation (1) is the effect of schooling that is uniform across latent ability levels and λ(s) is the

effect of schooling on revealing or transforming latent ability f . The marginal causal effects of changing

schooling from s0 to s on levels and slopes are µ(s)− µ(s0) and λ(s) − λ(s0) respectively using the usual
ceteris paribus logic familiar to all economists.2

2Throughout this paper we maintain the traditional separable-in-the-errors model of equation (1). A more general
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The psychometric and educational testing literatures are fundamentally ambiguous about what con-

stitutes cognitive ability. Is it f , T (s), µ(s) or µ(s) + λ(s)f? Neal and Johnson (1996), Winship and

Korenman (1997), Winship (2001), and Herrnstein and Murray (1994) take measured test scores (T (s))

to be cognitive ability. Yet the logic of IQ testing interprets f as cognitive ability. A reinterpretation of

equation (1) writes λ(s)f as ability determined at schooling level s. Knowing only T (s) and S = s, we

cannot decide which of these interpretations is correct. Without further information, the model is funda-

mentally underidentified because we do not observe f . We can identify the combination of parameters

in

E(T (s)|S = s) = µ(s) + λ(s)E(f |S = s) +E(ε(s)|S = s) (2)

but the causal status of an estimated effect of S is unclear because both E (f | S = s) and E (ε(s) | S = s)

may depend on S. Thus latent cognitive ability (f) may determine S and so may measured ability (T (s)

and hence ε(s) given f). If the test studied does not directly affect schooling decisions, e.g. through its

use in admission criteria, as is the case for the test analyzed in this paper, then E(ε(s)|S = s) = 0.3

The empirical literature recognizes the problem of reverse causality, and adopts different strategies

for identifying different parameters. Herrnstein and Murray (1994) and Winship and Korenman (1997)

implicitly adopt µ(s) as their parameter of interest, assume that µ(s) = sβ (linearity) and use an “early”

test score (obtained at an earlier age) to proxy f .4 Let proxy P be

P = γ0 + γ1f + ε(P ) (3)

where f and ε(P ) are independent, and γ0,γ1 are assumed not to be functions of the S in (1). Solving for

f and substituting into (1) we obtain

T (s) = µ(s)− λ(s)
γ0
γ1
+

λ(s)

γ1
P +

·
ε(s)− λ(s)ε(P )

γ1

¸
. (4)

Observe that the composite error is correlated with P unless P is a perfect proxy for f (ε(P ) = 0) ,

the implicit assumption used by Herrnstein and Murray (1994).5 Herrnstein and Murray also implicitly

assume that λ(s) does not depend on s. Then, using ordinary least squares applied to (4), they estimate

the marginal effect of schooling which in their setup is β (µ(s) = sβ). If λ(s) = λ, but ε(P ) 6= 0, and if
λγ1 > 0 (so that f affects P and T (s) in the same way), then least squares based on (3) is upward biased.

More generally, if λ depends on s, the bias is ambiguous and depends on specific parameter configurations.

The combination of parameters µ(s)− λ(s)γ0
γ1
becomes the implicit parameter estimated and it does not

answer the questions posed in the literature.

Winship and Korenman (1997) consider the problem of measurement error in their proxy P . They draw

on work by Ashenfelter and Krueger (1994) who claim that the reliability (the proportion of variance of

P that is true, γ21σ
2
f , relative to the total variance γ21σ

2
f + σ2ε) of IQ measures is typically above 0.9.

nonseparable model would be desirable but is beyond the scope of this paper.
3Even though the tested know their scores they are not directly used by schools or firms to screen persons and we assume

that they do not affect subsequent actions.
4These authors also include additional control variables which we do not discuss.
5Pakes and Olley (1995) make the same assumption in a different context.
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Winship and Korenman carry out a variety of sensitivity analyses, estimating the model under different

assumptions about the reliability of the early IQ score, which they let take on values between 0.8 and 1.

They obtain a wide range of estimates of the effect of schooling on AFQT, from 1.5 to 5 points. Correcting

for measurement error under what Winship and Korenman believe to be “reasonable assumptions about

the extent of measurement error,” they estimate the effect of education to be 2.7 IQ points per year of

school and they state that “a year of education most likely increases IQ by somewhere between 2 and 4

points.”

Neal and Johnson take a different approach. They choose β in the specification µ(s) = sβ as their

parameter of interest and use month of birth (which determines years of schooling attained by a given

birth cohort) as an instrument to avoid dependence of S on f .6 This forced variation in schooling attained

among children of the same nominal birth cohort is a source of identifying variation. We estimate a richer

set of parameters and consider how schooling affects test scores at different levels of the latent ability

distribution. However, our estimates of the same parameter are in agreement with theirs.

A variety of other studies, surveyed by Ceci (1991), rely on various “natural experiments” of uncertain

quality. Winship and Korenman (1997) survey and criticize this literature.

In this paper, we estimate µ(s) and λ(s) for different levels of schooling without imposing the para-

metric restrictions used in the previous literature. We explicitly account for the endogeneity of completed

schooling. In addition we estimate the distribution of latent ability (f) and compare it with measured

ability. We can identify the effect of schooling on measured test scores at different latent ability (f) levels.

This allows us to identify where in the overall distribution of ability schooling interventions are the most

effective. We first develop estimators based on the principle of control functions.

3 Simple Identification Strategies Based on Control Functions

Our first approach to this problem exploits an unusual feature of the NLSY data. The test we study is

given to a nationally representative sample of people. Some people who take the test are in school while

others have finished school. We observe completed schooling for all individuals. Let ST denote schooling

that a person has at the date of the test. We observe the test score T (ST ) which can be expressed as

T (ST ) = µ(ST ) + λ(ST )f + ε(ST ). (5)

Letting S denote the final level of schooling that is actually attained, S ≥ ST . Let A be the age at which

a person is tested. If we redefine age so that schooling starts at age 0 and if we assume that dropouts do

not return to school, then we observe ST = A < S if the test date comes before a person has completed

his schooling.7 If he has completed schooling by the time of the test, then we observe ST = S.

Using the control function approach introduced in Heckman (1976, 1980) and Heckman and Robb

(1985, 1986), and assuming no maturation effects (no independent effect of age on performance on the
6In most school districts, in a given year any 5 year-old child whose birthday falls after October 1 must wait to start

school in the following year.
7Cameron and Heckman (2001) present evidence that few high school dropouts return to school.
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test) and that everyone starts school at the same age, we may write observed tests conditional on final

schooling and schooling at the test date as

E(T (ST )|ST = sT , S = s) = µ(sT ) + λ(sT )E(f |ST = sT , S = s) (6)

+E(ε(ST )|ST = sT , S = s).

To simplify the notation we keep other conditioning variables implicit.

Because sampling is random across ages, if individuals consider only their final schooling level when

making schooling decisions, irrespective of their path to schooling and there is no dropping out and re-

entry, conditional on S = s the observed ST is random with respect to f . Thus E(f | ST = sT , S = s) =

E(f | S = s). Further, if the test is not used to make decisions about schooling, E(ε(ST ) | ST = sT ,

S = s) = 0.

Under these assumptions we obtain

E(T (ST ) | ST = sT , S = s) = µ(sT ) + λ(sT )E(f | S = s). (7)

From this equation it is clear that we cannot identify the scale of f without some normalization. Setting

λ (1) = 1 is one such normalization. We can identify λ(sT ) up to the normalization because for two

different schooling levels s, s0 ≥ sT , s 6= s0,

E(T (ST ) | ST = sT , S = s)−E(T (ST ) | ST = sT , S = s0) = λ(sT )[E(f | S = s)−E(f | S = s0)].

Assuming λ(sT ) 6= 0, we may form the ratio

E(T (ST ) | ST = s0T , S = s)−E(T (ST ) | ST = s0T , S = s0)
E(T (ST ) | ST = sT , S = s)−E(T (ST ) | ST = sT , S = s0)

=
λ(s0T )
λ(sT )

for two values sT 6= s0T , both less than or equal to s, s
0. Therefore with one normalization we can identify

all of the λ(sT ), sT = 1, ..., S̄ − 1 (we cannot identify λ
¡
S̄
¢
because there is only one possible value of s

for ST = S̄).

Taking expectations with respect to ST alone we obtain

E (T (ST ) | ST = sT ) = µ (sT ) + λ(sT )E[f |ST = sT ].
8 (8)

Recall that we know λ(sT ), sT = 1, . . . , S̄ − 1, from the preceding argument. Subtracting (8) from (7) we
obtain

E(T (ST ) | ST = sT , S = s)−E(T (ST ) | ST = sT ) = λ(sT )[E(f | S = s)− E(f | ST = sT )]

so we can identify for s ≥ sT , sT = 1, . . . , S̄ − 1,

E(f | S = s)−E(f | ST = sT ) =
E(T (ST ) | ST = sT , S = s)−E(T (ST ) | ST = sT )

λ(sT )
. (9)

Let E(f | S = s) = as and E(f | ST = sT ) = bsT . We can form a matrix of the following identifiable

combination of parameters:
8Note that E(ε(ST )|ST = sT ) = E[E[ε(ST )|ST = sT , S = s]|ST = sT ] = 0.
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
aS̄ − b1 aS̄−1 − b1 ... ... ... a1 − b1

aS̄ − b2 aS̄−1 − b2 ... ... ... ∼
... ... ... ... ∼ ∼

aS̄ − bS̄−1 aS̄−1 − bS̄−1 ... ∼ ∼ ∼
∼ ∼ ... ∼ ∼ ∼


where “∼” in a cell denotes the absence of data on the entry. We also know as a consequence of E (f) = 0
that if we define Pj = Pr(S = j)

S̄X
j=1

ajPj = 0. (10)

Letting ePj be Pr(ST = j), we also obtain
S̄X
j=1

bj ePj = 0. (11)

Taking a weighted sum across row 1 of the matrix, we identify b1 since

S̄X
j=1

Pj(aj − b1) =
S̄X
j=1

ajPj − b1

S̄X
j=1

Pj = −b1

by (10) and the fact that
PS̄

j=1 Pj = 1. Going across the first row element by element, we obtain aj, j =

1, . . . , S̄. Going down the first column, we obtain the remaining bj, j = 1, . . . , S̄−1. Using (11) we identify
bS̄. Thus the model is fully identified except for λ

¡
S̄
¢
.

Attractive as these results are, there are three reasons to be cautious about estimates derived from this

identification strategy: (a) Age effects (maturation effects) may affect test scores independently of any

effect of schooling because persons may acquire life experiences that raise their test scores independently

of their schooling at the date of the test. Our procedure has to be modified to distinguish age effects

from schooling effects. (b) Persons start school at different ages. Less able people (those with lower f)

may start school at later ages, making an assumption of an identical school starting age for all persons

problematic. Simply conditioning on the starting age N to solve this problem is not satisfactory given

its likely dependence on f . (c) In principle there might be a separate N effect on test scores apart from

the dependence of N on f if there are discouragement effects (students older than their classmates may

feel inferior and be less motivated). The confluence of an endogenous N and independent age effects is

problematic.

Modeling the starting age N along with the schooling level S does not pose any conceptually new

problem as long as there are no age at test effects. We can use different (ST , N), (S,N) pairs and replace

(ST , S) in the preceding analysis. Data cells may thin out but the previous identification strategy works.

Allowing for age in addition to N produces a fundamental identification problem if we maintain the

“no return to school for dropouts” assumption. Observe that by definition ST = min {A−N,S}, so that
S, ST and A−N cannot be freely varied. A more general model that incorporates age and entry writes

the test score T as T (A, ST , S,N) where A is the age at the test, ST is the level of schooling at the
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date of the test, S is the final level of schooling attained and N is the age at which the person enters

school. For simplicity normalize N = 0 to be the “normal age” of starting school. If A and ST both affect

the measured test score directly, while S and N do not directly affect the test score but potentially are

stochastically dependent on latent ability f , we may write

T (A,ST , S,N) = µ(A, ST ) + λ(A,ST )f + ε(A,ST ).
9 (12)

Then conditioning on observable (A,ST , S,N) we obtain

E(T (A, ST , S,N)|A = a, ST = sT , S = s,N = n) = µ(a, sT ) + λ(a, sT )E(f |S = s,N = n) (13)

where we assume ε(A, ST ) is independent of all other variables. Observe that when ST < S, fixing N and

ST determines A:

A = ST +N (14)

This exact linear dependence does not apply to persons with completed schooling (ST = S). In that

subpopulation, S and ST cannot be independently varied so the control function identification strategy

previously developed breaks down but the exact linear dependence (14) does not hold so that we can

independently vary A and ST = S for each N . If we parameterize µ (A, ST ) and λ (A,ST ), we can identify

separate effects of age and schooling at the test date.10 With sufficient structure, we can extrapolate

µ (A,ST ) and λ (A,ST ) back to ages and schooling levels at schooling levels ST < S. This method is

pursued in Section 4.

In our data, there are effectively two starting ages N ∈ N = {0, 1}. Given our “no return to school
for dropouts” assumption, in the sample S > ST , people who start school one year later are also one

year older at schooling level ST than are people who start school at a normal age. We cannot identify a

separate N effect from an A effect.

If we condition on each value of N = n and repeat the preceding identification argument for each N ,

we identify µ (sT , n) and λ (sT , n) , s, s
0 ≥ sT from the sample S ≥ ST by conditioning on ST = sT and

N = n in (8). When N = 0, ST = A if schooling is incomplete at the test date (S > ST ). We identify

a joint schooling and age effect for each N . When N = 1, we can identify the effect of being one year

older on µ (sT ) and λ (sT ) for samples in which S > ST . This effect is indistinguishable from the effect of

starting one year later. We can test for an age (at test or entry) effect by testing µ (sT , 0) = µ (sT , 1) and

λ (sT , 0) = λ (sT , 1).11 This argument can be modified in a straightforward way to account for the case of

more than two elements in N .
While intuitively appealing, the method based on control functions does not exploit all of the infor-

mation in the S = ST sample. Data where S = ST is the more commonly occurring case. It is not
9If N causally affects the test, then (12) is modified to read T (A,ST , S,N) = µ (A,ST , N)+λ (A,ST ,N) f+ε (A,ST , N) .
10Thus with µ(A,ST ) = ϕ1(A) + ϕ2(ST ) and λ(A,ST ) = η1(A) + η2(ST ) we can break these linear dependencies. Multi-

plicative versions can work as well. This is the strategy used in section 4 to achieve identification of these effects. See the
closely related identification analysis of Heckman and Vytlacil (2001).
11Observe that for persons for whom S = ST , age at test is not restricted by (14). Thus we can in principle identify age

effects when we use S = ST observations, but we cannot use the control function method developed in this section to solve
the selection problem.
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straightforward to use the control function method to account for ceiling effects. When S = ST , it is

possible in principle to isolate separate A, N and S effects. We now present a different method designed

to analyze the entire sample more fully.

4 A Discrete-Continuous Econometric Model of Schooling and

Test Scores

This section develops a more explicitly structured semiparametric model that does not rely on special

features of the NLSY data and that enables us to condition more finely. The model also enables us to link

our work to more conventional models of schooling and wages, and identify separate S, A and N effects.

