
NBER WORKING PAPER SERIES

APPLIED WELFARE ECONOMICS WITH
DISCRETE CHOICE MODELS

Harvey S. Rosen

Kenneth A. Small

Working Paper No. 319

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge M 02138

February 1979

The research reported here is part of the NBER's research
program in Business Taxation and Finance and was supported
in part by the National Science Foundation, grant no.
SOC7T—07082. The views expressed are those of the
authors. We have received useful comments from David

Bradford, Peter Diamond, Daniel Feeburg, Arnold Harberger,
Richard Quandt and Robert Willig.



NBER Working Paper I9
February 1979

Applied Welfare Economics with Discrete Choice dels

SUMMA.RY

Economists have been paying increasing attention to the study of

situations in which csumers face a discrete rather than a continous set

of choices. Such models are potentially very important in evaluating the

impact of government programs upon consi.mter welfare. Butvery little has

been said in general regarding the tools of applied welfare economics in

discrete choice situations.

This paper shows how the conventional methods of applied welfare

economics can be modified to handle such cases. It focuses on the corn-

putation of the excess burden of taxation, and the evaluation of gua].ity

change. The results are applied to stochastic utility models, including

the popular cases of prohit and logit analysis. Throughout, the ernp)-asis

is on providing rigorous guidelines for carrying out applied work.

Harvey S. Rosen
Kenneth A. Small
Department of Economics
Princeton University
Princeton, N.J. 08540

(609) 452—4022



I. Introduction

Economists are paying increasing attention to the study of situations

in which consumers face a discrete rather than a continuous set of choices.

A considerable literature has grown covering econometric methodology and

applications to a wide variety of situations.' In a few specific cases,

estimates of discrete choice models have been employed for welfare analysis.2

Travel demand researchers have developed "composite cost" and "accessibility"

measures to evaluate the desirability of various states (Williams [1977),

Ben-Akiva and Lerman [1978)), but the relationship of these to conventional

welfare criteria has not been thoroughly explored. Indeed, very little has

been said in general regarding the validity of the tools of applied welfare

economics in discrete choice situations.

Nevertheless, in at least two areas in which discrete choice models are

applied, welfare judgments are of paranount interest. The first is the analysis

of taxes and subsidies. Econometric studies of the impacts of taxes on labor

supply, savings, and housing decisions have permitted calculation of the welfare

cost or "excess burden" of the tax feature under consideration.3 Traditionally,

such studies have assumed that the taxed activity will be pursued regardless

of the existence of the tax.

However, instances in which taxes influence discrete choices are numerous

arid important. For example, it has been suggested that the federal tax treat-

ment of owner—occupied housing not only increases the quantity demanded of owner-

occupied housing services, but also influences whether or not an individual owns

a home at all [Rosen, forthcoming]. For secondary earners, taxes affect not only

the number of hours of work, but also whether or not participation in the labor

1For examples and references, see McFadden [1976).

2For example, Domencich and McFadden [1975], Small [1976).

3See, for example, Barberger [1964], Boskin (1978], and Laidler (1969].
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market takes place jHec)ataxi, 19743. Even for primary workers, taxes may

influence not only the hours spent at a given occupation, but the choice be-

tween occupations as well.

A second important area is the analysis of quality changes in goods and

services. Nierous studies in such areas as transportation, education, health

care, child care, and pollution contain explicit or implicit welfare evalua-

tions of public policies which change the quality of sane publicly or privately

supplied good. In many cases, the good affected is subject to discrete choice

mode of transportation, public or private schools, type of health care, type of

child care, and location of recreational activities all serve as examples.

The purpose of the present paper is to demonstrate that the conventional

methods of applied welfare economics can be generalized to handle cases in which

discrete choices are involved. We think it important for several reasons

to set out the generalization carefully. First, there has been some suggestion

that conventional welfare change computations may have no relevance in discrete

choice cases.4 Second, as the econometric estimation of discrete choice models

of many types gains in popularity, it is useful to have a clear statement re-

garding their use in applied welfare economics. Finally, the presence of dis-

crete choice introduces sane differences in the relation between ordinary and

compensated demand curves which alters the way in which empirical approximations

should be carried out.

In Section II we review the computation of the Hicks ian compensated

variation for the "standard" case in which there are price—induced changes in

quantity demanded by each individual. We also note its relation to the

4For example, Ben—Porath and Bruno [1977] state that in Israel, the

pre—1975 tax structure was ... "less a deterrent to work as such than an

inducement to search for untaxable types of work" (our emphasis). They
suggest that "The concept of excess burden is not particularly well defined
in this case ..." (p. 289).
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Ha.rberger "excess burden" and to the Marshallian consumer's surplus. In

Section III it is shown how the canputations are performed for circumstances

in which discrete choice is involved, and Section IV extends the result to

quality changes. Section V discusses in detail the application of the results

to stochastic utility models, including the cases of probit and logit analysis.

Throughout, the emphasis is on providing rigorous guidelines for carrying out

applied work.

ii. Continuous Choice

In this section we review the justification for measuring price—induced

utility changes as areas to the left of the appropriate canpensated demand

curves. The basic analytical tool is the expenditure function, which is

treated concisely and elegantly in Diamond and McFadden [1974].

Suppose that a consumer has a twice differentiable, strictly quasi—

concave utility function u defined over the corn odities x and x, , where

Xn
is taken to be the numeraire. The two good case is chosen for convenience;

the results generalize easily to an arbitrary number of commodities. The

consumer maximizes

u = u(x,x1)
(24)

subject to the budget and non—negativity constraints

x + p1x1
= y (2.2)

x. > 0 j = n,l (2.3)

where p1 is the price of good 1, and y is incorne
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Maximization of (2.1) subject to (2.2) yields the ordinary demand
functions

x. =
x.(P1,Y) j = ri,l . (2.4)

We asse an interior solution
Cxi > 0) with respect to both goods.

Substituting (2.4) into (2.1) we define the consumer's indirect utility
function;

v(p1,y) UCX(p1,y),1(p1,y)) (2.5)

which is known to satisfy Roy's Identity:5
v/p1 = Xl .

(2.6)

Provided that the direct utility function is strictly increasing in x

and is non—decreasing in
x1, v is monotonjc increasing in y and can

therefore be inverted to yield the expenditure function -

y =
e(p1u) .

(2.7)

The function e therefore indicates how iiuch income is required to achieve

the utility level u when the price of good 1 is p1; it satisfies

UVC1,e(p1,u). (2.8)

Now suppose that the price of the first good changes fran p to

p . By definition, the compensating variation associated with the price

change is

4e = e(p,u0) -
eCp31°) , (2.9)

5Roy's Identity follows from comparing the total differentials of
(2.2) and (.2.5) and using the first-order maximization conditions.



—5—

This expression shows the amount of income the consumer must be given to make

him as well of at price p as at p . Mohring (1971] has forcefully argued,

that it is the appropriate measure for most problems of applied welfare

6economics.

