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of choices. Such models are potentially very important in evaluating the
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‘been said in general regarding the tools of applied welfare economics in
discrete choice situations.

Thié paper shows how the conventional methods of applied welfare
economics can be modified to handle such cases. It focuses on the com-
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the popular cases of probit and logit analysis. Throughout, the emphasis
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I. Introduction

Economists are paying increasing attention to the study of situations
in which consumers face a discrete rather than a coﬁtinuous set of choices.

A considerable literature has grown covering econometric methodology and
applications to a wide variety of situatior{s.l In a few specific cases,
estimates of discrete choice models have been employed for welfare analysis.2
Travel demand researchers have developed "composite cost" and "accessibility"
measures to evaluate the desirability of various states (Williams [1977],
Ben-Akiva and Lerman [1978]), but the relationship of these to conventional
welfare criteria has not been thoroughly explored. Indeed, ver& little has
been said in general regarding the validity of the tools of applied welfare
economics in discrete choice situations.

Nevertheless, in at least two areas in which discrete choice models are
- applied, welfare judgments are of paramount interest. The first is the analysis
of taxes and subsidies. Econametric studies of the impacts of taxes on labor
supply, savings, and housing decisions have permitted calcuiation of the welfare
cost or "excess burden" of the tax feature under cohsideration.3 Traditionally,
such studies have assumed that the tax=d activity will be pursuea regardless
of the existence of the tax.

However, instances in which taxes influence discrete choices are numerous
and important. For example, it has been suggesééd‘that the federal tax treat-
ment of owner-occupied housing not only increases the quantity demanded of owner-
occupied housing services, but also influences whether or not an individual owns
a home at all [Rosen, forthcomingl. For secondary earners, taxes affect not only

the number of hours of work, but also whether or not participation in the labor

lFor examples and references, see McFadden [1976}.
2For example, Domencich and McFadden [1975], Small [1976].
3see, for example, Harberger [1964], Boskin [1978], and Laidler [1969].




market takes place [Heckman, 1974]. Even for primary workers, taxes may
influence not only the hours spent at a given occupation, but the choice be-
tween occupations as well.

A second important area is the analysis of gquality changes in goods and
services. Numerous studies in such areas as transportation, education, health
care, child care, and pollution contain explicit or implicit welfare evalua-
tions of public policies which change the quality of some publicly or privately
supplied good. In many cases, the good affected is subject to discrete choice:
mode of transportation, public or private schools, type of health care, type of
child care, and location of recreational activities all serve as examples.

The purpose of the present paper is to demonstrate that the conventional
methods of applied welfare economics can be generalized to handle cases in which
discrete choices are involvea. We think it important for several reasons
to set out the generalization carefully. First, there has been some suggestioh
that conventional welfare change computations may have no relevance in discrete
choice cases.4 Second, as the econometric estimation of discrete choice models
of many types gains in popularity, it is useful to have a clear statement re-
garding their use in applied welfare economics. Finally, the presence of dis-
crete choice introduces some differences in the relation between ordinary and
compensated demand curves which alters the way in which empirical approximations
should be carried out.

In Section II we review the computation of the Hicksian compensated
variation for the "standard" case in which there are price-induced changes in

quantity demanded by each individual. We also note its relation to the

4For example, Ben-Porath and Bruno [1977] state that in Israel, the
pre-1975 tax structure was ... "less a deterrent to work as such than an
inducement to search for untaxable types of work" (our emphasis). They
suggest that "The concept of excess burden is not particularly well defined
in this case ..." (p. 289).
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Harbergex "excess burden" and to the Marshallian consumer's surplus. In
Section III it is shown how the computations are performed for circumstances
in which discrete choice is involved, and Section IV extends the result to
quality changes. Section V discusses in detail the application of the results
to stochastic utility models, including the cases of probit and logit analysis.
Throughout, the emphasis is on providing rigorous guidelines for carrying out

applied work.

II. Continuous Choice

In this section we review the justification for measuring price~induced
utility changes as areas to the left of the appropriate compensated demand
curves. The basic analytical tool is the expenditure function, which is
treated concisely and elegantly in Diamond and McFadden [1974]._

éuppose that a consumer has a twice differentiable, strictly quasi—
concave utility function u defined over the commodities % and x, , where
X, is taken to be the numeraire. The two good case is chosen for convenience;
the results generalize easily to an arbitrary number of commodities. The

consumer maximizes
u = u(xn,xl) (2.1)
subject to the budget and non-negativity constraints
= - 2.2
x + pi% =Y (2.2)
x, >0 j =n,l (2.3)

where p, is the price of good 1, and Yy is income -




Maximization of (2.1) subject to (2.2) yields the ordinary demand

functions
X, = xj (pl,y) j = p,l . (2.4)

We assume an interior solution (xj > 0) with respect to both goods.
Substituting (2.4) into (2.1) we define the consumer's indirect utility

function:

VP y) = ulx (py,¥),x; (o) ,y)) (2.5)

which is known to satisfy Roy's Identity:5

Bv/apl

—szl - (2-6)

Provided that the direct utility function is strictly increasing in X
and is non-decreasing in X0 ¥ is monotonic increasing in y and can

‘therefore be inverted to yield the expenditure function
y = e(plu) . (2.7)

The function e therefore indicates how much incame is required to achieve

the utility level u when the Price of good 1 is Pyi it satisfies
u = v(.pl,e(pl,u))- (2.8)

Now suppose that the price of the first good changes from pi to
pi - By definition, the compensating variation associated with the price

change is

bde = e(pi,uol - e(pi,uo) . (2.9)

5Roy's Identity follows from comparing the total differentials of
(2.2) and (2.5) and using the first-order maximization conditions.
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This expression shows the amount of income the consumer must be given to make
him as well of at price pi as at pi . Mohring [197lj has forcefully argued.
that it is the appropriéte measure for most problems of applied welfare
econamics.

The problem now is to express (2.9) in terms of the compensated demand

function for S which is defined by
o .
xl(pl,u) = xl(pl,e(pl,u)). (2.10)

This is done by applying Shephard's lemma:

Be(pl,u)

(]
3, 1P (21D

where u is an arbitrarily selected utility 1eve1.7 This equation gives the
compensating variation for an infinitesimal change in Py i to find the compen-
sating variation for a finite change, (2.11) is integrated:
£
P
£ o o o, _ c o
e(pl,u ) e(pl,u ) = J ;cl(pl,u )ép, . (2.12)
o
Py
This gives the basic result mentioned at the start of this section; the
compensating variation of a price change is the area to the left of the compen-
sated demand curve.

This result is easily aggregated. Define the aggregate compensated demand

function for good 1, X as the sum of the individual campensated demand

(o}
1 ’

functions. xi depends upon prices and upon the utility'levels of all consumers.

6It is employed, for example, by Hause [1975] and Diamond and Mcradden
[1974), both of which demonstrate that the compensating variation measure leads
‘to the well-known Harberger formula for excess burden. Nevertheless, some con-
troversy surrounds its use; see Chipman and Moore [1976a) and Hause [1975].

7
Shephard's lemma follows from differentiating (2.8) with respect to Py .
and applying Roy's Identity.




Sinilarly, define the aggregate expenditure function, E , as the sum of the
individual expenditure functions at these same utility levels. Then by adding
the compensating variations (2.12) for all consumers, we obtain;
£
Py
re = | %, , uihap (2.13
1= 1/ .13)
o
Py |
where {ul} is the set of utility levels before the change.