Initially we assume S = ST and then we extend the analysis to allow for the case S > ST .

Unlike the control function method developed in Section 3, the method discussed in this section

requires more than one test. Suppose that we have data on K (≥ 2) tests associated with different levels
of schooling S = s. Array the tests into a vector

T (s, x) = µ(s, x) +Q(s, x)

where the kth component of Q, Qk(s, x), has a factor structure Qk(s, x) = λk(s)f + εk(s), k = 1, ...,K,

s = 1, ..., S like the one used in sections 2 and 3. Exact stochastic specifications are given in section 4.1.

We use the following notation

T (s, x) =

 T1(s, x)

...

TK(s, x)


µ(s, x) =

 µ1(s, x)

...

µK(s, x)


and Q(s, x) =

 Q1(s, x)

...

QK(s, x)

 .

We initially work with Q and produce a semiparametric identification theorem for the distribution

of Q and other variables. Then we identify the distributions of the components of the Q. The X are

determinants of tests. We assume Q(s, x) ⊥⊥X throughout. We observe T (s, x) only if S = s. The

schooling states in this section can be defined in a sufficiently general way to include different schooling-

entry ages as different states. Other definitions for the states are possible (e.g. the Cartesian product of

schooling, entry age, schooling quality, etc.), so S can be interpreted in a general way.

In order to account for the endogeneity of schooling, we construct the following model of schooling

choice, which we adjoin to the system of test scores:

V (s) = ϕs(Z) + η(s), s = 1, . . . , S̄, (15)
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where V (s) is the utility associated with schooling level s, and Z is a vector of determinants of utility.

We assume that η =
¡
η(1), . . . , η(S̄)

¢
is absolutely continuous with support RS̄. This joint system of

test scores and choice equations is a mixed discrete-continuous choice model as in Heckman (1974a,b).

Optimal schooling is bs = argmaxs{V (s)}S̄s=1. The Z variables may be state-specific or general. Sufficient
conditions for nonparametric identifiability of versions of this model are available in the literature.12 We

present a new analysis.

We observe T (s, x) for each schooling level conditional on ŝ = s. We assume:

(Q(s, x), η) ⊥⊥ (Z,X), for all s = 1, . . . , S̄.
The (Q(s, x), η) have zero means and finite variances. (A-1)

(Q(s, x), η) for all s = 1, . . . , S̄ are absolutely continuous with support RK+S̄. (A-2)

Under these assumptions, we can write

Pr(T (s, x) < t|ŝ = s,X = x, Z = z) (16)

= Pr(Q(s, x) < t− µ(s, x)|V (s) > V (s0), s0 6= s, s0 = 1, ..., S̄), s = 1, ..., S̄,

where both t and T (s, x) are vectors.

Adapting an argument from Heckman and Honore (1990), for each choice ŝ = s we can trace out each

of the components of µ(s, x) over their supports for each corresponding component of t up to intercepts

which we can obtain by a limit argument presented below.13

In this paper we assume the following functional form for utility. For Z a 1 × J vector of variables

affecting choices we assume a linear-in-parameters model:

ϕs(Z) = Zγ(s).

We define

ϕs,s0(Z) = Z (γ(s)− γ(s0)) ,

and

η(s, s0) = η(s)− η(s0).

If the jth coordinate of γ(s) is zero, the variable does not affect the sth level of utility. We adopt the nota-

tional convention that the first coordinate of Z is the intercept. Array the contrasts of the unobservables

into a vector of length S̄ − 1 where the entry η (s, s) (= 0) is deleted:

η(s) =
¡
η (s, 1) , . . . , η

¡
s, S̄

¢¢
.

As a consequence of these assumptions, we may write
12Matzkin (1993) and Thompson (1989) consider the special case where utility functions are identical across choices. In

the linear-in-parameters case, they assume γ(s) = γ. See Cameron and Heckman (1998) for a more general analysis.
13The easiest way to see how this argument works is to integrate out all components of T except the kth. For different

(tk, x) values, we can trace out pairs that keep the left side of (16) constant. (Recall that we know this CDF). Applied
sequentially, this produces the components of µ (s, x) up to constants.
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Pr(T (s, x) < t|ŝ = s,X = x, Z = z) Pr(ŝ = s|X = x,Z = z)

= Pr(Q(s, x) < t− µ(s, x), η(1, s) < ϕs,1(z), . . . , η(S̄, s) < ϕs,S̄(z))

s = 1, ..., S̄.

(17)

We know the left-hand side of these expressions and seek to determine all of the parameters generating

the right-hand side including the joint distribution of the unobservables. We have already established

how to identify the components of µ (s, x) up to intercepts. These can be obtained without assuming any

structure for γ(s), s = 1, . . . , S̄.

First consider identification of the test system by a limit argument. We assume that the coordinates of

the contrast-in-choices vector are “variation free” or more precisely that they are measurably separated,

so they can be independently varied over their supports:

Support ([ϕs,1(Z), ϕs,2(Z), ..., ϕs,s−1(Z), ϕs,s+1(Z), ..., ϕs,S̄(Z)]) = RS̄−1

all s = 1, . . . , S̄,where the components are measurably separated with respect (A-3)
to each other (“variation free”).14

This assumption says that the support of the difference in the deterministic portions of the contrasts in

utility functions matches the support of the corresponding error terms and that we can independently

manipulate each argument holding the other arguments fixed. 15 As a consequence of (A-3) and our

choice of functional forms for ϕs (Z) , there exist limit sets Zs for each s = 1, . . . , S̄ such that as Z →
Zs, Pr(ŝ = s|Z = z) → 1 for s = 1, ..., S̄. These limit sets can be constructed by making coordinates of

Z arbitrarily large or small. In these limit sets, we can identify

Pr(Q(s, x) < t− µ(s, x)), (18)

for each s = 1, ..., S̄. Coordinate by coordinate, we can identify the intercepts of µ(s, x) since the mean

of each coordinate of Q(s, x) exists and is known.16 For each coordinate, we may form tk − µk(s, x), k =

1, ...,K, for each fixed s, x. From (18), in each limit set we may identify the joint distribution of Q(s, x)

from the variation in the tk which traces out the cumulative distribution function of Q(s, x), s = 1, ..., S̄.17

Turning to identification of the choice system, consider choice system s with S̄ − 1 contrasts

V (s)− V (c) , c = 1, . . . , S̄; c 6= s.

Define the set of variables that appear with nonzero coefficients in the s and c utility systems by index

sets on the Z and the associated γ coefficients:

Lc,s,c =
©
j|γj (s) 6= 0 and γj (c) 6= 0

ª
14See Florens, Mouchart and Rolin (1990) for a precise definition of measureable separability.
15The supports of both can be bounded by straightforward modifications of the initial assumptions. Then we require that

the supports match.
16We can alternatively use a median zero assumption.
17Use of these limit sets raises the possibility that identification is achieved only on null sets. Using a version of the

argument presented in Aakvik, Heckman and Vytlacil (1999) adapted to this context shows that this possibility is not
revelant.
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where γj(k) is the j
th coordinate of the kth system of utility coefficients associated with the jth component

of Z. The variables that are common to all (s, c) pairs, c = 1, . . . , S̄, c 6= s, are associated with the

subscripts in

Lc,s =
S̄\
c=1
c6=s

Lc,s,c.

Define the set of unique variables (relative to s, c) as those with nonzero coefficients in s or c but not both:

Lu,s,c =
©
j|γj (s) = 0 or γj (c) = 0 but not both

ª
.

These coefficients are unique within the (s, c) pair (in s or c, but not both). Many intermediate cases may

arise where variables are common between s and c but not between s and c0, for various c and c0 values
(c, c0 6= s).

Consider the binary choice between s and c. Suppose that (A-3) is satisfied. In particular suppose that

for all choices c0 (s, c 6= c0) apart from s and c there are variables with zero coefficients in γ (s) and γ (c)

with nonzero coefficients in γ (c0) that have full support in R. This produces (A-3) given our assumed
functional form for utility. The following explicit exclusion condition produces identification:

There are nonempty sets of indices
Bs,c,c0,c00 = {j | j > 1, j /∈ Lc,s,c, j /∈ Lu,s,c, j ∈ (Lc,c0,c00 ∪ Lu,c0,c00)} for all c0, c00 6= s, c. (A-3’)
Thus for some γj (c

0) , γj (c
00) , and j > 1,with zero coefficients in s and c, the support

of the associated Zj is R, for all c0, c00 = 1, . . . , S̄, c0, c00 6= s, c.

Setting these variables to limit values, we obtain a limit binary choice model

Pr (V (s) > V (c) |Z) = Feη(s,c)
Ã
(γ (s)− γ (c))Z

(σ (s, c))
1
2

!

where σ (s, c) = V ar (η (s)− η (c)) and eη(s, c) = η(s,c)

(σ(s,c))
1
2
. By an argument due to Manski (1988), if we

assume that

Z ∈ RJ is of full rank,18 (A-4)

we can identify
γj (s)− γj (c)

(σ (s, c))
1
2

j ∈ Lc,s,c

and either
γj (s)

(σ (s, c))
1
2

or
γj (c)

(σ (s, c))
1
2

, j ∈ Lu,s,c,

for variables excluded from s or c (but not both). By virtue of (A-3), we can identify the marginal

distribution of η (s, c) = η (s) − η (c) up to scale. The mean of this distribution is assumed to be zero.
18Clearly this is a sufficient condition. We only need to have the components of Z with nonzero coefficients possessing

full rank, i.e., the components of {j | j ∈ (Lc,s,c ∪ Lu,s,c)} .
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This allows us to identify the intercept of the s, c contrast. In addition, we can identify the marginal

distribution of η (s)− η (c) up to scale, Feη(s,c), s = 1, . . . , S̄, c = 1, . . . , S̄, c 6= s.

We can repeat this argument for each utility contrast (s with c0 6= c), and identify either contrasts in

parameters (for those common across all utility contrasts) or unique parameters. Using parameters that

are unique across the Lu,s,c sets for various s values we can identify ratios of variances from ratios of utility

contrasts. For example, suppose that γj (s) = 0 while at the same time for various c values, γj (c) 6= 0.
At the same time suppose γj (s

0) = 0 but γj (c) 6= 0 then we can identify
γj(c)

σ(s,c)
1
2

γj(c)

σ(s0,c)
1
2

=

·
σ (s0, c)
σ (s, c)

¸ 1
2

.

We can repeat this argument for all s = 1, . . . , S̄; c = 1, . . . , S̄ to identify different combinations of

parameters. Depending on the various configurations of Lu,s,c, Lc,s0,c, s 6= s0, c = 1, . . . , S̄, c 6= s or s0

respectively, we can identify different ratios of variances.

Exclusions of the type just utilized are not strictly required to identify the model. As noted by Cameron

and Heckman (1998) and extended by Aakvik, Heckman and Vytlacil (1999), the choice model can be

identified with no exclusions if the contrast vectors are linearly independent:

[γ (s)− γ (c)]S̄s,c=1,c6=s is of full rank, and the number of continuous Zvariables (A-5)
with support in Ris S̄ − 1or greater.

Assumption (A-5) constitutes an alternative to identification by exclusion. The essential idea in this

argument is that we can fix each contrast and vary the others (off to limit values), achieving a limit

binary choice model. In this case (under A-4), we can obtain identification of the marginals Feη(s,c),
s = 1, . . . , S̄; c = 1, . . . , S̄, c 6= s and the normalized contrasts

γ (s)− γ (c)

σ (s, c)
1
2

, c = 1, . . . , S̄, c 6= s, s = 1, . . . , S̄.

However in this case, without exclusions, we cannot identify the ratios of variances obtained with exclu-

sions. For details of this argument see Cameron and Heckman (1998) and Aakvik, Heckman and Vytlacil

(1999).

From exclusion restrictions or rank conditions on the coefficients of contrast vectors in utilities, we can

obtain identification of the choice system and the utility contrasts up to scale. We state a more general

result for the joint choice-test score system. We can identify the full joint distribution of
¡
Q (s, x) , η(s)

¢
under the following assumption:

Support ([ϕs,1(Z), ϕs,2(Z), ..., ϕs,s−1(Z), ϕs,s+1(Z), ..., ϕs,S̄(Z), µ(s, x)]) = RS̄−1+K ,
s = 1, . . . , S̄, an assumption that the components are measurably separated (A-6)
(“variation free”) with respect to each other.

This is an assumption guarantees that we can vary the coordinates of the
¡
ϕs,s0 (z) , µ

¢
freely. We can

obtain the ϕs,s0 (z) (up to scale) using either exclusions or rank conditions. Exploiting this assumption,

we obtain the following theorem.
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Theorem 1. Under assumptions (A-1)-(A-4) and (A-6), µ(s, x), γ(s)− γ(c) (up to scale [σ(s, c)]
1
2 ), s =

1, ...S̄, c = 1, ..., S̄ and the joint distributions of (Q(s, x), η(s)) (the second coordinate up to scale) s = 1, ...S̄

are identified.

Proof. We have already established identification of µk(s, x), k = 1, ..., K, γ(s)−γ(c)
[σ(s,c)]

1
2
and the marginal

distribution of η(s, s0) up to scale and joint distributions of Q(s, x). Under (A-6), we can vary each
component of ϕs,s0(z) and µ (s, x) for each s0 = 1, ..S̄, s 6= s0, holding the other components fixed. For all
possible values of upper limits, we can trace out the joint distribution of (Q(s, x), η(s)) nonparametrically.

We can do this for all s.¥
With exclusion restrictions we can improve on Theorem 1 by identifying ratios of the scale

h
σ(s,c)
σ(s0,c)

i 1
2

for some c and s, s0 as previously discussed.Note that either (A-3)0 or (A-5) can be used to implement
(A-3) but (A-3) is the key condition.

This proof can be adapted to the case where T are indicator functions of latent variables using the

argument in Carneiro, Hansen and Heckman (2003). Thus we can nonparametrically identify the distribu-

tion of the unobservables generating choices and test scores. In addition we can nonparametrically identify

the µ (x) and the contrasts in utilities up to scale. We next turn to a factor analysis of the distributions

of unobservables.

4.1 Factor Models

In this paper we assume that the error term in the utilities has a one-factor specification,19

η (s) = α(s)f + u(s), s = 1, . . . , S̄. (19)

Define the 1× S̄ vector u as

u =
¡
u (1) , .., u

¡
S̄
¢¢

where the u (s) are mutually independent. We now assume K ≥ 2 test scores at each schooling level with
a factor structure Qk(s, x) = λk(s)f + εk(s), k = 1, . . .K , so test scores can be written as

Tk(s) = µk(s) + λk(s)f + εk(s) k = 1, . . .K. (20)

The µk(s) may be functions of X. For the rest of this section, we keep dependence on X implicit for the

sake of notational simplicity. Array these K tests into a vector equation system for each schooling level

s :

T (s) = µ(s) + λ(s)f + ε(s), s = 1, . . . , S̄ (21)

where T (s) = (T1(s), ..., TK(s)) , µ(s) = (µ1(s), ..., µK(s)), λ(s) = (λ1(s), ..., λK(s)) , and ε(s) = (ε1(s), ..., εK(s)) .