The problem now is to express (2.9) in terms of the compensated demand

function for x1 , which is defined by

x(p1,u) = x1(p1,e(p1,u)). (2.10)

This is done by applying Shephard's lemma:

e(p1,u) = x1(p1,u) , (2.11)
p1

where u is an arbitrarily selected utility level.7 This equation gives the

compensating variation for an infinitesimal change in p1 ; to find the compen-

sating variation for a finite change, (2.11) is integrated;

f
p1fo 00 Ic o

e(p1,u ) — e(p1,u ) =
j x1(p1,u )dp1 . (2.12)

0
p1

This gives the basic result mentioned at the start of this section; the

compensating variation of d price change is the area to the left of the Compen-

sated demand curve.

This result is easily aggregated. Define the aggregate compensated demand

function for good 1, , as the sum of the individual compensated demand

functions. X depends upon prices and upon the utility levels of all consumers.

is employed, for example, by Hause (1975] and Diamond and McFadden
11974], both of which demonstrate that the compensating variation measure leads
to the well—known Harberger formula for excess burden. Nevertheless, some Con-
troversy surrounds its use; see Chipman and Moore [l976a) and Hause (1975].

7Shephard's lemma follows from differentiating (2.8) with respect to p1
and applying Roy's Identity.
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Similarly, define the aggregate expenditure function, E , as the sum of the

ind.ividua2. expenditure functions at these same utility levels. Then by adding

the compensating variations (2.12) for all consumers, we obtain;
f

P1
=

J
x(p1,{u))dp1 , (2.13)

0
p1

where {u1} is the set of utility levels before the change.

For practical purposes, the area to the left of the compensated demand

curve in (2.13) is usually calculated from an econometric estimate of the

ordinary or Ma.rshallian demand curve.8 Although the compensated demand func-

tion for an individual can, under certain conditions, be computed exactly

frorn an econometric estimate of the Marshallian demand Iseade, 1978; Willig,

1976], the same is not true of aggregates. This had led to an approximation

procedure, employed by a number of investigators such as Harberger L1964] and

peldstein 11978], in which the Slutsky equation is applied to the ordinary

aggregate demand curve in order to obtain estimates of compensated price

elasticities. This procedure is exact if (a) ax1/y is the same for every-

one, and (b) each individual! s share of aggregate income is fixed regard-

less of price and income changes; in this case the Slutsky equation can be

aggregated. To the extent that individuals' income slopes are similar, then,

this would appear to be a reasonable approximation procedure.

For the special case in which the price change is induced by a tax (or

subsidy), (2.13) can be used to calculate the "excess burden" of the tax, i.e.,

the welfare loss brought about by distortions in relative prices. Following

81t has been shown that the area under the ordinary demand curve is itself an

exact measure of the utility change under very restrictive conditions in the

demand function. See, for example, Chipxuan and Noore [1976b] ,Rader (l976b], or
Bruce [1977].
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Diamond and NcFadden 11974], we define excess burden as

= — T
, (2.14)

where T denotes tax receipts. The exact form which equation (2.14) takes

in practice depends on the income effects generated by the uses of the tax revenues

(or, alternatively, by a set of hypothetical lump-sum taxes of equal yield), and

therefore depends on the distribution of these revenue uses or taxes. Although

this point is well—known (see Friedman 11949], Bailey [1954], Harberger (1964),

and Hause 11975]), it is worth restating here because its implications for dis-

crete goods, discussed in the next section, are somewhat surprising.

Let c. and be the own-price slopes of the aggregate .Marshallian and

compensated demand functions, respectively; and let ca be the income—slope of

the former, viewed as a function of aggregate income Y E Z y1 . Then the

Slutsky approximation discussed above,

- -
(2.15)

can be intuitively justified from the observation that X1dp1 is the income

compensation required to ameliorate the effect of a price increase dp1, and

hence uX1dp1 is the additional consumption induced if income is compensated.

A linear approximation to the compensated demand curve yie1d

tE = Xp1 + cLC(p1)2 (2.16)

0 1 2
X1tp1 + 1cx + X1c] (tp1)

(2.17)

where X is the aggregate consumption at initial price p, and where

= pP1.Equation (2.17) can be viewed as the Taylor Series approximation to

tE, of second-order in p1
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Now consider two alternative assumptions about the uses of the tax revenues

T: (a) the partial equilibrium assumption that they are used in such a way as

to generate no repercussions on demand for good 1 , and (b) the general equili-

brium assumption that they are distributed uniformly in lump sum transfers. We

again compute approximations of second order in the price change. Under assuxnp-

tion (a)., tax revenues are computed along the Marshallian demand curve:

T 1X + cttp1]Lp1 . (2.18)

Under assumption (b), on the other hand, final demand contains an income

effect , where TG are the tax revenues, so that

TG = [X + + , (2.19)

which can be solved for TG and expanded in a secona—order Taylor Series to yield;

TG
1xo1

+ (x +
X]•W) (2. 20)

= + c] (2.21)

But this is equivalent to computing taxes along the compensated demand curve.9

Subtracting tax revenues from the compensating variation in (2,16) and

rearranging yields the following alternative formulae for excess burden;

(a) Partial Eq.: 1 — 2ct) (tsp1)2 (2.22)

1 2
1- cx + Xw) (tsp1) (2.23)

(b) General Eq.; )(G C1 (tsp1).2
(2.24)

= 1— —
X1w) CAp1)2

• (2.25)

9See Hause 119751, pp. 1156—1160, for a fuller discussion of the rationale
for using the compensated demand curve in computing tax revenue under general
equilihrium assumptions. Note also that we are assuming a constant cost techno-
logy, i.e., introduction of the tax does not change the producer's price over
the relevant region. See also Rohif s' 11976] discussion of the adequacy of surplus
welfare measures under partial equilibrium assumptions.
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The general equilibrium version (2.24) is the famous excess burden triangle

usually associated with Harberger.

Note that, whereas the compensating variation is of first order in
the excess burden is itself of second-order in p1 . Thus, the conditions

given by Willig 11976], under which the compensating variation is adequately

approximated by the ordinary consumer's surplus, do not necessarily justify

using the ordinary instead of the compensated dnand curve for excess buxden

calculations. Indeed, if the general equilibrium assumptions underlying

equation (2.24) prevail, then it is the best approximation Cup to second-

order terms in p1 ) of the excess burden, and the fractional error from
C . C C C Cusing c instead of in equation (2.24) is Cc—cz )/ct = X1w/ct

= — Orift

where 0 is the budget share of good 1, r is its income elasticity, and

is its compensated own—price elasticity. This error can be substantial for a

good, such as hou.sing, which absorbs a large portion of consumers' incomes.

For a normal good, the excess burden is positive and Is smaller in the

general than in the partial equilibrium context. This is because the consuirip-
tion cutback caused by the price distortion is lessened by the income effects

arising from the uses of the tax revenues. We will see in the next section

that sie of the ameleriorating income effect in the general equilibrium case

is lost in discrete good models, making the potential welfare losses from taxes

on such goods greater than conventional analysis would imply.

III. Discrete Choice

In this section, we prove the basic theorem which establishes the validity

of using the area to the left of a compensated demand curve for a discrete

good as a measure of the coxpensating variation. We take advantage of the
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notation and general plan of attack used in Section II for the continuouS goods

case. We then show how the use of empirical approximations for computing wel—

fare losses is modified.