For practical purposes, the area to the left of the compensated demand
curve in (2.13) is usually calculated from an econometric estimate of the
ordinary or Marshallian demand curve.8 Although the compensated demand func-
+ion for an individual can, under certain conditions, be computed exactly
from an econometric estimate of the Marshallian demand [Seade, 197€; Willig,
1976], the same is not true of aggregates. This had led to an approximation
procedure, employed by a number of investigators such as Harberger [1964] and
Teldstein [1978}, in which the Slutsky equation is applied to the ordinary
aggregate demand curve in order to obtain estimates of compensated price
elasticities. This procedure is exact if (a) Bxl/ay is the same for every-
one, and (b) each individual's share of aggregate income is fixed regaxd-
less of price and income changes; in this case the Slutsky equation can be
aggregated. To the extent that individuals' income slopes are similar, then,
this would appear to be a reasonable approximation procedure.

For the special case in which the price change is induced by a tax (or

subsidy), (2.13) can be used to calculate the “excess burden" of the tax, i.e.,

the welfare loss brought about by distortions 'in relative prices. Following

8It has been shown that the area under the ordinary demand curve is itself an
exact measure of the utility change under very restrictive conditions in the
demand function. 'See, for example, Chipman and Moore [1976b] ,Rader [1976b], or
Bruce [1977].




Diamond and McFadden [1974], we define excess burden as
XaAE—T' (2.14)

where T denotes tax receipts. The exact form which equation (2.14) takes

in practice depends on the incame effects generated by the uses of the tax revenues
(or, alternatively, by a set of hypothetical lump-sum taxes of equal yield), and
therefore depends on the distribution of these Yevenue uses or taxes. Although
this point is well-known (see Friedman ]1949], Bailey [1954], Harberger [1964],
and Hause [1975]), it is worth restating here because its implications for dis-
crete goods, discussed in the next section, are samewhat surprising.

Let o and ac vbe the own-price slopes of the aggregate Marshallian and
compensated demand functions, respectively; and let w be the income-slope of
the former, viewed as a function of aggregate inqcme Y=I yi . Then the

. i

Slutsky approximation discussed above,

of = o+ xlm ’ ' ' B ' ’ (2.15)

can be intuitively justified from the observation that depl is the income
compensation required to ameliorate the effect of a price increase 'dpl, and
hence wxldpl is the additional consumption induced if income is compensated.

A linear approximation to the compensated demand curve yields

~ o0 lc 2
AE = xlApl + 50 (Apl) (2.16)
o 1 2
= xlApl + "ZI°‘ + xlw] (Apl) : (2.17)

where xi is the aggregate consumption at initial price pi, and where

o
Ap, = pifpl-Equation (2.17) can be viewed as the Taylor Series approximation to

1l

AE, of second-order in Apl .




Now consider two altermative assumptions about the uses of the tax revenues
T: (a) the partial equilibrium assumption that they are used in such a way as
to generate no repercussions on demand for good 1 , and (b) the general equili~
brium assumption that they are distributed uniformly in lump sum transfers. We
again compute approximations of second order in the price change. Under assump-

tion (a), tax revenues are computed along the Marshallian demand curve:
P _ O . '
T = [Xl + aApllApl _ (2.18)

Under assumption (b), on the other hand, final demand contains an income

effect uEG + Where TG are the tax revenues, so that

G . ..0 G
T = [X1 + aAp1 + wT ]Ap1 ' (2.19)

which can be solved for TG and expanded in a second-order Taylor Series to yield:

G _ ,.,0 '
T =[x, + (0 + X 0) Aplj Apy | (2.20)
(o] o]
= Ix] + a“fp )fp, . (2.21)

But this is equivalent to computing taxes along the compensated demand curve.9

Subtracting tax revenues from the compensating variation in (2.16) and

rearranging yields the following altermative formulae for excess burden;

(a) partial Bg.: X =3 Io° - 201 Up)° (2.22)
1 2

=3 I- a + %u) Up;) (2.23)

(b) General Eg.: G = % I- o5 (Apllz (2.24)
1 2

=3 I~ o~ xu) )" . (2.25)

9See Hause [1975], pp. 1156-1160, for a fuller discussion of the rationale
for using the compensated demand curve in camputing tax revenue under general
equilibrium assumptions. Note also that we are assuming a constant cost techno-
logy, i.e., introduction of the taxz does not change the producer's price over

the relevant region. See also Rohlfs' [1976] discussion of the adequacy of surplus
welfare measures under partial equilibrium assumptions.




The general equilibrium yersion (2.24) is the famous excess burden triangle
usually associated with Harberger.

Note that, whereas the campensating variation is of first order in Apl ’
the excess burden is itself of second-order in Apl - Thus, the conditions
given by Willig [1976], under which the compensating variation is adequately
approximated by the ordinary consumer's surplus, do not necessarily justify
using the ordinary instead of the compensated demand curve for excess burden
calculations. Indeed, if the general equilibrium assumptions underlying
equation (2.24) prevail, then it is the best approximation (up to second-
order terms in Apl ) of the excess burden, and the fractional érror from
using o instead of o° in equation (2.24) is (a-0S)/0C = xlw/ac = - onye’ ,
where. ® 4is the budget share of good 1, 1 is its income elasticity, and €€
is its compensated own-price elasticity. This error can be substantial for a
good, such as housing, which absorbs a large portion of consumers' incomes.

For a normal good, the excess burden is positive and is smaller in the
general than in the partial equilibrium context: Thi§ is becausé the coﬁ#ump—
tion cutback caused by the price distortion is lessenea by the income cffects
arising from the uses of the tax revenues. We will see in the next section
that some of the ameleriorating incame effect in the general equilibrium case

is lost in discrete good models, making the potential welfare losses from taxes

on such goods greater than conventional analysis would imply.

III. Discrete Choice

In this section, we prove the basic theorem which establishes the validity
of using the area to the left of a compensated demand curve for a discrete

good as a measure of the compensating variation. We take adyvantage of the
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notation and general plan of attack used in Section II for the continuous goods
case. We then show how the use of empirical approximations for computing wel-
fare losses is modified. |

pDiscreteness in demand can be modelled in at least three ways. (a)
Comodities may be available in continuous quantities, but in only one of a
small number of‘mutually‘exclusive varieties. An example is housing. It can
be purchased in either the rental or owner mode, but given the tenure choice,
a continuous quantity of housing services can be consumed. (y) Goods may be
available in discrete units which are so large that most consumers choose
only one oxr two units. 'Examples include college degrees; transportation mode
for work trips, and many consumer durables. (c) Goods may be purchased in
discrete units because nonconcavities in utility functions lead the consumer
to choose among alternmative corner solutions. For example, two television
shows aired simultaneously can be consumed in any fractionﬁ, but most viewers
will prefer to consume all of one and none of the other. Note that many
examples could be modelled equally well as cases (a) or (c).

In addition, even with concave utility functions, particular prices and
incomes may lead to corner solutions at which a good is not consumed at all.
Empirically, this has led to econametric technigues such as Tobit analysis.
although this is not usually considered discrete choice, we mention it here
because the isspes inyolyed are formally yery similar to those of the other
cases.

The pxohlem raised by all these cases for the theoretical derivation of
the compensating variation is that discreteness introduces a point of dis-
contimiity into the demand functions, and/or a point of non~differentiability
into the indirect utility and expenditure functions. Thus, the derivative in

equation (2.11) may be nndefined at some "cxossover" price. The key to the




- 1] -

result in this section is that it is still possible to integrate over (2.11),
since the expenditure function is continuous and has right- and left~derivatives
‘at the point in question.