We assume that the components of ε(s) are mutually independent within and across each s and are inde-

pendent of f.
19Heckman (1981) and McFadden (1984) use factor structure error terms for discrete choice models. We extend their

models to accomodate both discrete and continuous random variables.
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We assume for the factor structure model

Independence for the full model : (X,Z)⊥⊥ (f, u, ε(s)) ; f⊥⊥u⊥⊥ε (s) , s = 1, . . . , S̄. (A-7)

Error terms u(s)for the choice model are mutually independent and have (A-8)
V ar (u (s)) = σ2 (s) , s = 1, . . . , S̄.

Some normalizations are needed for identification of the choice model. One possible normalization is

σ2 (s) = 1. Other normalizations are possible and are developed below.

The input for the factor analysis is the joint distribution of the unobservables produced from Theorem

1. Since we can only identify contrasts in latent utility levels, there are S̄ systems with K tests each and

S̄ − 1 utility-normalized contrasts.
The utility contrasts and the test scores form S̄ systems of K + S̄ − 1 random variables to which

standard factor analysis (e.g. Anderson and Rubin, 1956) can be applied. Initially we assume no exclusion

restrictions so that ratios of variance of η (s)−η (c) and of η (s0)−η (c) are not known, (s 6= s0). We develop
the case of exclusion restrictions at the end of this section. Under these definitions and normalizations,

we obtain from (19) and (20) the following system of covariances for each system s = 1, . . . , S̄

σ (s, s0) = V ar (η (s, s0)) = (α (s)− α (s0))2 σ2f + σ2 (s) + σ2 (s0) (22)

Cov(η(s,s0),η(s,s00))

σ(s,s0)
1
2 σ(s,s00)

1
2
=

(α(s)−α(s0))(α(s)−α(s00))σ2f+σ2(s)
σ(s,s0)

1
2 σ(s,s00)

1
2

s = 1, . . . , S̄, s 6= s0, s00.
(23)

Recalling that Qk(s, x) = λk(s)f + εk(s), we obtain

Cov(Qk(s),η(s,s
0))

σ(s,s0)
1
2

=
λk(s)(α(s)−α(s0))σ2f

σ(s,s0)
1
2

s0 = 1, . . . , S̄, s0 6= s, k = 1, . . . ,K
(24)

Cov(Qk(s), Qk0(s)) = λk(s)λk0(s)σ
2
f k 6= k0. (25)

The left hand sides of (23), (24) and (25) are known as a consequence of Theorem 1. If we make one

normalization, e.g. λ1(1) = 1, and if the conditions of Theorem 1 apply we can identify all of the contrasts
α(s)−α(s0)
σ(s,s0)

1
2
, s0 = 1, . . . , S̄, s0 6= s, s = 1, . . . , S̄, and the factor loadings λk (s) , s = 1, . . . , S̄, k = 1, . . . ,K, and

σ2f , provided that K ≥ 2 and K + S̄ − 1 ≥ 3.
To see this, suppose s = 1. From the system (24) with s = 1, we may form the ratios

Cov(Qk(1), η(1, s
0))

Cov(Q1(1), η(1, s0))
= λk(1) k = 1, . . . ,K.

From (25), for s = 1 we can obtain σ2f since we know λk(1) and λk0(1), for all k, k0 = 1, . . . ,K assuming

one normalization. From (24), given λk(1) and σ2f we can obtain
α(s)−α(s0)
σ(s,s0)

1
2
, s0 = 1, . . . , S̄. In this analysis

we assume that λk(s) 6= 0, k = 1, . . . ,K, s = 1, . . . , S̄.20

20If this is not so then the effective dimension of the test system is reduced to the number of tests with nonzero factor
loadings. A comparable analysis applies to the utility system.

14



Turning to the system s = 2, armed with σ2f , we can identify all factor loadings λk(2), k = 1, . . . ,K,

from (24) for s = 2, using our knowledge of α(1)−α(2)
σ(1,2)

1
2
, and σ2f . From (23), for s = 2, s

0 6= 1, we can identify
α(s)−α(s0)
σ(s,s0)

1
2
, s0 = 3, ..., K. By the same line of reasoning, we can identify all of the λk(s), k = 1, ...,K, s =

1, ..., S̄.

Using (23), we can identify

σ2 (s)

σ (s, s0)
1
2 σ (s, s00)

1
2

=
Cov (η (s, s0) , η (s, s00))

σ (s, s0)
1
2 σ (s, s00)

1
2

− (α (s)− α (s0)) (α (s)− α (s00))σ2f

σ (s, s0)
1
2 σ (s, s00)

1
2

(26)

since we know all of the right hand side terms either from data or the preceding argument. If we normalize

σ (s, s0) = 1 and σ (s, s00) = 1 for all s, s0, we identify σ2 (s) , s = 1, ..., S̄.21 If we normalize σ2 (s) = 1
2
, then

σ (s, s0) = (α (s)− α (s0))2 σ2f + 1.

We have identified (by the previous argument)

(α (s)− α (s0))σf

[σ (s, s0)]
1
2

= τ (s, s0)

where

|τ (s, s0)| < 1.
Thus this normalization is equivalent to the normalization

σ (s, s0) =
1

1− [τ (s, s0)]2 > 1.

When S̄ +K − 1 < 3, the argument breaks down. Since S̄ = 2 is the minimum number of choices for

the system to be interesting, the breakdown comes with one test and two choices.22 In this case, the only

information is in (24) which is

λ1(1)(α(1)− α(2))σ2f

[σ (1, 2)]
1
2

λ1(2)(α(2)− α(1))σ2f

[σ (1, 2)]
1
2

.

Even normalizing λ1(1) = 1, we can only identify λ1(2) and the combination of parameters (α(1)−α(2))σ2f
up to an unknown scale. Additional normalizations must be made to identify these components separately.

From the joint distribution of (17) we can identify the distribution of f and the distributions of the

uniqueness (ε1(s), ..., εK(s), and u(s), s = 1, ..., S̄). To see why, recall that fromKotlarski’s Theorem (1967)

that if

X1 = Y + Z1

X2 = Y + Z2
21Obviously the choice of these particular normalizations is arbitrary.
22In that case we lose the information in (23) and (25).
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where Y ⊥⊥Z1 ⊥⊥Z2, from the joint distribution of (X1,X2) we can identify the distributions of Y, Z1, Z2
under a mean zero assumption for Z1 and Z2 (E(Z1) = 0;E(Z2) = 0) or for Y (E(Y ) = 0).From the

analysis of Theorem 1 we know the joint distribution of T (s), s = 1, ..., S̄, k = 1, ..., K. Using (20) and

invoking the normalizations previously discussed in the text following equation (26), we can write for

λk(s) 6= 0,
Tk(s)− µk(s)

λk(s)
= f +

εk(s)

λk(s)
k = 1, ...,K, s = 1, . . . , S̄.

The expression on the left is known since λk(s), µk(s), s = 1, ..., S̄, k = 1, ..., K, are identified by the

previous argument. Applying Kotlarski’s theorem we can identify the distribution of f nonparametrically

and the distributions of εk(s)
λk(s)

, k = 1, ...,K, s = 1, ..., S̄, and hence the distributions of εk(s), k = 1, ...,K, s =

1, ..., S̄.

From the joint distributions of

η (s, s0)

(σ (s, s0))
1
2

=

Ã
α (s)− α (s0)

(σ (s, s0))
1
2

!
f +

u (s)− u (s0)

(σ (s, s0))
1
2

s0 = 1, ..., S̄, s0 6= s

we obtain a two-factor model with the distribution of the first factor (f) known from the preceding analysis

(as well as its factor loading). u (s) is a second factor that is common across all outcomes based on s-

contrasts and its factor loading is known by the normalizations previously presented. u (s0) is independent
of u (s) and u (s00) , s00 6= s, s0 and f by assumption. Using deconvolution we can remove f from the

marginal distributions of η(s,s0)

(σ(s,s0))
1
2
and apply Kotlarski’s theorem to identify the joint distribution of u (s)

and u (s0) , s0 = 1, ..., S̄, s0 6= s.23 The model is strongly overidentified when going across s systems.

Thus far we have not exploited the information available through exclusion restrictions. Suppose that

there is at least one variable in V (s) that does not appear in V (s0) , s, s0 = 1, . . . , S̄, s0 6= s, with full

support (R). Then we can identify σ (s, c) , s 6= l, s = 1, . . . , S̄, c = 1, . . . , S̄ up to a common scale. Thus

we can identify the α (s)− α (s0) up to a common scale for all s, s0. With this information in hand, fewer
normalizations have to be imposed. Thus we can relax one of the normalizations given under equation

(20). If the exclusions are only partial, we identify various σ (s, c) up to different common scales depending

on the particular exclusions employed. We do not develop this topic further in this paper.

Recall that we have defined “S” in a general way. It can consist of different combinations of years of

schooling completed (S) and age at entry date (N) and other states. Thus we can work with an indicator

variable D (S,N, ...) that defines schooling states for all S,N, ... combinations as discussed in Section 3.

This is the model that we estimate.

23Since we know the distribution of f from the analysis of the test score data, we can write the density of
η(s,s0)

(σ(s,s0))
1
2
which

is known by virtue of Theorem 1 as

gη

Ã
η (s, s0)

(σ (s, s0))
1
2

!
= gf

Ã
α(s)− α(s0)

(σ (s, s0))
1
2

f

!
∗ gu

Ã
u(s)− u(s0)

(σ (s, s0))
1
2

!
where * denotes convolution. We know the first term on the right-hand side (including the factor loadings). Thus we can form

the characteristic functions of
η(s,s0)

(σ(s,s0))
1
2
, α(s)−α(s0)
(σ(s,s0))

1
2
f and using the inversion theorem identify the density of u(s)−u(s0)

(σ(s,s0))
1
2
, s0 =

1, ..., S̄, s0 6= s. For each s system, u(s) constitutes a separate factor apart from f .
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4.2 Allowing for Tests Taken During Schooling and Age Effects

The preceding framework is for the analysis of data on completed schooling (S = ST ). Let ST be schooling

at the test date. From the assumption that persons who drop out do so only once24, and recalling that

the age at the test date is A, we obtain ST = A−N (from (14)) if the individual is still in school at the

date of the test. Conditioning on N and A, ST is a number, not a random variable.

Assuming that sampling is random with respect to A, we can write the density of ST as the convolution

of N (which we model) and a random variable A independent of N (and all other variables) whose

distribution we know from the sampling rule. We abstract from any issues of selective survival since the

sample is young.

The density of ST conditional on X = x and Z = z is

g (sT | X = x,Z = z) =
ĀX

a=A

gN (a− sT | X = x,Z = z)P (A = a)

where
£
A, Ā

¤
is the range of survey ages (14-21 in the NLSY data we analyze) and

P (A = a) =
1

Ā−A+ 1
.

The density of test scores in the preceding section is conditional on ST = S (an event which was

assumed to hold with probability one). Now we postulate that the event ST < S (further schooling after

the test) may occur. Conditional on ST < S, ST is a degenerate random variable given A,N . Thus ST is

exogenous given A,N and ST < S (i.e. ST ⊥⊥f | N,A, ST < S).

We may pool the data on ST for ST < S with the data on ST for ST ≥ S using this insight. Details

about the likelihood for the pooled data are given in Appendix C.

4.3 Accounting for Ceiling Effects

In the NLSY data a substantial number of test score observations “hit the ceiling,” i.e., they achieve the

maximum score on a particular test component. This is documented in Table A-3 (see Appendix A). To

account for these ceiling effects use a latent test score T ∗j so that

Tk(s) =

Tk(s) if T ∗k (s)< ck,

ck if T ∗k (s)≥ ck,

where ck is the maximum attainable score on test component k. Let the latent test score for an individual

with schooling level s at the test date be

T ∗k (s) = Xβk(s) + λk(s)f + εk(s)

24As previously noted this assumption is supported for schooling through high school in Cameron and Heckman (2001).
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whereX is a set of observed covariates and f is the unobserved factor. Identification with censored random

variables can be established by a straightforward modification of Theorem 1 given sufficient support on

X.25

5 Empirical results

We now present findings from estimating the joint schooling and test score model on the NLSY data

discussed in Appendix A. We consider four completed schooling groups: high school dropouts, high

school graduates, individuals with some college, and four-year college graduates. We group GEDs with

high school dropouts.26 We group associate’s degrees (junior college graduates) with some college. In

addition we group respondents into two categories by age at entry into schooling. Let N = 0 if an

individual began schooling at age 6 or earlier; let N = 1 otherwise.27 We estimate a choice model with

4× 2 = 8 potential outcomes (combinations of completed schooling and age at entry).
Over two-fifths of the sample (870 individuals, or 42.11% of the sample) had yet to complete high

school as of July-October 1980 when the ASVAB was administered. As a consequence we are able to

break up this group into three subgroups of schooling level at the test date — those with nine years of

schooling or less (205), those with ten years of schooling (322), and those with eleven years of schooling

including some dropouts with more than eleven reported years of schooling (342). We are thus able to

trace out schooling and ability effects for six levels of schooling, including high school graduation and

college attendance. Appendix A describes the features of our sample and the variables used to estimate

the models.

5.1 Control Function Estimates

We first present nonparametric estimates from the control function estimators outlined in Section 3.

Appendix B describes the econometric procedure used to produce the estimates. It is written for the

specific case analyzed in this paper, with six values of ST and four values of S.

Tables 1 and 2 present estimates for the simple case analyzed at the beginning of Section 3, where

we do not control for age effects or endogeneity of entry into schooling. Table 1 reports estimates of

the factor loadings λ(sT ). Since the model is overidentified we can compute estimates of λ(sT ) using
25A prototype for this proof is in Carneiro, Hansen and Heckman (2003), who show how to identify a related model under

the case that analysts only observe 1 (T ∗k (s) < ck) or 1 (T ∗k (s) ≥ ck) . Extension to the censored case is straightforward and

for the sake of brevity is omitted here.
26The GED is an exam certification for high school equivalency for those who do not earn the degree the traditional route

by finishing high school. Our grouping is based on work by Cameron and Heckman (1993).
27Of the 1,404 individuals in the “normal/ahead” category, (N = 0) 1,087 (77.42%) entered school at age 6 and 317

(22.58%) entered school at an earlier age. Since we model choice of schooling and age at entry jointly, further stratifying into
3 age-at-entry categories would produce a model with 12 possible choices and some cells would be very small. Specification
checks suggest that combining the “normal” and “ahead” groups is fairly innocuous.
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information for different completed schooling groups.28 In Table 1 both the unrestricted estimates and

estimates obtained by imposing the overidentifying restrictions using a minimum distance approach are

shown.29 The χ2-statistics do not reject the overidentifying restrictions. Recalling that λ(1) has been

normalized to one, the estimates of the remaining λ(sT )’s indicate a decreasing effect of latent ability on

test scores as schooling at the date of the test increases (the estimates of λ(sT ) are decreasing with sT ).