Discreteness in demand can be modelled in at least three ways. (a)

CoumoditieS may be available in continuous quantities, but in only one of a

nall number of mutually exclusive varieties. An example is housing. It can

be purchased in either the rental or owner mode, but given the tenure choice,

a continuous quantity o housing services can be consumed. Cb) Goods may be

available in discrete units which are so large that most consumers choose

only one or two units. Examples include college degrees, transportation mode

for work trips, and many consumer durables. (c) Goods may be purchased in

discrete units because nonconcaVitieS in utility functions lead the consumer

to choose among alternative corner solutions. For example, two television

shows aired simultafleOUlY can be consumed in any fractions, but most viewers

will prefer to consume all of one and none of the other • Note that many

examples could be modelled equally well as cases (a) or Cc).

In addition, even with concave utility functions, particular prices and

incies'.maY lead to corner solutions at which a good is not consumed at all.

EmpiricallY, this has led to ecOnometric techniques such as Tobit analysis.

Although this is not usually considered discrete choice, we mention it here

because the issues involved are foally yery similar to those of the other

cases.

The xoble'n raised bi' all these cases for the theoretical derivation of

the Coipensatin9 yariatiOn is that discreteness introduces a point of dis-

continuity into the demand functions, and/or a point of non,differentiabi].1tY

into the indirect utility and expenditure functionS. Thus, the derivative in

equation C2.ll) may be undefined at some "crossover" price. The key to the
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result in this section is that it is still possible to integrate over (2.11),

since the expenditure function is continuous and has right and left—derivatives

at the point in question.

The formal models for the various cases differ in detail, but the proofs

for all are essentially similar. We therefore proceed by considering case (a)

in a three-good model in which two of the goods are mutually exclusive. The

proofs for the other cases and extensions to more than three goods are outlined

in Appendix A.

Consider, then,a consner with utility ftnction

u=u(.x ,x ,x) (3.1)n12
where is the numeraire good. In order for the possibility of zero con—

sumption of good 1 or 2 to make sense, we assine that utility is finite

when either x1 or x2 is zero. As in the standard case, utility is utaxi—

mized subject to

x+p1x1+p2x2=y (3.2)

> 0 j = 1, 2, n (3.3)

To prevent both x1 and fr being consumed in positive amounts; we

impose the constraint

0 (34)

10
As in the reyious section, we assume interior solutions rather than deal

exp1icitl with. non-negativity constraints; thus the numeraire and either

are consaed in positive quantitiàs,

.L0

Corner solutions can also be dealt with using the framework developed
in this section. See Appendix A for a demonstration.
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Theore 1.

Suppose a consumer inaxidzes, subject to constraints (3.2) through (3.4),

a twice differentiable, strictly quasi—concave utility function of the

form (3.11. Assume 11 is finite whenever x1 or x2 is zero, is strictly

increasing in x, and is non—decreasing in x and x2 . Let e(p1,p2,u)

he the minnum expenditure eguired to achieve utility u, and let

U0 = v(,p2,y) be the value of the indirect utility functionUat initial

prices and income. Then the compensating yariation for a change in price p1
0 f

from p3 to p is;

e,p2,u° — e,p2,°1 =
JirP2u°)dPi

(3.5)

where x (.1 is the compensated demand function for good 1 defined by

11p2,u) = x11,p2,e(1,p2,u°)) . (36)

Proof. Constraint (3.4) requires that consumption of either good 1 or

good 2 be zero. If = 0, the optimal wtount of is found by maximiz—

ing U(X,X1,Ol subject to x3 + 1x1 = y . The function u is well-behaved

when yiewed as a function only of x and , so this suh-robl is formal—

ly identical to the problem of the previous section, and leads to well-defined

continuously differentiable indirect utility, expenditure, and compensated demand

functions, each conditional on = 0 . Denoting these by 1(1,y), 1(p11u)

and i(p1,u) respectively, we know from (2.11) that

= . (3.7)

11S0 long as the riumeraire is perfectly divisible, the assumption that u

is strictly increasing in x and non'-decreasin9 in x1 and x2 guarantees
that the indirect ut1ity function exists and is strictly increasifl9 in y,

and therefoxe can be inverted to find the expenditure function,
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Similarly, if x1 = 0, the prob1n of maximizing u(x,O,x2)

yields functions 2(p2,y), 2Cp21u) and i(p2,u) with the property
that

32/3p2
= . (3.8)

For any incane y , the choice between good 1 and good 2 will, be

made by cparing (p1 ,) with V2 (p2 ,y) . Let k (p1 ,p2 ,y) index the

larger of the two, with k = 1 in case of a tie. Then the utility achieved
is

max{1(p1,) ,;2(p2,y)) . (3.9)

The quantity y is therefore the incne required to achieve utility u

both unconditionally and conditionally on choice k

y= e(p1,p,) = e(p?u) . - (3.10)

Letting j index either good Cj = 1,2) , the fact that (p.,y) <u
implies

>y 5 = 1,2 (3.11)

since is strictly increasing in y , and is simply its inverse

But (3.10) arid (3.11) together imply that

e(p1,p21u) = mm .(p.,u) . (3.12)

Since each of the functions is continuously differentiable in price,

so is e , except at those prices for which e1 = e2 ; and at these points,
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e is continuous and right— arid left— differentiable?2 Its price derivatives

are therefore bounded and piecewise continuous, and hence integrable!13

Furthermore,

I1/p1 if k = 1

= (3.13)
0 if k 1 1

provided the upper and lower expressions are interpreted as the left— and

right—derivatives, respectively, at the point of indifference between the

two goods.

12
For given p2 and u , let

value of p1 (if any) at which the
= 2(p2,u) = e(p,p2,u)

e = for p1 > p , good 2 is
continuous at p , since =

with respect to p1 , evaluated at

e(p1,p2,u) — e(pt,p2,u)
rr]. 1

=
(.aa1/ap1)1

since is differentiable. Similarly, the right—derivative exists and is

equal to

1See any calculus text, e,g, Thomas 11960), p. 214

y* = e2(p2,u) . Let p be the single
constuner switches goods. Thus,

For p1 < p , good 1 is chosen and

chosen and e = . Clearly e is

there. The left—derivative of e

is

urn

pl' P]

= liin 1(p1,u) —

pi—p
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It remains only to identify the right'-hand-side of (3.13) as the

compensated demand function, x(p1,p2,u) . When good 1 is chosen (given

, = ; when good 2 is chosen, x = 0 . Thus, for an infin-

itesmal change in p1 , the compensating variation (3.13) reduces to

e(p1,p29u)/ap1 = c(p1,p2,u) . (.3.14)

Evaluating (3.14) at utility u0 max{v1 (p,y) ,v2 (p2 ,y) } and integrating

over p1 yields (.3.5).
Q.E.D.

A more heuristic discussion of the theorem may be useful at this point.

Suppose an infinitesimal change, dp1 , occurs in the price of good 1. If

a positive amount x1 of good 1 is being consumedr then the welfare loss is

x1dp1 . If good 1 is not being consied, i.e. = 0 , then the welfare

loss is again x1dp1 , which in this case equals zero, If the consumer is

just at the point of indifference between goods 1 and 2, no welfare loss

arises from switching from one good to the other. Therefore, integrating

over this point of discontinuity adds nothing to the total for a finite change.

In every case, then, the welfare loss fran an incremental price change is des—

cribed by the incremental area to the left of the demand curve. If income is

compensated as the price changes, this is equivalent to measuring the area to

the left of the compensated demand curve. This intuitive discussion applies

equally well to cases Cb) and Cc), mentioned earlier,14 and to corner solutions.