The formal models for the various cases differ in detail, but the proofs
for all are essentially similar. We therefore proceed by considering case (a)
in a three-good model in which two of the goods are mutually exclusive. The
proofs for the other cases and extensions to more than three goods are outlined
in Appendix A;

Consider, then,a consumer with utility function

u = u(xn,x (3.1)

17%2)

where x is the numeraire good. In order for the possibility of zero con-
sumption of good 1 or 2 to make sense, we assume that utility is finite
when either x, or x, is zero. As in the standard case, utility is maxi-
mized suhject to '

xn + Plxl + p2x2 =y _ : (3.2)
%, >0 i=1l,2,n (3.3)

To Prevent both x, and x, from being consumed in poﬁitive amohnts, we

impose the constraint

x,x, = 0. (3.4)

: 1o
As in the preyious section, we assume interior solutions rather than deal
explicitly with non-negatiyity constraints; thus the numeraire and either

%, or x, are consuyed in positive quantities,

I0
Corner solutions can also be dealt with using the framework developed

in this section. See Appendix A for a demonstration.
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Theorem 1.
Suppose a consumer maximizes, subject to constraints (3.2) through (3.4),
a twice differentiable, strictly quasi-concave utility function of the
form (3.1). Assume u is finite whenever x, or X, is zero, is strictly
increasing in x , and is non-decreasing in x, and x, . Iet e(py (P, u)
he the minimum expenditure required to achieve utility u, and let
o - 4 _
w® = v(pS,p,y) be the value of the indirect utility function'Tat initial
prices and income. Then the compensating variation for a change in price 12
o £ . |
from pl to Pl is;
f
Py
- £ o o o, t .c o
e(PuPz'“ ) - e(_pl,pz,u ) = J'xl(pl,pz,u )dpl (3.5)
o
Py

where x; (-} is the compensated demand function for ‘good 1 defined by

c o : o .
xl(.pl,pz,u ) = xl(pl,pz,e(pl,p2,u 1) . 3.6)

Proof. Constraint (3.4) requires that consumption of either good 1 or
good 2 be zero. If %, = 0, the optimal amount of Xy is found by maximiz-
ing u(xn,xl,ol subject to x ‘+ Py%; =y - The function u is well-behaved
when yiewed as a functien only of x  and X%, , SO this sub-problem is formal-
ly identical to the problem of the previous sect:.onf and leads to well-edefmed
continuously differentiable indirect ut:.l:.ty, expend:.ture, and compensated demand

functions, each conditional on x, = 0 . Denoting these by vl(,pl,y), l(pl,u) p

and i;(-P]_ru) , respectiyely, we know from (2.11) that

o ~C '
ael/apl =Xy . (3.7)

llSo long as the numeraire is perfectly dJ.v:Ls:Lble, the assumption that u
is strictly increasing in X and non~decreasing in x and x2 guarantees
that the indirect utility function exists and is str:.ct}y increasing in vy,
and therefore can be inverted to find the expenditure function.
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Similarly, if X, = 0, the problem of maximizing u(xn,o,xz)

yields functions Vz(pz,y), gz(pz,u) and ig(pz,u) with the property
that

-~ ~C .
3e2/3p2 =x, . (3.8)

For any income §', ‘the choice between good 1 and good 2 will be
made by comparing Gl(pl,sa with Gz(pz,y) . Let k(pl,p2,§3 index the
larger of the twb, with k = 1 4in case of a tie. Then the utility achieved
is

u = Gk(Pk';)

max{¥, (p,,¥) ¥, (p,, ¥} - (3.9)

The quantity ;- is therefore the income reguired to achieve utility u ,

both unconditionally and conditionally on choice k :

y = e(pl,pz,ﬁ') = ék(pk,E) . - . : (3.10)

Letting j index either good (j = 1,2) , the fact that x”rj (5 ) <
implies

’éj (pj,_) >y j=1,2 (3.11)

since ;j is strictly increasing in y , and Ej is simply its inverse .
But (3.10) and (3.11) together imply that

e(p, p,su) = m:i'n &5 oy i) - . (3.12)

Since each of the functions Ej is continuously differentiable in price,

so is e , except at those prices for which El = 52 ; and at these points,
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e is continuous and right- and left-— differentiable.l2 Its price derivatives

are therefore bounded and piecewise continuous, and hence integrable,l3

furthermore,
38,/%p, = . if k=1
e,/dp; =%, i =
3e/3p1,= (3.13)
=0 if k#1

13-‘?:2/ py =

provided the upper and lower expressions are interpreted as the left- and
right-derivatives, respectively, at the point of indifference between the

two goods.

12 ‘
For given P, and u, let y* = ez(pz,u) . Let pi be the single
value of Py (if any) at which the consumer switches goods. Thus,
& * = & ' = * * 3
el(pl,u) ez(pz,u) e(pl,pz,u) . ?or 12 <pj s good 1 is chosen and
e = El; for p, >p} , good 2 is chosen and e = Ez . Clearly e is
continuous at p} , since El = Ez there. The left-derivative of e

with respect to P, evaluated at pi is

e (Pl RP) /u) = e (Pi 1Poy yu)

1im
- *
pyt BY - P17 F1
= lim €, (py ) - El(Pi'“)‘
e *
p1+ pi Py Py

(38, /0p)) | pt

since El is differentiable. Similarly, the right-derivative exists and is

equal to 8e2/8p1 .

13
See any calculus text, e,g, Thomas 11960], p. 214.
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It remains only to identify the right-hand-side of (3.13) as the

. c - .
compensated demand function, xl(pl,pz,u) . When good 1 is chosen (given
pl,pz,u) ¢ X =X when good 2 is chosen, xi = 0 . Thus, for an infin-

itesmal change in Py the compensating variation (3.13) reduces to
de(py 1P, 1) /3Py = X, (py,Py,0) - (3.14)

EnhﬂmgBJMatMﬂh{uoEmﬂnmiwﬁﬂ%mﬂ and integrating

over p, yields (3.5).
Q.E.D.

A more heuristic discussion of the theorem may be useful at this point.
Suppose an infinitesimal change, dpl , occurs in the price of good 1. If
a positive amount Xy of good 1 is being consumed, then the welfare loss is
xldpl . If good 1 is not being consumed, i.e., 'xl =0 ; then the welfare
loss is again xldp1 ' which in this case equals zero. If the consumer is
just at the point of indifference between goods 1 and 2, no welfare loss
arises from switching from one good to the other. 'Thereforé,'integrating
‘over this point of discontinuity adds nothing to the total for a finite change.
In every case, then, the welfare loss from an incremental price change is des-
cribed by the incremental area to the left of the demand cuxve. If incame is
compensated as the price changes, this is equivalent to measuring the area to
the left of the compensated demand curve. This'iﬂtuitive discussion applies

14

equally well to cases (b) and (c), mentioned earlier,” and to corner solutions.

lémiler [1974, pp. 131-136) demonstrates an even stronger result for case
(b), in which the good in question must be purchased in a given quantity or not
at all. He shows that, for a fall in the price of such a good, the compensat-
ing yariation is given by the area to the left of its ordinary demand curve.
This follows fram our result because income effects are absent, and thus the
ordinary and compensated demand curves are identical. So long as the price re-
mains above the "critical price" p* at which the consumer purchases the dis-—
crete good, no compensation is required to keep him at the initial utility level;
and below the critical price, the compensation cannot affect the amount of the
discrete good purchased. However, R. Willig has pointed out to us that Maler is
incorrect in stzting that the result also holds when the individual is consuming
the good, and the price rises above p* . This asymmetry occurs because for the

price rise, the compensating income alters the -~vitical price itself, and hence the
ordinary demand curve and the relevant compens:z 4 demand curve are not identical.
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As in the ordinary goods case, we define an aggregate compensated
demand function for good 1, Xi , as the sum of the individual ccmpehsated
demand functions. 1t depends upon the prices and the utilities of all con-
sumers. Similarly, define the aggregate expenditure function E as the
sum of the individual expenditure functions at arbitrarily selected utility
levels. Then, by adding over consumers, we obtain the result that the sum
of the individual compensating variations is given by the area to the left

of the aggregate compensated demand curve:

£
Py

© i
AE = xl(pllpzl{u })dpl (3.15)
o
Py

where u~ is the initial utility level of the ith consumer.