Table 2 reports the minimum distance estimates of the intercepts and control functions. Again the χ2-test

fails to reject the overidentifying restrictions implied by the model. Estimated schooling effects (for the

average person, with f = 0) range from 3.61 to 9.02 AFQT points per year of schooling. The estimates

imply an expected test score function which is roughly linear in schooling. As expected, the estimates of

the control functions (which are conditional expectations of the factor f) are increasing in schooling. The

control functions for the different completed schooling categories are clearly statistically different from

one another. We identify the scale of f by normalizing λ(1) = 1. Thus, any comparisons are conditional

on this normalization, a feature shared with the structural estimates reported below.

We can interpret λ(sT ) [E[f |S = s]−E[f |S = s0]] as the expected difference in test scores for two
individuals with the same schooling at the test date, sT , but with different levels of completed schooling.

The fact that λ is declining in sT implies that the test score difference between individuals with different

completed schooling levels declines with schooling at the test date. In other words, the test magnifies

differences in latent ability at low schooling levels and dampens differences at higher schooling levels.30

Tables 3 and 4 present nonparametric control function estimates for the case where f depends on the

age of schooling entry, E(f |N = n, ST = sT ), but N does not otherwise enter the model. In this case

we can identify λ(S̄) by differencing test scores conditioning on fixed ST , S = S̄ and varying N = 0, 1.

Appendix B.1 presents the estimation procedure used to construct these estimates. Knowing λ(S̄) we can

identify µ(S̄). Table 3 reports the loadings estimated using the minimum distance approach. Again we

fail to reject the overidentifying restrictions. In addition, the pattern of declining estimates with schooling

is still present. The loading for college λ(6) is estimated to be zero. This is most likely caused by the

presence of ceiling effects as this pattern is not found to the same extent using the structural model

(see next section). Table 4 presents the estimated intercepts and control functions. There is now less

evidence for the restrictions implied by the model (the p-value for the χ2-test is 0.01). However, the

estimated test score function (assuming f = 0) is quite similar to the one estimated without entry effects

— especially during the high school years before diverging slightly at the “Some College” level. Estimated

schooling effects therefore remain high, between 2.37 and 8.93 AFQT points per year of schooling. The

control functions now depend on both schooling and entry age. As expected the estimates are increasing in

completed schooling and entry state (individuals who start at an older age have on average lower cognitive

ability). Note, however, that entry state has a much smaller effect for the “Some College” and “College”

category than for the lower schooling categories.
28We obtain six different estimates of λ(2) by comparing different completed schooling groups following the discussion in

section 3.
29Since we can only identify ratios of the λ(sT ) we have normalized λ(1) to one.
30This could be due to ceiling effects. The structural model estimates reported in the next section takes ceiling effects

into account.
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Table 5 presents estimated intercepts and control functions for a model allowing direct N−effects on
the test score in addition to controlling for potential dependence of f on N . As discussed in Section 3,

estimating a model controlling for both entry age N and age at the test date A requires more structure

in order to break the fundamental identification problem resulting from the confluence of N and A. The

estimated intercepts µ(N,ST ) are uniformly larger for late-starters (who are older when they take the

test) than they are for those who begin their schooling at the normal time.31 Recall, however, that if there

are independent age effects, then the difference µ(1, ST ) − µ(0, ST ) captures those effects as well as any

discouragement effects. As noted in Section 3 we cannot identify an independent age effect.32 However,

we can reject the joint hypothesis of no A and N effects. The evidence points to a much stronger role

for age (maturation) in influencing test scores than any discouragement effects from being held back as

people who are older at any schooling level have higher test scores.

In the next section we present estimates from the structural, semi-parametric model discussed in

Section 4. Taking a structural approach to the problem we can estimate a more general model of schooling
31Note that in order to estimate the model we must restrict µ(ST , 0) = µ(ST , 1) for some ST . We report estimates for the

model imposing the restriction for ST = 5.To see why we most impose equality between at least one pair of intercepts, note
that the moment conditions for this case are (letting T̄ denote the conditional mean of T and c (s, n) = E [f |S = s,N = n]):

T̄ (s, sT , n) = µ(sT , n) + λ(sT )c(s, n), ∀s, sT , n, (27)

where c(s, n) ≡ E[f |S = s,N = n]. In the sample, n = 0, 1 and s = 1, 2, 3, 4. This gives us (8− 1) = 7 control functions
to estimate since the weighted sum of the control functions is zero. Note that given sT and n we have a maximum of four
conditions for determining µ(sT , n):

T̄ (s, sT , n) = µ(sT , n) + λ(sT )c(s, n), s = 1, . . . , 4. (28)

How much data is needed to identify the control functions? Suppose we consider only one sT value , say sT = 1, and

n = 0, 1. This yields eight moment conditions:

T̄ (s, 1, 0) = µ(1, 0) + λ(1)c(s, 0), s = 1, . . . , 4,

T̄ (s, 1, 1) = µ(1, 1) + λ(1)c(s, 1), s = 1, . . . , 4.

Note that under our previous assumptions we had µ(1, 0) = µ(1, 1) ≡ µ(1). If this restriction holds the model is identified,
since by taking contrasts we can identify the 7 differences c(s, 0) − c(4, 1) and using the sum restriction on the control
functions we get that all of the c(s, n) are identified and then the single intercept µ(1) is identified. Recall the argument in
Section 3.
If we allow for separate intercepts, µ(1, 0) 6= µ(1, 1), the model is no longer identified, since we can now only identify the

differences c(s, 0) − c(4, 0) and c(s, 1) − c(4, 1). Thus, we can only identify six differences and so we cannot identify the
control function elements. Note that this problem persists no matter how many sT values we use. We can only identify the
six differences mentioned above. To obtain the required normalization we can restrict µ(sT , n = 0) = µ(sT , n = 1) for one

sT value.
32Given our “no return to school for dropouts” assumption, people who start school one year later are also one year older

at schooling level ST than are people who start school at a normal age if they have not completed their schooling at the test
date (S = ST ). However, in order to estimate the model we must include individuals with completed schooling at the test
date (S = ST ) in order to observe the boundary group S = 1. Conditioning on the entire sample means that varying N is
not equivalent to varying A and, even in the absence of N effects, we cannot identify an independent age effect using this
procedure.
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and test scores allowing for both age effects, endogenous entry into schooling and testing ceiling effects.

We can also condition on covariates such as family background and local labor market variables which

may influence the choice of schooling. However, the estimates from the control function approach are in

broad agreement with estimates from the structural model.

5.2 Estimates From the Structural Model

We now present empirical results from the structural model of schooling and test scores presented in Section

4. We use Bayesian MCMC methods to estimate the sample likelihood for the model of Section 4. Details

of the algorithm are presented in Appendix C. Our use of Bayesian methods is only a computational

convenience. Under our identifying assumptions, the priors we use are asymptotically irrelevant. Our

identification analysis is strictly classical.

Table 6 reports exclusion and inclusion restrictions for each equation of the structural model. The com-

mon variables in the choice system (included in all but the “college/behind” index) are family background

- urban status, broken home status, number of siblings, southern dummy, mother’s and father’s education,

family income - and birth cohort dummies. Choice-specific variables are: local wage and unemployment

rate for high school dropouts, high school graduates, and those with some college for equations with the

corresponding schooling groups, and tuition and distance to four-year college in the college equations.

Quarter-of-birth dummies are included in the “behind” equations. We invoke identification assumption

(A-5) because we lack exclusions. We adopt linear-in-parameters utility functions.

We parameterize the latent test score equations as follows:

T ∗k (s) = Xβk(s) + λk(s)f + εk(s), k = 1, ..,K; s = 1, .., S̄T

where X is a set of observed covariates, including age, which we restrict to have a linear effect. Covariates

in the test score equations include family background variables, age (as of December 31, 1980), and

a dummy variable for in-school status at the test date. We estimate twenty-four test equations: four

equations for each AFQT component (Word Knowledge, Paragraph Comprehension, Arithmetic Reasoning

and Mathematics Knowledge) for each of six levels of schooling at the test date.33

The computational algorithm used to estimate the model parameters is discussed in detail in Appendix

C. Due to space constraints detailed parameter estimates of the models are posted at

http://home.uchicago.edu/~kjmullen/Schooling_JOE.htm.

5.2.1 Model Fit

We first discuss the fit of the estimated model to the data. Tables 7 and 8 describe the fit of the model to

the data for the schooling choice and test systems, respectively. The fit reported in Table 7 is quite good

both overall and in partitions of the data on selected covariates. Figures 1(a)-(f) plot the fitted AFQT
33In addition to the covariates above we included a dummy variable in the test score equations for having completed

strictly less than 9 years of school to allow for possible heterogeneity in the grade school and ninth grade composite group;
the coefficient on this dummy was insignificant for all tests.
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test score distribution against the actual empirical CDF for each schooling group. We pass χ2 goodness of

fit tests at conventional levels of significance for most groups though the figures reveal a slight tendency

to underpredict scores for the lowest schooling category and to overpredict test scores for the highest two

schooling groups. The goodness of fit statistics are reported in Table 8. The fit is worst for the most

heterogeneous groups, “ninth grade or less” and “some college.” In fact, the poor fit in the “some college”

category causes us to fail the overall test of fit.34 Excluding that group we would pass the overall test.

5.2.2 Estimated Cognitive Ability Distribution

Figure 2 displays the estimated latent ability or factor distribution plotted against “residualized AFQT”

(constructed by running an ordinary least squares regression of standardized AFQT score on family

background and cohort dummies). Recall that the location and scale of the latent ability distribution

must be set since they are not identified in the model. This is a standard result in factor analysis.

Recall that we set the location by constraining the unconditional mean of the factor to be zero (note the

residualized AFQT distribution also has mean zero by construction). The scale is set by a normalization

in one of the test score equations. Specifically, we set to 1 the coefficient on the factor in the equation

for the Word Knowledge test component (standardized to have within-sample mean 0 and variance 1)

estimated for individuals who had completed eleven years of schooling at the test date.35

The estimated factor density is not normal and closely tracks but does not completely resemble the

conventional residualized AFQT density. Residualized AFQT computed by OLS (not accounting for

schooling or selection effects) is an imperfect measure of cognitive ability. While the mean of the factor is

fixed to 0, the estimated median, 0.1158, is positive, so that more than half of the population has above

average ability. However the estimated range of the factor distribution is skewed negative: a person who

is at the 2.5th percentile in ability is more than half a standard deviation further away from the average

(at −1.4846) than a person at the 97.5th percentile (with ability 1.1131).

5.2.3 Allowing for Age and Endogenous Entry Dates

By using the sample S = ST , we break the dependence between A and N given by (14). We parameterize

age effects on test scores by assuming

λ(A,S) = λ(S)36

µ(A,S) = β1 (S)A+ β2 (S)

where β1 (S) and β2 (S) are unrestricted functions of S. In this paper we explicitly model the relationship

between entry date N and latent ability f . The model specifies a joint S ×N space. How important is it

to account for endogeneity of N ? Figure 3 plots the distributions of latent ability f conditional on entry

status N . Note that individuals who are behind their peers on average have lower latent ability than their
34The P value for the overall fit of the model excluding some college is 0.1050.
35The estimated standard deviation of the factor is 0.7027.
36Attempts to estimate age-dependent λ led to very imprecise estimates.
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counterparts who are age-grade normal or ahead, especially those who do not attend any college. Failing

to correct for endogenous entry effects would lead us to underestimate the effect of cognitive ability on

dropping out versus graduating high school, especially at lower levels.37

Figure 4 plots the estimated age at test effects for each N ∈ N = {0, 1} group. The estimated
maturation effects are roughly constant across ages. As in the control function estimates, the net effect

of age at the test on measured test scores is positive.

5.2.4 Schooling Behavior

The structural approach models the schooling decision explicitly. Thus we can estimate the relationship

between cognitive ability f and schooling choice. Correcting for endogenous schooling effects on AFQT

turns out to have some interesting implications for inference about the effects of ability on schooling

choice. Figure 5 (a)-(b) plots schooling choice probabilities as a function of observed ability for a simple

multinomial choice model that conditions on residualized AFQT (i.e., observed minus predicted AFQT,

where predicted AFQT is formed by regressing standardized raw AFQT score on family background

characteristics and cohort dummies, not correcting for schooling effects), stratified by entry age. This

model assumes that residualized AFQT is a perfect proxy for latent ability so
PK

k=1 Tk(s)−Xβ = α1+α2f

where α1, α2 are constants. In this conventional specification, measured ability is a strong predictor of

schooling decisions, especially high school dropout and college-going decisions. For those who are age-

grade normal or ahead of their age-peers in their schooling, the probability of dropping out conditional

on a low residualized AFQT score (e.g., a score of -1.8 at the 2.5th percentile) is about 31.9% compared

to the population rate of 10.7%. For individuals who are behind their peers the difference is even more

pronounced: the predicted probability of dropping out conditional on a score at the 2.5th percentile is

57.7%, compared with population a rate 27.2%. At the upper end of the AFQT distribution, the estimated

probabilities of graduating college with an AFQT score of 1.46 at the 97.5th percentile are 71.2% and

67.5% for the “normal/ahead” and “behind” groups, respectively. The corresponding population rates are

33.9% and 21.6%, respectively.

Figures 6 (a)-(b) plot estimates from the model of Section 4. For small values of the factor f (i.e., at

the 2.5th percentile corresponding to the estimated factor distribution) the probabilities of dropping out

of high school (21.2% and 42.8%) are almost 11 and 15 percentage points smaller than the comparable

probabilities estimated by the simple model above. Larger factor values imply college probabilities of

65.8% and 56.9% which are just over 10 percentage points lower than those estimates produced by the

model using residualized AFQT.

Aside from measurement error bias, there is a fundamental econometric problem associated with

estimating a schooling choice model which conditions on a measure of ability which has been constructed

without accounting for reverse causation (i.e., that schooling affects measured ability). Ignoring the
37Note that in the structural model we do not allow for direct N -effects on test scores, which would increase the dimension

of the test score system to 2 × 4 × 6 = 48 equations. We do, however, allow for linear age effects in the means (these are
graphed in Figure 4). The evidence from the control function approach outlined in Section 5.1 supports the idea that age
effects are more important than “late starter” effects.
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simultaneity problem leads to substantial overstatement of the role of cognitive ability in explaining

schooling decisions.

Figures 7 and 8 demonstrate the importance of this point. Figure 7 (a)-(b) plots the estimated

residualized AFQT densities conditional on completed schooling, stratified by entry status. The estimated

densities are standardized so that the unconditional density has variance 1 to facilitate comparison with

the structural model estimates. A key feature to note is the degree of separation in the conditional

“ability” distributions. Failing to correct for schooling effects on measured ability leads one to predict

a strong causal relationship between schooling choice and cognitive ability. Figures 8 (a)-(b) show the

estimated factor distributions (again, standardized) estimated from our corrected model conditional on

completed schooling and entry date. In the corrected model, the cognitive ability distributions are much

less stratified.