14.aler 11974, pp. 131—136) demonstrates an even stronger result for case
(h), in which the good in question must be purchased in a given quantity or not
at all. Re shows that, for a fall in the price of such a. good, the compensat-

ing variation is given by the area to the left of its ordinary demand curve.
This follows from our result because income eftects axe absent, and thus the
ordinary and compensated demand curves are identical. So long as the price re-
mains above the "critical price0 p at which the consmmer purchases the dis--
crete 9ood, no compensation is required to keep him at the initial utility level;
and below the critical price, the compensation cannot affect the amount of the
discrete good purchased. However, R. Willig has pointed out to us that Nler is
incorrect in sthting that the result also holds when the individual is consuming

the good, and the price rises abo're p . This asymmetry occurs because for the

price rise, the compensating income alters the itica1 price itself, and hence the
ordinary demand curve and the relevant compens. d demana curve axe not identical.
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As in the ordinary goods case, we define an aggregate compensated

demand function for good 1, X , as the sum of the individual cpensated

demand functions. It depends upon the prices and the utilities of all con-

sumers. Similarly, define the aggregate expenditure function E as the

sum of the individual expenditure functions at arbitrarily selected utility

levels. Then, by adding over consumers, we obtain the result that the sum

of the individual coIn psating variations is given by- the area to the left

of the aggregate cnpensated demand curve:
£

p1
-

= JxiiP2i{u})aPi (3.15)

where u1 is the initial utility level of the ith consumer.

Applying the Theorem

For purposes of applying Theorem 1, it is important to notice that the

demand curve in (3.15) is the -unconditional demand for good 1, and is not

conditional on the choice of good 1. Both the discrete choice itself and

the quantity demanded conditional on that choice are incorporated in

To make this distinction clear, write the compensated demand fuhction

in equation (3.5), for !ndividual i , as

ci io ci io —ci io

x1 (p1,p21u ) = 6 (p1,p2,u )x1 (p1,p2,u
) (3.16)

where is a compensated discrete choice index, i.e., is 1 if good

1 is chosen and 0 otherwise, assuming that price changes are compensated in

order to permit achievement of initial utility level . The compensated

demand conditional on choice of good 1, X1, is defined as in the above proof. Adding
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the right—hand sides of equation (.3.16) for the N individuals in the economy

yields an alternative version of (3.15):

f

N
Cl 10 -'C1 3.01E E 6i (p1,p2,u )x1 (p1,p2,u )dp1 . (3.17)

1=1
0

p2.

There are two important problems which must be solved in order to make

equation (3.17) useful for applied work. First, an investigator cannot Jaow

with certainty whether or not a representative individual will consume a given

discrete good: All that can be assigned is the probability ir that the good

will be purchased, conditional upon a set of measurable characteristics (race,

sex, etc.) as well as prices and income. An attractive way to model this is to

assume that each individual's utility function is deterministic (as in the pre-

ceding section), but that because of factors unobservable o the investigator,

the outcome appears random.15 Thus as we move to applications of our theorem

and attach probabilistic interpretations to variables that were heretofore

deterministic, we are not moving to a different framework, but are dealing with

a special case of the model developed above. Replacing tne criolce lnue

in (3.17) with this choice probability converts (3.17) to an equation for

15This seems to have acquired the name "random utility" approach, in
contrast to the "constant utility" approach, in which the utility function
itse.lf (or equivalently, the choice tnechanisin)is viewed as having a random
component. Operationally, these two formulations are equivalent, i.e.
lead to the same kind of estimating equations. Their interpretations are
discussed at length by Williams (1977].
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th expected welfare change.16

The second problem is that is a compensated diScrete choice index;

therefore, it should be replaced with a compensated choice probability. We

orovide in the next sub—section an approximation procedure, analogous
to that

or continuous 9oods, for doing this.

Our method is therefore fully operational provided we can find econo—

ietric techniques for estimating the required demand curves. A straightfoiward

zrocedu.re would be to estimate the discrete choice arid conditional demand

£.-:tions jointly using maximum likelihood techniques. Alternatively, a

:cristent recursive procedure has been developed by Heckman [1977].

S1tsky Effect

A satisfactory approximation procedure for converting econometric

estinates into compensated demand relations must take into account the fact

that neither the Slutsky equation nor the computation of tax revenues is the

16Note that oniy if the choice probability is independent of price
p1 will the correct answer be obtained by calculating areas for conditional
dema.d curves and multiplying them by the probabilities. Thus, for example,
Feldsteiri and Friedman [1977] are correct in using the latter procedure
to calculate welfare effects of changes in the price of health insurance,
because in their model theprobability of illness is assumed to be exogenous.
wever, one must not be irilsied into thinking their procedure is generaliz-
able to eridogenous probabilities.
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same for discrete as for continuous goods, because the nature of the income

effects is fundamentally changed. In the continuous case, it is at least

reasonable to suppose that all consumers have identical income slopes for

good 1; this permits the Slutsky equation to be aggregated, and makes plausible

the general equilibrium assumption that tax revenues are redistributed so

as to return all consumers to their initial utility levels. In the discrete

case, however, we explicitly recognize a group whose consumption of good 1 is

zero throughout a range of incomes, and thus the analysis must be modified.

In order to focus on the issue of discreteness 2 Se, it is useful to

abstract from other differences among individuals by assuming N consumers

who differ only in their preferences between goods ]. and 2) Thus, they

have identical incomes y , and identical conditional Marshallian and compen-

sated demand functions 1(p1,y) and (p11u) , respectively. This is, of

course, a very restrictive case. However, it is useful in that it highlights

the important differences that appear when discreteness is explicitly taken

into account. If the assumptions of this section seem too restrictive for a

given problem, they can be relaxed, although the results will be less intuitive

and computationally more complicated.

17Assume, for example, that utility for the ith individual is given

by U1(XX1X2) = f(x1X1rX2) + + where S. = 1 if x is

chosen and = 0 otherwise ( = 1,2), and where and are constants.
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The Slutsky equation for this model is

a ai ai]-. = + X1 5j (3.18)

Now let 7r1(p1,p2,{y'}) be the fraction choosing good 1 at the given prices

and incomes. In analogy to the compensated demand function, define the com-

pensated choice probability

7r(p1,p2,{u'}) 1(p11p2,e1(p11p2,u1)}) (3.19)

where u1 and e1 represent the utility level and the expenditure function,

respectively, for constmer i

Define the aggregate quantities:

X1•
=

N1T1X1
(3.20)

= x°= NTr (3.21)

Y = Ey = Ny . (3.22)
3.