Applying the Theorem

For purposes of applying Theorem 1, it is important td notice that thé
demand curve in (3.15) is the unconditional demand for good 1, and is not
conditional on the choice of good 1. Both the discrete choice itself and
the quantity demanded conditional on that choice are incorporated in xi .

To make this distinction clear, write the compensated demand function
in equation (3.5), for individual i , as

ci io ci io,~ci io
= ' .16
X1 Py Py ) = 817 (py Py ut )X TPy 4Py uT) (3.16)

. ) . . ci .
where 650 is a compensated discrete choice index, i.e., 611 is 1 if good

1l

1 is chosen and 0 otherwise, assuming that price changes are compensated in

order to permit achievement of initial utility level uio . The coﬁpensated

ci

demand conditional on choice of good 1, il ; is defined as in the above proof.

adding
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the right-hand sides of equation (3.16) for the N individuals in the economy

yields an alternative version of (3.15):

b
By
ci io,~ci io
AE = ifldl (pl,pz.u )xl (pl.pz,u )dpl . (3.17)
o
Py

There are two important problems which must be solved in order to make
equation (3.17) useful for applied work. First, an investigator cannot know

with certainty whether or not a representative individual will consume a given

discrete good: &A1l that can be assigred is the probability ﬂ; that the good

will be purchased, conditional upon a set of measurable characteristics (race,

sex, etc.) as well as prices and income. An attractive way to model this is to
assume that each individual's ﬁtility functioﬁ is deterministic (as in the pre- '
ceding section), but that because of factors unobservable to the investigator,
the outcome appears randcm.l5 Thus as we mo;e to applications of our theorem
and attach probabilistic interpretations to variables that were heretofore

deterministic, we are not moving to a different framework, but are dealing with

a special case of the model developed above. Replacing the cnoice 1haex

in (3.17) with this choice probability converts (3.17) to an equation for

15This seems to have acquired the name "random utility" approach, in

contrast to the "constant utility" approach, in which the utility function
itself (or equivalently, the choice mechanism)is viewed as having a random
component. Operationally, these two formulations are equivalent, i.e.

lead to the same kind of estimating equations. Their interpretations are
discussed at length by Williams [1977]).
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16
txz expected welfare change.

The second problem is that Sii is a cbmgensated discrete choice index;
therefore, it should be replaced with a compensated choice probability. We
provide in the next sub-section an approximation procedure, analogous to that
for continuous goods, for doihg this.

Our method is therefore fully—operational provided we can find econo-
metric techniques for estimating the required demand curves. A straightforward
procedure would be to estimate the discrete choice and>conditional demand
Zuns=tions jointly using maximum likelihood techniques. Alternatively, a

~om.sistent recursive procedure has been developed by Heckman [1977].

Slutsky Effect

A satisfactory approximation procedure for converting econometric
estinates into compensated demand relations must take into account the fact

that neither the Slutsky egquation nor the computation of tax revenues is the

e v : . . .
Note that oniy if the choice probability is independent of price

1 will the correct answer be obtained by calculating areas for conditional
emand curves and multiplying them by the probabilities. Thus, for example,
eldstein and Friedman [1977] are correct in using the latter procedure

to calculate welfare effects of changes in the price of health insurance,
tecause in their model the probability of illness is assumed to be exogenous.
“owever, one must not be misled into thinking their procedure is generaliz-
akle to endogenous probabilities.

'y
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same for discrete as for continuous goods, because the nature of the income
effects is fundamentally changed. In the continuous case, it is at least
reasonable to suppose that all consumers have identical income slopes for

good 1; this permits the Slutsky eguation to be aggregated, and makes plausible
the general equilibrium assumption that tax revenues are redistributed so

as to réﬁurn all consumers to their initial utility levels. In the discrete
case, however, we explicitly fecognize a group whose consumption of good 1 is
zero throughout a range of incomes, and thus £he énalysis must be modified.

In order to focus on the issue of discreteness per se, it ;s useful to
abstract from other differences among individuals by assuming N consumers
who differ only in their preferences between goods 1 and 2;17 Thﬁs, they
have identical incomes y , and identical conditional Marshallian and compen-
sated demand functions il(pl,y) and ii(pl,u) , respectively. This is, of
course, a very restrictive case. However, it is useful in that'it highlights
the important differences that appear wﬁen discreteness is explicitly taken
into account. If the assumptions of this section seem too restrictive for a
given problem, they can be relaxed, although the results will be less intuitive

and computationally more complicated.

7Assume, for example, that utility for *he ith individual is given

i i, i _ . .
by u (xn,xl,xz) f(xn,xl,xz) + €10 + 2262, where Gj =1 if xj is
chosen and = 0 otherwise (j = 1,2), and where el and’ el are constants.

1 2
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The Slutsky equation for this model is

~c had -
ax) ey 8x)
===+ X

35; p, ~ 17 8y ° (3.18)

Now let ﬂl(pl,pz}{yl}) be the fraction chdosing good 1 at the given prices
and incomes. In analogy to the compensated demand function, define the com-

pensated choice probability
%o, .0, o)) = 1 o ,p,, et 0,0l (3.19)
11527 1¥1/F2! 1’=27 °

where u> and e’ represent the utility level and the expenditure function,

respectively, for consumer i .

Define the aggregate quantities:

i ~ ' . :
Xl-- ;xl = Nﬂlxl (3.20)
i
xS = Zx*%= NnCxS (3.21)
1 . 171
i
i
Y = Zy = Ny . . (3.22)
i
Note that since all incomes yl are assumed equal, xl and m depend on
them only through aggregate income Y. Hence we may write:
= (3.23)
Ty = Ty (P /P, /¥)
- = % D, ] 3.24
X) = Xy (p) 1Py, ¥) = NTy (pg Py ¥y (P Py ¥/N) (3.24)

’ . c
Differentiating (3.19) at an initial point for which X, =% and

c

1=T + and applying our previous result (3.14), yields the choice-

™

probability analogue to the Slutsky equation:
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[~ s
omy _ Bmy 5 o) et
Py FR1 T § 5t Oy
om omy
=% T4 (3.25)

Equations (3.18) through (3.25) taken together yield a Slutsky-like equation

for the aggregate demand functions;

(>}

ox X X, X X, am
1 1 1 1 P S !
B e U I (3.26)

1 1 1
In the special case anl/aY = 0, equation (3.26) is the usual aggregate

Slutsky equation, except the income effect is divided by 7. and is thus

1
larger than in the continuous case. The intuition behind this follows from the
conceptual experiment implicit in the campensating variation measure. Were it
required to maintain utility after é Price rise dpl » it would be necessary
to proyide compensation equal to depl to that fraction m, of the populatiorn

1
which,conSumes.good 1. But this would have the. same effect on consumption as

raising all incomes equally, by anvaggregate amount (xl/nl)dpl, since the
~extra payments to non-consumers would have no impact (so long as- Bﬂl/BY = 0)

on aggregate consumptibn X Thus, the compensation would cause consumption

1 L]
of good 1 to rise by (BXi/aY)(xl/nl)dpl + which gives the first income-effect
term in (3.26). The last term arises from the effects of income compensation

on the choice probability itself.