Taken together, these findings suggest that the previous literature has overstated the role of latent

cognitive ability on explaining schooling. This leaves more room for non-cognitive factors. (See the

evidence on the importance of noncognitive factors in Heckman and Rubinstein, 2001)

5.2.5 Effect of Ability on AFQT

An important feature of the structural approach developed in this paper which distinguishes it from

conventional models of determinants of achievement test scores is that we can estimate the effects of

latent ability on manifest test scores in addition to causal schooling effects on test scores. The usual

approach treats unobserved ability as a nuisance variable that biases the parameter of interest, the effect

of schooling on measured ability, and focuses on ways to eliminate its influence. We model latent ability

and its influence on schooling explicitly, allowing us to investigate the relationship between latent ability

and measured ability.

Figures 9(a)-(d) show the marginal effect of a standard deviation increase in latent ability on each of

the four AFQT test components for different schooling levels at the test date.38 In several cases the gap

in the expected test score between two persons one standard deviation apart in intelligence (unless one of

them is at or near the maximum score) is quite large, up to 20% of the total number of points possible

on the test. Schooling affects verbal and mathematical skills differently. Moreover, we can see that while

the marginal effects of ability decrease with additional schooling for the two verbal test components, the

marginal effects of ability on the mathematics components are roughly constant or slightly increasing over

schooling levels.

Figure 10 shows that the marginal effect of a standard deviation increase in cognitive ability, aggregated

over the four test components, ranges from 12.5 to 17.8 AFQT points, or about 12 to 17% of the maximum

possible score of 105. The effect increases initially from ninth to tenth grade where it reaches its peak
38In Figure 9(a) the collapse of the confidence bands at 11 years of schooling is due to a normalization, i.e., setting

λ(ST = 3) = 1 in an equation where standardized Word Knowledge (WK) is the dependent variable. Multiplying λ by the
standard deviation of the original WK test (7.0327) converts the effect into test score points. Multiplying further by the
standard devation of the latent factor (0.7027) gives the effect in points on the WK test of increasing the latent ability by

one standard deviation.
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and appears to fall thereafter. In a formal test we cannot reject the hypothesis that the marginal effect

of latent ability on AFQT score is the same across all schooling levels at the 5% significance level. Recall

that this is the implicit assumption used by Winship and Korenman (1997), Herrnstein and Murray (1994)

and Neal and Johnson (1996).

5.2.6 Effect of Schooling on AFQT

In Figure 11 we switch perspectives and show the effect of schooling on test scores for fixed levels of latent

ability. This figure demonstrates strong effects of schooling on test scores. From grade school to college

a given individual can expect to improve his performance on the AFQT by about 18 to 31 points (16 to

29.5 percentage points), depending on his initial ability level. Figure 11 shows that the largest schooling

effects are found for individuals with very low ability levels. However even with more than 15 years of

schooling the test scores of the individuals at the 2.5th percentile do not quite reach the average test score

that persons at the median achieve with just a ninth education.

Individuals at the very top of the ability distribution (the 97.5th percentile) are within roughly five

points of the test score ceiling by 11 years of schooling. The estimated AFQT test score functions are

roughly parallel across ability levels. In fact the gap in AFQT scores between the 25th and 75th percentiles

closes only four points (after widening slightly at first) between ninth grade and the college years. The

functions are roughly linear.

Figure 11 shows that the effects of schooling on AFQT are highest during the early high school years

for all ability levels, between grades 9 and 11, between 3.5 and 6.6 points on average per year, varying

by ability level. After ninth grade schooling effects decrease with latent ability. The average estimated

annual schooling effect, varying across ability levels, is between 3.4 and 4.1 AFQT points (or 3.2 to 3.9

percentage points). Figure 12 plots estimated schooling effects with 95% confidence bands for the average

person (with f = 0), which vary from 1.2 points (transiting from 11th to 12th grade) to 5.4 points (from

9th to 10th grade), with an average schooling effect of 3.7 AFQT points (3.5 percentage points). In other

words, a one year increase in schooling is associated on average (across schooling levels) with a 0.16-0.19

standard deviation increase in the AFQT score across ability levels; the estimated increase in AFQT score

per year of education for the average person (f = 0) is 0.17 standard deviation.

5.3 Comparison of Control Function and Structural Model Results

Figures 13 and 14 summarize our estimates obtained from using both nonparametric and structural

approaches. Figure 13 plots the estimated ratios of the factor loadings λ(sT )/λ(1).39 Note that the

general pattern of declining ability effects is consistent across all models although it is more pronounced

for the nonparametric estimates.

Figure 14 plots estimated intercepts µ(sT ) for all models.40 Again the models are in agreement espe-

cially for the high school years. The control function estimates (which do not control for other determinants
39The structural model estimates of the factor loadings of the four AFQT components are converted into estimated

marginal effects for overall AFQT score, as in Figure 9.
40Recall that the structural model controls for covariate effects. The appropriate comparison to the control function
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of test scores) tend to be steeper than the structural model estimates which control for family background

variables. The control function estimates range from 2.37 to 9.02 AFQT points while the structural esti-

mates vary less and tend to be smaller, ranging from 2.79 to 4.2 points on average. Overall, the agreement

is close.

6 Summary, Conclusions and Applications to the Returns to

Schooling

This paper develops two methods for estimating the effect of schooling on measured test scores when both

schooling and measured test scores depend on latent ability. The methods are applied to NLSY data, and

produce estimates that are in general agreement with each other.

We find that schooling increases the AFQT score on average between 2.79 and 4.2 points per additional

year of education. The effect of schooling on test scores is constant across schooling levels. Our estimates

are roughly twice as large as the estimates reported in Herrnstein and Murray (1994). They are in line with

the estimates reported in the literature reviewed by Winship and Korenman (1997) who report schooling

effects on the order of 2 to 4 IQ points, or 2.9 to 5.7 AFQT points. Our analysis shows that schooling

has small equalizing effects on measured test scores especially for those with low ability and low levels of

schooling. Our analysis also demonstrates that the estimated effect of latent cognitive ability on attending

school has been overstated in the previous literature that does not correct for reverse causality between

schooling and test scores.

Our analysis also has important implications for the empirical literature on the effects of ability and/or

tests on wages. Suppose that

lnW = α0 + α1s+ α2f + ξ1(W ).
41 (29)

The causal effect of a unit increase in schooling is α1. A common strategy in the empirical literature on

wage equations is to proxy f by T to avoid ability bias arising from the dependence of f on s. Using (1)

in equation (29) to solve out for f , we obtain

lnW = α0 + α1s+ α2
(T (s)− µ(s)− ε(s))

λ(s)
+ ξ1(W )

= α0 + α1s− α2µ(s)

λ(s)
+

α2
λ(s)

T (s) + ξ1(W )−
α2
λ(s)

ε(s).

This is a bad proxy for two reasons: (a) The usual problem that α2ε(s)/λ(s) is correlated with T (s);

and (b) A novel problem that even if ε(s) = 0, so T (s) is a perfect proxy for f , we acquire additional

s-dependent terms arising from the fact that schooling determines test scores, and the estimated marginal

effect of schooling on earnings is biased for α1 unless µ(s) = µ and λ(s) = λ (that is, unless schooling has

parameter µ(sT ) is therefore the expected AFQT score evaluated at f = 0 and fixing covariates at the mean.
41Recall that the scale of f is set by our normalization of a factor loading in the test score measurement system.
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no effect on test scores).42 Thus, we get biased estimates of the causal effect of schooling from the proxy

even if ε (s) ≡ 0.
Using estimates of the structural model we construct a measure of ability f, bf, correcting for endogenous

schooling at the test date (as well as correcting for family background and age effects).43 Estimates are

reported in both Tables 9 and 10. We find that substituting our schooling-corrected measure of ability

for OLS-residualized AFQT in a regression of log wages on years of schooling, ability, experience and

experience squared increases the estimated coefficient on schooling by over 1.5 percentage points, from an

estimated return of 10.22% to a higher 11.76% in our sample of white males. Previously used measures

of ability include the effect of schooling on ability. Purging the measure of ability for this effect results in

a substantially larger estimated effect of schooling on wages.

If the true model for wages is instead

lnW = α0 + α1S + α2T + ξ2(W ) (30)

so that the test score directly affects earnings as a signal of productivity (see, e.g., Altonji and Pierret,

2001), the true marginal return to schooling is

∂ lnW

∂s
= α1 + α2

∂T

∂s
(31)

where
∂T (s)

∂s
=

∂µ(s)

∂s
+

∂λ(s)

∂s
f. (32)

Assuming α2 > 0, an approach that ignores the effect of S on T understates the total effect of schooling

on wages because it ignores its indirect effect through measured ability. Tests of the relative importance

of schooling and signals (T ) on wages ignore the effect of S on T . An estimated increase in AFQT score

of 3 to 4 points per year of additional schooling biases downward estimates of the return to schooling on

wages by 1.28 to 1.71 percentage points. Accordingly, in their analysis Altonji and Pierret overstate the

contribution of signalling to the growth of labor market earnings because they neglect the role of schooling

in producing the signal.

These results, and the results reported in Section 5, show that it is important to address carefully

the problem of endogenous schooling effects when using measures of cognitive ability. Simply proxying

latent ability with an available test score in a wage equation does not solve the problem of ability bias

when estimating a return to schooling even if measurement error is zero unless the test score is unrelated

to schooling. Similarly, even if the measured test score, as opposed to underlying latent ability, has a

causal effect on wages, ignoring schooling effects will lead one to underestimate the effect of schooling on

wages. To identify the effects of schooling on test scores it is necessary to control for the endogeneity of

schooling decisions. Otherwise, schooling effects on ability are overstated. When we regress the test score
42Take, for example, the simple case where µ(s) = sβ, λ(s) = λ, and ε(s) ≡ 0. Then the estimated coefficient on s is

α1 − β/λ. Including the proxy will lead to downward-biased estimates of α1 if β > 0 (assuming the test is positively related
to latent ability f , i.e. λ > 0).
43Let the symbolb denote a consistent estimate of a model parameter (see Appendix C for the estimation algorithm).

Then for any individual with characteristics x and schooling at the test date sT let bf = PK
k=1

\λk(sT )
σk(sT )2

(Tk − x(sT )\βk(sT ))
where K is the number of test scores observed.

27



on schooling, we get an average effect of 5.58 AFQT points per year of schooling (see Table 11). Using

quarter of birth as an instrument, as reported in Table 12, we get a lower effect of 4.51, which is still

larger than the estimate from the structural model, although not far from it. Our approach goes beyond

the standard IV method to explore the impact of schooling interventions on persons at different places of

the latent ability distribution.
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Appendix A Data

This paper uses data from the National Longitudinal Survey of Youth (NLSY) to estimate the joint
model of schooling and test scores presented in Section Three. The NLSY is a representative sample of
American young men and women between the ages of 14 and 21 years of age at the time of the first interview
in 1979. The NLSY is comprised of three subsamples: (1) a random sample of 6,111 non-institutionalized
civilian youths; (2) a supplemental sample of 5,295 youths designed to oversample civilian Hispanics, blacks,
and economically disadvantaged whites; (3) a sample of 1,280 youths who were aged 17-21 as of January 1,
1979, and who were enlisted in the military as of September 30, 1978. The NLSY collects information on
parental background, schooling decisions, labor market experiences, cognitive and noncognitive test scores
and other behavioral measures on these individuals on an annual basis.

Our analysis is restricted to a sample of 2,066 white males from the main subsample for whom
there is information on schooling, parental background, and other variables affecting schooling decisions.
Parental background may include mother’s and father’s education, family income, number of siblings,
geographic information such as urban status and region of the country in which the family resides, and
whether or not the individual comes from a broken home (i.e. non-traditional family). Where information
on mother’s education, father’s education, and/or family income is missing, we impute values for the
missing variables. (Exact imputation rules are posted at our website http://home.uchicago.edu/
~kjmullen/Schooling_JOE.htm) In addition, direct and implicit (opportunity) costs of schooling are
needed. These variables are introduced in the relevant schooling choice equations. These include tuition,
distance to school, and local labor market variables such as local wages and unemployment rates (strati-
fied by completed schooling level). Distance to nearest four-year college is constructed as follows: if there
exists a college in the county where a person resides then distance to nearest college is zero; otherwise we
compute distance in miles to the nearest county with a college, measuring distance between two counties
as the distance between their two centers. This distance is constructed using county of residence at age
17; for those individuals older than 17 in 1979 we use the county of residence in 1979. Tuition at age 17
is the average tuition in colleges in county of residence at age 17. If there is no college in the county,
then average tuition in the state is used instead. Local labor market variables for the county of residence
are gathered from the 5% sample in the 1980 census. We compute local unemployment rates and average
local wages for high school dropouts, high school graduates, and individuals with some college. We assume
that the 1980 variables are a close proxy for local labor market conditions in the years in which NLSY
respondents are assumed to be making the schooling decisions analyzed in this paper. Appendix tables
A-1 and A-2 present means and standard deviations for the variables stratified by final schooling and by
schooling at the test date, respectively, and overall.

In 1980, NLSY participants were administered a series of achievement tests known as the Armed
Forces Vocational Aptitude Battery (ASVAB). The math and verbal scores of the ASVAB can be aggre-
gated into a measure called the Armed Forces Qualification Test (AFQT). These include tests of Word
Knowledge, Paragraph Comprehension, Arithmetic Reasoning and Mathematics Knowledge. In our ap-
plication AFQT is constructed as the sum of these four tests. Appendix table A-3 presents the number of
questions, allotted completion time, and maximum possible score for each test. In addition, the fraction
of individuals who attain the maximum possible score on each test are presented, overall and by schooling
group at the test date. Accounting for top censoring by modeling the AFQT distribution as the sum of
censored-normal subcomponents is empirically relevant: while only seven individuals out of 2,066 (less
than half of one percent) achieve the maximum possible AFQT score (by achieving the maximum score on
all four test components), 19% of the sample (391 individuals) attain the maximum score on at least one
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of the four tests. The table reveals that accounting for top censoring is more important for people with
higher levels of schooling at the time of the test; in some cases twenty to thirty percent of the individuals
in those groups are censored on one or more components.

The NLSY contains longitudinal data on highest grade completed, year last enrolled in school (if
not currently enrolled), high school degree or equivalency status, type of degree (diploma or GED) for
the years 1979-2000 as well as highest degree attained and year highest degree attained after 1988. Final
schooling categories were constructed primarily using degree information from last year observed provided
that the respondent was 21 or older if the final state was coded as high school dropout or high school
graduate or that the respondent was 25 or older if the individual attended some college. GED recipients
were classified as high school dropouts. For those individuals without specific degree information, the
highest grade completed variable was used. For the remaining 2% of the sample, the age restriction was
relaxed provided the last year the respondent was enrolled was two years prior to last observed schooling
state. The age restriction was placed to ensure that individuals who were actually censored were not
mistakenly included in the sample; for example an individual who dropped out of the sample at age
eighteen with a high school degree may have gone on to attend some college or complete a four-year degree
and should not be coded as a high school graduate. In addition, 53 cases were discarded from the sample
due to inconsistent schooling history or lack of sufficient information to conclude schooling status (final or
at the test date, see below).