Note that since all incomes y1 are assumed equal, X1 and 711 depend on
them only through aggregate income Y. Hence we may write;

111
=

¶1(p1,p2,Y)
(3.23)

X1 = X1(p1,p2,Y) =
N1T1(p1,p2,Y)i1(p1,p2Y/N) - (3.24)

Differentiating (3.19) at an initial point for which = and

= , and applying our previous result (3.14), yields the choice-.

probability analogue to the Slutsky equation:



— 21 —

7F1 7r1 i
air1 air1=
•5— + .X1-. (3.25)1 -

Equations (.3.18) through (3.25) taken together yield a Slutsky-like equation
or the aggregate demand unctiois;

ax ax1 x1 .ax1 xl= ÷ - l- - C1'-ir1) -. . (3.26)

In the special case arr1/ay = 0 , equation (3.26) is the usual aggregate

Slutsky equation, except the inccne effect is divided by ir1 and is thus
larger than in the continuous case. The intuition behind this follows from the

conceptual experiment implicit in the compensating variation measure. Were it

required to maintain utility after a price rise dp1 , it would be necessary
to royide corapensation equal to X1dp1 to that fraction rr1 of the population

which. consi.ues good 1. But this would have the.same effect onconsumption &s

raising all inces equally, by an aggregate amount (X1/Tr1)dp1, since the

extra payments to non-consi.ners would have no impact (so long as -
aTr1/ay

= 0)

on aggregate consumption X1 . Thus, the compensation would cause consumption

of good 1 to rise by (aX1/3Y) (X1/1r1)dp1 , which gives the first income—effect

term in (3.26). The last term arises from the effects of income compensation

on the choice probability itself.

Excess Burden

Following the procedure of Section II, we approximate the demand curves

by straight lines with slopes:

ax1/ap1
= cx

C C
ax1/ap1

= cx

ax1,'ay =
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We also let

air1/aY =

As before, the compensating variation is given by equation (2.16); note,

however, that this is no longer equivalent to (2.17).

We next proceed to calculate tax revenues under (a) partial and (b)

general equilibrium assumptions, making use of the "Slutsky-like" equation

(3.26), which can be written:

= cz +
(X1/ir1)w

—

(l—7r) (X1/1T1)2v (3.27)

(a) For the partial equilibrium case, tax revenue is simply given by

(2.18), and excess bu.rden by (2.22). Substituting (3.27) into (2.22)

yields:

x = 4r-.c +
2(X1/1T1)W

— 2(1 —
7r1) (X1/7r1)2\] (p1)2 (3.28)

= + (X1/711)W — (1 —
(X1/i12v] (p1)2 (3.29)

Note that, in the absence of income effects on the choice probability

(' = 0) , the excess burden (3.29) is larger than would be calculated

from (2.23), if discreteness were ignored.

(b) If tax revenues are returned uniformly in lump sum transfers,

equation (2.20) remains valid, but is no longer equivalent to (2.21),

corresponding to the fact that the compensation no longer returns each

consumer, even approximately, to his initial utility level. Under this

regime, the fraction who paid the tax have their real incomes reduced,

while the others have them raised. In neither group are individuals moving
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along their compensated demand curves. Subtracting (2.20) from (2.16) and

applying (3.27) gives the excess burden:

G ic 2
x - 2c& —

2X1] (p1)

1(C + 2(2 -
1)X1 2(1 - 7r )&-)2v3

:1)2
(3.30)

= +
(i— — 2)X1w — Ci. — 7r1) (—) v) (p1) . (3.31)

Comparing (3.31) with (2.25), we see again that, in the absence of income

effects on the choice probability, the excess burden is larger than that

computed by ignoring discreteness, though it is still smaller than in the

partial—equilibritr case (3.29).

So in general, if the choice probability is independent of income but the

conditional demands have positive income elasticities, the usual approximation

procedure which ignores discreteness underestimates the compensating variation

and the excess burden of a price rise. There are two reinforcing tendencies

causing the result. First, the usual Slutsky correction results in an over-

estimate of the magnitude of the compensated price elasticity, and hence an

underestimate of the compensating variation. Second, the ameliorating effects

of tax—revenue redistribution on misallocation are less, because some of the

distributions are "wasted" on non—consumers of the good in question. We sus-

pect that this result is a special case of a more genera]. proposition that

standard procedures tend to underestimate excess burden (i.e., the compensat-

ing variation less tax revenues) for groups of non—identical consumers.

We conclude this section by compiling, in Table 3.1, the results for

computing excess burdens. The fouulae have been converted to elasticity

form, using the definitions
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p1 Bx1—
x1 ap1

ax1

_ air
3y

x1p10=

ir =

The expressions given are those which should replace ( in the Harberger

formula,

= 4x1p1r-ñ (p/p)2

derived frt (2.24).

TABLE 3.1

Factors for Computing Excess Burdens

Continuous Discrete

partial equilibrium

General equilibrium

— £ + en

— C — On

— C + — (— l)0

— C + —2)Ofl - ( — 1)O

Observe that when ir = 1 , the expressions in the second column equal

their counteziarts in the first. In both relative and absolute terms, the

error introduced by ignoring discreteness is small when practically

everybody consumes the good. When ir tends toward zero, on the other hand,

terms involving 0 also tend toward zero, whereas those involving 0/it

tend to
18

Thus, the error induced by ignoring discreteness,

18

Nirp110/it =
Ny

)/ir = x1p1/y
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i.e., the difference between terms in Table 3.1 multiplied by

tends to zero absolutely (though not as a proportion of excess burden) as ir

approaches zero.

A final issue concerns the conceptual experiment which lies behind the

results listed in the table. It is implicitly assumed that tax revenues are

returned to the population at large. To the extent that it is possible to

target the revenues only to the consumers of the taxed discrete good, the

usual formulae would apply without modification. If some targeting occurs

but it is incomplete, the excess burden wonirl be somewhere between the "continuous"

and "discrete" calculations.

IV. Quality Changes

Thus far, our focus has been the measurement of price—induced welfare

changes. Hever, in many discrete choice problems the evaluation of quality

changes is of primary interest. For example, we may wish to evaluate changes

in frequency of bus services in contexts where consumers have a choice between

bus and auto; or changes in noise levels when individuals have the options of

staying in the affected locale or of moving.

One possibility for dealing with a ality change is to convert it to an

equivalent price and then to apply the technique discussed in Section

III. Unfortunately, this is possible only in the very special case in wIich all

consumers have constant and identical marginal rates of substitution between

the relevant quality variable and the numeraie • For example, thIs assumption

is often made in transportation studies, by assuming a single constant value of

time for everyone. Demand for a particular transportation service can then be
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viewed as a function of money plus time price, and consumer surplus techniques

are applicable. However, this example illustrates the tenuousness of such an

assumption, since both theoretical and empirical considerations suggest that

value of time depends upon a variety of factors such as the wage rate.

An alternative tack is to extend the approach taken in Section III, by

adding a quality variable to the model. Suppose that good ]. in the model of

the previous section has associated with it a quality variable described by

the scalar q1 , which is considered exogenous by consumers. (The variable

could also be interpreted as the level of provision of a public good which

is complementary to good 1.) Thus:

u = u(x,x1,x2,q1) (4.1)

where, as before, u is assumed to be finite when either x1 = 0 or x2 = 0

We assume further that quality of good 1 does not matter unless good 1 is

being consumed:

= 0 . (2)

As in Section III, the indirect utility function and the expenditure

function are well—defined, continuous, right— and left-differentiable in all

arguments, and satisfy

u = v(p1,p21g1,e(p1,p2,q1,U)) . (4,3)

Two alternative formulations of the problem are obtained by implicitly differ-

entiating (4.3 with respect to q1 or p1 , respectively, keeping in mind

that the right— and left—derivatives may differ at the crossover points.