Excess Burden

?ollowing the procedure of Section II, we approximate the demand curves

by straight lines with slopes:

axl/apl =
8x§/apl = o
= w .

axl/ay
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We also let
a'nl/aY =V .

As before, the compensating variation is given by equation (2.16); note,
however,'that this is no longer equivalent to (2.17).

We next proceed to calculate tax revenues under (a) partial and (b)
general equilibrium assumptions, making use of the "Slutsky-like" equation

(3.26), which can be written:
c _ 2
a =0+ (xl/'rrl)w - (1-1r1) (Xl/ﬁl) v - (3.27)

(a) For the partial equilibrium case, tax revenue is simply given by
(2.18), and excess burden by (2.22). Substituting (3.27) into (2.22)

yields:

. |
X = 31 + 202 /7w - 201 - 7)) %y /m) 2] (ap)) (3.28)

= Fl-a + (x/mde ~ (- 7)) (%, /71% (4py)? (3.29)

Note that, in the absence of inccme effects on the choice probability

0) , the excess burden (3.29) is larger than would be calculated

(v
from (2.23), if discreteness were ignored.

(b) If tax revenues are returned uniformly in lump'sum transfers,
equation (2.20) remains valid, but is no longer equivalent to (2.21),
corresponding to the fact that the compensation no longer returns each
consumer, even approximately, to his initial utility level. Under this
regime, the fraction my who paid the tax have their real incomes reduced,

while the others have them raised. In neither group are individuals moving
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along their campensated demand curves. Subtracting (2.20) from (2.16) and

applying (3.27) gives the excess burden:

XF = %[ac - 2a = 2x1w](Apl)2
=l[-ac+2(}- - 1)X - 2(1 - )(x—lz 1 (A )2 (3.3
> m 1 ™ 1r1) vitap, -30)
el A s - @ -y L2 (4p.)° 31
: - L m) v wep? . (3.31)

Comparing (3.31) with (2.25), we see again that, in the absence of incame
effects on the choice probability, the excess burden is larger than that
ccmputed by ignoring discreteness, though it is still smaller than in the
partial-equilibriun case (3.29).

So in general, if the choice probability is independent of income but the
conditional demands have positive income elasticities, the usual approximation
procedure which ignores discreteness undersstimates the compensating variation
and the excess burden of a price rise. There are two reinfbrcing tendencies
causing the result. First, the usual Slutsky correction results in an over-
estimate of the magnitude of the compensated price elasticity, and hence an
. underestimate of the compensating variation. Second, the ameliorating effects
of tax-revenue redistribution on misallocation are less, because some of the
distributions are "wasted" on non-consumers of the good in question. We sus-
pect that this résult is a special case of a more genefal proposition that
standard procedures fend to underestimate excess burden (i;e., the compensat-
ing variation less tax revenues) for groups of non-identical consumers.

We conclude this section by compiling, in Table 3.1, the results for
computing excess burdens. The formulae have been converted to elasticity

form, using the definitions
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€=P_1_aﬁ.
X, apl
n=Y—ﬁ
xl oY
Y o
V=T
e_xlpl
Ty
T=To.

The expressiohs given are those which should replace [- ec] in the Harberger

formula,

G 1 c 2
X = 3x1p1 {-¢ ](Apl/pl) '

derived from (2.24).

TABLE 3.1

Factors for Computing Excess Burdens

Continuous Discrete
Partial equilibrium - g+ On - €+ %en - (%'— 1)6y
e q s 1 1
General equilibrium - eg= 06n - £+ (%--2)6n - (F'_ 1) 6y

Observe that when T = 1 , the expressions in the second column equal

their counterparts in the first. In both relative and absolute terms, the

error introduced by icnoring discreteness is small when practically
everybody consumes the good. When T tends toward zero, on the other hand,
texrms involving 0 also tend toward zero, whereas those involving 6/7

~ 18
tend to xlpl/y . Thus, the error induced by ignoring discreteness,

18 «
Nﬂplil
| e/m = (T)/Tr = xlpl/y
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i.e., the difference between terms in Table 3.1 multiplied by -;—'-lel(Apl/pl)2 '
tends to zero absolutely (though not as a proportion of excess burden) as T
approaches zero.

A final issue concerns the conceptual experiment which lies behind the
results listed in the table. It is implicitly assumed that tax revenues are
returned to the population at large. To the extent that it is possible to
target the‘revenues onlj to the consumers of the taxed discrete good, the
usual formulae would apply without modification. If some targeting occurs
but it is incomplete, the excess burden wonld be somewhere between the "continuousw

and "discrete" calculations.
3

Iv. Quality Changes

Thus far, our focus has been the measurement of price-—induced welfare
changes. However, in many disﬁrete choice érobleas the évaluation.of quality
changes is of primary interest. For example, we may wish to evaluate changes
in frequency of bus services in contexts where consumers have a choice between
bus and auto; or changes in noise levels when individuals have the options of
staying in the affected locale or of moving,

One possibility for dealing with a gpality change is to conyert it to an
equivalent price change, and then to apply the technique discussed in Section

III. Unfortunately, this is possihle only in the very special case in which all
consumers have constant and identical marginal rates ©f substitution between
the releyant quality variable and the numeraire. For example, this assumption
is often made in tranﬁpqrtation studies by éssuming a single constant value of

time for everyone. Demand for a particular transportation service can then be




- 26 -

viewed as a function of money plus time price, and consumer surplus techniques
are applicable. powever, this example illustrates the tenuousness of such an
assumption, since both theoretical and empirical ¢onsideration$ suggest that
value of time depends upon a variety of factors such as the wage rate.

An alternative tack is to extend the approach taken in Sectibn Iiz, by
adding a quality variable to the model. Suppose that good 1 in the model of
the previous section has associated with it a quality variable described by
the scalar 9 which is considered exogenous by consumers. (The variable
9, could also be interpreted as the level of provision of a public good which

is complementary to good l.) Thus:
u= u(xn,xl,xz,ql) (4.1)

where, as before, u is assumed to be finite when either % = 0 or x, = 0
We assume further that quality of good 1 does not matter unless good 1 is

being consumed:
Bu(xn,o,xz,ql)/aql =0 . (i.2)

As in Section III, the indirect utility function and the expenditure’
function are well-defined, continuous, right- and left-differentiable in all

arguments, and satisfy

u = V(p, P, sGy r€(Py PGy /1)) - (4.3

Two alternative formulations of the problem are obtained by implicitly differ-
entiating (4.3) with respect to 4, or py . respectively, keeping in mind
that the right- and left-derivatives may differ at the crossover points.

Taking the quality-derivative of (4.3) yields

de/dq, = - (/A 8v/0q, . (4.4)
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where A = ov/dy = Bu/axn is the marginal utility of income. This intuitive
formula simply states that the marginal willingness-to-pay for a quality change
is given by the marginal utility of gquality, converted to monetary units via
the marginal utility of income. For problems in which the indirect utility
function is explicitly specified, as in Section V below, equation (4.4) is
extremely useful, particularly if it is reasonable to approximate X (an
empirical quantity, given the normalization implicit in the econometric pro-
cedure) by a constant. However, the constancy of A is in no sense necessary
for (4.4) to be valid.