Schooling level and enrollment status at the test date were constructed as follows. The ASVABwas
administered during July-October 1980. Respondents were interviewed during January-August 1980 and
again in January-July 1981. Note also that the NLSY constructs a measure of schooling and enrollment
status as of May 1 of each survey year. Since the academic year commonly ends in June (May for college),
individuals typically advance to a higher completed grade level in May/June. We use highest grade
completed and enrollment status as reported in the 1980 survey as measures of schooling and enrollment
at the test date if the interview was conducted during July-August 1980, otherwise we use the variables
reported in 1981 if the survey was conducted during January-April 1981. For those remaining we use
the NLSY-constructed variables for May 1, 1981. We re-coded schooling state at the test date for 32
individuals to be compatible with final schooling state (mostly changing highest grade completed at the
test date to 11 for high school dropouts). For the remaining 1% of the sample we used schooling and
enrollment histories to come up with plausible categories for schooling at the test date.

In addition to schooling categories, measures of age-at-entry group were constructed. For those
individuals who finished school before 1979 the survey asks the date at which they were last enrolled and
the highest grade they had completed at that date. Recall that we assume continuous schooling profiles
so that there are no skips or breaks in schooling from age at initial entry forward. We constructed our
measure of age at initial entry date as follows. For those individuals enrolled in school in 1979, we let age
at initial entry date equal years of schooling completed in 1979 minus age in 1979. For those individuals
who had finished school prior to 1979 we made the same calculate using highest grade completed and
age at last date of enrollment. In our empirical work we constructed two categories of endogenous entry
status: “behind” if age at initial entry is greater than 6 years (the median age of entry), “normal” if age
at initial entry is 6 years or less.
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Appendix B Estimation Procedure for Control FunctionModel

Consider the case in which we assume no age effects and random entry into schooling. We group individuals
into six categories of schooling at test date and four categories of completed schooling. The combinations
of schooling at test date and final schooling are represented by the matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
∼ a42 a43 a44
∼ ∼ a53 a54
∼ ∼ ∼ a64

 , (B.1)

where aij represents the average test score for individuals with level i of schooling at the test date and
level j of final schooling. A “−” means that no observations are available for that cell.
Since we can only identify ratios of the loadings λ (j) , j = 1, . . . , 6 we normalize λ (1) = 1. Then we

have six conditions identifying λ (2) :

λ (2) =
a21 − a2j
a11 − a1j

, j = 2, 3, 4,

λ (2) =
a22 − a2j
a12 − a1j

, j = 3, 4,

λ (2) =
a23 − a24
a13 − a14

.

We impose the restrictions using a minimum distance framework. Let Y2 (A) be the vector of the six
unrestricted estimators. λ (2) is estimated by minimizing

q (λ (2)) = (Y2 (A)− ιλ (2))0W2 (Y2 (A)− ιλ (2)) , (B.2)

where W2 is the inverse of an estimate of the asymptotic covariance matrix of Y2 (A). The minimum is
easily found to be

λ̂ (2) = (ι0W2ι)
−1

ι0W2Y2 (A) . (B.3)

For λ (3) we have six similar conditions:

λ (3) =
a31 − a3j
a11 − a1j

, j = 2, 3, 4,

λ (3) =
a32 − a3j
a12 − a1j

, j = 3, 4,

λ (3) =
a33 − a34
a13 − a14

.

with a similar expression for the minimum distance estimator (but with a different weight matrix W3).
For λ (4) we only have three conditions:

λ (4) =
a42 − a4j
a12 − a1j

, j = 3, 4,

λ (4) =
a43 − a44
a13 − a14

.
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Finally, for λ (5) there is only one condition:

λ (5) =
a53 − a54
a13 − a14

. (B.4)

Here no minimum distance approach is needed. λ (6) is not identified.
With all loadings estimated we can estimate intercepts µ (1) , . . . , µ (5) and control functions c1 (j) =

E [f |S = j] , j = 1, ..., 4; and c2 (j) = E [f |ST = j] , j = 1, ..., 6. The model implies the following restrictions:

a1j = µ (1) + λ (1) c1 (j) , j = 1, 2, 3, 4,

a2j = µ (2) + λ (2) c1 (j) , j = 1, 2, 3, 4,

a3j = µ (3) + λ (3) c1 (j) , j = 1, 2, 3, 4,

a4j = µ (4) + λ (4) c1 (j) , j = 2, 3, 4,

a5j = µ (5) + λ (5) c1 (j) , j = 3, 4,

and
4P

j=1

nijaij

4P
j=1

nij

= µ (i) + λ (i) c2 (i) , i = 1, ..., 6

where nij is the sample size of cell (i, j) . Finally the restriction

4P
j=1

nijc1 (j)

n
= 0

is imposed where nj =
6P

i=1

nij is the count of individuals with final schooling level j. These conditions imply

24 restrictions on the 15 parameters θ = µ (1) , ..., µ (5) ; c1 (1) , ..., c1 (4) ; c2 (1) , ..., c2 (6) . The minimum
distance problem is to minimize

q (θ) = (Y (A)−Hθ)0W (Y (A)−Hθ) , (B.5)

where Y (A) is a linear function of the A elements, H is a known matrix (given estimates of the loadings)
and W is the inverse of an estimate of covariance matrix of Y (A). The minimum distance estimate of θ is

θ̂ = (H 0WH)
−1

H 0WY (A) . (B.6)

Extending to the case controlling for endogenous entry into schooling is straightforward.

Appendix B.1 Allowing for Endogenous Entry

The combinations of schooling at test date and final schooling are represented by the matrices,

A =


a11 ∼ ∼ ∼
a21 a22 a23 a24
a31 a32 a33 a34
∼ a42 a43 a44
∼ ∼ a53 a54
∼ ∼ ∼ a64

 , B =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
∼ b42 b43 b44
∼ ∼ b53 b54
∼ ∼ ∼ b64

 , (B.7)
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where aij represents average test score for individuals with level i of schooling at test date, level j of final
schooling and who started school at a normal or early age (N = 0). bij represents average test score
for individuals with level i of schooling at test date,level j of final schooling and who started school late
(N = 1). A zero means that no observations are available for that cell.1

Since we can only identify ratios of the loadings λ(j), j = 1, . . . , 6, we normalize λ(1) = 1.
We now have seven conditions identifying λ(2):

λ(2) =
a21 − b21
a11 − b11

,

λ(2) =
b21 − b2j
b11 − b1j

, j = 2, 3, 4,

λ(2) =
b22 − b2j
b12 − b1j

, j = 3, 4,

λ(2) =
b23 − b24
b13 − b14

.

As before the restrictions are imposed in a minimum distance framework.
There are seven conditions for λ(3):

λ(3) =
a31 − b31
a11 − b11

,

λ(3) =
b31 − b3j
b11 − b1j

, j = 2, 3, 4,

λ(3) =
b32 − b3j
b12 − b1j

, j = 3, 4,

λ(3) =
b33 − b34
b13 − b14

.

λ(4) and λ(5) have the same conditions as for case 1 (this is because the cells a(1, 2) and a(1, 3) are
empty).
Note that it is not possible to estimate the ration λ(6)/λ(1) as this would require observations in the

a(1, 4) cell. However we can estimate the ratio λ(6)/λ(2) by the condition:

λ6
λ2
=

a64 − b64
a24 − b24

(B.8)

With this estimate in hand, we can obtain an estimate of the ratio λ6/λ1 by multiplying with the estimate
of λ2/λ1.
With all loadings estimated we can estimate intercepts µ(1), . . . , µ(6) and control functions c(1, 0), . . . , c(4, 0),
1Due to the small size of our sample, we do not observe individuals in the cells i = 1 and j ≥ 2 of matrix A.
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c(1, 1), . . . , c(4, 1). The model implies the following restrictions:

a1j = µ(1) + λ(1)c(j, 0), j = 1, 2, 3, 4,

b11 = µ(1) + λ(1)c(1, 1),

a2j = µ(2) + λ(2)c(j, 0), j = 1, 2, 3, 4,

b2j = µ(2) + λ(2)c(j, 1), j = 1, 2, 3, 4,

a3j = µ(3) + λ(3)c(j, 0), j = 1, 2, 3, 4,

b3j = µ(3) + λ(3)c(j, 1), j = 1, 2, 3, 4,

a4j = µ(4) + λ(4)c(j, 0), j = 2, 3, 4,

b4j = µ(4) + λ(4)c(j, 1), j = 2, 3, 4,

a5j = µ(5) + λ(5)c(j, 0), j = 3, 4,

b5j = µ(5) + λ(5)c(j, 1), j = 3, 4,

a64 = µ(6) + λ(6)c(4, 0),

b64 = µ(6) + λ(6)c(4, 1),

and
4X

s=1

1X
n=0

c(s, n)P (s, n) = 0.

These conditions imply 34 restrictions on the 14 parameters θ = µ(1), . . . , µ(6), c(1, 0), . . . , c(4, 1). The
minimum distance estimator is used to impose the conditions.
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Appendix C Estimation Procedure for Structural Model

Let S ∈ {1, . . . , S̄} denote joint choice of completed schooling and age at entry. For clarity we create a
special notation in this appendix and let Z(s) be the set of Z variables with nonzero coefficients in the sth

choice equation:
V (s) = z(s)γ(s) + α(s)f + u(s), s = 1, ..., S.

where u(s) ∼ N(0, 1). We observe S = argmax
s

{V (s)}.
Let ST ∈ {1, . . . , S̄T} be observed schooling at test date. Let T ∗(ST ) be the vector of latent test scores

conditional on schooling level sT , where T ∗k (ST ) denotes the kth test. For k = 1, ...,K, let

T ∗k (ST ) = X(ST )βk(ST ) + λk(ST )f + εk(ST ), ST = 1, ..., ST .

where εk(ST ) ∼ N(0, σk(ST )
2). We observe

Tk =

½
T ∗k (sT ) if T ∗k (sT ) < ck
ck if T ∗k (sT ) ≥ ck

if and only if ST = sT where ck is the known maximum value of test k.
Let

f ∼
IX

i=1

piN(µi, σ
2
i ).

We set I = 3.
Let θ denote the vector of model parameters {γ(s)}S̄s=1, {α(s)}S̄−1s=1 , {βk(s), λk(s), σk(s)}S̄T ,Ks=1,k=1. We

estimate the model parameters via Bayesian Markov Chain Monte Carlo (MCMC) methods. The goal
is to sample from the posterior distribution of the parameters θ and the parameters of the distribution
of the factor f , conditional on observed outcomes, S and ST , and covariates from a random sample of
individuals indexed i = 1, .., n. The posterior is only a computational device. We are doing maximum
likelihood-based inference using MCMC as a computational tool. We impose a noninformative flat prior on
all slope coefficients, γ and β. We put proper priors on the variance parameters from the Inverse Gamma
family of distributions and on the factor loadings from the Normal distribution family. Under standard
regularity conditions, the priors are asymptotically irrelevant.
The data for each individual are test scores, schooling at test date and completed schooling/entry age,

T (ST ), ST , S, plus covariates, A,X,Z, where A is age of test date. The likelihood contribution for one
individual is

p(T (ST ) = t, S = s, ST = sT |A = a,X = x, Z = z) =Z
p
¡
t|S = s, ST = sT , A = a,X = x, f

¢×
Pr(ST = sT |S = s, A = a,X = x,Z = z, f

¢×
Pr(S = s|f, Z = z

¢
p
¡
f
¢
df.

(C.1)

However, this likelihood simplifies due to the exact dependence between S,A, ST described in the text.
In particular,

Pr(ST = sT |S = s, A = a,X = x,Z = z, f
¢
=

1(sT = a)1(a ≤ sc) + 1(sT = sc)1(a > s), (C.2)

38



where sc denotes the schooling dimension of S (recall that S includes states for both completed schooling
and age of entry). So the likelihood contribution for an individual who has not yet completed schooling is

p(T (ST ) = t, S = s, ST = sT |A = a,X = x, Z = z) =Z
p
¡
t|S = s, ST = sT , A = a,X = x, f, sT = a

¢×
Pr(S = s|f, Z = z

¢
p
¡
f
¢
df,

while the likelihood contribution for an individual who has completed schooling is

p(T (ST ) = t, S = s, ST = sT |A = a,X = x, Z = z) =Z
p
¡
t|S = s, ST = sT , A = a,X = x, f, sT = sc

¢×
Pr(S = s|f, Z = z

¢
p
¡
f
¢
df.

The two likelihood contributions are functionally identical - the only difference is what value of sT is
conditioned on.
To resolve the high dimensional integrals in these likelihood contributions we augment the likelihood

with latent utilities V , determining choice of S, factors f and latent test scores T ∗.

p(T ∗, V, f, ST = sT |A = a,X = x,Z = z) =

p
¡
T ∗|ST = sT , A = a,X = x, f

¢
p(V |f, Z = z

¢
p
¡
f
¢
, (C.3)

where sT is either a or completed schooling depending on the individual having completed schooling or
not at test date. Integration of (C.3) with respect to V, T ∗, f leads us back to the original likelihood.
The (augmented) sample likelihood is defined as the product of (C.3) over all individuals. We can easily

implement a Gibbs sampling algorithm which samples iteratively from the posterior distributions of the
parameters and latent data conditional on the observed data. The stationary distribution of the Markov
chain generated by this algorithm is the joint posterior distribution of the parameters.
The MCMC algorithm is implemented as follows. Given initial starting values for the parameters

and V ,f ,T ∗ for m = 1, 2, ... we can update the values of the other parameters and sample from the
following conditional distributions (note that we implicitly are conditioning on the data as well as all other
parameters). Table C-1 summarizes the specifications of the prior distributions for the estimates reported
in the paper.

1. The conditional posterior distribution of the latent utilities V is just the product of the individual
conditional posterior distributions of Vi by independence. Let Si be observed final schooling for
individual i and let Zi(s) be all covariates entering schooling alternative s. The elements of Vi are
sampled from truncated normals (as in McCulloch and Rossi (1994)),

Vi(s) ∼
(
TN[maxc 6=s{Vi(c)},∞)(Zi(s)γ(s) + α(s)fi, 1), if s = Si,

TN(−∞,Vi(Si)](Z(s)γ(s) + α(s)fi, 1), if s 6= Si.

2. Conditional on V = {Vi(s)}i,s, the distribution of γ(s) follows from a classical linear regression model
with noninformative prior.

γ(s) ∼ N(dγ(s), dΩ(s)), s = 1, . . . , S̄,
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where

dγ(s) = (Z(s)0Z(s))−1Z(s)0(V (s)− α(s)f)dΩ(s) = (Z(s)0Z(s))−1,

where V (s) = (V1(s), . . . , Vn(s)) and Z(s)0 = (Z1(s), . . . , Zn(s)).