Taking the quality-derivatiVe of (4.3) yields

= — (l/XYav/q1 ,
(4.4)
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where X E v/3y is the marginal utility of income. This intuitive

formula simply states that the marginal willingness-to-pay for a quality change

is given by the marginal utility of quality, converted to monetary units via

the marginal utility of income. For problems in which the indirect utility

function is explicitly specified, as in Section V below, equation (4.4) is

extremely useful, particularly if it is reasonable to approximate A (an

empirical quantity, given the normalization implicit in the econometric pro-

cedure) by a constant. However, the constancy of
is in no sense necessary

for (4.4) to be valid.

Taking the price—derivative of (.4.3) on the other hand, and applying Roy' S

identity, yields Shephard' s lemma, which was the starting point for deriving

Theorem 1 of Section ITI. Thus, by simply adding q1 to the list of arguments

of all the functions, Theorem 1 is seen to remain valid in the present context.

This fact enables us to evaluate quality changes in terms of changes

in consumer's surplus, along the lines explored by Bradford and Hildebrandt

(1977] and Willig 11978) for continuous goods.

To see this, assume, following Bradford and Hildebrandt, that when

the price of good 1 becomes high enough, the consumer does not care about

its quality, presumably because none of the good is being consumed. More

prec.sely, we assume that the quality derivative of the expenditure function

becomes arbitrarily small as the price of good ]. rises:

lim 9e(p,p2,q1,u0)/3q1
= 0 . (4.5)

pl-,.

Thus differentiating our previous result, (3.5), with respect to and

letting p + yields the following result:

Theorem 2.

Let the utility function (4.1) satisfy (4.2) and all the assumptions of
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Theorem 1. Let e (p1,p21q11u), the mini.mi expenditure required to achieve

utility u subject to constraints (3.2) - (3.4), satisfy (4.5). Then

a

.— e(p1,p2,g1,u ) — — j x1(p11p2,q1,u )dp1 , (4.6)
1 lo

p1

where the derivatives are to be interpreted as left- and right—derivatives at

points of non—differentiability.

Note that 14.6) is the change in the area to the left of the ccpensated

demand curve as it shifts in response to the change in • This is the result

derived for the case of continuous goods by Bradford arid Hildebrandt 11977],

using a slightly different assumption on ' Thus, we have demonstrated that

the Bradfoxdildebrandt formula remains valid in the discrete goods case.

Equation 14.6) is easIly integrated to obtain the compensating variation

for a quality change from to

,p2,u°fld1 . (4.7)

purtheor direct aggregation of (4.7) is possible to obtain a formula in

terms of the aggregate compensated demand function;

= x1,p2,q{u'1)dp1 C48)

V. pp1Icatiofl to Econometric models

jcadden J1973, 19763 has shown that a broad class of discxete choice

odels can be deriyed by assuming that each consumer maximizes a utility

function with a stochastic term accounting
for differences in tastes that

are wkobseryable to the investigator! Since such models underlie the bulk of
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current empirical work on discrete choice, it is useful to examine the form

which the results of the previous two sections take when applied to stochastic

utility models, in particular to the popular probit and logit models. As

noted above, these stochastic utility models can be viewed as special cases

of the basic deterministic model discussed in Section III.

In our notation, the assumption behind al]. these models is that the

conditional indirect utility function of consumer i for good j ,

is additively separable into three components as follows;19

i ii ii iv , ,y ) = V (y ) + W (p. ,q ,y ;S ) + C. (5.1)

where W() is a "universal" or "strict utility" function whose form is

identical for all consumers; and where E is the realization for consumer
3

i of a random variable which is independent of the arguments of
W

The vector contains observable characteristics of the consumer, and

attributes of the discrete goods (e.g., locational attributes) which may

vary across consumers.

By assuming a joint probability distribution on {c.) we obtain the

probability, conditional on prices, quality levels, and observable consumer

characteristics, that utility is maximized by choostng good 1;

= Probjc. < —
W for all j] (5.2)

where W denotes the second tex in (.5.1). Given specific forms for the

19The first term in C5.l) does not enter the econometric specification
of the discrete choice model, since it is independent of j it has usually
been ignored in the literature. The remaining terms have generally been des-
cribed as the "utility function" though it is clear from the inclusion of
price as an argument that they are part of an indirect utility function. A
true indirect utility function would have all prices as arguments and would
not depend on j ; hence the qualification 'conditiona1." See Small [1977)
for a fuller discussion of this point.
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functions W. , their parameters (up to a normalization convention) can be

estimated from a sample of observed choices by maximizing the likelihood

function associated with (5.2).

In order to forecast the aggregate demands, we need to measure the in-

comes y and other characteristics S1 of the individuals in the population

under consideration. One way to do this is to sample the population, and

assume that each sample member i is representative of a group of N1 indivi-

duals who are identical with respect to their incomes and measured characteristics.

The probability calculated from (5.2) can therefore be interpreted as a

prediction of the fraction of this particular class of consumers who will choose

good 1; to compute expected aggregate demand from the class, we multiply by the

conditional demand function, as in (3.20):

X1(p11p2,q1,y1;S1) =N .

Furthermore, applying Roy' s Identity for the conditional demand function

in (5.3) yields an expression in terms of the marginal utility of income,

x(p11p2,q1,y1;S1) =—(N'/2)TW/3p1 . (5.4)

In the following discussion, we suppress the superscript i and the explicit

1.

dependence on S , which is assumed to be fixed.

Having specified functional forms for the components W of the indirect

utility function, and having implicitly normalized by choosing a specific joint

probability distribution function for the stochastic term c. , we are free to

make assumptions about W. on the basis of purely empirical considerations. We

now make three such assumptions, which are likely to be valid in many applications: a)

that the marginal utility of income, X , is approximately independent of the

price and quality of good 1; (b) that the discrete goods are sufficiently unimportant

to the consumer so that income effects from quality changes are negligible, i.e.

that the compensated demand function in (4.6) is adequately approximated by the

Marshalliari demand function; and (C) that W1/aq1 0 as p1 + , a slightly

stronger version of (4.5). -Equation (4.6) can therefore be aggregated over members
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of this consumer group to yield:

1 aE ____________=
j1pi,p2,q1,y) a1
p1

But (5.2) implies that ir depends on its arguments only through the functions

W1
and W2. We may therefore make a change of variable, =

W1 (p1 ,q ,y)

to write:

13E 1

= — (1/X)ir1(w,w2)a/aq1

0 0where =
W1(p1,q11y) , = W1(a,q11y) . Use has been made of a standard

theorem for differentiating a definite integral with respect to its limits

(Thomas r1960], p. 720), plus assumption Cc) above. Integrating over

q1
from initial to final values, therefore, we have:

(bE)/N = — (l/X) (5.5)

0
where W1 =

Equation (5.5) is extremely useful for computing welfare effects using

discrete choice models estimated from micro data, since it avoids the explicit

use of the aggregate demand functions, which are not normally obtained in

closed form from such studies. In fact, though equation (5.5) is derived above

using the previous results on aggregate demand curves, it can instead be derived

directly from the definition (4.3) of the expenditure function.

20Equation (5.5) is easily generalized to many simultaneous price and
quality changes, provided the Jacobian matrix (r/aW.) is syamnetric. In
that case. the following line integral is unique, i.e,path—.indepefldent (see
tSilberberg, 1972)):

W

= — (1/A) J Ew. (w)dw.
(5.5a)

J
j ) — —)

Wo

where W is a vector
—

of components W. , and takes initial and final values
0 —

and respectively.