Taking the price-derivative of (4.3), on the other hand,:and applying Roy's
fIdentity, yields Shephard's lemma, which was the starting point for deriving
Theorem 1 of Section III. Thus, by simply adding q, to the list of arguments
of all the functions, Theorem 1 is seen to remain valid in the present context.
This fact enables us to evaluate quality changes in terms of changes
in consumer's surplus, along the lines explored by Bradford and Hildebrandt

[1977] and Willig [1978] for continuous goods.

To see this, assume, following Bradford and Hildebrandt, that when
the price of good 1 hecomes high enough, the consumer does not care about
its quality, presumably because none of the good is being consumed. More

Precisely, we assume that the quality derivative of the expenditure function

becomes arbitrarily small as the price of good 1 rises:

lim Be(pi,pz,ql,uo)/aql =0. (4.5)

P-)oo

1

Thus differentiating our previous result, (3.5), with respect to q, and

letting pi =+ o yields the following result:

Theorem 2.

Let the utility function (4.1) satisfy (4.2) and all the assumptions of
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Theorem 1. Let e(pl,pz,ql,u), the minimum expenditure required to achieve

utility u subject to constraints (3.2) — (3.4), satisfy (4.5). Then

[-<}

2 o o, _ ? c o
3q; elp,,pyrqy 0} = E _Oxl(pl,pz,ql,u )dp, o . (4.6)
P
1

where the derivatives are to be interpreted as left- and :ight—derivatives at
points of non-differentiability.

Note that (4.6) is the change in the area to the left of the campensated
demand curve as it shifts in response to the change in g, . This is the resu}t
derived for the case of continuous goods by Bradford and Hildebrandt [1977],
using a slightly different assumption on v . Thus, we have deéemonstrated that
the Bradford-Hildebrandt formula remains valid in the discrete goods case.

Eqnétion (4.6) is easily integrated to obtain the compensating variation

. o £
foF a quality change from q; to q;
w

c £ o c o _o
A.E == »Io[xlcpllpzlqllu ) = xlipl'fpzlq‘l{u )Jdpl c . (4'7)

F1
Furthempor: . direct aggregation of (4.7) is possible to obtain a formula in

terms of the aggregate cappensated demand function;

o
o€ £ i c o i
Jo
5!
V. ppplication to Ecgnometric Models

McFadden 11973, 1976] has shown that a broad class of discxrete choice
podels can be deriyed by assuming that each consumer maximizes a utility
function with a stochastic term accounting for differences in tastes that

are unobsexyable to the investigator. Since such models unéerlie the bulk of
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current empirical work on discrete choice, it is useful to examine the form
which the results of the previous two sections take when applied to stochastic
utility models, in particular to the popular probit and logit models. ’As
noted above, these stochastic utility models can be viewed as special cases

of the basic deterministic model discussed in Section III.

In our notation, the assumption behind all these models is that the

~1

conditional indirect utility function of consumer i for good j , vj '
is additively separable into three components as follows:19
T2,y = vieh ¢ w, k. a,ytish) + | (5.1)
3Py R e R 3

where Wj(-) is a "universal" or "strict utility" function whose form is
identical for all consumers; and where e; is the realization for consumer

i of a random variable €, which is independent of the arguments of wj .

3

The vector §} contains observable characteristics of the consumer, and
attributes of £he discrete goods (e.g., locationai attributes) which may
vary across consumers.

By assuming a joint probability distribution on '{Ej] , we obtain the
probability, conditional on prices, quality levels, and observable consumer

characteristics, that utility is maximized by choosing good 1;

i
=

LY

Powt oforanl 41, (5.2)

Probh]e. =
Proble; =~ € LWy = Wy

12V

where wi denotes the second term in (5.1). Given specific forms for the

3

19 . . s s .
‘The first term in (5.1) does not enter the econometric specification

of the discrete choice model, since it is independent of 3j '; it has usually
been ignored in the literature. The remaining temms have generally been des-
cribed as the "utility function" though it is clear fram the inclusion of
price as an argument that they are part of an indirect utility function. A
true indirect utility function would have all prices as arguments and would
not depend on Jj ; hence the qualification “conditional." See Small [1977]
for a fuller discussion of this point.
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functions Wj , their parameters (up to a normalization convention) can be
estimated from a sample of observed choices by maximizing the likelihood
function associated with (5.2).

In order to forecast the aggregate demands,'we need to measure the in-
comes yi and other characteristics §} of the individuals in the population
under consideration. One way to do this is to sample the population, and
assume that each sample member i is representative of a group of N:'L indivi-
duals who are identical‘with respect to their incomes and measured characteristics.
The probability Wi calculéted from (5.2) can therefore be interpreted as a
prediction of the fraction of this particular class of consumers who will choose

good 1; to computé expected aggregate demand from the class, we multiply by the

conditional demand function, as in (3.20):
i i d - ii.i (5.3)
xl(Plrpzrqer I_s_) N ‘lTlxl . )
Furthermore, applying Roy's Identity for the conditional demand function

in (5.3) yields an expression in terms of the marginal utility of income,

At
i i i i.i, i, i
Xl(Pl'Pz’ql'y ;S7) ==(N"/A )nlawl/apl . (5.4)

In the following discussion, we suppress the superscript i and the explicit

dependence on §} , which is assumed to be fixed.

Having specified functional forms for the components Wy of the indirect
utility function, and having implicitly normalized by choosing a specific joint
probability distribution function for the stochastic term Ej , we are free to
make assumptions about Wj on the basis of purely empirical considerations. We
now make three such assumptions, which are likely to be valid in many applications:

that the marginal utility of income, 2 , is approximately independent of the

{a)

price and quality 6f good 1; (b) that the discrete goods are sufficiently unimportant

to the consumer so that income effects from quality changes are negligible, i.e.
that the ccmpénsated demand function in (4.6) is adequately approximated by the

Marshallian demand function; and (€} that Bwl/aql >0 as p, *>, a slightly

stronger version of (4.5). - Equation (4.6) can therefore be aggregated over members
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of this consumer group to yield:
- -}
oW, (D, /4, ,Y)
3 11737
-——aql I ‘I'l’l (Pl'pz rqer) 3p ﬂpl .
o ‘ 1

Py

Lo 34

E
9

2=
>l

[+ %]

But (5.2) implies that T depends on its arguments only through the functions

W1 and W2 . We may therefore make a change of variable, w = Wl(pl.ql,y) '

to write: -
1
1l JE 139
N 3a; 3 341 J Ty (w; /W,)dwy
: Jo
1

= (1/x)nl(wl,w2)awl/aq1,

where wg = Wl(pi,ql,y) ’ w; = wl(w,ql,y) . Use has been made of a standard
theorem for differentiating a definite integral with respect to its limits
(Thomas [1960], p. 720), plus assumption (c) above. Integrating over

q, from initial to final values, therefore, we have:

o

- @Q/n nl(wl,wz)dwl (5.5)

(AE) /N

WO
1 20
where W

o _ o o £ o f
1 wl(PqullY) and Wl = Wl(pl'ql'y) .

Equation (5.5) is extremely useful for computing welfare effects using
discrete choice models estimated from micro data, since it avoids the explicit
use of the aggregate demand functions, which are not normally obtained in
closed form from such studies. In fact, though eguation (5.5) is derived above
using the previous results on aggregate demand curves, it can instead be derived

directly from the definition (4.3) of the expenditure function.