3. Assuming a normal N(µ1, ψ
2
1) prior the conditional distribution of α(s) is:

α(s) ∼ N(dα(s), dΩ(s)), s = 1, . . . , S̄ − 1.

where

dα(s) = cΩ1µf 0(V (s)− Z(s)γ(s)) +
µ1
ψ21

¶
cΩ1 =

µ
f 0f +

1

ψ21

¶−1
α(S̄) is set to zero for identification. Similarly, coefficients for covariates common across alternatives
are set to zero for γ(S̄). We set µ1 = 0 and ψ21 = 1.

4. For each test equation, k = 1, . . . ,K, at each schooling level, s = 1, .., S̄T , we estimate the coefficients
on the control variables as follows:

βk(s) ∼ N
¡
(X(s)0X(s))−1X(s)0(T ∗k (s)− λk(s)f), σk(s)

2(X(s)0X(s))−1
¢
,

where only those individuals who have completed schooling level s at the test date are included.

5. The factor loadings in the test equations are sampled as

λk(s) ∼ N
³
[λk(s),\Ωk(s)

´
, k = 1, . . . ,K; s = 1, . . . , S̄T ,

where

[λk(s) = \Ωk(s)

µ
f 0(T ∗k (s)−X(s)βk(s))

σk(s)2
+

µk(s)

ψk(s)

¶
\Ωk(s) =

µ
f 0f

σk(s)2
+

1

ψk(s)

¶−1
,

using only the individuals who have schooling level s at the test date and using a normal prior
N(µk(s), ψk(s)). We use µk(s) = 0 and ψk(s) = 1.

6. Assuming an Inverse Gamma prior IG(as, bs) and letting n(s) be the number of individuals in school-
ing group s at the test date, we have:

σk(s)
2 ∼ IG

µ
n(s)

2
+ as,

ek(s)
0ek(s)
2

+ bs

¶
,

where ek(s) = T ∗k (s)−X(s)βk(s)− λk(s)f . We set as = 2 and bs = 1.
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7. The factors f and the parameters of the factor distribution are sampled as follows. Let gi ∈ {1, . . . , I}
denote the mixture component from which fi is sampled. Note that gi is unobserved. Conditional
on gi the conditional distribution of fi is easily found to be

fi ∼ N
³bfi, bΓi´

where

bfi = bΓi " PS̄
s=1 α(s)(Vi(s)− Zi(s)γ(s))+PK

k=1(λk(sTi)/σk(sTi)
2)(T ∗ik −Xi(sTiβk(sTi)) + (1/σ

2
gi
)µgi

#

bΓi =

Ã
S̄X
s=1

α(s)2 +
KX
k=1

λk(sTi)
2/σk(sTi)

2 + 1/σ2gi

!−1
,

where STi is individual i’s schooling at test date.

Conditional on f the mixture parameters are sampled by the usual trick of first updating the gi
indicators and then sampling the mixture parameters conditional on the gi’s, cf. Robert and Casella
(1999). We impose the restriction

PI
i=1 piµi = 0 using the method in Richardson et.al. (2001).

8. The test scores for individuals who hit the ceiling on a test are sampled from truncated normals, i.e.,

T ∗ik ∼ TN(ck,∞)
¡
Xi(sTi)

0βk(sTi) + λk(sTi)fi, σk(sTi)
2
¢
.
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Table A-1 
Sample Means By Final Attainment Status 

NLSY, White Males 
By Final Years of Education Variables Overall  

HS Dropout HS Graduate Some College College Graduate 
No. Observations 2066 330 722 395 619 
Urban Dummy 0.7517 0.7394 0.7105 0.7443 0.8110 
 (0.4321) (0.4396) (0.4538) (0.4368) (0.3918) 
From Broken Home 0.1999 0.4000 0.1814 0.1924 0.1196 
 (0.4000) (0.4906) (0.3856) (0.3947) (0.3247) 
Number of Siblings 2.9942 3.6900 3.0997 3.0152 2.4862 
 (1.9805) (2.3302) (1.8728) (2.1147) (1.6559) 
Southern Dummy 0.2493 0.3818 0.2119 0.2506 0.2213 
 (0.4327) (0.4866) (0.4089) (0.4339) (0.4155) 
Mother's Education  12.1343 10.5019 11.5817 12.2393 13.4105 
(N=1884) (2.3326) (2.3080) (1.9751) (1.9270) (2.2662) 
Father's Education  12.4202 10.1341 11.4407 12.6711 14.4179 
(N=1942) (3.3135) (3.0890) (2.7352) (2.9093) (3.1170) 
Family Income (Thousands) 22.3244 14.7412 20.7361 22.5783 28.1310 
(N=1695) (14.3756) (9.7335) (11.6325) (13.2189) (17.5746) 
Born in First Quarter 0.2464 0.2364 0.2493 0.2658 0.2359 
 (0.4310) (0.4255) (0.4329) (0.4423) (0.4249) 
Born in Second Quarter 0.2483 0.2606 0.2396 0.2329 0.2617 
 (0.4321) (0.4396) (0.4271) (0.4232) (0.4399) 
Born in Third Quarter 0.2672 0.2727 0.2659 0.2709 0.2633 
 (0.4426) (0.4460) (0.4421) (0.4450) (0.4408) 
Behind Peers 0.3204 0.5455 0.3033 0.3038 0.2310 
 (0.4668) (0.4987) (0.4600) (0.4605) (0.4218) 
Born in 1957 0.1026 0.0970 0.0983 0.1266 0.0953 
 (0.3035) (0.2964) (0.2980) (0.3329) (0.2939) 
Born in 1958 0.0978 0.0606 0.0886 0.1139 0.1179 
 (0.2971) (0.2390) (0.2844) (0.3181) (0.3228) 
Born in 1959 0.1094 0.1000 0.1260 0.1038 0.0985 
 (0.3122) (0.3005) (0.3321) (0.3054) (0.2983) 
Born in 1960 0.1336 0.1394 0.1482 0.1114 0.1276 
 (0.3403) (0.3469) (0.3555) (0.3150) (0.3339) 
Born in 1961 0.1317 0.1272 0.1343 0.1392 0.1260 
 (0.3382) (0.3338) (0.3413) (0.3466) (0.3321) 
Born in 1962 0.1641 0.1667 0.1634 0.1671 0.1616 
 (0.3704) (0.3732) (0.3700) (0.3735) (0.3683) 
Born in 1963 0.1389 0.1636 0.1316 0.1215 0.1454 
 (0.3459) (0.3705) (0.3383) (0.3271) (0.3528) 
Local Dropout Wage 6.5651 6.5853 6.5993 6.5913 6.4976 
 (1.2256) (1.3347) (1.2512) (1.2165) (1.1377) 
Local Dropout  0.0697 0.0684 0.0718 0.0710 0.0672 
Unemployment Rate (0.0231) (0.0237) (0.0231) (0.0240) (0.0219) 
Local HS Graduate Wage 7.5509 7.5600 7.5186 7.5742 7.5689 
 (1.4599) (1.5218) (1.3438) (1.4226) (1.5780) 
Local HS Unempl. Rate 0.0573 0.0552 0.0609 0.0588 0.0531 
 (0.0254) (0.0266) (0.0254) (0.0264) (0.0235) 
Local Wage for Some  7.6666 7.6679 7.6692 7.7600 7.6033 
College (1.4020) (1.4245) (1.4148) (1.4042) (1.3733) 
Local Unempl. Rate for 0.0371 0.0355 0.0395 0.0378 0.0347 
Some College (0.0156) (0.0160) (0.0155) (0.0162) (0.0148) 
4-Year College Tuition  19.8694 18.0718 21.3384 19.5033 19.3481 
(tens) (7.8463) (7.2133) (7.7863) (8.3439) (7.6350) 



Table A-1, Continued 
Sample Means By Final Attainment Status 

NLSY, White Males 
By Final Years of Education Variables Overall  

HS Dropout HS Graduate Some College College Graduate 
Distance to 4-Year College 8.1149 10.4564 8.3852 9.2578 5.8219 
 (16.4639) (19.9424) (15.9885) (16.8611) (14.3320) 
Word Knowledge 26.8930 20.1000 25.1911 28.6886 31.3538 
 (7.03266) (8.1892) (6.5495) (5.0356) (3.6514) 
Paragraph Comprehension 10.9719 7.7848 10.1801 11.8152 13.0565 
 (3.3182) (3.5822) (3.2502) (2.5227) (1.6166) 
Arithmetic Reasoning 19.7333 13.0242 17.6191 20.9747 24.9838 
 (7.2253) (5.8957) (6.5290) (5.9915) (5.0460) 
Math Knowledge 14.6438 8.3272 11.9834 15.5873 20.5121 
 (6.5385) (4.0018) (5.0292) (5.5759) (4.5122) 
Overall AFQT 72.2420 49.2364 64.9737 77.0658 89.9063 
 (21.6023) (18.7146) (18.1901) (16.0706) (12.2652) 
 



Table A-2 
Sample Means by Education at Test Date 

NLSY, White Males 

By Years of Education at Test Date (July-October 1980) 

Variables Overall <=9 10 11 HS Graduate Some College 
College 

Graduate 
No. Observations 2066 205 322 343 747 376 73 
Urban Dummy 0.7517 0.7171 0.7360 0.7405 0.7349 0.8138 0.8219 
 (0.4321) (0.4515) (0.4415) (0.4390) (0.4417) (0.3898) (0.3852) 
From Broken Home 0.1999 0.3805 0.2671 0.2187 0.1620 0.1197 0.1096 
 (0.4000) (0.4867) (0.4431) (0.4139) (0.3687) (0.3250) (0.3145) 
Number of Siblings 2.9942 3.7366 2.9534 2.9767 2.9411 2.8830 2.2877 
 (1.9805) (2.4968) (1.8897) (1.9330) (1.8523) (2.0375) (1.3487) 
Southern Dummy 0.2493 0.4341 0.2484 0.2449 0.2129 0.2340 0.2055 
 (0.4327) (0.4969) (0.4328) (.4307) (0.4096) (0.4240) (0.4068) 
Mother's Education 12.1343 10.4892 11.7412 12.0709 11.9636 13.0822 13.7455 
(N=1884) (2.3326) (2.4653) (2.0647) (2.3630) (2.1499) (2.1671) (2.0925) 
Father's Education 12.4202 9.9712 12.057 12.0709 12.0971 13.8783 14.2364 
(N=1942) (3.3135) (3.3274) (3.2026) (3.1889) (3.0071) (3.1258) (3.3331) 
Family Income (Thous.) 22.3244 15.0775 20.1549 22.7529 22.7557 27.9788 25.9860 
(N=1695) (14.3756) (9.0086) (12.0373) (13.1427) (13.0989) (18.1897) (17.8028) 
In School at Test Date 0.5034 0.3902 0.7702 0.7055 0.2249 0.7261 0.3973 
 (.5001) (0.4890) (0.4214) (0.4565) (0.4178) (0.4466) (0.4927) 
Born in 1957 0.1026 0.0634 0.0248 0.0321 0.1098 0.1622 0.5068 
 (0.3035) (0.2443) (0.1559) (0.1764) (0.3128) (0.3692) (0.5034) 
Born in 1958 0.0978 0.0293 0.0155 0.0350 0.1017 0.1835 0.4658 
 (0.2971) (0.1690) (0.1238) (0.1840) (0.3025) (0.3876) (0.5023) 
Born in 1959 0.1094 0.0634 0.0248 0.0437 0.1446 0.2128 0.0274 
 (0.3122) (0.2443) (0.1559) (0.2048) (0.3519) (0.4098) (0.1644) 
Born in 1960 0.1336 0.0585 0.0404 0.0816 0.1754 0.2447 0.0000 
 (0.3403) (0.2353) (0.1971) (0.2742) (0.3805) (0.4305) (0.0000) 
Born in 1961 0.1317 0.0780 0.0373 0.0816 0.1954 0.1862 0.0000 
 (0.3382) (0.2689) (0.1897) (0.2742) (0.3968) (0.3898) (0.0000) 
Born in 1962 0.1641 0.1561 0.0776 0.2391 0.2637 0.0080 0.0000 
 (0.3704) (0.3638) (0.2680) (0.4271) (0.4409) (0.0891) (0.0000) 
Born in 1963 0.1389 0.1415 0.2609 0.4840 0.0094 0.0027 0.0000 
 (0.3459) (0.3494) (0.4398) (0.5005) (0.0964) (0.0516) (0.0000) 
Word Knowledge 26.8930 18.4488 24.2888 26.2828 27.5636 31.7766 32.9452 
 (7.03266) (7.2581) (7.3532) (6.3737) (5.9219) (3.5437) (2.2292) 
Paragraph  10.9719 7.0878 9.8758 10.9679 11.2503 13.0000 13.4384 
Comprehension (3.3182) (3.3302) (3.6382) (3.1589) (2.8090) (1.8504) (1.2582) 
Arithmetic Reasoning 19.7333 12.0683 17.0870 18.9650 19.9545 25.0532 26.8767 
 (7.2253) (5.6755) (6.9550) (6.7120) (6.4590) (4.9727) (3.7228) 
Math Knowledge 14.6438 0.3805 12.7702 13.7843 14.1245 20.1197 21.8493 
 (6.5385) (0.4867) (6.3278) (6.1909) (5.7016) (4.7017) (3.7256) 
Overall AFQT 72.2420 3.7366 64.0217 70.0000 72.8929 89.9495 95.1096 
 (21.6023) (2.4968) (21.5587) (19.3215) (17.8026) (12.4515) (8.9047) 

 
 

 



Table A-3 
ASVAB Test Information: AFQT Subcomponents 

 
Word 

Knowledge 
Paragraph 

Comprehension
Arithmetic 
Reasoning 

Math 
Knowledge Overall AFQT 

Number of Questions 35 15 11 25 86 
Time (in minutes) 11 13 36 24 84 
Max. Possible Raw Score 35 15 30 25 105 

 
Fraction of Observations Censored in Each Subsystem 

 
 
Schooling at Test Date 

 
Word 

Knowledge 
Paragraph 

Comprehension
Arithmetic 
Reasoning 

Math 
Knowledge 

At Least 1 
AFQT 

Component 
9 Years or Less 0.0000 0.0098 0.0049 0.0000 0.0146 
10 Years 0.0155 0.0311 0.0248 0.0217 0.0745 
11 Years 0.0496 0.0787 0.0437 0.0408 0.1370 
12 Years/ HS Graduate 0.0535 0.0656 0.0348 0.0388 0.1392 
Some College 0.2128 0.1649 0.1622 0.1303 0.4521 
College Graduate 0.3151 0.1781 0.2740 0.2192 0.5890 
Overall 0.0799 0.0789 0.0634 0.0557 0.1893  

Table C-1
Specification of Priors for Reported Structural Model Estimates

Parameter Prior Distribution Prior Specification
{γ(s)}S̄s=1 Noninformative flat prior on nonzero coefficients.

Degenerate prior with point mass at zero for
restricted coefficients. (See Table 6.)