1

w1(w1,W2)dW1
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1To see this, recall that the previous results were based on Shepherd's.

lemma, obtained by differentiating (4.3) with respect to price. As mentioned

in Section IV, one may instead differentiate (4.3) with respect to quality,

leading to (4.4). The indirect utility v of (4.4) is equal to for

that fraction iT1 of the consmer group which chooses good 1, and is equal

to 2 for the rest. Since only depends on q1, aggregating (4.4) and

calculating av1/3q1 from .(5.l) yields:

aE/aq1
=

N(rr1/X)3W1/q1 . (5.6)

Equation (5.6) is perfectly general, but one must use caution in integrating

it, since the income variable which appears as an argimient in all the functions

is compensated, i.e., is that value which maintains the original utility level.

With the a.ssmmptions of constant 7. and negligible income effects, however,

integrating (56) yields (5.5) directly.

A final point to notice about equation (5.5) is that jt applies equally

well to a price change, if and W are defined as the values taken by

W1 at the initial and final prices, respectively. This may be seen simply by

replacing q1 by p1 in the above paragraph. Alternatively, the price—change

version of (5.5) can be derived directly by integrating (5.4)

In the course of the econometric estimation of the choice model, specific

functional forms for the W'S are assumed, and estimates of the coefficients

are obtained. Hence, one can compute W1 at the initial and final quality

levels, arid can therefore compute the integral in (5.5). Furthermore, if

price is included as a variable in the specification, one has an estimate of

Using this information along with the conditional demand r
which

is often known, 2L can be computed by using Roy's Identity.21 Equation (5.5)

4.1.

More specifically, suppose that o is the coefficient of the price

variable in a probit or logit regressior1 Then 2 = - o. /, which, as noted
above is an empirical quantity given the normalization mpIicit in econometric

procedure.
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therefore represents an operational procedure for calculating welfare effects.

We illustrate its use below for the binary probit and logit models.

Probit

In the binary probit model it is assumed that Cc1 - is a standard

normal yariate. The probabilities are therefore given by

= :1.
.1rl

where is the cumulative normal distribution function. Formula (5.5) for

the compensating yariati becomes;

= — C1/2 w2)dW1

= — (1/?J) (5.7)
- -

wtere =
w—W2and

jf = — .. Given a probit estimation of the functions

W1 and W2 , this quantity can be computed for any price or quality change.

22
The generalization to simultaneous changes in two pxice and two quality

variables is straightforward, since the Jacobian condition rr1fBW2 = ir2/3W1 is
satisfied. Equation (.5.5a) in footnote 20 thus becomes

f
w

= - 4 J { (W1
-.

w) dw1 + 11 - (W1 W2) 3 dW2}

= - 4IW2 +

JC)dw)
(5.7a)

where W2 = W
Recalling that W. is an indirect utility function, the first term in (5.7a)

the negative o the willingness to pay for a uniform improvement in both goodsu magnitude W2, whereas the second term gives the appropriate consumer surplus
for any improvement in good 1 relative to good 2.
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Logit

The ].ogit model arises from the assumption that the stochastic utility

components are independently and identically distributed with the extreme

value or double-exponential distribution [McFadden, 1973, 1976]. This leads

to a formula for the probabilities:

exp(WL)=
2

9.. = 1,2 - (5.8)
Z exp(W.)

In this case, the integral in (5.5) can be evaluated explicitly, leading to:

w(E)/N = — (l/A)[ln E exp(Wi] (5.9)
j

J
Wi

where the square brackets indicate the difference in the expression inside

23
when evaluated at the initial and final points.

VI. Conclusion

The analysis and estimation of discrete choice models is currently enjoy-

ing a popularity which is unlikely to abate in future years. Ultimately, both

researchers arid policy makers will be interested in ascertaining the welfare

implications of these models. The purpose of this paper has been to set forth

rigorous procedures for doing so. It has been shown how, under quite general

conditions as well as for the special cases of probit and logit analysis, the

usual techniques for measuring welfare effects must be modified for discrete

choice problems. Particular attention has been focused on how the standard

corrections for income effects might be altered. The results apply to the study

of both price and quality chan9es

23Like the Probit model, the Logit model satisfies the Jacobian symnetry

conditions, and calculation of C5.5a) for many price and quality changes yields

equation (.5.9) altered only in thgt the liits for evaluating the term in the
square brackets are the values W and W taken by the vector of all W at
initial and final points. The term in square brackets has been identified in
the transportation literature as the "inclusive price" or "composite cost" of an
alternative composed of several sul,-alternatives IBefl'AkiVa, 1973; Willa.amS, 1977].



— 35 —

APPENDIX A

A.l Proof of Theorem 1 for different types of discreteness.

1. The good may be purchased only in discrete units which axe so

large that most consumers choose only one or two units.

The utility function is uCxx1) where x > o , and x can take on

values of only unity or zero. Utility is maximized subject to the budget

constraint + x1p1
= y . If x = 0 , the optimal amount of x is

trivially equal to y. This sub-problem yields the expenditure function

conditional on x = Cu) . Similarly, if x1 = 1, the conditional

expenditure function 1Cp1,u) is found trivially. As in the case analyzed

in the text, the point of maximum utility is associated with the minimum of

these two expenditure functions:

eCp1,)
=

Since e arid e1 are both continuously differentiable in price (with

0 so is e , except at that price at which l = , and at

this point e is continuous and right— and left-differentiable. The rest

of the argument follows directly that used in the text.

2. Particular prices and inctes lead to corner solutions at which a

ciood is not consumed at all.

Since wecannot now assume an interior solution, the expenditure

function conditional on x1 > 0 may not be well defined. However, it is

not difficult to see that continuity and nonsatiability of u guarantees

that the expenditure function for the overall problem, e(p1,u) , is

continuous everywhere and is difterentiable within each of the two regimes

= 0 and x1 > 0 . Hence is it right- and left—differentiable at every

point, and the argument in the text applies.
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3. Goods may be purchased in discrete units because nonconcayities

in utility functions lead the consumer to choose among alternative corner

solutions.

For cases in which discreteness arises frr noncoricavity of the utility

function, no general theory is available for use in deriving properties of

the resulting demand functions.. Indeed, so far as we know, no attempt has

yet been made to derive formally statistical discrete choice models for such

cases, and to do so would be beyond the scope of this paper. Nevertheless,

it is not difficult to see that well-beha'red examples can be treated within

the framework presented in the text. Suppose, for example, that in a three-

good world, all the indifference curves between x1 and x2 are concave to

the origin, but indifference curves between either x1 or x2 and the

numeraire are convex. Then at every price vector, consumption of either x1 or

will be zero; hence the constraint x1x2 = 0 can be added without changing

the problem. Furthermore, the assumptions guarantee that u(x0x2) and

u(x,x110), viewed as functions of two variables, are well—behaved. Thus the

proof of Section III applies.

A.2 Proof of Theorem 1 for arbitrary numbers of gocds.

1. More than one continuous good.

The interpretation of as a vector of goods presents no problems

provided that the discussion of the "standar case in Section II generalizes.

That this is true is shown in Varian 11978, pp. 209—211).