2oEquation (5.5) is easily generalized to many simultaneous price and
quality changes, provided the Jacobian matrix (ari/BW.) is symmetric. 1In
that case. the following line integral is unique, i.ey ,path-independent (see
{Silberberg, Y¥9721): ¢

)/ = = (1/0) | I, (Waw (5.5a)

: L

|%;~———4S

where W is a vector of components Wj , and takes initial and final values
W©  ar .
W and gf respectively.
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To see this, recall that the previous results were based on Shepherd's
lemma, obtained by differentiating (4.3) with respect to price. As mentioned
in Section IV, one may instead differentiate (4.3) with respect to quality,
leading to (4.4). The indirect utility v of (4.4) is equal to 61 for
that fraction T of the consumer group which chooses good 1, and is equal
to 62 for the rest. Since only éi depends on 9y aggregating (4.4) and

calculating Bvl/aql from (5.1) yields:
8E/dq, = Nm /N oW /3q, (5.6)

Equation (5.6) is perfectly general, but one must use caution in integrating
it, since the incame variable which appears as an argument in all the functions
is compensated, i.e., is that value which maintains the original utility level.
With the assumptions of constant A and negligible income effects, however,
integrating (5.6) yiélds (5.5) directly.
A final point to notice about equation (5.5) is that it applies equally
o

well to a price change, if Wl and Wi are defined as the values taken b&

W1 at the initial and final prices, respectively. This may be seen simply by
replacing qQ; by 12 in the above paragraph. Alternatively, the price-change
version of (5.5) can be derived directly by integrating (5.4),

In tﬁe course of the econometric estimation of the choice model, specific
functional forms for the ijs are assumed, and estimates of the coefficients
are obtained. Hence, one can compute W1 at the initial and final quality
levels, and can therefore compute the integral in (5.5). Furthermore, if
price is included as a variable in the specification, one has an estimate of
Bwl/apl . TUsing this information along with the conditional demand §1 , which

1l

is often known, A can be computed by using Roy's Identity.2 Equation (5.5)

2T
More specifically, suppose that ao_ is the coefficient of the price

variable in a probit or logit regression. Then A=~ 0 /ii' which, as noted
ic

above, is an empirical quantity given the normalization Emp it in econometric
procedure.
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therefore represents an operational procedure for calculating welfare effects.

We illustrate its use below for the binary probit and logit models.

Probit

In the binary prohit model it is assumed that (el - €

2) is a standard

normal yariate. The probabilities are therefore given by
m o= o0y - W,)

ﬂz =1 -~ ﬂl

where ©® is the cumulatiye normal distxibution function. Formula (5.5) for

the compensating variat;gn becames;
"1

QEL/N = ~ /) @(Wl - W‘z)dw.l
o
W
=~ (1/}) | &lmdw ' (5.7)
o - ' - *
o°
where w° = w:-wzand mf = Wi - w2 . Giyen a probit estimation of the functions

22

Wl and w2 , this quantity can be computed for any price or gquality change.

22 . .
The generalization to simultaneous changes in two price and two quality

variables is straightforward, since the Jacobian condition Bnl/sz - anz/awl is
satisfied. Equation (5.5a) in footnote 20 thus becomes

f
W
1
(AE) /N = -._ -)‘-1 {<I>(w1 - Wz)dwl + [1 - d>(wl - wz)]dwz}
Jo
Ll £
w
= - 3w, + | owdul (5.7a)
(o]
w
f o
where sz = w2 - w2 .

Recalling that W, is an indirect utility function, the first temm in (5.7a)

éf the pegative og the willingness to pay for a uniform improvement in both goods
magnl?ude M., whereas the second term gives the appropriate consumer surplus
for any improvement in good 1 relative to good 2.
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Logit

The logit model arises from the assumptioh that the stochastic utility
components ej are independently and identically distributed with the extreme
value or double-exponential distribution [McFadden, 1973, 1276]. This leads

to a formula for the probabilities:

exp(wl)
Ty = £ =1,2. (5.8)
Z exp(W.)
j=1
In this case, the integral in (5.5) can be evaluated explicitly, leading to:
"
(AE)/N = = (L/A) [1In T exp(W.)] ° (5.9)
3 bWl

where the sqguare brackets indicate the difference in the expression inside

23
when evaluated at the initial and final points.

VI. Conclusion

The analysis and estimation of discrete choice models is currently enjoy-
ing a popularity which is‘unlikely to abate in future years. Ultimately, both
researchers and policy makers will be interested in ascertaihing the welfare
implications of these models. The purpose of this paper has been to set forth
rigorous procedures for doing so. It has been shown how, under quite general
conditions as well as for the special cases of probit and logit analysis, the
usual techniques for measuring welfare effects must be modified for discrete
choice problems. Particular attention has been focused on how the stanaard

corrections for income effects might be altered. The results apply to the study

of both price and quality changes.

3L1ke the Probit model, the Logit model satisfies the Jacobian symmetry
condltlons, and cald¢ulation of (5.5a) for many price and quality changes yields
equation (5.9) altered only in thgt the lipits for evaluating the term in the
square brackets are the yalues W and W taken by the vector of all W, at
initial and final points. The tetm in sqhare brackets has been identified in
the transportation literature as the "inclusive price" or "composite.cost" of an

alternative composed of several sub-alternatives [Ben-aAkiva, 1973; williams, 1977].
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APPENDIX A

A.1 Proof of Theorem 1 for different types of discreteness.

1. The good may be purchased only in discrete units which are so
large that most consumers choose only one or two units.

The utility function is ulx ,x,) where x_ >0, and ¥X; can take on
values of only unity or zero. Utility is maximized subject to the budget
constraint x +xp) =Y .‘ If x, = 0 , the optimal amount of X is
triyially equal to y. This sub-problem yields the expenditure function
conditional on x, =0, gn(n) . Similarly, if X, = 1, the éonditional
expenditure function él(pl,u) is found trivially. As in the case analyzed

in the text, the point of maximum utility is associated with the minimum of

these two expenditure functions:

-~

since e and ;1 are both continuously differentiable in price (with
aén/apl.z 0) so is e , except at that price at which 31 = 52 . and at
this point e is continuous and right- and left-differentiable. The rest

of the argument follows directly that used in the text.

2. Particular prices and incomes lead to corner solutions at which a

good is not consumed at all.

Since we cannot now assume an interior solutioﬁ, the expenditure
function conditional on X > 0 may not be well defined. However, it is
not difficult to see that continuity and nonsatiability of u guarantees
that the expenditure function for the overall problem, e(pl,u) ¢ is
continuous everywhere and is differentiable within each of the two regimes
x, = 0 and 3% > 0 . Hence is it right- and left~differentiable at every

point, and the argument in the text applies.
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3. Goods may be purchased in discrete units because nonconcayities
in utility functions lead the consumer to choose among alternative corner
solutions.

For cases in which discreteness arises from nonconcavity of the utility
function, no general theory is available for use in deriving properties of
the resulting demand functions. Indeed, so far as we know, no attempt has
yet been made to derive formally statisticalvdisckete choice models fox such
cases, and to do so wéuld be beYohd the scope of this paper. Nevertheless,

it is not difficult to see that well-hehaved examples can be treated within

the framework presented in the text. Suppose, for example, that in a three-

good world, all the indifference curves between x) and x2 ~are concave to

the origin, but indifference curves between either X, or x, and the

numeraire are convex. Then at every price vector, consumption of either ¥, or

%. will be zero; hence the constraint 'xlkz = 0 can be added without changing

2

the problem. Furthermore, the assumptions guarantee that u(xn,O,xz) and

u(x 0), viewed as functiéns of two variables,_are well—behavedl Thus ﬁhe

x
n’'"l’

proof of Section III applies.

A.2 Proof of Theorem 1 for arbitrary numbers of goods.

1. ﬁore than ©ne continuousAgood.