{α(s)}S̄−1s=1 N(µ1,ψ
2
1) µ1 = 0,ψ

2
1 = 1

{βk(s)}S̄T ,Ks=1,k=1 Noninformative flat prior.
{λk(s)}S̄T ,Ks=1,k=1 N(µk(s),ψk(s)) µk(s) = 0,ψk(s) = 1

{σk(s)2}S̄T ,Ks=1,k=1 IG(as, bs) as = 2, bs = 1



Table 1
Non-parametric Estimates of Factor Loadings

Comparison Groups (s, s0)
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) MD∗ χ2

�λ(2) 2.26 1.38 1.00 1.03 0.81 0.68 0.83 6.31
(1.52) (0.45) (0.15) (0.54) (0.16) (0.27) (0.13) (p = 0.28)

�λ(3) 0.71 0.73 0.87 0.73 0.89 0.98 0.87 0.83
(0.72) (0.27) (0.13) (0.40) (0.16) (0.34) (0.12) (p = 0.98)

�λ(4) 0.89 0.66 0.52 0.61 3.01
(0.41) (0.12) (0.19) (0.12) (p = 0.22)

�λ(5) 0.56 0.56 (na)
(0.20) (0.20) (na)

∗MD = minimum distance

We normalize λ(1) = 1.

Table 2
Non-parametric Estimates of Intercepts and Control Functions

Intercepts
�µ(1) �µ(2) �µ(3) �µ(4) �µ(5)
56.91 65.93 71.63 75.24 82.58
(1.27) (0.95) (0.78) (0.61) (0.63)

Control Functions
E[f |S =Dropout] -15.89

(1.15)
E[f |S =High School] -10.70

(0.74)
E[f |S =Some College] 1.95

(0.99)
E[f |S =College] 19.70

(0.76)
E[f |ST =9th Grade or Less] -10.99

(0.95)
E[f |ST =10th Grade] -2.23

(0.87)
E[f |ST =11th Grade] -2.23

(0.75)
E[f |ST =High School] -3.63

(0.56)
E[f |ST =Some College] 13.33

(0.71 )
E[f |ST =College] 19.70

(7.33)
χ2 = 10.61 (p = 0.30)



Table 3
Non-parametric Estimates of Factor Loadings
Controlling for Endogenous Start Date

�λ(2) 1.23 1.13
(0.22) (p = 0.98)

�λ(3) 0.96 1.45
(0.18) (p = 0.96)

�λ(4) 0.94 0.01
(0.23) (p = 0.92)

�λ(5) 0.41 N/A
(0.25) N/A

�λ(6) 0.00 N/A
(0.90) N/A

Table 4
Non-parametric Estimates of Intercepts and Control Functions

Controlling for Endogenous Start Date

Intercepts
�µ(1) �µ(2) �µ(3) �µ(4) �µ(5) �µ(6)
57.13 66.06 72.25 74.62 87.10 95.10
(1.35) (0.96) (0.77) (0.65) (0.54) (1.04)

Control Functions
E[f |S =Dropout, N =Normal] -11.14 E[f |S =Dropout, N = Behind] -17.03

(1.34) (1.38)
E[f |S =High School, N =Normal] -5.24 E[f |S =High School, N = Behind] -12.02

(0.74) (1.15)
E[f |S =Some College, N =Normal] 2.26 E[f |S =Some College, N = Behind] -1.26

(0.95) (1.73)
E[f |S =College, N =Normal] 15.80 E[f |S =College, N = Behind] 14.08

(0.71) (1.38)
E[f |ST =9th Grade or Less, N =Normal] -6.73 E[f |ST =9th Grade or Less, N =Behind] -12.45

(2.26) (1.14)
E[f |ST =10th Grade, N =Normal] 0.84 E[f |ST =10th Grade, N =Behind] -7.52

(0.71) (1.33)
E[f |ST =11th Grade , N =Normal] 1.21 E[f |ST =11th Grade , N =Behind] -8.23

(0.86) (1.22)
E[f |ST =High School , N =Normal] -0.52 E[f |ST =High School, N =Behind] -6.30

(0.56) (1.07)
E[f |ST =Some College, N =Normal] 11.19 E[f |ST =Some College , N =Behind] 7.85

(0.98) (1.22)
E[f |ST =College, N =Normal] N/A E[f |ST =College, N =Behind] N/A

N/A N/A
χ2 = 37.40 (p = 0.01)
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Table 7
χ2-Statistics for Choice Model

Average Choice Probabilities in Selected Groups

Dropout HS Grad. Some Coll. Coll. Grad. χ2-Statistic P-value
Overall (N=2066)
Normal/Ahead Actual 0.0726 0.2435 0.1331 0.2304

Predicted 0.0716 0.2452 0.1359 0.2273
Behind Actual 0.0871 0.1060 0.0581 0.0692

Predicted 0.0843 0.1052 0.0605 0.0697 0.6775 0.9985
Individuals from urban area (N=1553)
Normal/Ahead Actual 0.0734 0.2292 0.1301 0.2473

Predicted 0.0722 0.2330 0.1335 0.2420
Behind Actual 0.0837 0.1011 0.0592 0.0760

Predicted 0.0802 0.1007 0.0622 0.0760 0.9032 0.9962
Individuals from rural area (N=513)
Normal/Ahead Actual 0.0702 0.2865 0.1423 0.1793

Predicted 0.0698 0.2822 0.1433 0.1830
Behind Actual 0.0975 0.1209 0.0546 0.0487

Predicted 0.0968 0.1188 0.0555 0.0504 0.1345 1.0000
Individuals with less than 3 siblings (N=968)
Normal/Ahead Actual 0.0610 0.2231 0.1312 0.3171

Predicted 0.0562 0.2383 0.1405 0.2926
Behind Actual 0.0589 0.0857 0.0496 0.0733

Predicted 0.0607 0.0886 0.0501 0.0721 4.0925 0.7691
Individuals with 3 or more siblings (N=1098)
Normal/Ahead Actual 0.0829 0.2614 0.1348 0.1539

Predicted 0.0851 0.2513 0.1319 0.1698
Behind Actual 0.1120 0.1239 0.0656 0.0656

Predicted 0.1052 0.1198 0.0697 0.0675 3.1838 0.8675
Avg. parents� education < 12 years (N=803)
Normal/Ahead Actual 0.1270 0.2827 0.1009 0.0934

Predicted 0.1234 0.2730 0.1173 0.1204
Behind Actual 0.1694 0.1469 0.0523 0.0274

Predicted 0.1407 0.1365 0.0556 0.0331 13.3411 0.0642
Avg. parents� education ≥ 12 years (N=1263)
Normal/Ahead Actual 0.0380 0.2185 0.1536 0.3175

Predicted 0.0386 0.2276 0.1478 0.2953
Behind Actual 0.0348 0.0800 0.0618 0.0958

Predicted 0.0485 0.0852 0.0636 0.0929 8.3124 0.3059
Four-year College Tuition ≤ $2,000 (N=1008)
Normal/Ahead Actual 0.0863 0.2004 0.1290 0.2500

Predicted 0.0791 0.2214 0.1364 0.2370
Behind Actual 0.1032 0.0982 0.0605 0.0724

Predicted 0.0969 0.0995 0.0568 0.0722 4.4722 0.7241
Four-year College Tuition > $2,000 (N=1058)
Normal/Ahead Actual 0.0595 0.2845 0.1371 0.2117

Predicted 0.0644 0.2679 0.1354 0.2181
Behind Actual 0.0718 0.1134 0.0558 0.0662

Predicted 0.0723 0.1106 0.0641 0.0672 2.9245 0.8919
Zero Distance to Four-Year College (N=1552)
Normal/Ahead Actual 0.0689 0.2397 0.1308 0.2577

Predicted 0.0686 0.2398 0.1357 0.2493
Behind Actual 0.0754 0.1018 0.0541 0.0715

Predicted 0.0772 0.0983 0.0577 0.0730 1.3616 0.9867
Nonzero Distance to Four-Year College (N=514)
Normal/Ahead Actual 0.0837 0.2549 0.1401 0.1479

Predicted 0.0805 0.2617 0.1365 0.1608
Behind Actual 0.1226 0.1187 0.0700 0.0623

Predicted 0.1057 0.1259 0.0692 0.0597 2.4023 0.9343



Table 8
χ2-Statistics for Predicted AFQT Distributions
Conditional on Schooling Level at Test Date

Schooling Level N No. bins χ2-Statistic P-value
Ninth Grade or Less 205 8 16.8349 0.0185
Tenth Grade 322 12 7.2653 0.7772
Eleventh Grade 343 13 12.3787 0.4158
High School Graduate 747 26 30.5079 0.2058
Some College 376 13 35.3758 0.0004
College Graduate 73 5 10.3990 0.0342
Overall 2066 77 112.7616 0.0040
Note: Bins were chosen to include approx. equal numbers of observations

in each cell. No. bins was chosen to average roughly 25-30 people per bin,

except last group due to small size.

Table 9
Estimates from OLS Regression of Log Wage in 1998 on Years of Schooling and Residualized AFQT

Variable Coefficient Std. Error t P > |t| 95 % ConÞdence Interval
Years of Schooling in 1998 0.1022 0.0101 10.08 0.000 0.0823 0.1221
Experience -0.5657 0.0457 -1.24 0.216 -0.1463 0.0332
Experience2 0.0028 0.0013 2.23 0.026 0.0003 0.0053
OLS-Residualized AFQT 0.0988 0.0221 4.48 0.000 0.0555 0.1421
Constant 1.4812 0.4749 3.12 0.002 0.5493 2.4132
Source SS Degrees of Freedom MS
Model 62.4505 4 15.6126
Residual 249.9216 977 0.2558

Number of Obs. = 982
F (4, 977) = 61.03
Prob. > F = 0.0000

R2 = 0.1999
Adjusted R2 = 0.1966
Root MSE = 0.5058

Note: Regressions estimated on observations with nonmissing wages



Table 10
Estimates from OLS Regression of Log Wage in 1998

on Years of Schooling and Schooling Corrected Ability Measure
Variable Coefficient Std. Error t P > |t| 95 % Confidence Interval
Years of Schooling in 1998 0.1176 0.0094 12.46 0.000 0.0991 0.1362
Experience -0.0589 0.0461 -1.28 0.202 -0.1494 0.0316
Experience2 0.0029 0.0013 2.29 0.022 0.0004 0.0054
f̂ 0.1483 0.0734 2.02 0.044 0.0042 0.2923
Constant 1.2708 0.4758 2.67 0.008 0.3371 2.2045
Source SS Degrees of Freedom MS
Model 58.3832 4 14.5958
Residual 253.9890 977 0.2600

Number of Obs. = 982
F (4, 977) = 56.14
Prob. > F = 0.0000

R2 = 0.1869
Adjusted R2 = 0.1836
Root MSE = 0.5099

Note: Regressions estimated on observations with nonmissing wages

Table 11
Estimates from OLS Regression of AFQT Score on Years of Schooling at Test Date

Variable Coefficient Std. Error t P > |t| 95 % Confidence Interval
Years of Schooling 5.5800 0.2867 19.4600 0.0000 5.0177 6.1423
Urban Status 0.2610 0.8569 0.3000 0.7610 -1.4195 1.9415
Broken Home 0.9417 0.9729 0.9700 0.3330 -0.9662 2.8496
Number of Siblings -0.5773 0.1898 -3.0400 0.0020 -0.9496 -0.2051
Southern -2.6561 0.8535 -3.1100 0.0020 -4.3298 -0.9823
Mother’s Education 1.9069 1.3426 1.4200 0.1560 -0.7261 4.5400
Father’s Education 8.0419 1.2635 6.3600 0.0000 5.5640 10.5197
Family Income 0.1250 0.0299 4.1900 0.0000 0.0665 0.1836
Age 0.1239 0.2562 0.4800 0.6290 -0.3785 0.6264
In School 8.6112 0.9174 9.3900 0.0000 6.8122 10.4103
Constant -11.9674 4.0363 -2.9600 0.0030 -19.8830 -4.0517
Source SS Degrees of Freedom MS
Model 407339.225 10 40733.923
Residual 556311.768 2055 270.711

Number of Obs. = 2066
F (10, 2055) = 150.47
Prob. > F = 0.0000

R2 = 0.4227
Adjusted R2 = 0.4199
Root MSE = 16.453

Note: Instruments for years of schooling: quarter of birth dummies, urban status, broken home, number of siblings,

southern residence, mother’s education, father’s education, family income and cohort dummies.



Table 12
Estimates from Instrumental Variables Regression of AFQT Score on Years of Schooling at Test Date

Variable Coefficient Std. Error t P > |t| 95 % ConÞdence Interval
Years of Schooling 4.5164 0.9203 4.9100 0.0000 2.7117 6.3212
Urban Status 0.2174 0.8605 0.2500 0.8010 -1.4702 1.9050
Broken Home 0.8077 0.9823 0.8200 0.4110 -1.1187 2.7341
Number of Siblings -0.6708 0.2054 -3.2700 0.0010 -1.0735 -0.2680
Southern -2.8466 0.8705 -3.2700 0.0010 -4.5538 -1.1393
Mother�s Education 2.2952 1.3844 1.6600 0.0970 -0.4197 5.0102
Father�s Education 8.5196 1.3271 6.4200 0.0000 5.9169 11.1223
Family Income 0.1347 0.0310 4.3400 0.0000 0.0739 0.1955
Age 0.7564 0.5799 1.3000 0.1920 -0.3809 1.8936
In School 9.6624 1.2624 7.6500 0.0000 7.1868 12.1381
Constant -13.1093 4.1571 -3.1500 0.0020 -21.2619 -4.9567
Source SS Degrees of Freedom MS
Model 403614.616 10 40361.462
Residual 560036.378 2055 272.524

Number of Obs. = 2066
F (10, 2055) = 114.26
Prob. > F = 0.0000

R2 = 0.4188
Adjusted R2 = 0.4160
Root MSE = 16.508

Note: Instruments for years of schooling: quarter of birth dummies, urban status, broken home, number of siblings,

southern residence, mother�s education, father�s education, family income and cohort dummies
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Figure 1:  Actual (Diamond) vs. Predicted (Circle) AFQT Cummulative Distribution Functions Conditional on Schooling at Test Date 
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Figure 2:  Estimated Factor (Solid) vs. Residualized AFQT (Dashed) Distributions
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Figure 3:  Factor Densities Conditional on Age at Entry by Final Schooling Group 
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Figure 4:  Estimated Effect of One Additional Year of Age on AFQT Score (With 95% Confidence Bands)
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         Figure 5:  Schooling Choice Probabilities as a Function of Residualized AFQT, No Factor 
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Figure 7:  Kernel Estimated Densities of Standardized Residualized AFQT Conditional on Schooling 
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Figure 8:  Standardized Factor Densities Conditional on Schooling 
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Figure 9:  Marginal Effect of Standard Deviation Increase in Factor on AFQT Components Conditional on Schooling (With 95% Confidence Bands) 
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