2. More than two discrete goods , all mutually exclusive.

Utility is 9iven by u = uCx,x1,x2... ,x,) where x > 0 Cj = n(l,. . .2)

and wheze ' 0 O = 1, ... Z) implies that x = 0 for r k • The
r

budget constraint is x + E kk = y If x > 0 ,
then utility is found

k=1
k
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by maximizing u(x,O,...xk, ...,O) subject to x + = y . The function

u is well—behaved when viewed as a function only of x and Xk , and its
maximization leads to a (conditiDnal) continuously differentiable expenditure

function ek(pk,u) . The only difference between this case and that discussed

in the text is that there are now 2.. such sub-problems, rather than two. But

te idea is the same; utility maximization leads to the expenditure function
= minjpk,u) . Since each of the is continuously differ-

k
entiable in price,so is e except at those prices at which = , and at
such cross—over points e is continuous and right— and left—differentiable.

The rest of the argument follows directly from the proof of Theorem 1.

3. More than one set of mutually exclusive discrete goods.

Utility is given by u(xfl,xll,x12,x21,x22,...xLl,x22), where all the

arguments in the utility function are non—negative. The constraints are
xklx 2 = 0 for

all k 1,LThe budget constraint is x +kl + pk2xk2)
= y . In this

case, we can imagine the individual solving 2' sub—problems of the sort dis-

cussed in Theorem 1. Each sub—problem arises from maximizing utility with one

argument in each of the pairs equal to zero. This leads to well—behaved

conditional expenditure functions, the minimum of which is associated with the

consumer's optimum. At each vector of "cross-over" prices, the minimum of

these functions is continuous and right- and left—differentiable in each price.

The rest of the argument follows as in the text.

APPENDIX B

In this Appendix we apply the results of Table 3.1 to the problem of

estimating the excess burden of the implicit subsidy for owner—occupied housing

in the U.S. personal income tax. Our purpose is not to arrive at a definitive
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estimate of the efficiency loss associated with the provision. Such a

calculation would necessarily involve re cognition that the relevant income

and price elasticities vary across income classes, as does the size of the

implicit subsidy itself [Laidler, 1969]. Our goal is merely to take advantage

of some "stylized facts" concerning the demand for owner—occupied housing in

order to see how the excess burden varies under alternative assumptionS.

We begin by discussing briefly the relevant
tax provisions. (For a more

complete exposition, the reader is referred to Laidler [1969].) Under the U.S.

income tax, homeowners are not required to include imputed rent in adjusted

gross income. At the same time, they are allowed to deduct payments for

property taxes and mortgage interest. Denote by d the proportion of housing

costs that are excluded from the tax base. Then assuming a horizontal supply

curve for owner—occupied housing services over the relevant range, the implicit

subsidy reduces their price to a fraction (1 td) of supply price,

where T is the individual's marginal income tax rate. It is expected that

lowering the effective price of owner—occupied housing services increases the

demand for housing services by those
who would own anyway, and also induces some

renters to become homeowners. These
distortions of choice lead to the excess

burden which, we now seek to estimate.

As the discussion in Section III iridicates estimates of the following

magnitudes are required to compute the excess burden Call stated in

hold termsl;

1. p1/p1 , the percentage deyiatiofl in the price o housing services

induced by the implicit subsidy.

We.OllOW Laidler in taking d , the proportiOn of housing expenditures

24
-

not uh ect t tax, as 0.68 , Putting this together with a marginal tax rate

is based on the following assumptions; rate of zeturn on capital in

housing = 6% of buse value, state aria local taxes = 1.5%, dereciatiOrl = 2.25%,

and jnaintenanCe costs = 1,25%,
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of 0.25 yields an effective price of housing services of Cl —. (.25) (.68)) 0.83
so hp/p (1 - 0.83)/i = 0.17.

2. X1p1 , expenditures on owner—occupied housing services. Suppose the

housing unit is worth $50,000, approximately the redian valne for the U.S. in
1978. Then given the assumptions in footnote 24, the expenditure flow is
x1p1 =$50,000(o.06 + .015 + .0225 + .0125)= $5500 per year. In order to

convert this figure to per household terms, it must be multiplied by ir , the
value of which is given below.

3. f' , the elasticity of the probability of owning with respect to

income; c , the
ordina.ry (unconditional) price elasticity of demand for owner-

occupied housing; and r , the (unconditional) income elasticity of demand.

These parameters are computed using results reported in Rosen's [forth-

cor'ting] study of the impact upon housing decisions of the personal income tax.
The econometric method upon which the results are based is a two—stage technique
discussed by Hec)cnan (1977]. In the first stage, a probitequation for the

tenure choice decision is estimated by maximum likelihood. From the probit

equation, it is possible to calculate ' by evaluating the probit index at

the mean values for price and income, and finding the associated probability
25

of owning. The exercise is then repeated with an income value one percent
higher. The implied valne of 'V is 0.485. Similarly, the price elasticity

of the probability of homeownership is found to be -0.469.

The second stae of the econometric procedure involves
estimating the

demand for housing, conditional upon owning. In order to correct for potential

selectivity bias in the estiz'ats, a ve.r table based upo:'t the Mills ratio is added

to the set of regressors. (See Hecicuan 11977] for details.) Using a specification

25The computation assumes that the head of household is a white male
between 26 and 40 years old, and has one child under the age of 17.
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which is second order in the logarithms of price and income, it is found that,

evaluated at the means, the conditional income and price elasticities are 0.76

and —0.97, respectively.

Recall, however, that e and r are unconditional elasticities. It is

straightforward to show that a'-. unconditinnal elasticity is just the sum of the

associated conditional elasticity arid probability elasticity. Thus, £ = -1.44

and r = 1.25

4. ii , the probability of hcxneownership.

The proportion of homeowners in the U.S. is about 0.64.

5. 0 , the budget share of owner-.occupied housing.

As Aaron [1972) shows, the prrçortion of housing in the budgets of owner-

occupiers varies considerably across income groups, but a value of about 0.25

reflects the central tendency reasonably well. To find 0 , the overall budget

share for owner-occupied housing, we multiply 0.25 by the proportion of home-

owners, to find 0 = 0.16[ = (.25) (.64))

With these figures in h.nd, we compute in Table B.1 the numerical counter-

parts to the fomulae in Table 3.1. The excess burden (in dollars per house-

hold per year) for any set of assumptions is found by multiplying the appropri-

ate number in the table by $51 C = .5 X 5500 X 0.64 x (0.17)2)

TABLE B.l

,—

Continuous Discrete —
partial

General

1.64

1.24

1.71

131
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The table indicates that the "discrete" computations do not differ

greatly from their "continuous" ana1og.ies. (For the partial equilibrium case

the difference is 4.2%, for the general equilibrium case it is 5.7%.) This

closeness is due to the fact that both w , the probability of owning, and

the income elasticity of the choice probability, are relatively high for

owner—occupied housing. In situations where these parameters are closer to

zero, the differences will tend to be more substantial; on the other hand,

in situations in which the budget share e is lower than that for housing,

the differences will tend to be smaller. In this context it should be noted

that figures in the "continuous" column already are "corrected" for incane

effects. This correction (which is often ignored, but which is relatively

large in this case due to the size of the budget share) amounts to a 14%

difference in the magnitude of the estimated excess burden.
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