The interpretation of x '~ asa vector of goods presents no problems
provided that the discussion of the " standard case in Section II generalizes.
That this is true is shown in Varian J1978, pp. 209-211}.

2. More than two discrete goods » all mutually exclusive.

ptility is giVén by u=ulx ,%,,X,...,%X)) , where %y >0 (J=n,l,...0 ,

0 for r ¥k . The

and where x, » 0 k=1, ... & implies that X

budget constraint is x  + z P Xy =Y - If x, >0, then utility is found
=1
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by maximizing u(xn,o,...xk,...,O) subject to X + PX =Y . The funétion
u is well-behaved when viewed as a function only of x, and Xy » and its
maximization leads to a (conditional) continuously differentiable expenditure
function Ekcpk,u) . The only difference between this case and that discussed

in the text is that there are now £ such sub-problems, rather than two. But

the idea is the same: utility maximization leads to the expenditure function

e(p,s--e,p ) = ming (p, ,u) . Since each of the & is continuously differ-
1l ') X Kk k
entiable in price,so is e except at those prices at which Ez =e and at

T !
such cross-over points e is continuous and right- and left-differentiable.

The rest of the argument follows directly from the proof of Theorem 1.

3. More than one set of mutually exclusive discrete goods.

Utility is given by u(xn,xll,xlz,xZI,xzz,...le,xzz), where all the

arguments in the utility function are non-negative, The constraints are'xklxk2 = 0 for
. 2' .
all x . i i = . .
=1,2.The budget constraint is x + k_Z_l(pklxkl + szxkz) y In this
g L

case, we can imagine the individual solving 2 sub-probléms of the sort dis-
cussed in Theorem 1. Each sub-problem arises from maximizing utility with one
argument in each of the pairs equal to zero. This leads to Well—behavea
conditional expenditure functions, the minimum of which is associated with the
consumer's optimun. At each vector of "cross-over" pfices, the minimum of

these functions is continuous and right- and left-differentiable in each price.

The rest of the argument follows as in the text.

APPENDIX B

In this Appendix we apply the results of Table 3.1 to the problem of
estimating the excess burden of the implicit subsidy for owner-occupied housing

in the U.S. personal income tax. Our purpose is not to arrive at a definitive
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estimate of the efficiency loss associated with the provision. Such a
calculation would necessarily involve re cognition that the relevant income
and price elasticities vary across income classes, as does the size of the
implicit subsidy itself [Laidler, 1962). Our goal is merely to take advantage
of some "stylized facts" concerning the demand for owner-occupied housing in
order to see how the excess burden varies under alternative assumptions.

We begin by discussing briefly the relevant tax provisions. (For a more
complete exposition, the reader is ieferred to Laidler [1969].) Under the U.S.
income tax, homeowners are not required to include imputed rent in adjusted
gross incame. At the same time, they are allowed to deduct payments for
property taxes and mortgage jnterest. Denote by d the proportion of housing
costs that are excluded from the tax base. Theﬁ assuming a horizontal supply
curve for owner-occupied housing services over the relevant range, the implicit
. subsidy reduces their pgice to a fraction (1 - T1d) of supply price,
where T 4is the individual's marginal income tax rate. It is expected that
lowering the effective price of owner-occupied housing services increases the
demand for housing services by those who would own anyway, and also induces some
renters to become homeowners. These distortions of choice lead to the excess
burden which we now seek to estimate.

As the discussion in Section III indicates, estimates of the following
magnitudes are required to compute the excess burden (all stated in per house-
hold terms):

1. Apl/pl , the percentage deyiation in the price of housing services
induced by the implicit subsidy.

We . follow Laidler in taking 4 the proportion of housing expenditures

. 2 4 . -
not .subject tq tax, as 0.68 , Putting this together with a marginal tax rate

24 1his is based on the following assumptions; rate of return on capital in
housing = 6% of house value, state and local taxes = 1.5%, depreciation = 2.25%,
and maintenance costs = 1.25%,
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of 0.25 yields an effective price of housing services of (1 - (.25) (.68)) = 0.83 ;
so Ap/p = (1 - 0.83)/1 = 0.17.

2. xlpl + expenditures on owner—occupied housing services. Suppose the
housing unit is worth $50,000, approximately the median value for the U.S. in
1978. Then given the assumptions in footnote 24, the expenditure flow is
X, P, =$50,000(0.06 + .01l5 + .0225 + .0125) = $5500 per year. 1In order to
convert this figure to per household terms, it must be multiplied by 7 , the
value of which is given below.

3. Y, the elasticity of the probability of owning with respect to
income; € , the ordinary (unconditional) price elasticity of demand for owner-
occupied housing; and 1, the (unconditional) income elasticity of demand.

These parameters are camputed using results reported in Rosen's [forth-
coming] study of the impact upon housing decisions of the personal income tax.
The econometric method upon which the results are based is a two-stage technique
discussed by Heckman [1977]. Inlthe first stage, a probit.equation for the
tenure choice decision is estimated by maximum likeiihood. From the probit
equation, it is possible to calculate VY by‘evaluating the probit index at
the mean values for price and income, and finding the associated probability
of owning..zs The exercise is then repeated with an income value one percent
higher. The implied value of ¥ is 0.485. Similarly, the.price elasticity
of the probability of homeownership is found to be -0.469.

The second stade of the econometric procedure involves estimating the
demand for housing, conditional upon owning. In order to correct for potential
selectivity bias in the.estimates,_a veriabie based upon the Mills ratio is added

to the set of regressors. (See Heckman [1977] for details.) Using a specification

S . .
The computation assumes that the head of household is a white male
between 26 and 40 years old, and has one child under the age of 17.
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which is second order in the logarithms of price and income, it is found that,
evaluated at the means, the conditional income and price elasticities are 0.76
and -0.97, ;espéctively.

Recall, however, that & and n are unconditional elasticities. It is
straightfofward to show that ar unconditional elasticity is just the sum of the
associated conditional elasticity and probability elasticity. Thus, € = -1.44

and n = 1.25 .

4, T , the probability of hcmeownership.

The proportion of homeséwners in the U.S. is about 0.64.

5. 6 , the budget share of owner-occupied housing.

As Aaron [1972] shows, the proportion of housing in the budgets of owner-
occupiers varies considerably across income groupé, but a value of about 0.25
reflects the central tendency reasonably well. To find 6 , the overall budget
share for owner-occupied héusing, we multiély 0.25 by ﬁhe proportion of home-
cwners, to find 8 = 0.16[ = (.25) (.64})] .

With these figures in hand, we ccmpute in Table B.1 the numerical counter-
parts to the formulae in Table 3.1. The excess burden (in dollars per house-
hold per year) for any set of assumptions is found by multiplying the appropri-

- 2
ate number in the table by $51 (= .5 X 5300 X 0.64 x (0.17)7) .

TABLE B.1l
Continuous e Discrete
partial 1.64 1.71

General 1.24 1,31
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The table indicaﬁes that the "discrete" computations do not differ
greétly from their "continuous" analogues. (For the partial equilibrium case
the difference is 4.2%, for the general equilibrium case it is 5.7%.) This
closeness is due to the fact that both 7 , the probability of owning, and
Y , the income elasticity of the choice probability, are relatively high for
owner-occupied housing. In situations where these parameters are closer to |
Zero, the differences will tend to be more substantial; on the other hand,
in situations in which the budget share 6 isllower than that for housing,
the differences will tend to be smaller. In this context it should be noted
that figures in the "continuous" column already are “corrected" for incame
effects. This correction (which is often ignored, but which is relatively
large in this case due to the size of the budget share) amounts to a 14%

difference in the magnitude of the estimated excess burden.
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